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Abstract

\justifying The atmospheric radiative transfer calculations are among the most time-consuming components of the numerical

weather prediction (NWP) models. Deep learning (DL) models have recently been increasingly applied to accelerate radiative

transfer modeling. Besides, a physical relationship exists between the output variables, including fluxes and heating rate profiles.

Integration of such physical laws in DL models is crucial for the consistency and credibility of the DL-based parameterizations.

Therefore, we propose a physics-incorporated framework for the radiative transfer DL model, in which the physical relationship

between fluxes and heating rates is encoded as a layer of the network so that the energy conservation can be satisfied. It is also

found that the prediction accuracy was improved with the physic-incorporated layer. In addition, we trained and compared

various types of deep learning model architectures, including fully connected (FC) neural networks (NNs), convolutional-based

NNs (CNNs), bidirectional recurrent-based NNs (RNNs), transformer-based NNs, and neural operator networks, respectively.

The offline evaluation demonstrates that bidirectional RNNs, transformer-based NNs, and neural operator networks significantly

outperform the FC NNs and CNNs due to their capability of global perception. A global perspective of an entire atmospheric

column is essential and suitable for radiative transfer modeling as the changes in atmospheric components of one layer/level

have both local and global impacts on radiation along the entire vertical column. Furthermore, the bidirectional RNNs achieve

the best performance as they can extract information from both upward and downward directions, similar to the radiative

transfer processes in the atmosphere.
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Abstract6

The atmospheric radiative transfer calculations are among the most time-consuming7

components of the numerical weather prediction (NWP) models. Deep learning (DL) mod-8

els have recently been increasingly applied to accelerate radiative transfer modeling. Besides,9

a physical relationship exists between the output variables, including fluxes and heating rate10

profiles. Integration of such physical laws in DL models is crucial for the consistency and11

credibility of the DL-based parameterizations. Therefore, we propose a physics-incorporated12

framework for the radiative transfer DL model, in which the physical relationship between13

fluxes and heating rates is encoded as a layer of the network so that the energy conservation14

can be satisfied. It is also found that the prediction accuracy was improved with the physic-15

incorporated layer. In addition, we trained and compared various types of deep learning16

model architectures, including fully connected (FC) neural networks (NNs), convolutional-17

based NNs (CNNs), bidirectional recurrent-based NNs (RNNs), transformer-based NNs,18

and neural operator networks, respectively. The offline evaluation demonstrates that bidi-19

rectional RNNs, transformer-based NNs, and neural operator networks significantly out-20

perform the FC NNs and CNNs due to their capability of global perception. A global21

perspective of an entire atmospheric column is essential and suitable for radiative transfer22

modeling as the changes in atmospheric components of one layer/level have both local and23

global impacts on radiation along the entire vertical column. Furthermore, the bidirectional24

RNNs achieve the best performance as they can extract information from both upward and25

downward directions, similar to the radiative transfer processes in the atmosphere.26

Plain Language Summary27

Numerical weather prediction (NWP) models require a lot of computational resources28

and time to run. Calculating the atmospheric radiative transfer processes is one of the29

most computationally expensive parts of the NWP model. One alternative is to model30

the radiative transfer using deep learning (DL) models, but the deep learning models do31

not involve physical laws and may have physically inconsistent outputs. This paper pro-32

poses a DL model framework to ensure the thermal equilibrium between fluxes and heat-33

ing rates, which are outputs of radiative transfer models. Also, the accuracy of DL-based34

radiative transfer prediction is improved when using the framework. Various deep learn-35

ing models have been trained and compared. The results demonstrate that model struc-36

tures with global receptive fields work best for emulating radiative transfer calculations.37

keyworks38

parameterization, atmposhereic radiative transfer, deep learning, physics-incorporated39

1 Introduction40

Solar (shortwave, SW) and thermal radiation (longwave, LW) are the fundamen-41

tal drivers of the atmospheric and oceanic circulation by creating the equator-versus-pole42

energy imbalance. The atmospheric radiative transfer processes are well understood and43

accurately represented by the line-by-line model LBLRTM (S. Clough et al., 2005; S. A. Clough44

et al., 1992). However, the LBLRTM requires unaffordable computational costs; thus,45

it is inappropriate for weather and climate modeling. Therefore, various parameteriza-46

tion methods are proposed to efficiently approximate radiative transfer calculations for47

application in numerical models (Stephens, 1984).48

Despite being simplified, the radiative transfer parameterization is still more com-49

putationally expensive than other dynamical or physical processes. Therefore, the ra-50

diative transfer parameterization is usually performed less frequently in time and on a51

coarser spatial grid. For example, in the European Centre for Medium-Range Weather52
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Forecasts (ECMWF), the radiation scheme is run 8 times less frequently in time and 10.2453

times coarser in spatial resolution than the high-resolution deterministic forecast (HRES),54

which would degrade the precision compared to frequent calls in time and space (Hogan55

