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Abstract

\justifying The atmospheric radiative transfer calculations are among the most time-consuming components of the numerical
weather prediction (NWP) models. Deep learning (DL) models have recently been increasingly applied to accelerate radiative
transfer modeling. Besides, a physical relationship exists between the output variables, including fluxes and heating rate profiles.
Integration of such physical laws in DL models is crucial for the consistency and credibility of the DL-based parameterizations.
Therefore, we propose a physics-incorporated framework for the radiative transfer DL model, in which the physical relationship
between fluxes and heating rates is encoded as a layer of the network so that the energy conservation can be satisfied. It is also
found that the prediction accuracy was improved with the physic-incorporated layer. In addition, we trained and compared
various types of deep learning model architectures, including fully connected (FC) neural networks (NNs), convolutional-based
NNs (CNNs), bidirectional recurrent-based NNs (RNNs), transformer-based NNs, and neural operator networks, respectively.
The offline evaluation demonstrates that bidirectional RNNs, transformer-based NNs, and neural operator networks significantly
outperform the FC NNs and CNNs due to their capability of global perception. A global perspective of an entire atmospheric
column is essential and suitable for radiative transfer modeling as the changes in atmospheric components of one layer/level
have both local and global impacts on radiation along the entire vertical column. Furthermore, the bidirectional RNNs achieve
the best performance as they can extract information from both upward and downward directions, similar to the radiative

transfer processes in the atmosphere.
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Abstract

The atmospheric radiative transfer calculations are among the most time-consuming
components of the numerical weather prediction (NWP) models. Deep learning (DL) mod-
els have recently been increasingly applied to accelerate radiative transfer modeling. Besides,
a physical relationship exists between the output variables, including fluxes and heating rate
profiles. Integration of such physical laws in DL models is crucial for the consistency and
credibility of the DL-based parameterizations. Therefore, we propose a physics-incorporated
framework for the radiative transfer DL model, in which the physical relationship between
fluxes and heating rates is encoded as a layer of the network so that the energy conservation
can be satisfied. It is also found that the prediction accuracy was improved with the physic-
incorporated layer. In addition, we trained and compared various types of deep learning
model architectures, including fully connected (FC) neural networks (NNs), convolutional-
based NNs (CNNs), bidirectional recurrent-based NNs (RNNs), transformer-based NNs,
and neural operator networks, respectively. The offline evaluation demonstrates that bidi-
rectional RNNs, transformer-based NNs, and neural operator networks significantly out-
perform the FC NNs and CNNs due to their capability of global perception. A global
perspective of an entire atmospheric column is essential and suitable for radiative transfer
modeling as the changes in atmospheric components of one layer/level have both local and
global impacts on radiation along the entire vertical column. Furthermore, the bidirectional
RNNs achieve the best performance as they can extract information from both upward and
downward directions, similar to the radiative transfer processes in the atmosphere.

Plain Language Summary

Numerical weather prediction (NWP) models require a lot of computational resources
and time to run. Calculating the atmospheric radiative transfer processes is one of the
most computationally expensive parts of the NWP model. One alternative is to model
the radiative transfer using deep learning (DL) models, but the deep learning models do
not involve physical laws and may have physically inconsistent outputs. This paper pro-
poses a DL model framework to ensure the thermal equilibrium between fluxes and heat-
ing rates, which are outputs of radiative transfer models. Also, the accuracy of DL-based
radiative transfer prediction is improved when using the framework. Various deep learn-
ing models have been trained and compared. The results demonstrate that model struc-
tures with global receptive fields work best for emulating radiative transfer calculations.

keyworks

parameterization, atmposhereic radiative transfer, deep learning, physics-incorporated

1 Introduction

Solar (shortwave, SW) and thermal radiation (longwave, LW) are the fundamen-
tal drivers of the atmospheric and oceanic circulation by creating the equator-versus-pole
energy imbalance. The atmospheric radiative transfer processes are well understood and
accurately represented by the line-by-line model LBLRTM (S. Clough et al., 2005; S. A. Clough
et al., 1992). However, the LBLRTM requires unaffordable computational costs; thus,
it is inappropriate for weather and climate modeling. Therefore, various parameteriza-
tion methods are proposed to efficiently approximate radiative transfer calculations for
application in numerical models (Stephens, 1984).

Despite being simplified, the radiative transfer parameterization is still more com-
putationally expensive than other dynamical or physical processes. Therefore, the ra-
diative transfer parameterization is usually performed less frequently in time and on a
coarser spatial grid. For example, in the European Centre for Medium-Range Weather
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Forecasts (ECMWF), the radiation scheme is run 8 times less frequently in time and 10.24
times coarser in spatial resolution than the high-resolution deterministic forecast (HRES),

which would degrade the precision compared to frequent calls in time and space (Hogan

& Bozzo, 2018). While for the ECMWEF ensemble forecast with 12 minutes time step,

the radiation scheme is only called every 3 hours on a spatial grid 6.25 times coarser than

the rest of the model.

