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Abstract

This paper is a contribution to the exploration of the parametric Kalman filter (PKF), which is an approximation of the Kalman

filter, where the error covariance are approximated by a covariance model. Here we focus on the covariance model parameterized

from the variance and the anisotropy of the local correlations, and whose parameters dynamics provides a proxy for the full

error-covariance dynamics. For this covariance mode, we aim to provide the boundary condition to specify in the prediction of

PKF for bounded domains, focusing on Dirichlet and Neumann conditions when they are prescribed for the physical dynamics.

An ensemble validation is proposed for the transport equation and for the heterogeneous diffusion equations over a bounded 1D

domain. This ensemble validation requires to specify the auto-correlation time-scale needed to populate boundary perturbation

that leads to prescribed uncertainty characteristics. The numerical simulations show that the PKF is able to reproduce the

uncertainty diagnosed from the ensemble of forecast appropriately perturbed on the boundaries, which show the ability of the

PKF to handle boundaries in the prediction of the uncertainties. It results that Dirichlet condition on the physical dynamics

implies Dirichlet condition on the variance and on the anisotropy.
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Abstract13

This paper is a contribution to the exploration of the parametric Kalman filter (PKF),14

which is an approximation of the Kalman filter, where the error covariance are approx-15

imated by a covariance model. Here we focus on the covariance model parameterized from16

the variance and the anisotropy of the local correlations, and whose parameters dynam-17

ics provides a proxy for the full error-covariance dynamics. For this covariance mode, we18

aim to provide the boundary condition to specify in the prediction of PKF for bounded19

domains, focusing on Dirichlet and Neumann conditions when they are prescribed for20

the physical dynamics. An ensemble validation is proposed for the transport equation21

and for the heterogeneous diffusion equations over a bounded 1D domain. This ensem-22

ble validation requires to specify the auto-correlation time-scale needed to populate bound-23

ary perturbation that leads to prescribed uncertainty characteristics. The numerical sim-24

ulations show that the PKF is able to reproduce the uncertainty diagnosed from the en-25

semble of forecast appropriately perturbed on the boundaries, which show the ability of26

the PKF to handle boundaries in the prediction of the uncertainties. It results that Dirich-27

let condition on the physical dynamics implies Dirichlet condition on the variance and28

on the anisotropy.29

Plain Language Summary30

This work addresses the question of the uncertainty prediction in bounded domains.31

It contributes to explore a theoretical formulation of the uncertainty prediction that opens32

the way to data assimilation in real applications where the boundaries are important as33

in radiation belts predictions, air quality, atmosphere-ocean coupling, or wild-land fire34

; while these applications are not discussed here.35

1 Introduction36

Uncertainty prediction is a challenging topic, important in data assimilation as well37

as in probabilistic forecasting. One of the main theoretical backbone is given by the Kalman38

filter equations that applies for linear dynamics, but that fails to apply for large system39

where the numerical cost to predict the error covariance becomes prohibitive. Hence, ap-40

proximations of the KF have been proposed, as the ensemble Kalman filter (EnKF) where41

the error covariance matrices are approximated from ensemble estimation (Evensen, 2009)42

; or recently the parametric Kalman filter (PKF) where the error covariance matrices43

are approximated from a covariance model (Pannekoucke et al., 2016). In the PKF, the44

dynamics of the parameters provides a proxy for the dynamics of the full covariance ma-45

trix. For instance, covariance model parameterized from the variance and the anisotropy46

of the local correlation functions are able to predict the dynamics of the covariance ma-47

trix for transport equations (Cohn, 1993), but at a numerical cost equivalent to three48

time the integration of the transport (Pannekoucke et al., 2018; Pannekoucke, 2021). In49

addition, the PKF provides a view of the dynamics of the uncertainties that cannot be50

understood from an ensemble estimate alone. And this has open new ways to tackle dif-51

ficult topics e.g. the dynamics of the model-error covariance (Pannekoucke et al., 2021;52

Ménard et al., 2021). Note that other insight in theoretical covariance dynamics have53

been recently proposed (Gilpin et al., 2022).54

The EnKF is widely used and has shown to perform well for many applications in55

geosciences e.g. for the weather prediction (Houtekamer & Mitchell, 2001), or for the ra-56

diation belts prediction (Bourdarie & Maget, 2012). Radiation belts dynamics model-57

ing consist in estimating quantitatively the fluxes of high energetic electrons and protons58

trapped in the Earth magnetic field using a typical advection-diffusion equation. This59

region spans from 1 Earth Radius up to 8, thus encompassing all typical satellites orbits,60

with which such particles can strongly interact and induced from minor to critical on-61

board anomalies. Compared with global prediction, radiation belts predictions are per-62
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formed on a limited and non-periodic domain where the boundary imposes conditions63

to the dynamics of the electrons and protons. Indeed, on one side, the outer boundary64

condition is considered as the prime access for fresh materials, coming from the so-called65

magneto-tail, and is typically modeled as an imposed Dirichlet condition at this altitude66