& Bozzo, 2018). While for the ECMWF ensemble forecast with 12 minutes time step,56

the radiation scheme is only called every 3 hours on a spatial grid 6.25 times coarser than57

the rest of the model.58

To further accelerate the radiation calculations in weather and climate models and59

make it feasible for more frequent calls of the radiation schemes, many researchers have60

investigated alternative approaches such as neural networks (NNs). Chevallier et al. (1998)61

and Chevallier et al. (2000) used shallow NNs with one hidden layer (NeuroFlux) to sim-62

ulate the LW radiative budget from the top of the atmosphere to the surface in a model63

with 31 vertical levels. The NeuroFlux achieved comparable accuracy to the accuracy64

of the ECMWF operational scheme and was also 22 times faster. However, NeuroFlux65

failed to maintain both accuracy and acceleration when applied to models with 60 ver-66

tical layers and above (Morcrette et al., 2008). Pal et al. (2019) developed two dense,67

fully connected, feed-forward deep NN (DNN) to emulate SW and LW radiative calcu-68

lations. They replaced the original radiation parameterization in the Super-Parameterized69

Energy Exascale Earth System Model (SP-E3SM) with these DNN-based emulators and70

were able to run simulations stably for up to a year. The DNN-based models achieved71

approximately 90-95% accuracy and sped up by 8-10 times compared to the original pa-72

rameterizations. Their results demonstrated the applicability of machine learning in mod-73

eling radiative transfer calculations in NWP models. Roh and Song (2020) found that74

the frequent use of the NN-based radiation model improves the forecast accuracy com-75

pared to the infrequent use of the original radiation scheme with similar calculation costs.76

Moreover, Belochitski and Krasnopolsky (2021) showed that the shallow NN-based ra-77

diation emulators developed ten years ago for the general circulation model (GCM) are78

robust despite the structural change in the host model. Moreover, this model can gen-79

erate realistic and stable radiation results when applied to numerical simulations for up80

to 7 months. Liu et al. (2020) compared feed-forward NNs with convolutional NNs for81

radiative transfer computations. Their results showed that the feed-forward NNs demon-82

strated a better balance between accuracy and computational performance.83

In addition, the DL-based parameterization should be not only accurate but also84

credible by integrating the physical laws into the DL framework (Reichstein et al., 2019).85

Regarding the physical constraints, there exists a physical relationship between fluxes86

and heating rates. The previous studies (Krasnopolsky et al., 2010; Lagerquist et al., 2021;87

Liu et al., 2020; Roh & Song, 2020) trained NN-based emulators to output profiles of heat-88

ing rates and fluxes at the surface and top-of-atmosphere directly, which causes issues89

with energy conservation. Cachay et al. (2021) and Ukkonen (2022) chose to predict the90

radiative fluxes and compute heating rates from fluxes, which ensures physical consis-91

tency (Yuval et al., 2021). However, Ukkonen (2022) found that the heating rates are92

highly sensitive to the continuity in the fluxes profile, and minor errors in fluxes lead to93

relatively large errors in heating rates. Based on the above research, the satisfaction of94

physical constraints has become a critical issue in NN-based radiative transfer emula-95

tion.96

In this paper, we use deep learning models to emulate radiative transfer calcula-97

tions. We run the Model for Prediction Across Scales - Atmosphere (MPAS-A) (Skamarock98

et al., 2012) that covers the entire globe and all months to generate the dataset for train-99

ing and validation. The rapid radiative transfer model for general circulation models (RRTMG)100

is selected for radiative transfer calculations as the RRTMG model is widely used by many101

global and regional models. We also propose a physically incorporated training scheme,102

where the energy conservation is encoded in the network as hard constraints. Based on103

this framework, we apply and compare different network structures and analyze the ad-104

vantages and disadvantages of each network structure in detail. Section 2 describes the105

–3–



manuscript submitted to Journal of Advances in Modeling Earth Systems

dataset used for training and evaluation. The overall physics-incorporated solution and106

various network structures are described in Section 3. The results related to each type107

of model and detailed error analysis are demonstrated in Section 4. Finally, section 5 con-108

tains the conclusions and discussions.109

2 Data110

2.1 Data generation111

The dataset was generated by running the MPAS-Atmosphere version 7.1 with ini-112

tial conditions provided by the National Centers for Environmental Prediction (NCEP)113

Global Forecast System (GFS). MPAS employs an unstructured centroidal Voronoi mesh,114

which allows for both quasi-uniform and variable horizontal resolution. In this study, we115

used a global quasi-uniform horizontal mesh of approximate 60 km grid spacing contain-116

ing 163842 grid cells and 57 vertical levels with a model top at 30 km.117

The experiments used physics packages consisting of the “mesoscale reference” suite118

in MPAS-A. These packages include the new Tiedtke for cumulus convection (Zhang &119

