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Abstract

Weighting models according to their performance has been used in constructing multi-model regional climate change scenarios.

But the added value of model weighting is not always examined. Here we apply an imperfect model framework to examine

the added value of model weighting in projecting summer temperature changes over China. Members of large ensemble initial

condition simulations by three climate models of different climate sensitivities under the historical forcing and future scenarios

are used as pseudo-observations. Performance of the models participating in the 6th phase of the coupled model intercomparison

project (CMIP6) in simulating past climate are evaluated against the pseudo-observations based on climatology, trends in global,

regional and local temperatures. The performance along with model’s independence are used to determine the model weights

for future projection. The weighted projections are then compared with the pseudo-observations for the future. We find that

regional trend as a metric of model performance yields the best skill for future projection while past climatology as performance

metric does not improve future projection. Trend at the grid-box scale is also not a good performance indicator as small scale

trend is highly uncertain. Projected summer warming based on model weighting is similar to that of unweighted projection,

at 2.3°C increase relative to 1995-2014 by the middle of the 21st century under SSP8.5 scenario, but the 5th-95th uncertainty

range of the weighted projection is 18% smaller with the reduction mainly in the upper bound, with the largest reduction in

the northern Tibetan Plateau.
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Key Points:

• The improvement of weighted projection is tied to the level the model’s
performance metric represents climate change signal.

• Regional temperature trend as a metric yields the most added value for
model weighting, but the climatology is not a useful metric.

• Weighted projection of summer warming over China for the mid-century
is similar to unweighted, with 18% smaller uncertainty range.

Abstract
Weighting models according to their performance has been used in constructing
multi-model regional climate change scenarios. But the added value of model
weighting is not always examined. Here we apply an imperfect model frame-
work to examine the added value of model weighting in projecting summer
temperature changes over China. Members of large ensemble initial condition
simulations by three climate models of different climate sensitivities under the
historical forcing and future scenarios are used as pseudo-observations for the
past and the future. Performance of the models participating in the 6th phase of
the coupled model intercomparison project (CMIP6) in simulating past climate
are evaluated against the pseudo-observations based on climatology, trends in
global, regional and local temperatures. The performance along with model’s
independence are used to determine the model weights for future projection.
The weighted projections are then compared with the pseudo-observations for
the future. We find that regional trend as a metric of model performance yields
the best skill for future projection while past climatology as performance metric
does not improve future projection. Trend at the grid-box scale is also not a
good performance indicator as small scale trend is highly uncertain. Projected
summer warming based on model weighting is similar to that of unweighted
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projection, at 2.3°C increase relative to 1995-2014 by the middle of the 21st cen-
tury under SSP8.5 scenario, but the 5th-95th uncertainty range of the weighted
projection is 18% smaller with the reduction mainly in the upper bound, with
the largest reduction in the northern Tibetan Plateau.

Plain Language Summary

Proper synthesis of climate models’ simulations is essential for a reliable fu-
ture projection. Model synthesis requires evaluating model’s performance. But
model’s performance will be different when different metrics are used, and past
performance may not represent future performance in producing climate projec-
tions. Here we use large-ensemble historical and future projection simulations
by three models as pseudo “true”, for both the past and the future, to test
the usefulness of model evaluation for future projection. Our test focuses on
summer temperature projections over China. We evaluated the models’ per-
formance on different aspects including historical climatology, historical trends
in global, regional and local temperatures. We find that projections based on
the performance of reproducing past regional trend are generally more accurate;
while that based on producing historical climatology or grid box scale trend has
no or only small effect. Compared with the projection that does not consider
model’s performance, the weighted projection for the middle of the 21st cen-
tury summer temperature, based on model’s performance in reproducing the
observed regional trend, is similar but with a reduction of uncertainty range
by about 18%. The largest reduction at more than 0.4°C is observed in the
northern Tibetan Plateau and parts of Northeast China.