(8 Earth radii) that can evolve as a function of solar activity (e.g. energy spectrum re-67

shaping from time to time) (Maget et al., 2015). On the other side, close to the Earth,68

the atmosphere implies a necessary fixed Dirichlet condition too, as all radiation belts69

particles coming down there are absorbed (e.g. distribution always equal to 0). Finally,70

for low energy boundary we expect to rely on a Neumann condition to limit naturally71

any escape of particles or artificial source. Nonetheless, when performed on limited area72

models, atmospheric prediction also present such kind of boundaries.73

An appropriate specification of boundary uncertainties is crucial because it tells74

how uncertainty will enter the domain, while the dynamics will transport and modify75

it. Hence, appropriate specification of boundary condition for uncertainty prediction and76

assimilation is a crucial issue.77

In an astonishing way, it is relatively easy to introduce uncertainty at the bound-78

ary in LAM for ensemble methods, by considering a forcing from an ensemble of global79

forecast even if the consistency across multiple domains is difficult to handle (Houtekamer80

& Zhang, 2016, sec. 6.a); while at a theoretical level, the Kalman forecast equation, in81

its matrix algebra, is less appropriate to introduce such an uncertainty at boundaries.82

Note that the difficulty to control the error at the boundary also exists for variational83

data assimilation Gustafsson (2012).84

Until now, the PKF has been explored on periodic 1D or 2D domains, where it has85

been shown to reproduce interesting features of the uncertainty dynamics in linear prob-86

lem e.g. for the transport (Pannekoucke, 2021), as well as for non-linear dynamics at the87

second order e.g. for the non-linear advection-diffusion equation (Pannekoucke et al., 2018).88

However, to go ahead toward real applications, and especially applications in bounded89

domains, appropriate specification of boundary condition of the error statistics is needed90

for the PKF dynamics. To do so, we propose to explore the specification of the bound-91

ary conditions for the PKF when Dirichlet and Neumann conditions are considered in92

the physical dynamics. This exploration is focus of two dynamics of interest for our ap-93

plications: the transport equation e.g. for air quality or weather prediction ; and the dif-94

fusion equation e.g. for radiation belts prediction or uncertainty dynamics in boundary95

layer for air quality. The paper focuses on the forecast step, and the assimilation step96

is not addressed here.97

The paper is organized as follows. First, the background of the parametric Kalman98

filter (PKF) is reminded in Section 2. Then, Section 3 details how to specify the PKF99

conditions at the boundary for the forecast for the Dirichlet and the Neumann conditions.100

The ensemble validation of the boundary conditions for the PKF needs to create an en-101

semble of forecasts. To do so, an intermediate Section 4 will details how to specify bound-102

ary conditions in an EnKF experiment that produces desired error statistics. This is an103

important contribution of the paper so to validate the specification of the boundary con-104

ditions of the PKF, where the numerical validation is presented in Section 5. Conclusions105

and perspectives are given in the last Section 6.106

2 Background on the PKF forecast step107

This section gives a self-content introduction to the parametric Kalman filter, ap-108

plied for a particular covariance model. First, the prediction step of the Kalman filter109

applied on a linear dynamics is reminded. Then, the formalism of the PKF is introduced,110

followed by the illustration on two dynamics: the transport equation, important in geo-111

sciences, and the diffusion equation important in radiation belt dynamics community.112
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2.1 Kalman filter forecast step113

Here we consider the prediction of a univariate physical field χ(t,x) defined on a114

domain Ω of dimension d and coordinate system x = (xi)i∈[1,d], whose dynamics is115

given by116

∂tχ = M(χ, ∂χ), (1)117

where M stands for a function of the state χ and of its spatial derivatives, ∂χ, which118

is a shorthand for the partial derivative with respect to the spatial coordinates at any119

arbitrary orders. Thereafter, for the sake of simplicity, M is assumed linear but the for-120

malism extends to the non-linear framework (Pannekoucke et al., 2018; Pannekoucke &121

Arbogast, 2021). Note that χ can be either continuous or discrete (the discretized ver-122

sion of the continuous field): the discrete case leads to matrix algebra relations e.g. M123

is replaced by its matrix formulation M.124

In real applications, the spatio-temporal heterogeneity of the observation network,125

as well as the model error, imply that χ is not known exactly and is modeled as a ran-126

dom field χ. The true state of the system is denoted by χt. The analysis state, that is127

the estimation of the true state knowing the observations until a given time, is denoted128

by χa. The deviation of the analysis state from the truth is the analysis error, ea =129