Wang, 2017), RRTMG for SW and LW radiation (Iacono et al., 2008), Xu-Randall for120

subgrid cloud fraction (Xu & Randall, 1996), WRF Single-Moment 6-Class (WSM6) for121

microphysics (Hong & Lim, 2006), and Yonsei University (YSU) for planetary bound-122

ary layer mixing (Hong et al., 2006). The simulations were run for three days per month,123

and the initialization days were randomly selected (i.e., 20200108, 20200213, 20200302,124

20200420, 20200528, 20200615, 20200719, 20200811, 20200927, 20201012, 20201124, and125

20201204). The first two days of each three consecutive days are used for training, and126

the last day is used for testing. The model generates radiation inputs and outputs ev-127

ery 1 hour.128

2.2 Input and output data129

Table 1 lists all the input and output variables, where the input contains 29 orig-130

inal variables and the output contains 6 variables. Among the input variables, 11 are sur-131

face variables, and others are three-dimensional variables (either layer or level). To pre-132

process the data for the DL models, we pad the surface and layers variables to match133

the dimensions of the levels variables. Then, the z-score normalization technique is ap-134

plied to normalize all the input and output variables to ensure they have the same mean135

and variance. For three-dimensional variables, the mean and standard deviation (std)136

were determined from values of all the vertical levels or layers.137
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Table 1. Definition of all the input and output variables, and whether they are of surface, lay-
ers, or level type, and units. There are 57 full model levels, and 56 layers.

Type Variable name Definition Location Unit

aldif Surface albedo (near-infrared spectral regions) for diffuse radiation Surface 1
aldir Surface albedo (near-infrared spectral regions) for direct radiation Surface 1
asdif Surface albedo (UV/visible spectral regions) for diffuse radiation Surface 1
asdir Surface albedo (UV/visible spectral regions) for direct radiation Surface 1
cosz Cosine solar zenith angle for current time step Surface 1
landfrac Land mask (1 for land, 0 for water) Surface 1
sicefrac Ice fraction Surface 1
snow Snow water equivalent Surface kg/m2
solc Solar constant Surface W/m2
tsfc Surface temperature Surface K
emiss Surface emissivity for 16 LW spectral bands Surface 1
ccl4vmr CCL4 volume mixing ratio layer mol/mol

Input cfc11vmr CFC11 volume mixing ratio layer mol/mol
cfc12vmr CFC12 volume mixing ratio layer mol/mol
cfc22vmr CFC22 volume mixing ratio layer mol/mol
ch4vmr Methane volume mixing ratio layer mol/mol
cldfrac Cloud fraction layer 1
co2vmr CO2 volume mixing ratio layer mol/mol
n2ovmr N2O volume mixing ratio layer mol/mol
o2vmr O2 volume mixing ratio layer mol/mol
o3vmr O3 volume mixing ratio layer mol/mol
play Layer pressure layer hPa
tlay Layer temperature layer K
qc Cloud water mixing ratio layer kg/kg
qg Graupel mixing ratio layer kg/kg
qi Cloud ice mixing ratio layer kg/kg
qr Rain water mixing ratio layer kg/kg
qs Snow mixing ratio layer kg/kg
qv Water vapor mixing ratio layer kg/kg

swuflx Layer SW upward fluxes level W/m2
swdflx Layer SW downward fluxes level W/m2

Output lwuflx Layer LW upward fluxes level W/m2
lwdflx Layer LW downward fluxes level W/m2
swhr SW hearting rate layer K/day
lwhr LW heating rate layer K/day
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3 Method138

This section describes the physics-incorporated model framework, different DL model139

structures, and the evaluation methods.140

3.1 Physics-Incorporated Framework141

The primary functionality of the physics-based radiation parameterization schemes142

within the NWP model is to provide the heating rates due to both SW and LW radi-143

ation. Given the input variables listed in Table 1, the radiation parameterization first144

calculates the optical properties of the atmosphere due to various gases and the pres-145

ence of clouds. Then, the radiation schemes use the optical properties and boundary con-146

ditions such as incoming solar flux, solar zenith angle, and surface albedo to calculate147

and output the vertical profiles of fluxes and heating rates. The flux measures the en-148

ergy being radiated per unit area, with the unit of watts per meter squared (W/m2). The149

heating rate describes the temperature change per unit of time, and it has the units of150

Kelvin per day (K/d). These two variables are not independent, and there is such a phys-151

ical relationship:152

HRl =
g

cp

(Fup
l+1 − F down

l+1 )− (Fup
l − F down

l )

pl+1
lev − plevl

(1)

where g is the gravitational constant, cp is the specific heat at constant pressure,153

Fup
l , F down

l , and plevl are the upward flux, downward flux, and pressure of level l ∈ [1, · · · , nlev].154