1. Introduction
The Intergovernmental Panel on Climate Change in its 6th Assessment Working
Group II Report stated that “human-induced climate change, including more
frequent and intense extreme events, has caused widespread adverse impacts and
related losses and damages to nature and people” IPCC, 2022(). Climate change
adaptation planning requires future climate change projections along with the
quantification of associated uncertainty. Global climate models (GCMs) and
Earth system models (ESMs) have played a crucial role in producing such pro-
jections. Simulations provided by GCMs and ESMs participating in successive
phases of the Couple Model Intercomparison Project (CMIP) such as CMIP6
driven by various emissions scenarios have provided a range of plausible future
climate projections Eyring et al., 2016IPCC, 2021(; ). Their proper synthesis
can provide a coherent projection.

Traditionally, a ‘ ‘democratic’ ’ approach, i.e., simulations by each model being
given with equal weight, has been used to synthesis multi-model projections.
Projections by multi-models synthesized with this approach are more robust
than those based on simulations by a single model Eyring et al., 2019Knutti,
2010Tebaldi & Knutti, 2007(; ; ). Different models can have different levels of
complexity and as well as different approaches to the treatment of the same
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physical processes such as cloud and radiation. Because of this, models are not
all equally skillful in simulating past climates. For this reason, efforts have been
made to give different weights to the projections by individual models based on
models’ performance in a hope to produce more reliable future projection Chen
et al., 2011Giorgi & Mearns, 2003Li et al., 2021(; ; ). Existing multi-model
ensembles such as those produced through the World Climate Research Pro-
gram’s Coupled Model Intercomparison Project are ensembles of opportunity
and are not designed to explore plausible model structures and epistemic uncer-
tainty Knutti, 2010Benjamin M Sanderson et al., 2015Shiogama et al., 2022(; ;
). Some models share components, making them not completely independent.
This aspect needs to be considered when synthesizing multi-model ensembles
as well. Knutti et al. (2017) proposed the Climate Model Weighting by Inde-
pendence and Performance (ClimWIP) scheme to take both model performance
and independence into consideration when producing future projections. The
method has been widely used to project future changes for a range of variables
on global scale and for different regions including for example global mean tem-
perature Liang et al., 2020(), Arctic sea ice Knutti et al., 2017(), European
temperature and precipitation Brunner et al., 2019(), Chinese mean and ex-
treme precipitation Li et al., 2021().

The use of performance indicators to weight models generally involves two re-
lated assumptions: (1) confidence in a model is lower if the model simulates past
climate less well and thus shall have lower weight; (2) future projection produced
with a model that better simulates past climate is more reliable (Knutti et al
2013; Hall et al 2019; Shiogama et al 2022). While the first assumption is very
reasonable, the validity of the second assumption is not obvious. It’s not al-
ways possible to test the validity of the second assumption because the future
is not known. As observations for the future do not exist, the performance of
the models used in a weighting approach has been usually measured by com-
paring simulated past and present climates with the observed historical climate
Abramowitz et al., 2019Bishop & Abramowitz, 2012Tebaldi & Knutti, 2007(; ;
). But it is unclear if such performance measure is still valid for out of sample
situation, i.e., in projecting future climates Knutti et al., 2010Tebaldi & Knutti,
2007(; ). Different metrics have been used to evaluate model, resulting in differ-
ence in the level of model performance and thus different weighting schemes for
the same set of models. For example, two dominate metrics, past climatology
and past trend of a variable over a region are both used in model evaluation and
assigning model weights for future projection (Brunner et al 2019; Liang et al
2020). A model that simulates historical climatology the best may not simulate
the historical trend equally well. Similarly, a model simulating a global scale
trend well may not simulate trend for a region of interest well. It thus can be
challenging to select a metric as the most suitable for a specific purpose (Knutti
2010). It can also be challenging to select the appropriate spatial scale to evalu-
ate a model for the purpose of future projection. Evaluation on smaller spatial
scale would be more affected by natural internal variability. Yet, evaluation
on too large scale may not fully capture processes such as east Asia summer
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monsoon or feedbacks unique to the region.

The so-called “imperfect model test” or “model-as-truth test” provides an
approach for estimating the skill of a future projection Abramowitz et al.,
2019Eyring et al., 2019(; ). This approach uses a particular model as pseudo
“true” real-world and calibrates the remaining ensemble to the “truth” over
historical time and then produce projection for the future represented by that
model. As future world can be simulated by the same model, the true future
becomes knowable and as a result, the performance of the projection can be
compared with this known “truth”. This imperfect model test has previously
been applied to each member of each model in turn, then the results across all
cases were synthesized Brunner et al., 2020Herger et al., 2019(; ). However,
as models may only have one or a few realizations, the limited sample size
makes it difficult to separate internal variability and structural differences
among the models, making it hard to interpret evaluation results Frankcombe
et al., 2018Suarez-Gutierrez et al., 2021(; ). In this regard, large-ensemble
initial condition simulations have a unique advantage by providing multiple
pseudo-observations Deser et al., 2020Milinski et al., 2020(; ).