χa − χt, and is often modeled as a random Gaussian vector of zero mean and covari-130

ance matrix Pa = E
[
ea(ea)T

]
, where E [·] stands for the expectation operator and where131

the upper script (·)T stands for the transpose operator (later the adjoin operator for ma-132

trices). The forecast state at a time T , χf (T ) = MT←0χ
a provides an approximation133

of the true state at time T , where MT←0 denotes the propagator associated with the time134

integration of Eq. (1) over the period [0, T ]. For linear dynamics and Gaussian uncer-135

tainty, the forecast error ef (T ) = χf (T )−χt(T ) is a Gaussian vector of zero mean and136

covariance matrix Pf (T ) = E
[
ef (ef )T

]
(T ), whose dynamics writes as137

∂te
f = M(ef , ∂ef ). (2)138

The forecast-error covariance matrix is related to the analysis-error covariance ma-139

trix by140

Pf (T ) = MT←0P
a (MT←0)

T
. (3)141

Equation (3) corresponds to the Kalman filter propagator of the error covariance matrix,142

whose the particular dynamics is given by143

dPf

dt
= MPf +PfMT, (4)144

integrated over the period [0, T ], starting from the initial condition Pf (0) = Pa.145

While the KF forecast step Eq. (3) is a simple algebraic formula, its fails to apply146

in large systems because of its numerical cost: if n denotes the dimension of the vector147

representation of χ, then the computational complexity of Eq. (3) scales between n2 and148

n3 (Strassen, 1969). In term of integration cost, the KF requires 2n integrations of the149

model Eq. (1).150

Hence, approximations for the KF are needed. For instance, in the Ensemble Kalman151

filter (EnKF), the forecast error-covariance matrix is approximated by its ensemble es-152

timation.153

P̂f (t) =
1

N

∑
k

eke
T
k , (5)154

with ek = χk(t) − χ̂(t) where χ̂(t) = 1
N

∑
k χk(t) denotes the empirical mean and155

(χk(t))k∈[1,N ] is an ensemble of N forecasts (Evensen, 2009). This time, the numerical156

complexity scales with the number of ensemble members N and the size of the problem157

n: the numerical cost of an ensemble of forecast is the cost of N integrations of the model158

Eq. (1).159
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Note that the normalization by N in Eq. (5) leads to a bias that decreases as 1/N .160

In EnKF framework, the normalization by N − 1 is preferred, however since we latter161

consider estimation from very large ensemble size, the corrections of the estimators are162

not considered here, and we only consider empirical mean estimations 1
N

∑
k(· · · ) as in163

Eq. (5).164

The next section presents another approximation for the error-covariance matri-165

ces.166

2.2 Parametric formulation for the Kalman filter forecast step based on167

VLATcov models168

In the parametric approach, a covariance model is introduced, P(P) where P de-169

notes the set of parameters of the covariance model, so to approximate the error covari-170

ance matrices. For instance, the forecast-error covariance matrix Pf , is approximated171

as P(Pf ) ≈ Pf , where Pf is a particular set of values for the parameters. The para-172

metric Kalman filter (PKF) dynamics remains to mimic the dynamics of Eq. (4) rely-173

ing on the dynamics of the parameters Pf ,174

dPf

dt
= G(Pf ), (6)175

where G has to be determined from the particular dynamics of Eq. (1), so that at any176

time t, P(Pf (t)) approximates Pf (t) i.e. P(Pf (t)) ≈ Pf (t). As for the EnKF, the177

numerical complexity of the PKF prediction Eq. (6) scales as number of parameters and178

the dimension of the problem n: the numerical cost of the PKF represent the cost of few179

numerical integrations of the dynamics Eq. (1), depending on the number of parameters180

needed for the covariance approximation.181

Thereafter, since we deal with the forecast step of the PKF, the upper-script f is182

dropped in the notation that concerns the forecast-error statistics.183

This contribution will focus on the particular class of covariance model, so-called184

VLATcov models, parameterized from two fields, defined below: the variance field, V ,185

and the local anisotropy tensor of the correlation functions, g or s. Hence, the set of pa-186

rameters is given by the couple P = (V,g) or P = (V, s), so that a VLATcov model187

writes as P(V,g) or P(V, s). For an error field e, the variance field is defined as188

V = E
[
e2
]
, (7)189

and is used to introduce the normalized error ε = e√
V
. When the error field is a dif-190

ferential random field, that is assumed from now, the correlation function ρ(x,y) =191