To further accelerate the radiation calculations in weather and climate models and
make it feasible for more frequent calls of the radiation schemes, many researchers have
investigated alternative approaches such as neural networks (NNs). Chevallier et al. (1998)
and Chevallier et al. (2000) used shallow NNs with one hidden layer (NeuroFlux) to sim-
ulate the LW radiative budget from the top of the atmosphere to the surface in a model
with 31 vertical levels. The NeuroFlux achieved comparable accuracy to the accuracy
of the ECMWF operational scheme and was also 22 times faster. However, NeuroFlux
failed to maintain both accuracy and acceleration when applied to models with 60 ver-
tical layers and above (Morcrette et al., 2008). Pal et al. (2019) developed two dense,
fully connected, feed-forward deep NN (DNN) to emulate SW and LW radiative calcu-
lations. They replaced the original radiation parameterization in the Super-Parameterized
Energy Exascale Earth System Model (SP-E3SM) with these DNN-based emulators and
were able to run simulations stably for up to a year. The DNN-based models achieved
approximately 90-95% accuracy and sped up by 8-10 times compared to the original pa-
rameterizations. Their results demonstrated the applicability of machine learning in mod-
eling radiative transfer calculations in NWP models. Roh and Song (2020) found that
the frequent use of the NN-based radiation model improves the forecast accuracy com-
pared to the infrequent use of the original radiation scheme with similar calculation costs.
Moreover, Belochitski and Krasnopolsky (2021) showed that the shallow NN-based ra-
diation emulators developed ten years ago for the general circulation model (GCM) are
robust despite the structural change in the host model. Moreover, this model can gen-
erate realistic and stable radiation results when applied to numerical simulations for up
to 7 months. Liu et al. (2020) compared feed-forward NNs with convolutional NNs for
radiative transfer computations. Their results showed that the feed-forward NNs demon-
strated a better balance between accuracy and computational performance.

In addition, the DL-based parameterization should be not only accurate but also
credible by integrating the physical laws into the DL framework (Reichstein et al., 2019).
Regarding the physical constraints, there exists a physical relationship between fluxes
and heating rates. The previous studies (Krasnopolsky et al., 2010; Lagerquist et al., 2021;
Liu et al., 2020; Roh & Song, 2020) trained NN-based emulators to output profiles of heat-
ing rates and fluxes at the surface and top-of-atmosphere directly, which causes issues
with energy conservation. Cachay et al. (2021) and Ukkonen (2022) chose to predict the
radiative fluxes and compute heating rates from fluxes, which ensures physical consis-
tency (Yuval et al., 2021). However, Ukkonen (2022) found that the heating rates are
highly sensitive to the continuity in the fluxes profile, and minor errors in fluxes lead to
relatively large errors in heating rates. Based on the above research, the satisfaction of
physical constraints has become a critical issue in NN-based radiative transfer emula-
tion.

In this paper, we use deep learning models to emulate radiative transfer calcula-
tions. We run the Model for Prediction Across Scales - Atmosphere (MPAS-A) (Skamarock
et al., 2012) that covers the entire globe and all months to generate the dataset for train-

ing and validation. The rapid radiative transfer model for general circulation models (RRTMG)

is selected for radiative transfer calculations as the RRTMG model is widely used by many
global and regional models. We also propose a physically incorporated training scheme,
where the energy conservation is encoded in the network as hard constraints. Based on
this framework, we apply and compare different network structures and analyze the ad-
vantages and disadvantages of each network structure in detail. Section 2 describes the
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dataset used for training and evaluation. The overall physics-incorporated solution and
various network structures are described in Section 3. The results related to each type

of model and detailed error analysis are demonstrated in Section 4. Finally, section 5 con-
tains the conclusions and discussions.

2 Data
2.1 Data generation

The dataset was generated by running the MPAS-Atmosphere version 7.1 with ini-
tial conditions provided by the National Centers for Environmental Prediction (NCEP)
Global Forecast System (GFS). MPAS employs an unstructured centroidal Voronoi mesh,
which allows for both quasi-uniform and variable horizontal resolution. In this study, we
used a global quasi-uniform horizontal mesh of approximate 60 km grid spacing contain-
ing 163842 grid cells and 57 vertical levels with a model top at 30 km.