To explore the effect of the use of different metrics on projection skill and iden-
tify a more suitable spatial scale on which the model performance should be
evaluated for the purpose of future projection, here we conduct imperfect model
tests with model performance being evaluated by two metrics, climatology and
long-term trends and on various spatial scales. To demonstrate the utility of
our approach, we will focus on summer mean temperature over China. This is
because various aspects of summer heatwaves are clearly and directly connected
to summer mean temperature with higher mean temperature corresponding to
longer, more frequent, and severer heatwaves Sun et al., 2014(). The remainder
of this paper is organized as follows: Section 2 provides a detailed description
of the datasets and methodology used in this study. Followed in section 3 are
the main results of the skill assessment and future projections. Finally, general
conclusions and discussion are provided in section 4.

2. Data and Methods
2.1 Data Used

CMIP6 simulations. We make use of 204 simulations conducted with 25
models participated in CMIP6. Table S1 summarizes the essential properties
of all models and members. Among these, members from three large ensembles
CanESM5 (50 members), EC-Earth3 (18 members) and MIROC6 (50 members)
are used as the pseudo-observations for establishing model weighting schemes
and for verification of projection under the imperfect model test framework.
These three models are selected for two reasons: 1. Sufficient samples to esti-
mate model response to external forcing and spread caused by internal variabil-
ity; 2. A large range of climate sensitivity of the models, with climate sensitivity
lies in the upper, the middle, and the bottom of available CMIP6 models (Figure
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S1-S2).

Monthly temperature data from the simulations forced by observed historical
forcing and future emission scenario Shared Socioeconomic Pathway 5-8.5 (SSP5-
8.5; O’Neill et al. (2013) ) are used. Historical data over 1971-2014 are used
for model evaluation since the warming trend during this period is proven to
be dominated by greenhouse gases Liang et al., 2020Tokarska et al., 2020(; ).
We focus on projected changes in the mid-21st century 2041-2060 relative to
1995-2014 baseline. Model data come with different spatial resolution, they are
interpolated onto a common 2.5◦ × 2.5◦ grids using bilinear interpolation.

Observational data. To produce future projections over China, we use a
gridded temperature dataset CN05.1 Wu & Gao, 2013() to evaluate the model’s
performance after we have identified the most relevant model weighting scheme.
The monthly gridded dataset covers 1961-2015, with a spatial resolution of 0.25◦
× 0.25◦. We use the data from the same period 1971-2014, and re-grid it to
2.5◦ × 2.5◦ resolution before used for model evaluation.

2.2 Imperfect Model Test Framework

To explore how skillful a weighting scheme established based on historical data
for future projection, we conducted a series of model-as-truth tests under the
“Imperfect model test” framework. This process involves two steps: estimating
model weight based on historical simulation and evaluate the skill of the weight-
based projection by comparing with model simulated future climate. These
steps are detailed below.

2.2.1 Metrics for estimating distance

The similarity between observational record and a model simulation, or between
simulations by two models, is measured by a distance measure based on suitably
constructed metrics. The metrics under consideration include the following: 1)
spatial distribution of temperature climatology (on 2.5°×2.5° grid, referred as
climatology metric below), 2) trend in regional mean temperature (referred as
trend metric), 3) spatial distribution of trend on 2.5×2.5° grid (referred as trend
pattern metric), and 4) the combination of the climatology and trend metrics
that is referred as composite metric. For the latter, the distance between two
models or between a model and the observation is the average of the relevant
climatology distance and trend distance. Trends are estimated based on least
square fit to the area-weighted regional mean temperature series. We also used
the non-parametric Sen’s slope estimator for trends, the results are essentially
the same as that of the best linear fit.