E [ε(x)ε(y)] is flat for y = x. Then, the local anisotropy at x is defined as the local192

metric tensor g(x) (also denoted by gx) which appears in the second-order Taylor’s ex-193

pansion194

ρ(x,x+ δx) ≈ 1− 1

2
||δx||2gx

, (8)195

where ||δx||2gx
= δxTgxδx denotes the norm associated with the metric tensor gx that196

is the symmetric definite positive matrice [gx]ij = −∂2
xixjρx where ρx(δx) stands for197

the local correlation function. In a 1D domain of coordinate x, the metric tensor field198

is the scalar field g = [gxx].199

In practice, the geometry of the local metric tensor is contravariant: the direction200

of largest correlation anisotropy corresponds to the principal axes of smallest eigenvalue201

for the metric tensor. Thus, it is useful to introduce the local aspect tensor (Derber et202

al., 2003)203

s(x) = (g(x))
−1

, (9)204

where the superscript (·)−1 denotes the matrix inverse, and whose the geometry goes as205

the correlation.206
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What makes the local metric tensor attractive is that this tensor is related to the207

normalized error by (see e.g. Pannekoucke (2021))208

[gx]ij = E [∂xiε∂xjε] . (10)209

Hence, the variance Eq. (7) and the anisotropy Eq. (10) can be computed from an en-210

semble estimation: the variance field is estimated by211

V̂ =
1

N

∑
k

(ek(t))
2
, (11)212

with ek(t) = χk(t)−χ̂(t), from which derivatives of the normalized error εk = 1√
V
(χk(t)− χ̂(t))213

leads to the estimation of the upper triangular components of the metric214

ĝij =
1

N

∑
k

∂xiεk∂xjεk, (12)215

for i ≤ j (since gji = gij). While the PKF approach does not relies on any ensem-216

bles, the ensemble estimations Eq. (11) and Eq. (12) can be used to set the initial con-217

ditions for the parameters to ignite the assimilation cycles, or to validate the PKF from218

the diagnosis of an EnKF.219

An example VLATcov model is given by the heterogeneous Gaussian-like covari-220

ance model (Paciorek & Schervish, 2006)221

P(V, s)(x,y) =
√

VxVy
|sx|1/4|sy|1/4

| 12 (sx + sy)|1/2
exp

(
−1

2
||x− y||2[ 12 (sx+sy)]−1

)
(13)222

where | · | denotes the matrix determinant.223

When VLATcov models are used for the parametric approach, the dynamics of the224

parameters Eq. (6) is deduced from the time derivative of Eq. (7) and Eq. (10), and the225

dynamics of the error Eq. (2). For instance, the dynamics of V is deduced from226

∂tV = 2E [e∂te] , (14a)227

where replacing the trend of the error Eq. (2), will leads to the dynamics of V228

∂tV = 2E [eM(e, ∂e)] . (14b)229

This expression can be simplified e.g. by considering the commutation between the ex-230

pectation and partial derivatives (Pannekoucke & Arbogast, 2021).231

In terms of numerical cost, the PKF based on the VLATcov model scales as the232

number of independent components in g (the number of coefficients in the upper trian-233

gle) plus one for the variance field: in a univariate over a 1D (3D) domain, this repre-234

sents 2 (7) times the cost of one model forecast (which scales itself with the dimension235

n).236

Note that the computation of dynamical equations for V and g (or s) can be per-237

formed using a computed algebra system. To do so, the open source Python toolbox SymPKF1
238

has been introduced (Pannekoucke & Arbogast, 2021), which computes the dynamics of239

the parameters and renders a numerical code to facilitate the numerical exploration of240

the PKF approach. Another way to simplify the computation of the parameters dynam-241

ics is to identify the contribution of each physical process present in Eq. (1) following242

a splitting strategy (Pannekoucke et al., 2018; Pannekoucke & Arbogast, 2021). There-243

after, the dynamics of the VLATcov parameters is computed by using SymPKF and the244

1 https://github.com/opannekoucke/sympkf
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interested reader is referred to the Jupyter notebooks that are provided as a supplemen-245

tary material to this contribution 2.246

The PKF based on the VLATcov model is illustrated in the next sections for two247

dynamics which give an explicit form for M in Eq. (1).248

2.3 Illustration of the PKF for simple dynamics249

The transport and the diffusion equations are considered so to detail the dynam-250

ics of the variance and the anisotropy for the PKF applied for VLATcov models. Both251

dynamics play over a 1D periodical domain of coordinate x, so that the dynamics is an252

evolution equation without boundary conditions.253

2.3.1 PKF prediction applied on a transport equation254

The transport equation of a scalar field c(t, x) by a stationary velocity field u(x)255

writes as256

∂tc+ u∂xc = 0. (15)257

In this example, and by identification with Eq. (1), c stands for χ while M(c, ∂c) =258