The output variables are involved in the subsequent calculations of the NWP models.155

It is critical to ensure that the relationship described by Equation (1). In addition, the156

change in atmospheric variables of one layer/level has both local and global impacts on157

radiation along the entire vertical column. For example, the presence of clouds or liq-158

uid water at any layer affects the distribution of fluxes across all the vertical levels by159

producing local heating rates peaks. Therefore, the related variables can be integrated160

vertically to allow for the nonlocal effects. Based on the above considerations, the frame-161

work is designed as shown in Figure 1, which includes three layers: the differential/integration162

layer, the radiative transfer layer, and the physics-incorporated layer.163

The differential/integral layer is a data preprocessing module to preprocess input164

variables so that some prior knowledge can be fully utilized. As the cloud fraction (cld-165

frac in Table 1) and liquid water (qc) can affect fluxes far away from where they are present,166

these variables are integrated upward and downward along the vertical direction. The167

vertically accumulated cloud fraction and liquid water allow the models to learn verti-168

cally nonlocal effects. Meanwhile, calculating the heating rates requires the pressure dif-169

ference between the two adjacent layers. Given the same values of fluxes, the smaller val-170

ues of pressure difference result in larger values in heating rates. Therefore, the air pres-171

sure difference is obtained in advance by the differential module. The preprocessed fea-172

tures produced by the differential/integral layer are concatenated with the original fea-173

tures before being input into the models.174

The radiative transfer layer contains the DL model to be trained to learn the map-175

ping similar to the physics-based radiative transfer model. The learnable parameters only176

exist in this layer, as shown in the orange block in Figure 1. Although the model out-177

put is fluxes only, a custom loss function is designed as a weighted sum of the flux loss178

Lflux and heating rate loss Lhr, as shown in Equation (2). λ is the weight of heating rate179

loss. The flux loss is defined as an average of the four groups of dimensionless values cal-180

culated as the mean square deviations divided by variance, as shown in Equation (3).181

Similarly, the heating rate loss averages two groups of dimensionless values, as shown in182

Equation (4). In the forward propagation stage, the fluxes are first output by this layer,183

and then heating rates are derived by the physics-incorporated layer (third layer). Fi-184
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Figure 1. Physics-incorporated framework for emulating atmospheric radiative transfer

nally, the flux and heating rate loss are combined, and then the parameters of this layer185

will be updated accordingly. Many DL model structures can be implemented in this layer,186

and the details of some selected models are described in the following subsection.187

The last layer is the physics-incorporated layer, which computes heating rates from188

fluxes based on Equation (1). The equation is treated as an independent layer and en-189

coded into the framework to ensure physical consistency and conservation of energy. The190

gradient of heating rate loss can be derived using the gradient of flux loss and Equation191

(1), so there are no learnable parameters within this layer.192

L = (1− λ)Lflux + λLhr (2)

Lflux =
1

4
[
MSEFsw−up

σ2
Fsw−up

+
MSEFsw−dn

σ2
Fsw−dn

+
MSEFlw−up

σ2
Flw−up

+
MSEFlw−dn

σ2
Flw−dn

] (3)

Lhr =
1

2
[
MSEHRsw

σ2
HRsw

+
MSEHRlw

σ2
HRlw

] (4)

3.2 DL Models within the Radiative Transfer Layer193

In this section, the detailed DL model structures in the radiative transfer layer are194

described. Various DL model structures are compared, including fully connected (FC) NNs,195

convolutional-based NNs (CNNs), recurrent-based NNs (RNNs), transformer-based NNs,196

and neural operator networks, respectively. For each group of model structures, the total197

number of parameters is controlled to be around 1 million. This way, the influence of the198

number of parameters can be ruled out, and the influence of the network structures on the199

radiative transfer modeling can be examined more clearly. The schematic diagram of the200

ResNet, Bi-LSTM, FNO, and Transformer model is shown in Figure 2.201
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• FC NNs: FC NNs are the most classical network structures in the study of DL-202

based emulators of radiative transfer parameterization. In FC networks, all the input203

variables are flattened and passed through a series of fully connected layers to obtain204

the outputs. In this work, the number of hidden layers used is 10, and each layer205

contains 200 hidden units. After each fully connected layer, batch normalization206

is performed, and the activation function of ReLU is used. The total number of207

parameters for this FC model is 0.84 million.208

• CNNs: CNNs were firstly designed for image processing and have also become popular209

tools in the atmospheric science (Bolton & Zanna, 2019; Wimmers et al., 2019; Liu210

et al., 2020; Lagerquist et al., 2021). The CNNs use convolution kernels to process a211

small input region at a time, so they are good at extracting local features. However,212

the convolution kernel also limits CNNs’ ability of global perception due to its fixed213

sizes. Furthermore, although the receptive field increases with the more convolutional214

layers, adding more layers substantially increases the computational costs of CNN215

models. There are different types of CNN models, and the two classical CNN models216

have been implemented in this work: ResNet and U-Net. The ResNet was first217

proposed by He et al. (2016), and it is built on the concept of shortcut connections218

between layers to minimize the problem of vanishing gradients. In this work, the input219

feature dimension is first increased to 128 through a 1D convolution with a kernel size220

of 7. Then ten residual blocks are applied, each containing three layers of Convolution-221