2.2.2 Weighting method ClimWIP

We follow the ClimWIP approach for determining model’s weight. This method
was proposed by Knutti et al. (2017) based on Benjamin M Sanderson et al.
(2015), and has been used by many researchers Amos et al., 2020Liang et al.,
2020Merrifield et al., 2020(; ; ). The basic idea is that models agree more
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poorly with observations and that largely duplicate existing models get less
weight Knutti et al., 2017(). The weight wi for the model i is given according
to the following equation:

𝑤𝑖 = 𝑒−(𝐷𝑖/𝜎𝐷)2

(1+∑𝑀
𝑗≠𝑖 𝑒−(𝑆ij/𝜎𝑆)2 )

(1)

where Di is the distance between the model i and the observation, and Sij is
the distance between the model i and model j. When climatology and trend
pattern metrics are used, the distance is the root mean square difference of
climatological and trend values for all grids within the spatial domain. When
the (regional) trend metric is used, the distance is the absolute difference of
the trends. For both Di and Sij, the raw distances are normalized separately by
dividing the raw distance by their respective medium values. �d and �s are shape
parameters, corresponding to the strength of performance of individual models
and independence among models. A larger �d leads to more equally weighting
of models and a larger �s means models are treated to be more dependent. The
procedure to determinate these two parameters follows Brunner et al (2020a),
Lorenz et al (2018) and Knutti et al (2017). M is the total number of models,
here is 24. We used the model ensemble mean to compute the weights rather
than use individual model runs. This has the advantage of reducing the influence
of internal variability, in particular when trend metric is used.

2.2.3 Spatial scale for model evaluation

When model’s performance is evaluated on different spatial scales, the results
can be different. As we will show later, the use of model climatology and trend
pattern as performance metrics do not improve projection skills, the aspect
related to spatial scale will be examined only when trend metric is used. We
will consider four different spatial scales: a) trends in global summer mean
temperature series (referred as global trend metric), b) trends in China-wide
summer mean temperature series (referred as regional trend metric, the same
as the trend metric mentioned above), c) trends in sub-regions of China where
we divide China into East and West China separated by 105°E (ref. Li et
al. (2021)), referred as sub-regional trend metric. d) trends in summer mean
temperature of individual grids as grid trend metric. For the projections based
on trend over a large region in the cases of the a) b) and c) listed above, each
model is assigned only one weight, the weight is then applied to all grids within
the domain. In the case of d), each grid box has its own set of weights.

2.2.4 Sampling procedure to generate projections

To compare multi-model weighted projection with the “known” future projec-
tion distribution provided by the large ensembles, we use a sampling method
to generate a multiple model projection that reflects the model weights deter-
mined by the model evaluation scheme. Statistics about future projections are
determined from the sampled data with all samples treated equally. For each en-
semble member that is used as pseudo-observation, we produce 5000 samples of
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future projection from the CMIP6 simulations, with the number of samples from
an individual model equals to 5000 times the weight of the model (rounded to
the nearest integer). The samples from individual models are randomly drawn
from the available runs of the model with replacement. For a pseudo-observation
with k ensemble members, we generate k sets of 5000 samples, based on which
we produce probability distribution of the future projection and then compare
it with those of the relevant large ensemble simulation. When producing future
projection for summer mean temperature averaged over China, we sample the
national mean values. When producing future projection for grid boxes, we
sample the 2-dimentional spatial map of projected changes by individual model
runs to maintain spatial structure of temperature changes.

2.2.5 Measures for skills assessment

The skill of the multi-model weighted projection against the unweighted projec-
tion is assessed on three aspects: a) bias, b) difference in width of the distri-
bution, and c) the similarity between probability distributions. We examine if
weighted projection improves upon unweighted projection against the “known”
future as simulated by the large ensembles. In all cases, a positive skill score
indicates an improvement by the weighted ensemble projection.