−u∂xc. This kind of equation appears for instance in the prediction of the concentration259

of a chemical specie as in chemical transport models.260

The computation of the PKF dynamics for Eq. (15) using SymPKF leads to the
system

∂tc = −u∂xc, (16a)

∂tVc = −u∂xVc, (16b)

∂tsc,xx = −u∂xsc,xx + 2sc,xx∂xu, (16c)

where the anisotropy is represented by the aspect tensor s = sc,xx in 1D domain. The261

PKF dynamics Eq. (16) is a system of three uncoupled partial derivative equation sim-262

ilar to the one first found by Cohn (1993). This system represents the dynamics of the263

mean state E [c], Eq. (16a), where the expectation operator has been removed for the sake264

of simplicity ; the transport of the variance, Eq. (16b) ; and the transport of the anisotropy265

Eq. (16b), where an additional a source term of anisotropy appears, that is due to the266

shear by the flow. Compared with an ensemble approach, the PKF approach opens to267

an understanding of the dynamics and the physics of the uncertainty.268

Note that the lower script notation c for Vc and c,xx for sc,xx corresponds to the269

notation automatically rendered by SymPKF when processing the dynamics Eq. (15) at270

a symbolic level. This labelling for the parameters has been introduced when multiple271

fields are present e.g. in multivariate dynamics. While this contribution only address uni-272

variate dynamics, the notation is kept here so to facilitate the comparison with the out-273

put of SymPKF and also because another important dynamics is discussed: the diffu-274

sion equation, which is now presented.275

2.3.2 PKF prediction applied on a diffusion equation276

The diffusion equation of a scalar field f(t, x) and of diffusion coefficient D(x),277

∂tf = ∂x (D∂xf) , (17)278

is now considered. This kind of equation appears for instance in the prediction of elec-279

tron density f of the Earth radiation belts and results from a Hamiltonian formalism280

2 https://github.com/opannekoucke/pkf-boundary
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applied on a typical Boltzmann equation, where a Fokker-Planck operator is introduced281

to evaluate physical interactions responsible for changing particles trapping state (Dah-282

men et al., 2020). In the radiation belts, the typical spatial coordinates system x in Eq. (17)283

stands in this case for a combined spatial and physical quantities e.g. the energy of the284

electrons. The diffusion equation is also important in the modeling of atmospheric bound-285

ary layer where it represents the effect of the turbulence (Stull, 1988). In this example,286

and by identification with Eq. (1), f stands for χ while M(f, ∂f) = ∂x (D∂xf).287

The computation of the PKF dynamics for Eq. (17) can be performed using SymPKF.288

However, because of the second order derivative, the dynamical system makes appear289

an unknown term E
[
εf∂

4
xεf

]
, not determined from f , Vf and sf,xx (see Appendix A).290

An analytical closure has been proposed for 1D domains which states as (Pannekoucke291

et al., 2018)292

E
[
εf∂

4
xεf

]
= 3g2f,xx − 2∂2

xgf,xx (18a)293

when written in metric tensor or294

E
[
εf∂

4
xεf

]
=

2∂2
xsf,xx
s2f,xx

+
3

s2f,xx
− 4 (∂xsf,xx)

2

s3f,xx
(18b)295

in aspect tensor, which leads to the PKF dynamics

∂tf = D∂2
xf + ∂xD∂xf, (19a)

∂tVf = −2DVf

sf,xx
+D∂2

xVf − D (∂xVf )
2

2Vf
+ ∂xD∂xVf , (19b)

∂tsf,xx = D∂2
xsf,xx + 4D

− 2D (∂xsf,xx)
2

sf,xx
− 2Dsf,xx∂

2
xVf

Vf
+

D∂xVf∂xsf,xx
Vf

+
2Dsf,xx (∂xVf )

2

V 2
f

− 2sf,xx∂
2
xD+

2∂xD∂xsf,xx − 2sf,xx∂xD∂xVf

Vf
, (19c)

where in this dynamical systems, the expected value E [f ] in Eq. (19a) is replaced by f296

for the sake of simplicity. The dynamics Eq. (19) makes appear the effect of the trans-297

port due the heterogeneity of the diffusion coefficient which implies a flow of velocity −∂xD,298

and leads to the same PKF transport dynamics Eq. (16) as discussed for Eq. (15) in the299

particular case where u = −∂xD. The other terms in Eq. (19) are related to the second-300

order derivative term D∂2
xf , which couples the dynamics of the variance and of the anisotropy.301

In term of metric, the closed Eq. (19) reads as

∂tf = D∂2
xf + ∂xD∂xf, (20a)