The experiments used physics packages consisting of the “mesoscale reference” suite
in MPAS-A. These packages include the new Tiedtke for cumulus convection (Zhang &
Wang, 2017), RRTMG for SW and LW radiation (Iacono et al., 2008), Xu-Randall for
subgrid cloud fraction (Xu & Randall, 1996), WRF Single-Moment 6-Class (WSM6) for
microphysics (Hong & Lim, 2006), and Yonsei University (YSU) for planetary bound-
ary layer mixing (Hong et al., 2006). The simulations were run for three days per month,
and the initialization days were randomly selected (i.e., 20200108, 20200213, 20200302,
20200420, 20200528, 20200615, 20200719, 20200811, 20200927, 20201012, 20201124, and
20201204). The first two days of each three consecutive days are used for training, and
the last day is used for testing. The model generates radiation inputs and outputs ev-
ery 1 hour.

2.2 Input and output data

Table 1 lists all the input and output variables, where the input contains 29 orig-
inal variables and the output contains 6 variables. Among the input variables, 11 are sur-
face variables, and others are three-dimensional variables (either layer or level). To pre-
process the data for the DL models, we pad the surface and layers variables to match
the dimensions of the levels variables. Then, the z-score normalization technique is ap-
plied to normalize all the input and output variables to ensure they have the same mean
and variance. For three-dimensional variables, the mean and standard deviation (std)
were determined from values of all the vertical levels or layers.



Table 1.

Definition of all the input and output variables, and whether they are of surface, lay-

ers, or level type, and units. There are 57 full model levels, and 56 layers.

Type Variable name  Definition Location  Unit
aldif Surface albedo (near-infrared spectral regions) for diffuse radiation — Surface 1
aldir Surface albedo (near-infrared spectral regions) for direct radiation  Surface 1
asdif Surface albedo (UV /visible spectral regions) for diffuse radiation Surface 1
asdir Surface albedo (UV /visible spectral regions) for direct radiation Surface 1
COSz Cosine solar zenith angle for current time step Surface 1
landfrac Land mask (1 for land, 0 for water) Surface 1
sicefrac Ice fraction Surface 1
snow Snow water equivalent Surface kg/m2
solc Solar constant Surface W/m2
tsfc Surface temperature Surface K
emiss Surface emissivity for 16 LW spectral bands Surface 1
ccldvmr CCL4 volume mixing ratio layer mol/mol
Input cfcllvmr CFC11 volume mixing ratio layer mol/mol
cfcl2vmr CFC12 volume mixing ratio layer mol/mol
cfc22vmr CFC22 volume mixing ratio layer mol/mol
ch4vmr Methane volume mixing ratio layer mol/mol
cldfrac Cloud fraction layer 1
co2vmr CO2 volume mixing ratio layer mol,/mol
n2ovmr N20 volume mixing ratio layer mol,/mol
o2vmr 02 volume mixing ratio layer mol,/mol
o3vmr O3 volume mixing ratio layer mol /mol
play Layer pressure layer hPa
tlay Layer temperature layer K
qc Cloud water mixing ratio layer kg/kg
qg Graupel mixing ratio layer kg/kg
qi Cloud ice mixing ratio layer kg/kg
qr Rain water mixing ratio layer kg/kg
gs Snow mixing ratio layer kg/kg
qv Water vapor mixing ratio layer kg/kg
swuflx Layer SW upward fluxes level W/m2
swdflx Layer SW downward fluxes level W/m2
Output | lwuflx Layer LW upward fluxes level W/m2
lwdflx Layer LW downward fluxes level W/m2
swhr SW hearting rate layer K/day
lwhr LW heating rate layer K/day
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3 Method

This section describes the physics-incorporated model framework, different DL model
structures, and the evaluation methods.

3.1 Physics-Incorporated Framework

The primary functionality of the physics-based radiation parameterization schemes
within the NWP model is to provide the heating rates due to both SW and LW radi-
ation. Given the input variables listed in Table 1, the radiation parameterization first
calculates the optical properties of the atmosphere due to various gases and the pres-
ence of clouds. Then, the radiation schemes use the optical properties and boundary con-
ditions such as incoming solar flux, solar zenith angle, and surface albedo to calculate
and output the vertical profiles of fluxes and heating rates. The flux measures the en-
ergy being radiated per unit area, with the unit of watts per meter squared (W/m?). The
heating rate describes the temperature change per unit of time, and it has the units of
Kelvin per day (K/d). These two variables are not independent, and there is such a phys-
ical relationship:

(F’MP _ down) _ (FU;D _ Fdown)
HRl = g — — lev iev l (1)
Cp Pi+1"" — Dy

where g is the gravitational constant, ¢, is the specific heat at constant pressure,

F*, Fld"“’", and pfe“ are the upward flux, downward flux, and pressure of level [ € [1,- -, nlev].