BatchNormalization-ReLU operations. Within each residual block, the kernel size is222

three, and the number of output channels is 128. The total number of parameters is223

0.77 million. The U-Net model was first proposed by Ronneberger et al. (2015). It first224

consists of several convolutional layers and downsampling processes while the number225

of channels increases. The downsampling module has a layer of Conv-BN-ReLU226

operation with stride 2. The U-Net structure used here contains four downsampling227

modules, and the numbers of output channels are 24, 48, 96, and 192, respectively.228

Next, multiple upsampling steps are performed to recover the original resolution while229

the number of channels reduces. The upsampling module goes through a single-layer230

deconvolution module with stride one and then through two layers of Conv-BN-ReLU231

operations. In addition, the outputs of each downsampling module (except for the232

last one) are used for the corresponding upsampling module through skip connections.233

Lastly, the network adopts a 1× 1 convolutional layer to map the channel dimension234

to the output dimension. The total number of parameters of the U-Net model is 1.52235

million.236

• Recurrent Type: Recurrent NNs (RNNs) are widely used for sequential data such as237

text data in natural language processing (NLP) tasks and time series. Here, the se-238

quence is represented by the vertical profiles simulated by NWP models, and the input239

vectors are the variables describing atmospheric conditions at a vertical level. How-240

ever, standard RNNs are insufficient for modeling the radiative transfer processes. On241

the one hand, the RNNs are ineffective for modeling long sequences, while the num-242

ber of vertical levels has been increasing to improve the model forecast. On the other243

hand, radiative fluxes transfer in upward and downward directions, so the fluxes at a244

certain level were affected by the atmospheric conditions above and below. Therefore,245

the unidirectional RNNs are not appropriate. The Long Short-Term Memory (LSTM)246

(Hochreiter & Schmidhuber, 1997) and Gated Recurrent Units (GRU) (Cho et al.,247

2014) are designed to learn long-term dependencies. They use gates to learn which248

data in a sequence is important to keep or remove. In addition, the bidirectional249

LSTM and GRU are implemented to extract information from both directions of the250

sequence (i.e., vertical profiles of the atmosphere). The Bi-LSTM model applied in251

this paper contains five layers, each with 96 hidden layer units, and the number of252

model parameters is 1.12 million. For the Bi-GRU, a 5-layer structure is used, with253

each layer having 128 hidden layer units, and the number of network parameters is254

0.77 million.255
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• Transformer Type: Transformers (Vaswani et al., 2017), a NN architecture built on256

the self-attention mechanism, were initially designed for NLP tasks and have become257

a general architecture for almost every ML task. Unlike CNN models that start258

by learning local features and slowly get a larger receptive field, transformers have259

a global perspective at each layer due to self-attention. Because of the nature of260

radiative transfer, changes in atmospheric conditions at any layers affect the entire261

profile of radiative fluxes. For example, when clouds occur, the fluxes at all levels are262

changed accordingly. Therefore, transformers are appropriate for emulating radiative263

transfer as they can extract information from the whole atmospheric column. The264

transformer model used in this work contains seven self-attention blocks, each having265

one self-attention layer and two fully connected layers. All the query, key, and value266

vectors in the model have a dimension of 128. Finally, the dimension of embedding is267

changed to be the same as the output dimension through a 1× 1 convolutional layer.268

The total number of trainable parameters in this transformer network is 0.71 million.269

• Neural Operator Type: The traditional radiative transfer parameterization approx-270

imates the full equations of radiative transfer by discretizing the atmosphere in the271

vertical direction. However, vertical discretization also results in a trade-off between272

speed and accuracy: low resolution is fast but less accurate, while high resolution is273

accurate but slower. Unlike traditional grid-dependent methods, the Fourier Neural274

Operators (FNO) can parameterize the radiative transfer modeling in function space275

instead of the discretized space. The output of the FNO is the complete wave field276

solution, similar to the wavelike pattern of fluxes. The FNO (Li et al., 2020) model277

we implement in this study includes four Fourier modules, each performing convo-278

lutions in the frequency domain through the Fourier transform and reverting to the279

spatial domain through the inverse Fourier transform. The FNO allows a single-layer280

operator to capture global information of the entire atmospheric column. The total281

number of trainable parameters in the FNO model is 1.22 million.282

All settings of the hyperparameters used for different NNs are the same. Each model is283

trained with 500 epochs using a batch size of 4096. Adam optimizer is used with the initial284

learning rate 1e-3. Also, the plateau scheduler is applied to decrease the learning rate by a285

factor of 0.5 when the loss does not decrease for five consecutive epochs.286

3.3 Evaluation methods287

All the DL-based radiation emulators are evaluated by comparing against the outputs288

of the original RRTMG schemes, including upward and downward SW and LW fluxes and289

heating rates. The overall model performance metrics include root mean squared error290