∂tVf = −2DVfgf,xx +D∂2
xVf − D (∂xVf )

2

2Vf
+ ∂xD∂xVf , (20b)

∂tgf,xx = −4Dg2f,xx +D∂2
xgf,xx+

2Dgf,xx∂
2
xVf

Vf
+

D∂xVf∂xgf,xx
Vf

− 2Dgf,xx (∂xVf )
2

V 2
f

+

2gf,xx∂
2
xD + 2∂xD∂xgf,xx +

2gf,xx∂xD∂xVf

Vf
. (20c)

Until now, PKF dynamics for the heterogeneous diffusion equation has been evaluated302

on periodic domain only, while bounded domains are often needed, e.g. in radiation belts303

predictions where the energy of electrons are limited, or in atmospheric boundary layer304

where the ground is a limit of the domain. The next section addresses how to specify the305

boundary conditions for the PKF dynamics.306
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3 Specification of the PKF boundary conditions307

This section challenges the specification of the boundary conditions for the PKF308

by considering two usual kind of conditions: the Dirichlet and the Neumann conditions.309

We consider the particular case of the semi-bounded 1D domain [0,∞), and focus on the310

boundary x = 0. Then we extend to boundary conditions of an arbitrary domain Ω311

of frontier ∂Ω.312

3.1 Dirichlet BCs313

A Dirichlet condition at the boundary consists in specifying the value of the fields314

at x = 0, that is χ(t, x = 0) = χ0(t).315

This conditions is used for the dynamics of the mean in the PKF, but it remains316

to specify the variance and the anisotropy for the boundary conditions.317

Therefore the Dirichlet condition implies that the error field must also verifies a318

Dirichlet condition i.e. e(t, x = 0) = e0(t). The expectation of the error field at x =319

0 is zero by definition, and of variance V0(t) = E
[
e0(t)

2
]
. Hence, the variance field320

must also verify a Dirichlet condition i.e. V (t, x = 0) = V0(t).321

So for a 1D bounded domain, the Dirichlet condition on the dynamics implies to322

specify a Dirichlet condition on the variance and on the anisotropy. This result extends323

for an arbitrary domain Ω where this time, the boundary conditions for the variance and324

the anisotropy are Dirichlet conditions on the frontier ∂Ω.325

In case where the bounded domain is nested within a larger domain where uncer-326

tainty is known from a PKF dynamics, then the variance and the anisotropy at the bound-327

ary can be set from the variance and the anisotropy known in the larger domain. When328

the uncertainty at large scale is featured from an ensemble of forecasts, the statistics at329

the boundary should be set as the statistics estimated from the ensemble of large scale330

forecasts at the boundary points e.g. for VLATcov models, the variance and the anisotropy331

can be estimated from the ensemble of large scale forecasts from Eq. (11) and Eq. (12)332

respectively.333

Hence, Dirichlet condition in case of nested models easily extends in 2D and 3D334

domains where it remains to specify the variance and the anisotropy of the local area335

model from the variance and the anisotropy of the coupling model.336

3.2 Neumann BCs337

Neumann conditions at the boundaries write as null fluxes i.e. ∂xχ(t, x = 0) =338

0. This implies that the error field must also verifies a Neumann condition i.e. ∂xe(t, x =339

0) = 0. Again, we are looking for the boundary conditions for the variance and the340

anisotropy.341

The condition on the variance is deduced from the Taylor expansion of the error
at the vicinity of x = 0 as follows. The expectation of the square of the second order
expansion of the error

e(t, δx) = e(t, 0) +
1

2
∂2
xe(t, 0)δx

2 +O(δx3),

leads to the local expansion of the variance V (t, x) = E
[
e2
]
(t, x),

V (t, δx) = V (t, 0) + E
[
e∂2

xe
]
(t, 0)δx2 +O

(
δx4

)
.

As the local Taylor expansion of the variance field at x = 0, this implies that the first342

order derivative is null, i.e.343

∂xV (t, 0) = 0, (21a)344
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which means that the condition in variance at the boundary x = 0 follows a Neumann345

condition.346

For the anisotropy, the Neumann condition on the variance,Eq. (21a), implies that347

the metric tensor g(t, x) = E
[
(∂xε)

2
]
(t, x) simplifies as g(t, 0) = 1

V (t,0)E
[
(∂xe(t, 0))