Bias. This compares the absolute bias between the median values of multi-model
ensemble projection against the “known” projection by the large ensembles. The
skill score is defined as following Eq. (2):

𝐵𝑖𝑎𝑠 𝑠𝑘𝑖𝑙𝑙 𝑠𝑐𝑜𝑟𝑒 = ∣Bias unweighted∣ − ∣Bias weighted∣ (2)

Width. The width between the 5th percentile and the 95th percentile is derived
as representation of uncertainty range. The width skill score is defined as:

𝑊𝑖𝑑𝑡ℎ 𝑠𝑘𝑖𝑙𝑙 𝑠𝑐𝑜𝑟𝑒 = Widthunweighted − Widthweighted (3)

Similarity between probability distributions. This measures how similar two prob-
ability density functions (PDFs) are. Perkins et al. (2007) proposed the use of
the area that two PDFs overlap. A larger area of overlap means better agree-
ment between the two PDFs. A perfect match of the PDF would give the value
one. The calculation involves dividing the PDFs into multiple bins and count-
ing the number of occurrences in each bin. The smaller value of the occurrence
from the two PDFs represents the portion of the overlap. Mathematically, this
is expressed as

𝑆𝑠𝑐𝑜𝑟𝑒 = ∑𝑛
1 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑍𝑠, 𝑍𝑜) (4)

where n is the number of bins for which we use 50. This statistic has advantage
over other statistics used for comparing two distributions such as the statistic
used in the K-S test as it is more robust against sampling errors and the number
of bins used in computing the statistic. The bin size n will of course influence
S-score but as long as n is the same across calculations the final conclusion
about the model performance will not be impacted. The S-score skill score is
computed according to the following equation:
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𝑆𝑠𝑐𝑜𝑟𝑒 𝑠𝑘𝑖𝑙𝑙 𝑠𝑐𝑜𝑟𝑒 = Sscoreweighted − Sscoreunweighted (5)

3. Results
3.1 Skills of the Regional Climatology and Trend Metric

The left panel of Figure 1 presents the projected summer mean temperature over
China by middle of the 21st century with simulations of the large ensembles by
the three models as targets. Multi-model ensemble projections are constructed
by using equal weighting (i.e., unweighted) for individual models or optimal
weighting according to the four different metrics. As expected, different metrics
consider different aspects, resulting in different projections. Overall, the regional
trend metric boosts the consistency between ensemble projections and their
targets, but that based on climatology metric or trend pattern metric offers
little improvement.

The climatology metric has been widely used, as a default metric, to evaluate
model’s performance. Sometimes it has also been used to weight models when
producing multi-model projection. Our tests show weighted projection based on
performance in producing historical climatology does not improve model projec-
tion. The weighting does not reduce bias in the projected median change, there
is also no clear evidence for it to reduce uncertainty range of the projection.
While uncertainty range was reduced when EC-Earth3 and MIROC6 simula-
tions were used as targets, the uncertainty range became slightly larger when
CanESM5 simulations were the targets. This is not surprising as present-day
climate conditions are not linked to the magnitude of warming Herger et al.,
2018Knutti et al., 2010Benjamin M. Sanderson et al., 2017(; ; ).
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Figure 1. Multi-model projections and their target projections for changes
in China’s summer mean temperature during 2041-2060. The left panel shows
the median (black ticks), the 25th-75th percentiles (boxes), and the 5th-95th
percentiles (whiskers) with targets produced by three different models. Unit is
(°C). The right panel shows the skill scores of weighted projections relative to
the unweighted projection.

Weighted projection based on the performance of reproducing past trend are
generally more accurate, with better agreement in the magnitude of projected
changes and smaller uncertainty range, and higher skill scores in Bias and S-
score. The improvement over unweighted projection is especially clear when
the high sensitivity model CanESM5 and low sensitivity model MIROC6 were
targets. When simulations of CanESM5 are targets, the unweighted CMIP6
ensemble projection could not reproduce the large magnitude warming simulated
by CanESM5, with a cold bias of 1.29°C. The weighted ensemble reduces the
bias to about 0.8°C, leading to positive skill scores of Bias and S-score of 0.46
and 0.18, respectively. In the case of MIROC6 as target, the weighted projection
shifts the value downwards when compared to the unweighted projection, with
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median value closer to the target median value and a considerable reduction
in uncertainty range. These indicate that the trend matric has the effect of
reducing bias and uncertainty.

In contrast, when spatial distribution of trend is used for model evaluation and
weighting, it does not offer any improvement to the projection: it does not reduce
the bias nor uncertainty in the projection. This may seem to be counterintuitive
as one would expect local trends to be linked to model’s sensitivities even though
local trends would be noisier. But apparently uncertainty in the local trends
due to natural variability renders the spatial distribution of trends usefulness
for model evaluation.