The output variables are involved in the subsequent calculations of the NWP models.

It is critical to ensure that the relationship described by Equation (1). In addition, the
change in atmospheric variables of one layer/level has both local and global impacts on
radiation along the entire vertical column. For example, the presence of clouds or lig-
uid water at any layer affects the distribution of fluxes across all the vertical levels by
producing local heating rates peaks. Therefore, the related variables can be integrated
vertically to allow for the nonlocal effects. Based on the above considerations, the frame-

work is designed as shown in Figure 1, which includes three layers: the differential /integration

layer, the radiative transfer layer, and the physics-incorporated layer.

The differential /integral layer is a data preprocessing module to preprocess input
variables so that some prior knowledge can be fully utilized. As the cloud fraction (cld-
frac in Table 1) and liquid water (qc) can affect fluxes far away from where they are present,
these variables are integrated upward and downward along the vertical direction. The
vertically accumulated cloud fraction and liquid water allow the models to learn verti-
cally nonlocal effects. Meanwhile, calculating the heating rates requires the pressure dif-
ference between the two adjacent layers. Given the same values of fluxes, the smaller val-
ues of pressure difference result in larger values in heating rates. Therefore, the air pres-
sure difference is obtained in advance by the differential module. The preprocessed fea-
tures produced by the differential /integral layer are concatenated with the original fea-
tures before being input into the models.

The radiative transfer layer contains the DL model to be trained to learn the map-
ping similar to the physics-based radiative transfer model. The learnable parameters only
exist in this layer, as shown in the orange block in Figure 1. Although the model out-
put is fluxes only, a custom loss function is designed as a weighted sum of the flux loss
L fiuz and heating rate loss Ly, as shown in Equation (2). \ is the weight of heating rate
loss. The flux loss is defined as an average of the four groups of dimensionless values cal-
culated as the mean square deviations divided by variance, as shown in Equation (3).
Similarly, the heating rate loss averages two groups of dimensionless values, as shown in
Equation (4). In the forward propagation stage, the fluxes are first output by this layer,
and then heating rates are derived by the physics-incorporated layer (third layer). Fi-
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Figure 1. Physics-incorporated framework for emulating atmospheric radiative transfer

nally, the flux and heating rate loss are combined, and then the parameters of this layer
will be updated accordingly. Many DL model structures can be implemented in this layer,
and the details of some selected models are described in the following subsection.

The last layer is the physics-incorporated layer, which computes heating rates from
fluxes based on Equation (1). The equation is treated as an independent layer and en-
coded into the framework to ensure physical consistency and conservation of energy. The
gradient of heating rate loss can be derived using the gradient of flux loss and Equation
(1), so there are no learnable parameters within this layer.

L=(1—-XNLfuz + ALlhr (2)
1 MSEFS’wf’u.p MSEg., .. MSEF’wfup MSEg,, ..
Efluwzz[ 5 p) dn + D) ! + 3 d d'] (3)
O'stfup Fow_dn Frw—up Fry—dn

1
»Chrzf

MSEpqp,,  MSEnn,

[— 3
2" ohg,., OHR,,

] (4)

3.2 DL Models within the Radiative Transfer Layer

In this section, the detailed DL model structures in the radiative transfer layer are
described. Various DL model structures are compared, including fully connected (FC) NNs,
convolutional-based NNs (CNNs), recurrent-based NNs (RNNs), transformer-based NNs,
and neural operator networks, respectively. For each group of model structures, the total
number of parameters is controlled to be around 1 million. This way, the influence of the
number of parameters can be ruled out, and the influence of the network structures on the
radiative transfer modeling can be examined more clearly. The schematic diagram of the
ResNet, Bi-LSTM, FNO, and Transformer model is shown in Figure 2.



« FC NNs: FC NNs are the most classical network structures in the study of DL-

based emulators of radiative transfer parameterization. In FC networks, all the input
variables are flattened and passed through a series of fully connected layers to obtain
the outputs. In this work, the number of hidden layers used is 10, and each layer
contains 200 hidden units. After each fully connected layer, batch normalization
is performed, and the activation function of ReLU is used. The total number of
parameters for this FC model is 0.84 million.