(RMSE), and mean bias error (MBE). For each vertical level, the mean absolute error291

(MAE), MBE, and standard deviation of biases per level or layer were calculated using the292

following equations:293

MAEl =
1

N

N∑
i=1

|YDL(i, l)− Y (i, l)| (5)

MBEl =
1

N

N∑
i=1

YDL(i, l)− Y (i, l) (6)

STDl =

√√√√ 1

N

N∑
i=1

((YDL(i, l)− Y (i, l))−MBEl)2 (7)
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Figure 2. Schematic diagram of the structures of DL models used in the radiative transfer layer,
including ResNet, Bi-LSTM, FNO, and Transformer.
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where Y (i, l) and YDL(i, l) are output from the RRTMG radiation schemes and DL-294

based radiation emulators, respectively, i is the horizontal grid point of a vertical profile, N295

is the number of the horizontal grid points, l is the vertical level or layer index.296

4 Results297

4.1 Statistical results298

The offline evaluation was done using 12 days of data that was not used for training.299

Table 2 summarizes the error statistics of different DL-based emulators for fluxes and heat-300

ing rates averaged over all the testing data. The FC, ResNet, and U-Net models predict301

far less accurate fluxes and heating rates, with RMSE of SW and LW fluxes higher than302

10.9 and 2.4 W/m2 and RMSE of SW and LW heating rates higher than 0.09 and 0.21303

K/day, respectively. The RMSE of LW fluxes is always smaller than that of SW fluxes,304

as SW fluxes have a greater magnitude than LW fluxes and are more difficult to predict.305

However, the RMSE of LW heating rates is always higher than the SW heating rates of306

each corresponding DL-based emulator, as LW heating rates are more sensitive to clouds307

and more difficult to predict (see Figure 3). Overall, FC and CNN networks perform worse308

than the RNN, transformer, and FNO models in radiative transfer emulations, which the309

structural characteristics of these models can explain. For FC networks, the flattening op-310

eration erases the vertical distribution of all the features, leading to the loss of important311

information. Also, FC and CNN networks only have the local receptive fields in the vertical312

direction for each operation performed.313

The Bi-GRU, Bi-LSTM, transformer, and FNO significantly improve forecast accuracy,314

with RMSE of SW and LW fluxes smaller than 3.8 and 1.3 W/m2, respectively. In addition,315

the RMSE of SW and LW heating rates is reduced to less than 0.042 and 0.15 K/day. The316

change in atmospheric variables of one layer/level has both local and global impacts on ra-317

diation along the entire vertical column. For example, the presence of clouds or liquid water318

at any layer significantly reflects or absorbs radiation which affects the subsequent fluxes319

across the whole atmospheric column and produces local heating rate peaks. Therefore,320

having global perception ability is critical for DL-based radiative transfer emulation. The321

significant improvement in the accuracy of fluxes and heating rates for Bi-GRU, Bi-LSTM,322

transformer, and FNO models is due to their ability to obtain a global perspective of an323

entire atmospheric column in single-layer operations. However, the FNO model performs324

worse than Bi-GRU, Bi-LSTM, and transformer models because it assumes that the in-325

put variables have a uniform distribution while the atmospheric layers are not distributed326

uniformly. The Bi-GRU and Bi-LSTM model have the best performance and outperform327

the transformer model, with RMSE in SW and LW fluxes around 2.3 and 1.2 W/m2, and328

RMSE in SW and LW heating rates about 3.20×10−2 and 1.39×10−1 K/day, respectively.329

The Bi-GRU and Bi-LSTM are most accurate because they mimic atmospheric radiative330

transfer’s bidirectional behavior in the vertical direction.331

In addition, the biases of the net fluxes at the top-of-atmosphere (TOA) directly de-332

termine the energy budget of the global atmosphere. Therefore, if the MBE of net fluxes333

at the TOA tends to be 0, it represents a more consistent energy budget with the physics-334

based radiation schemes. Table 2 shows that the Bi-LSTM model has the highest accuracy335

in terms of net fluxes at TOA, with a value of 4.91 × 10−2 W/m2, which is one order of336

magnitude smaller than other models.337

For a clearer view of the vertical distribution of errors, Figure 3 presents the vertical338

profiles of statistics in fluxes and heating rates for FC, U-Net, Bi-LSTM, and transformer.339

The solid and dotted lines in the figure represent the MAE and MBE of fluxes or heating340

rates at each vertical level/layer, and the shaded area shows the mean std of biases. The341

FC and U-Net models have much higher variance, as shown by the vertical profiles of mean342

std of biases. Also, FC and U-Net models have much higher MAE than the Bi-LSTM and343
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Table 2. RMSE of SW flux, LW flux, SW heating rate, LW heating rate, and MBE of TOA net
flux for DL-based emulators including FC, ResNet, U-Net, Bi-GRU, Bi-LSTM, Transformer, and
FNO averaged over all the testing data.