The composite metric has been used to provide a comprehensive evaluation
of models and also to avoid overconfidence in model weighting Lorenz et al.,
2018Merrifield et al., 2020(; ). As half of the metric is irrelevant to future
warming and half of the metric is directly relevant to warming, it’s effect in im-
proving projection is also in-between the effects of its two constituents. Clearly
the inclusion of climatology in model weighting reduced the usefulness of trend
metric.

It is worth noting the case when the simulations by EC-Earth3 model are the
targets as climate sensitivity of the model is in the middle of those of the avail-
able CMIP6 models. There is little room for improvement over the unweighted
projection about bias. But weighted projections do reduce the projection un-
certainty by a large margin, indicating a clear added value of model weighting.
While the use of climatology metric resulted in a larger reduction in projection
uncertainty, it is unclear if this is an indication of better performance as the
S-score corresponding to this metric is lower than that when trend metric is
used for weighting.

As many applications require local scale projection, we now present various skill
measures at the grid box scale. Figures 2-4 show the skill scores computed at the
grid box level when simulations by the three models are used as targets. Overall,
these skill scores resemble those computed for the national mean temperatures.
When the simulations by CanESM5 and MIROC6 are the targets (Figures 2
and 4), weighting the models based on regional trend and composite metrics
show substantial reduction in bias and improvement in matching the probabil-
ity distribution as indicated by mostly positive S-score. By comparison, there
was little effect across the whole region when the climatology metric was used
to weight the models, indicating again that better performance in simulating
present-day climatology does not guarantee better future projections. The use
of trend pattern metric for model weighting offers some improvement regarding
bias and S-score but the improvement is very small. When the simulations by
EC-Earth3 are the targets (Figure 3), weighting the models based on any metric
does not affect the bias or the S-score, but the width of uncertainty range is
greatly reduced, indicating again model weighting adds value.
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Figure 2. Spatial patterns of the skill scores corresponding to different model
performance metrics. The skill scores include Bias (a-d), Width of uncertainty
(e-h) and S-score (i-l) of weighted projections relative to unweighted projection
when the simulations by CanESM5 are targets. While the skill scores are
computed for individual grids separately, the weighs for every grid for the same
model are the same. The numbers in the top-left corners inside each panel
shows the median value of the skill scores within the spatial domain.

The skill scores are not uniform over the space. For instance, when perfor-
mance in reproducing regional trend is used to weight models and simulations
of CanESM5 are targets, notably better skill scores can be seen in the north-
eastern region and the Yangtze River Basin while the scores in the lower reach
of the Yellow River Basin can be close to zero or even negative (Figure 2j).
When simulations by MICRO6 are targets, negative skill scores can be seen in
the Tibetan Plateau area and parts of Northwest China (Figures 4 j, l). But
these grid-box skill scores should be interpreted in the context that projection
on local scale is inherently more uncertain.
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Figure 3. The same as Figure 2, but for the simulations by EC-Earth3 as
targets for the projection.
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Figure 4. The same as Figure 2, but for the simulations by MIROC6 as
targets for the projection.

3.2 Proper Spatial Scale of the Trend Metric

Having identified that the trend metric to be the most effective for model weight-
ing, we now look at connection between the spatial scales of the trend and cor-
responding skill scores of the weighted projection. Figure 5 displays the results
when simulations by CanESM5 are the targets and when temperature trends
over the globe, over China, over West and East China or at the grid box scale
are used as model’s performance metric. In general, trends on different spatial
scales as metrics for model weighting do improve projection but their corre-
sponding skill scores can be quite different. When the global mean temperature
trend is the performance metric, the skill scores show large spatial differences
with large positive scores in West China and smaller or negative scores in East
China (first column). When trend in the mean temperature over China is the
performance metric, there are uniform improvement in the projection over the
whole country, especially in terms of reduction in bias and in matching the
probability distribution though improvement in the uncertainty range is very
small (second column). Results for the regional trends in the West and the
East China mean temperature as performance metric are similar to those of
China mean temperature trends, though overall skill scores are slightly smaller
(third column). When temperature trends on grid box scale are used as perfor-
mance measure, the skill scores indicate overall improvement for the weighted
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projection when compared to unweighted projection, but the improvement is
very minimum (last column).