2
]
.348

Then the Neumann condition on e, ∂xe(t, 0) = 0 i.e. implies that the condition for349

the metric is a Dirichlet condition,350

g(t, x = 0) = 0. (21b)351

Note that the later Dirichlet condition for the metric translates as the singular condition352

in aspect tensor, s(t, 0) = +∞, which makes appears that forecast step of the PKF353

written in aspect tensor is not well defined, and that is is preferable to consider the PKF354

as written in variance/metric tensors.355

Hence, the Neumann condition for a 1D domain translates for the PKF as a Neu-356

mann condition in variance and a Dirichlet condition in metric. This extends to a 2D357

or 3D domain Ω where this time the Neumann condition for the variance states as a null358

flux along the normal direction of the frontier ∂Ω of the domain. The Dirichlet condi-359

tion for the metric reads equivalently g(t,x) = 0 for x ∈ ∂Ω, but a weaker condition360

could be introduced where the tangential components of the metric at the boundary are361

not zero (not addressed here).362

Now that the boundary conditions for the PKF have been theoretically specified363

for the Dirichlet and the Neumann conditions, a numerical validation as well as a com-364

parison with the usual EnKF approach is introduced. But to do so, it is necessary to spec-365

ify an appropriate setting for the boundary of the EnKF, as discussed in the next sec-366

tion.367

4 Specification of the BCs for EnKF simulations368

The numerical validation of the PKF prediction, applied for bounded domains, is369

performed by considering an ensemble of forecasts approach. Compared to the PKF sim-370

ulation, an ensemble approach relies on the computation of an ensemble of forecasts which371

requires an appropriate specification of the initial and boundary perturbation. In the realm372

of data assimilation applied to limited area models, the perturbation at the boundary373

often comes from an ensemble of global forecast e.g. forecast computed on the sphere374

for weather forecasting.375

In the validation framework considered here, an appropriate specification of the bound-376

ary perturbation is needed so to compare to the PKF. This constraint of validation im-377

plies to introduce a way to specify the variance and the time-scale of the perturbation378

at the boundary in 1D domain in such a way that the perturbation of the initial condi-379

tion (in space) are smoothly connected to the perturbation at the boundaries (in time).380

Indeed, to be representative to radiation belts dynamics, the boundary conditions have381

to be strongly dynamic over time. This is a constrain we take great care to analyze in382

order to test the PKF robustness to such an environment.383

Generating a set of perturbations with such properties is achieved by sampling a384

multivariate normal distribution. The covariance matrix associated with the multivari-385

ate distribution contains the variance and the length-scales for the perturbation of the386

initial condition as well as for the perturbation of the boundary conditions.387

Note that ensemble forecasting under Neumann boundary conditions, corresponds388

to an initial value problem where each member is integrated from an initial condition389

that verifies the Neumann conditions. Hence, the main difficulty encountered is how to390

specify the auto-correlation time scale of the perturbation at the boundaries for Dirich-391

let conditions.392
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In what follows, the specification of the time auto-correlation is first presented for393

an arbitrary evolution equation, then it is applied for the transport and for the diffusion394

equation.395

4.1 Specification of the auto-correlation time-scale of the BC perturba-396

tions for ensemble of forecast397

The problem faced here is that, with boundary conditions being time-series, the398

scale in the covariance matrix used to generate the set of perturbations is a time-scale.399

However, the metric tensor gxx is related to the spatial length-scale of the perturbation400

as denoted by the index xx. In order to specify the boundary condition of the metric ten-401

sor field, we need to find an equation linking, on the boundaries, the spatial metric ten-402

sor gxx with the time-scale used to generate the perturbation.403

Similarly to the spatial metric tensor Eq. (10), the temporal metric tensor gtt that404

characterize the auto-correlation of a smooth centered random field, η(t), depending on405

the time, and of variance Vη(t) = E
[
η(t)2

]
, is defined by406

gtt(t) = E
[
∂t

(
η(t)

Vη(t)

)
∂t

(
η(t)

Vη(t)

)]
. (22)407

This temporal metric tensor is directly related with the time-scale of the perturbation.408

In 1D gtt =
1
L2

t
with Lt the auto-correlation time-scale.409

Without loss of generality, the boundary x = 0 is considered, and the goal is to410

characterize the temporal metric tensor gtt(t, x = 0). If η(t) denotes the random er-411

ror at x = 0, then by continuity, the error and the random forcing verify e(t, x = 0) =412

η(t). Then, it results that the variances verify Vη(t) = V (t, x = 0), and the temporal413

metric tensor reads as414

gtt,x=0(t) = E [∂tε(t,x = 0)∂tε(t,x = 0)] , (23a)415

where ε = e/
√
V is the normalized error associated with the spatial error e. While416

Eq. (23a) only holds at the boundary x = 0, the spatio-temporal smoothness of e im-417

plies a link between the temporal metric at the boundary and the spatial metric within418

the domain, which results from the dynamics of the error Eq. (2) at x = 0: ∂te(t, x =419