CNNs: CNNs were firstly designed for image processing and have also become popular
tools in the atmospheric science (Bolton & Zanna, 2019; Wimmers et al., 2019; Liu
et al., 2020; Lagerquist et al., 2021). The CNNs use convolution kernels to process a
small input region at a time, so they are good at extracting local features. However,
the convolution kernel also limits CNNs’ ability of global perception due to its fixed
sizes. Furthermore, although the receptive field increases with the more convolutional
layers, adding more layers substantially increases the computational costs of CNN
models. There are different types of CNN models, and the two classical CNN models
have been implemented in this work: ResNet and U-Net. The ResNet was first
proposed by He et al. (2016), and it is built on the concept of shortcut connections
between layers to minimize the problem of vanishing gradients. In this work, the input
feature dimension is first increased to 128 through a 1D convolution with a kernel size
of 7. Then ten residual blocks are applied, each containing three layers of Convolution-
BatchNormalization-ReLLU operations. Within each residual block, the kernel size is
three, and the number of output channels is 128. The total number of parameters is
0.77 million. The U-Net model was first proposed by Ronneberger et al. (2015). It first
consists of several convolutional layers and downsampling processes while the number
of channels increases. The downsampling module has a layer of Conv-BN-ReLU
operation with stride 2. The U-Net structure used here contains four downsampling
modules, and the numbers of output channels are 24, 48, 96, and 192, respectively.
Next, multiple upsampling steps are performed to recover the original resolution while
the number of channels reduces. The upsampling module goes through a single-layer
deconvolution module with stride one and then through two layers of Conv-BN-ReLLU
operations. In addition, the outputs of each downsampling module (except for the
last one) are used for the corresponding upsampling module through skip connections.
Lastly, the network adopts a 1 x 1 convolutional layer to map the channel dimension
to the output dimension. The total number of parameters of the U-Net model is 1.52
million.

Recurrent Type: Recurrent NNs (RNNs) are widely used for sequential data such as
text data in natural language processing (NLP) tasks and time series. Here, the se-
quence is represented by the vertical profiles simulated by NWP models, and the input
vectors are the variables describing atmospheric conditions at a vertical level. How-
ever, standard RNNs are insufficient for modeling the radiative transfer processes. On
the one hand, the RNNs are ineffective for modeling long sequences, while the num-
ber of vertical levels has been increasing to improve the model forecast. On the other
hand, radiative fluxes transfer in upward and downward directions, so the fluxes at a
certain level were affected by the atmospheric conditions above and below. Therefore,
the unidirectional RNNs are not appropriate. The Long Short-Term Memory (LSTM)
(Hochreiter & Schmidhuber, 1997) and Gated Recurrent Units (GRU) (Cho et al.,
2014) are designed to learn long-term dependencies. They use gates to learn which
data in a sequence is important to keep or remove. In addition, the bidirectional
LSTM and GRU are implemented to extract information from both directions of the
sequence (i.e., vertical profiles of the atmosphere). The Bi-LSTM model applied in
this paper contains five layers, each with 96 hidden layer units, and the number of
model parameters is 1.12 million. For the Bi-GRU, a 5-layer structure is used, with
each layer having 128 hidden layer units, and the number of network parameters is
0.77 million.
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 Transformer Type: Transformers (Vaswani et al., 2017), a NN architecture built on
the self-attention mechanism, were initially designed for NLP tasks and have become
a general architecture for almost every ML task. Unlike CNN models that start
by learning local features and slowly get a larger receptive field, transformers have
a global perspective at each layer due to self-attention. Because of the nature of
radiative transfer, changes in atmospheric conditions at any layers affect the entire
profile of radiative fluxes. For example, when clouds occur, the fluxes at all levels are
changed accordingly. Therefore, transformers are appropriate for emulating radiative
transfer as they can extract information from the whole atmospheric column. The
transformer model used in this work contains seven self-attention blocks, each having
one self-attention layer and two fully connected layers. All the query, key, and value
vectors in the model have a dimension of 128. Finally, the dimension of embedding is
changed to be the same as the output dimension through a 1 x 1 convolutional layer.
The total number of trainable parameters in this transformer network is 0.71 million.

e Neural Operator Type: The traditional radiative transfer parameterization approx-
imates the full equations of radiative transfer by discretizing the atmosphere in the
vertical direction. However, vertical discretization also results in a trade-off between
speed and accuracy: low resolution is fast but less accurate, while high resolution is
accurate but slower. Unlike traditional grid-dependent methods, the Fourier Neural
Operators (FNO) can parameterize the radiative transfer modeling in function space
instead of the discretized space. The output of the FNO is the complete wave field
solution, similar to the wavelike pattern of fluxes. The FNO (Li et al., 2020) model
we implement in this study includes four Fourier modules, each performing convo-
lutions in the frequency domain through the Fourier transform and reverting to the
spatial domain through the inverse Fourier transform. The FNO allows a single-layer
operator to capture global information of the entire atmospheric column. The total
number of trainable parameters in the FNO model is 1.22 million.