Model
SW Flux
W ·m−2

LW Flux
W ·m−2

TOA Net Flux
W ·m−2

SW Heating Rate
K · d−1

LW Heating Rate
K · d−1

RMSE RMSE MBE RMSE RMSE
FC 14.63 5.28 -3.78 18.85e-2 3.94e-1

ResNet 38.97 8.72 -2.32e-1 22.89e-2 4.14e-1
Unet 10.92 2.46 -7.62 9.58e-2 2.17e-1

Bi-GRU 2.334 1.216 3.97e-1 3.29e-2 1.41e-1
Bi-LSTM 2.315 1.205 4.91e-2 3.20e-2 1.39e-1

Transformer 2.753 1.286 -5.61 4.06e-2 1.46e-1
FNO 3.755 1.289 -6.77 4.20e-2 1.47e-1
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Figure 3. Vertical profiles of the statistics in SW fluxes (first row), LW fluxes (second row),
SW heating rates (third row), and LW heating rates (fourth row) for the test data using different
NN-based emulators: FC (first column), U-Net (second column), Bi-LSTM (third column), and
Transformer (fourth column). The solid and dotted lines show the MAE and MBE profile, respec-
tively, and the shaded area indicates the mean std relative to the bias.
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Table 3. Performance of Bi-LSTM on radiative transfer problems with different error types

Loss Type SW Flux
W ·m−2

LW FLux
W ·m−2

SW Heating Rate
K · d−1

LW Heating Rate
K · d−1

only fluxes 2.404 1.222 1.958e-1 1.810e-1
only heating rates \ \ 1.166e-1 1.419e-1

with physics-incorporated layer 2.315 1.205 0.320e-1 1.390e-1

transformer models at all levels. The error distributions of Bi-LSTM and transformer are344

very similar, and the Bi-LSTM has slightly smaller values in error and std. Both models345

show a uniform vertical error distribution and std in fluxes. For heating rates, they have346

relatively higher values in std of biases among the pressure layers between 800-1000 hPa347

and 200-400 hPa. Those two vertical regions are where liquid and ice clouds occur most348

frequently and are thus more difficult to predict.349

4.2 Benefits of introducing the physics-incorporated layer350

In this subsection, we discuss the benefits of introducing the physics-incorporated layer.351

The physics-incorporated layer ensures the satisfaction of the thermal equilibrium between352

fluxes and heating rates, as shown in Equation (1), by encoding it as part of network layers.353

We designed three groups of experiments: only supervising fluxes, only supervising heating354

rates, and a joint loss with the physics-incorporated layer imposed. The corresponding355

weights (λ in Equation (2)) are set to 0, 1, and 0.091. The RMSE of these experiments are356

summarized in Table 3.357

When only supervising the fluxes, the heating rates are derived using Equation (1). As358

the vertical profiles of fluxes are smooth, the model is relatively easy to fit fluxes well. As359

a result, the RMSE of only supervising fluxes is slightly worse than that using the physics-360

incorporated layer. However, the RMSE of SW and LW heating rates are 6 times and 1.5361

times greater than using the physics-incorporated layer. On the other hand, when the model362

is trained only to supervise the heating rates, fluxes cannot be derived accordingly. In this363

case, the model predicted heating rates are still less accurate than the model trained with364

the physics-incorporated layer, and the RMSE of SW and LW heating rates are 1.5 and365

1.25 times greater. The physics-incorporated layer demonstrates its superiority by ensuring366

a physically consistent relationship between fluxes and heating rates and showing a more367

accurate prediction of heating rates and fluxes. Overall, the Bi-LSTM model trained using368

the physics-incorporate layer achieves the most accurate forecast.369

4.3 Performance under different cloud conditions370

As clouds play an important role in weather and climate prediction, this section analyzes371

the performance of the DL-based radiation emulators under three typical cloud conditions:372

profiles with no liquid cloud, single-layer liquid cloud, and multi-layer liquid cloud. The373

liquid clouds strongly absorb and scatter radiation, and they cause discontinuity in radiative374

fluxes and heating rates. Therefore, it is more difficult for radiation emulators to perform375

well under cloudy conditions than in liquid cloud-free conditions. This work defines the376

liquid cloud layer as a contiguous set of vertical layers with cloud water mixing ratios (qc377

in Table 1) larger than 0. In all the testing data, no liquid cloud, single-layer, and multi-378

layer liquid cloud account for 61.3%, 29.6%, and 9.1% (Table 4). Here, ice cloud layers379

forming at high altitudes are not considered as their impact on fluxes and heating rates are380

much weaker than liquid cloud layers. Table 4 presents the RMSE of different DL-based381

emulators to predict heating rates under three liquid cloud conditions. The Bi-LSTM and382

Bi-GRU predicted heating rates are the most accurate under all three cloud conditions. The383
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Table 4. RMSE for heating rates under no liquid cloud, single-layer liquid cloud and multi-layer
liquid cloud conditions.