Figure 5. The same as Figure 2 but for trends on different spatial scales as
metrics and when the simulations by CanESM5 are the targets. The weights
for every grid depend on the metrics being used. The skill scores are computed
for individual grids separately.

Figures 6 shows the results when simulations by EC-Earth3 are the targets.
As projections by the EC-Earth3 are already in the middle of the projections
by the available CMIP6 models, there is not much improvement about bias
and S-scores as expected. But the use of regional trends as performance met-
ric for model weighting does reduce uncertainty in the projection. The use of
global temperature trend as metric for model weighting increases projection un-
certainty. Figure 7 presents the results when simulations by MICRO6 are the
targets. The use of global mean temperature trend as performance metric for
model weighting has little effect on bias though it greatly reduces the projection
uncertainty. The use of regional trend as metric improves projection by reduc-
ing bias, uncertainty and improving distributional match across the country,
relatively uniformly. The use of grid-box trend as metric again results in little
improvement.
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Figure
6. The same as Figure 5, but for the simulations by EC-Earth3 as targets for
the projection.

Overall, the use of grid-box scale historical trend as performance metric for
model weighting offers some improvement than unweighted objection, but the
improvement is small. When models are weighted according to their perfor-
mance in simulating historical global mean temperature trend, the projection
for regional mean temperature over China is improved. But the effect on pro-
jection on grid box scale can be quite uneven over the space and may not be
robust, there can be large improvement in some regions and there can also be
poorer projection in other regions depending on the target model simulations.
When the models are weighted based on their performance in simulating re-
gional trend over China or large sub-regions of the country, future projections
on both national and grid box scales are improved, and the improvement is
generally consistent regardless the targets and across the space. Local trend
is highly uncertain as a result of natural internal variability, its usefulness as
model’s performance measure is limited. While global temperature trend is a
good indicator of model’s climate sensitivity, performance in simulating it by
individual models may not reflect well regional and local processes and feedback
well.
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Figure 7. The same as Figure 5, but for the simulations by MIROC6 as targets
for the projection.

3.3 Future Projection of China’s Summer Temperature

As the regional mean temperature trend is the most effective performance metric
for model weighting, we use it to estimate model weighting when constructing
summer temperature projection for the middle of the 21st century (2041-2600)
over China. Figure 8 shows the projection of national mean temperature. The
weighted multi-model ensemble projects a median increase of 2.3°C over the
1995-2014 base period, with the 5-95th percentile range of 1.67°C to 3.4°C. When
compared with the unweighted multi-model projection, the weighted projection
reduces the uncertainty range by 0.32°C (18%), with the most reduction in the
upper bound. This result is consistent with previous studies that used other
methods to treat the ‘hot tail’ CMIP6 models problem IPCC, 2021Nijsse et al.,
2020Ribes et al., 2021Tokarska et al., 2020Zeke et al., 2022(; ; ; ; ).
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Figure 8. Histogram for projected changes in summer temperature over China
for the middle of the 21st century (2041-2600) relative to1995-2014 base period.
The histogram shadings show the sampling frequency distribution. The lines
at the bottom mark the 5-95% ranges, with the median values marked by the
vertical ticks.

Figure 9 displays the median, 5th and 95th percentiles of the projected changes
on grid box scale. Warming is widespread the entire region and for all percentiles,
with spatial median value of 2.36°C for the median projection and 1.53°C and
3.59°C for the 5th and 95th percentiles, respectively. Larger warming occurs
in the northern high-latitude regions, especially in the Northwest China, with
median increase as large as 2.75°C and the 95th percentile warming more than
4.0°C. The magnitude of warming decreases from northwest to southeast, with
a median warming as small as 1.75°C in Southeast China.

Compared with the unweighted projection, there is little difference in the median
value of the projected change, though the weighted projection tends to be slightly
cooler with a spatial median value of about 0.06°C (Figure 9b). The difference
in the 5th percentile projection is even smaller, values are mostly within 0.1°C
across the whole region. In contrast, the 95th percentile is much reduced in the
weighted projection, with largest reduction at more than 0.4°C in the northern
Tibetan Plateau and parts of Northeast China. Due to the reduction in the 95th
percentile, the 5th-95th uncertainty range is also reduced by at least 0.2°C.
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Figure 9. Weighted projection and its difference from unweighted projection
for summer mean temperature changes for the middle of the 21st century. The
median, the 5th and the 95th percentiles of weighted projection (left panel) and
the difference (right panel) are shown. The numbers in the top-left corner inside
the panels show the median value of the skill scores within the domain. Unit is
(°C).