All settings of the hyperparameters used for different NNs are the same. Each model is
trained with 500 epochs using a batch size of 4096. Adam optimizer is used with the initial
learning rate le-3. Also, the plateau scheduler is applied to decrease the learning rate by a
factor of 0.5 when the loss does not decrease for five consecutive epochs.

3.3 Evaluation methods

All the DL-based radiation emulators are evaluated by comparing against the outputs
of the original RRTMG schemes, including upward and downward SW and LW fluxes and
heating rates. The overall model performance metrics include root mean squared error
(RMSE), and mean bias error (MBE). For each vertical level, the mean absolute error
(MAE), MBE, and standard deviation of biases per level or layer were calculated using the
following equations:

N
MAE = 3 [Yor(i,1) ~ Y (i, 1) 5)
i=1
1 N
MBE = > Ypulil) =Y (i,0) (6)
1 N
STD; = | % >_((Ypr(i,]) =Y (i,1)) — MBE)?* (7)
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where Y (4,1) and Ypr(i,l) are output from the RRTMG radiation schemes and DL-
based radiation emulators, respectively, i is the horizontal grid point of a vertical profile, N
is the number of the horizontal grid points, [ is the vertical level or layer index.

4 Results
4.1 Statistical results

The offline evaluation was done using 12 days of data that was not used for training.
Table 2 summarizes the error statistics of different DL-based emulators for fluxes and heat-
ing rates averaged over all the testing data. The FC, ResNet, and U-Net models predict
far less accurate fluxes and heating rates, with RMSE of SW and LW fluxes higher than
10.9 and 2.4 W/m? and RMSE of SW and LW heating rates higher than 0.09 and 0.21
K/day, respectively. The RMSE of LW fluxes is always smaller than that of SW fluxes,
as SW fluxes have a greater magnitude than LW fluxes and are more difficult to predict.
However, the RMSE of LW heating rates is always higher than the SW heating rates of
each corresponding DL-based emulator, as LW heating rates are more sensitive to clouds
and more difficult to predict (see Figure 3). Overall, FC and CNN networks perform worse
than the RNN, transformer, and FNO models in radiative transfer emulations, which the
structural characteristics of these models can explain. For FC networks, the flattening op-
eration erases the vertical distribution of all the features, leading to the loss of important
information. Also, FC and CNN networks only have the local receptive fields in the vertical
direction for each operation performed.

The Bi-GRU, Bi-LSTM, transformer, and FNO significantly improve forecast accuracy,
with RMSE of SW and LW fluxes smaller than 3.8 and 1.3 W/m?, respectively. In addition,
the RMSE of SW and LW heating rates is reduced to less than 0.042 and 0.15 K/day. The
change in atmospheric variables of one layer/level has both local and global impacts on ra-
diation along the entire vertical column. For example, the presence of clouds or liquid water
at any layer significantly reflects or absorbs radiation which affects the subsequent fluxes
across the whole atmospheric column and produces local heating rate peaks. Therefore,
having global perception ability is critical for DL-based radiative transfer emulation. The
significant improvement in the accuracy of fluxes and heating rates for Bi-GRU, Bi-LSTM,
transformer, and FNO models is due to their ability to obtain a global perspective of an
entire atmospheric column in single-layer operations. However, the FNO model performs
worse than Bi-GRU, Bi-LSTM, and transformer models because it assumes that the in-
put variables have a uniform distribution while the atmospheric layers are not distributed
uniformly. The Bi-GRU and Bi-LSTM model have the best performance and outperform
the transformer model, with RMSE in SW and LW fluxes around 2.3 and 1.2 W/m?2, and
RMSE in SW and LW heating rates about 3.20 x 1072 and 1.39 x 10~! K/day, respectively.
The Bi-GRU and Bi-LSTM are most accurate because they mimic atmospheric radiative
transfer’s bidirectional behavior in the vertical direction.

In addition, the biases of the net fluxes at the top-of-atmosphere (TOA) directly de-
termine the energy budget of the global atmosphere. Therefore, if the MBE of net fluxes
at the TOA tends to be 0, it represents a more consistent energy budget with the physics-
based radiation schemes. Table 2 shows that the Bi-LSTM model has the highest accuracy
in terms of net fluxes at TOA, with a value of 4.91 x 1072 W/m?, which is one order of
magnitude smaller than other models.

For a clearer view of the vertical distribution of errors, Figure 3 presents the vertical
profiles of statistics in fluxes and heating rates for FC, U-Net, Bi-LSTM, and transformer.
The solid and dotted lines in the figure represent the MAE and MBE of fluxes or heating
rates at each vertical level/layer, and the shaded area shows the mean std of biases. The
FC and U-Net models have much higher variance, as shown by the vertical profiles of mean
std of biases. Also, FC and U-Net models have much higher MAE than the Bi-LSTM and
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Table 2.