Model

no liquid cloud
(61.3%)
K · d−1

single-layer liquid cloud
(29.6%)
K · d−1

multilayer liquid cloud
(9.1%)
K · d−1

SW HR LW HR SW HR LW HR SW HR LW HR
FC 0.1005 0.2938 0.1612 0.3826 0.2127 0.4835

ResNet 0.1263 0.2284 0.2023 0.4456 0.2165 0.4289
Unet 0.0510 0.1159 0.0837 0.2060 0.1013 0.2674

Bi-GRU 0.0157 0.0554 0.0303 0.1370 0.0359 0.1566
Bi-LSTM 0.0152 0.0546 0.0297 0.1379 0.0346 0.1567

Transformer 0.0201 0.0680 0.0367 0.1437 0.0440 0.1644
FNO 0.0211 0.0683 0.0378 0.1453 0.0463 0.1684

RMSE under the condition of multi-layer liquid clouds is higher than that of single-layer384

and cloud-free conditions for all models.385

To better understand why the error statistics vary significantly under different cloud386

conditions, we randomly select three vertical profiles for demonstration, as shown in Figure387

4. Figures 4 also illustrates the vertical profiles of SW and LW fluxes and heating rates388

predicted by the original RRTMG scheme, FC, U-Net, Bi-LSTM, and transformer models389

for the three selected cases, respectively. Under cloud-free conditions, fluxes and heating390

rates change smoothly from the TOA to the surface. While under single-layer and multi-391

layer liquid cloud conditions, a large gradient of fluxes and heating rates are shown where392

liquid clouds are presented. As a result, Figures 4 show that these DL models can accurately393

predict the vertical profiles of heating rates, while their prediction for the vertical profiles of394

SW fluxes is worse than that of LW fluxes. Among the DL-based radiation emulators, the395

Bi-LSTM and transformer models are superior in capturing the discontinuities in vertical396

caused by liquid water, consistent with Table 2.397
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Figure 4. Vertical profiles of the liquid water distribution of the 3 typical case (top row):no
liquid cloud (left column), single-layer liquid cloud (middle column), and multi-layer liquid cloud
(right column). Vertical profiles of SW upward fluxes (top row), SW downward fluxes (middle
row), SW heating rates (bottom row), LW upward fluxes (top row), LW downward fluxes (middle
row), and LW heating rates predicted by the original RRTMG scheme, FC, U-Net, Bi-LSTM, and
transformer models for the three selected cases.
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5 Conclusions398

In this paper, we propose a physics-incorporated framework for emulating atmospheric399

radiative transfer processes. The physical relationship between fluxes and heating rates is400

considered in our framework and encoded as a layer of the network. Based on this frame-401

work, we designed and compared various DL model structures, such as FC NNs, CNNs,402

bidirectional RNNs (Bi-LSTM and Bi-GRU), transformer-based NNs, and FNO. We found403

that models with the ability of global perception perform better than FC and CNNs and404

are thus more suitable for radiative transfer emulation. Among the models with a global405

perspective of an entire atmospheric column, the Bi-LSTM and Bi-GRU have the best accu-406

racies, outperforming the transformer and FNO, as they benefit from extracting information407

from two directions. It is also demonstrated that the physics-incorporated layer makes the408

prediction of the Bi-LSTM model more accurate. Furthermore, evaluations are performed409

under different liquid cloud conditions due to the importance of clouds to weather and410

climate prediction. The results suggest the Bi-LSTM performs well at all vertical levels,411

although there are slightly larger errors and variances where clouds are present.412

Future work will investigate the online implementation of the DL-based emulators413

in an NWP model such as the MPAS model with different vertical levels. Besides, due414

to the nonlinearity of the radiative transfer models, there is no corresponding tangent-415

linear and adjoint model of radiative transfer scheme for the MPAS model. Hatfield et al.416

(2021) demonstrated the feasibility of constructing the tangent-linear and adjoint models417

from the NN-based gravity wave drag scheme. They showed that the NN-derived tangent-418

linear and adjoint models successfully passed the standard test and were applied in four-419

dimensional variational data assimilation. Likewise, our future work includes developing420

the adjoint model of radiation schemes using NN-based radiation emulators to improve the421

four-dimensional variational data assimilation system.422
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