4. Conclusion and Discussion
In this study, we examined the skills of model weighting, based on various
model performance metrics, in producing summer temperature projections over
China. We considered models’ performance in reproducing the observed histori-
cal climatology, trends in mean temperatures on various spatial scales including
the global, the regional, and grid-box scales as the bases for model weighting.
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We estimated model weighting skills using large ensemble simulations by three
climate models of different climate sensitivities.

Our results clearly demonstrate that model weighting has added values over un-
weighted (or equal weighting) if a proper metric is used to evaluate the model’s
performance. We see clearly that when trends in the mean temperature over
China or sub-regions of China are used to evaluate climate models’ performance
for model weighting, the bias and uncertainty in the weighted projections are
greatly reduced. We also see that not all model evaluations are created equal.
When the model’s performance is evaluated based on a popular metric, observed
climatology, the weighted projection does not improve upon the unweighted pro-
jection. Clearly, the model evaluation needs to fit for the particular purpose. To
the first order, changes in temperature are mostly the results of thermodynamic
effect of the global warming. It thus makes sense for historical temperature
trend to be a relevant performance metric. In the perfect model tests, we saw
models of higher sensitivity being given higher weights when the target of the
future projection is simulated by a high sensitivity model CanESM5. The re-
verse is also true when the target of the future projection is simulated by a lower
sensitivity model. This also explains why model weighting based on historical
climatology did not offer any improvement as there is not a clear link between
model’s sensitivity and climatology. Therefore, we emphasize that metric for
model evaluation must be fit-for-purpose, being relevant to the projected future
change for the variable of interest.

Spatial scale on which model’s performance is evaluated also plays a role. Trend
in regional mean temperature over China or sub-regions of China seem to per-
form the best. Trend in global mean temperature improved projection for
regional mean temperature over China but its performance for projection on
grid-box scale is mixed, suggesting that some regionally or locally important
processes and feedbacks may not be well represented in the global mean tem-
perature trend. Grid box scale trends offer little improvement in the projection,
suggesting that the noisy nature of trends on such fine spatial scale does not
provide useful information for selecting better performing models. This is a
strong indication that evaluating a model’s performance at gid box scale is not
a useful exercise.

For the model weighting to be effective, the metric for evaluating the model’s
performance must meet two conditions. 1) The observed metric must be related
to climate response to external forcing, with signal separatable from internal
variability. This way, models’ behavior is evaluated against climate response
rather than noise. 2) The metric must be relatable to future changes of the
variable of interest. As we have demonstrated that historical trend in summer
mean temperature over China is effective as a metric for model weighting for
the purpose of projecting summer mean temperature in the future, it is possible
to use this metric to produce weighted projection for different aspects of heat
waves as the frequency, the magnitude and the duration of heatwaves are closely
related to summer mean temperature (Sun et al. 2014). It may also be feasible
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to weight the model based on this metric to project future changes in extreme
precipitation of short duration because of connection between atmospheric mois-
ture and temperature.

Weighting the CMIP6 models based on their performance in simulating the ob-
served summer temperature trend in China, we project summer temperature in
China will increase by about 2.3°C with the 5-95th percentiles range of 1.67°C
to 3.40°C, by the middle of the 21st century (2041-2060). Compared with un-
weighted projection, the median and the 5th percentile change little, but the
95th percentile is reduced by 0.32°C. This is in line with some studies that sug-
gest climate sensitivities in some CMIP6 models to be too high Sherwood et al.,
2020Zeke et al., 2022(; ). The weighted projection has smaller uncertainty range
compared with that of unweighted projection, with a reduction of 18%. Larger
reduction in the uncertainty is observed in the northern Tibetan Plateau area
and parts of Northeastern China, with a magnitude as large as 0.4°C. As the
model weighting scheme has shown to be effective in a set of imperfect model
tests, the confidence about this reduction in uncertainty is high.
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