RMSE of SW flux, LW flux, SW heating rate, LW heating rate, and MBE of TOA net

flux for DL-based emulators including FC, ResNet, U-Net, Bi-GRU, Bi-LSTM, Transformer, and
FNO averaged over all the testing data.

SW Flux LW Flux | TOA Net Flux | SW Heating Rate | LW Heating Rate
Model W -m™2 W - m™2 W -m™2 K-dt K-dt
RMSE RMSE MBE RMSE RMSE
FC 14.63 5.28 -3.78 18.85e-2 3.94e-1
ResNet 38.97 8.72 -2.32e-1 22.89¢-2 4.14e-1
Unet 10.92 2.46 -7.62 9.58e-2 2.17e-1
Bi-GRU 2.334 1.216 3.97e-1 3.29¢-2 1.41e-1
Bi-LSTM 2.315 1.205 4.91e-2 3.20e-2 1.39e-1
Transformer 2.753 1.286 -5.61 4.06e-2 1.46e-1
FNO 3.755 1.289 -6.77 4.20e-2 1.47e-1
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Figure 3. Vertical profiles of the statistics in SW fluxes (first row), LW fluxes (second row),
SW heating rates (third row), and LW heating rates (fourth row) for the test data using different
NN-based emulators: FC (first column), U-Net (second column), Bi-LSTM (third column), and
Transformer (fourth column). The solid and dotted lines show the MAE and MBE profile, respec-
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Table 3. Performance of Bi-LSTM on radiative transfer problems with different error types

Loss Type SW Flux | LW FLux | SW Heating Rate | LW Heating Rate
W-m=2 | W-m™2 K-d! K-d!
only fluxes 2.404 1.222 1.958e-1 1.810e-1
only heating rates \ \ 1.166e-1 1.419e-1
with physics-incorporated layer 2.315 1.205 0.320e-1 1.390e-1

350

transformer models at all levels. The error distributions of Bi-LSTM and transformer are
very similar, and the Bi-LSTM has slightly smaller values in error and std. Both models
show a uniform vertical error distribution and std in fluxes. For heating rates, they have
relatively higher values in std of biases among the pressure layers between 800-1000 hPa
and 200-400 hPa. Those two vertical regions are where liquid and ice clouds occur most
frequently and are thus more difficult to predict.

4.2 Benefits of introducing the physics-incorporated layer

In this subsection, we discuss the benefits of introducing the physics-incorporated layer.
The physics-incorporated layer ensures the satisfaction of the thermal equilibrium between
fluxes and heating rates, as shown in Equation (1), by encoding it as part of network layers.
We designed three groups of experiments: only supervising fluxes, only supervising heating
rates, and a joint loss with the physics-incorporated layer imposed. The corresponding
weights (A in Equation (2)) are set to 0, 1, and 0.091. The RMSE of these experiments are
summarized in Table 3.

When only supervising the fluxes, the heating rates are derived using Equation (1). As
the vertical profiles of fluxes are smooth, the model is relatively easy to fit fluxes well. As
a result, the RMSE of only supervising fluxes is slightly worse than that using the physics-
incorporated layer. However, the RMSE of SW and LW heating rates are 6 times and 1.5
times greater than using the physics-incorporated layer. On the other hand, when the model
is trained only to supervise the heating rates, fluxes cannot be derived accordingly. In this
case, the model predicted heating rates are still less accurate than the model trained with
the physics-incorporated layer, and the RMSE of SW and LW heating rates are 1.5 and
1.25 times greater. The physics-incorporated layer demonstrates its superiority by ensuring
a physically consistent relationship between fluxes and heating rates and showing a more
accurate prediction of heating rates and fluxes. Overall, the Bi-LSTM model trained using
the physics-incorporate layer achieves the most accurate forecast.

4.3 Performance under different cloud conditions

As clouds play an important role in weather and climate prediction, this section analyzes
the performance of the DL-based radiation emulators under three typical cloud conditions:
profiles with no liquid cloud, single-layer liquid cloud, and multi-layer liquid cloud. The
liquid clouds strongly absorb and scatter radiation, and they cause discontinuity in radiative
fluxes and heating rates. Therefore, it is more difficult for radiation emulators to perform
well under cloudy conditions than in liquid cloud-free conditions. This work defines the
liquid cloud layer as a contiguous set of vertical layers with cloud water mixing ratios (qc
in Table 1) larger than 0. In all the testing data, no liquid cloud, single-layer, and multi-
layer liquid cloud account for 61.3%, 29.6%, and 9.1% (Table 4). Here, ice cloud layers
forming at high altitudes are not considered as their impact on fluxes and heating rates are
much weaker than liquid cloud layers. Table 4 presents the RMSE of different DL-based
emulators to predict heating rates under three liquid cloud conditions. The Bi-LSTM and
Bi-GRU predicted heating rates are the most accurate under all three cloud conditions. The
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Table 4. RMSE for heating rates under no liquid cloud, single-layer liquid cloud and multi-layer

liquid cloud conditions.

no liquid cloud single-layer liquid cloud | multilayer liquid cloud

Model (61.3%) (29.6%) &%)
SW HR LW HR | SW HR LW HR SW HR LW HR
FC 0.1005 0.2938 0.1612 0.3826 0.2127 0.4835
ResNet 0.1263 0.2284 0.2023 0.4456 0.2165 0.4289
Unet 0.0510 0.1159 | 0.0837 0.2060 0.1013 0.2674
Bi-GRU 0.0157  0.0554 0.0303 0.1370 0.0359 0.1566
Bi-LSTM 0.0152 0.0546 | 0.0297 0.1379 0.0346 0.1567
Transformer | 0.0201 0.0680 0.0367 0.1437 0.0440 0.1644
FNO 0.0211 0.0683 0.0378 0.1453 0.0463 0.1684

RMSE under the condition of multi-layer liquid clouds is higher than that of single-layer
and cloud-free conditions for all models.

To better understand why the error statistics vary significantly under different cloud
conditions, we randomly select three vertical profiles for demonstration, as shown in Figure
4. Figures 4 also illustrates the vertical profiles of SW and LW fluxes and heating rates
predicted by the original RRTMG scheme, FC, U-Net, Bi-LSTM, and transformer models
for the three selected cases, respectively. Under cloud-free conditions, fluxes and heating
rates change smoothly from the TOA to the surface. While under single-layer and multi-
layer liquid cloud conditions, a large gradient of fluxes and heating rates are shown where
liquid clouds are presented. As a result, Figures 4 show that these DL models can accurately
predict the vertical profiles of heating rates, while their prediction for the vertical profiles of
SW fluxes is worse than that of LW fluxes. Among the DIL-based radiation emulators, the
Bi-LSTM and transformer models are superior in capturing the discontinuities in vertical
caused by liquid water, consistent with Table 2.
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Figure 4. Vertical profiles of the liquid water distribution of the 3 typical case (top row):no
liquid cloud (left column), single-layer liquid cloud (middle column), and multi-layer liquid cloud
(right column). Vertical profiles of SW upward fluxes (top row), SW downward fluxes (middle
row), SW heating rates (bottom row), LW upward fluxes (top row), LW downward fluxes (middle
row), and LW heating rates predicted by the original RRTMG scheme, FC, U-Net, Bi-LSTM, and

transformer models for the three selected cases.
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5 Conclusions

In this paper, we propose a physics-incorporated framework for emulating atmospheric
radiative transfer processes. The physical relationship between fluxes and heating rates is
considered in our framework and encoded as a layer of the network. Based on this frame-
work, we designed and compared various DL model structures, such as FC NNs, CNNs,
bidirectional RNNs (Bi-LSTM and Bi-GRU), transformer-based NNs, and FNO. We found
that models with the ability of global perception perform better than FC and CNNs and
are thus more suitable for radiative transfer emulation. Among the models with a global
perspective of an entire atmospheric column, the Bi-LSTM and Bi-GRU have the best accu-
racies, outperforming the transformer and FNO, as they benefit from extracting information
from two directions. It is also demonstrated that the physics-incorporated layer makes the
prediction of the Bi-LSTM model more accurate. Furthermore, evaluations are performed
under different liquid cloud conditions due to the importance of clouds to weather and
climate prediction. The results suggest the Bi-LSTM performs well at all vertical levels,
although there are slightly larger errors and variances where clouds are present.

Future work will investigate the online implementation of the DL-based emulators
in an NWP model such as the MPAS model with different vertical levels. Besides, due
to the nonlinearity of the radiative transfer models, there is no corresponding tangent-
linear and adjoint model of radiative transfer scheme for the MPAS model. Hatfield et al.
(2021) demonstrated the feasibility of constructing the tangent-linear and adjoint models
from the NN-based gravity wave drag scheme. They showed that the NN-derived tangent-
linear and adjoint models successfully passed the standard test and were applied in four-
dimensional variational data assimilation. Likewise, our future work includes developing
the adjoint model of radiation schemes using NN-based radiation emulators to improve the
four-dimensional variational data assimilation system.
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