0) = M(e, ∂e)(t, x = 0). In particular, the temporal metric reads as (see Appendix420

B)421

gtt =
x=0

1

V
E
[(

M(ε
√
V , ∂(ε

√
V ))

)2
]
− 1

4V 2
(∂tV )

2
, (23b)422

where the terms E
[(

M(ε
√
V , ∂(ε

√
V ))

)2
]
and ∂tV can make appear the spatial met-423

ric field gxx at x = 0.424

One pitfall is that equation Eq. (23b) may be complicated, and can contain unknown425

terms such as E
[
εf∂

4
xεf

]
encountered for the heterogeneous diffusion dynamics in sec-426

tion 2.3.2. The next two sub-sections will detail the link between the temporal and the427

spatial metrics for the transport and for the diffusion.428

4.2 Dirichlet BC for ensemble forecasting of the positive velocity trans-429

port equation430

To illustrate the relation between the temporal and the spatial metric tensor, the431

transport equation Eq. (15) is now considered.432

Following the theoretical derivation of the temporal metric Eq. (23b), the compu-433

tation using SymPKF leads to the relation between the auto-correlation time-scale of434
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the boundary perturbation and the spatial error anisotropy tensor that reads as435

gc,tt =
x=0

u2gc,xx +
u2 (∂xVc)

2

4V 2
c

+
u∂tVc∂xVc

2V 2
c

+
(∂tVc)

2

4V 2
c

. (24)436

This spatio-temporal consistency for the temporal and spatial statistics is difficult to in-437

terpret physically without approximations. However, under the assumptions of local ho-438

mogeneity (∂xVc = 0) and of stationarity for the variance ∂tVc = 0), Eq. (24) reads439

as440

gc,tt =
x=0

u2gc,xx, (25)441

which is physically interpretable since Eq. (25), written in time-scale and length-scale,442

reads as Lt = Lx

u : the usual rule relating time and space in a transport. Later, the443

numerical investigation will consider Eq. (25) as an approximation of the true time-scale444

even when assumptions leading to Eq. (25) are not verified.445

Note that Eq. (25) can be obtained when considering that the dynamics of the vari-446

ance Eq. (16b) applies at the boundary, leading to replace the trend of the variance by447

∂tVc = −u∂xVc in Eq. (24) so to obtain Eq. (25).448

To conclude this paragraph, the ensemble forecasting under Dirichlet boundary con-449

ditions and applied to the transport equation, remains to populate an ensemble of bound-450

ary perturbations with a prescribed temporal variance and an auto-correlation time scale451

given by Eq. (25).452

We proceed in the same way for the diffusion equation.453

4.3 Dirichlet BCs for ensemble forecasting of the diffusion equation454

To continue going towards more and more realistic modeling, the heterogeneous455

diffusion equation Eq. (17) is now considered to compute the spatio-temporal link Eq. (23b)456

in the diffusion case.457

Form a derivation detailed in Appendix C, the auto-correlation time scale of bound-458

ary perturbation can be related to the spatial error correlation length-scale by the proxy459

gf,tt(t, x) ≈ 3D(x)2gf,xx(t, x). (26)460

Note that Eq. (26) is an equality when the variance and the diffusion fields are homo-461

geneous, and when the variance is stationary at the boundary.462

To conclude this paragraph, the ensemble forecasting under Dirichlet boundary con-463

ditions, and applied to the diffusion equation, remains to populate an ensemble of bound-464

ary perturbations with a prescribed temporal variance and an auto-correlation time scale465

given by Eq. (26).466

We are now ready to validate the PKF approach from an ensemble validation de-467

signed to produce desired error statistics.468

5 Numerical investigation469

The goal of the numerical investigation is to validate the PKF on a bounded do-470

main as well as the equations developed in Section 4, by comparing the PKF dynamics471

with an ensemble simulation.472

5.1 Setting for the numerical experiments473

For this investigation three different settings are considered. All experiments take474

place on a 1D bounded domain x ∈ [0,Λ]. For the first one, the transport equation475
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Figure 1: Heterogeneous velocity field considered for the numerical simulation of the
transport dynamics.

Eq. (15) is considered with Dirichlet boundary condition at x = 0 and free boundary476

at x = Λ. For the second setting, the heterogeneous diffusion equation Eq. (17) is con-477

sidered with Dirichlet boundary conditions at both boundaries x = 0 and x = Λ. For478

the third setting, the same diffusion equation is considered but this time with Neumann479

boundary conditions at x = 0 and x = Λ.480

The transport and the diffusion being linear, the dynamics of the mean is the same481

for the PKF and for the EnKF. Hence, without loss of generality, to focus on the vali-482

dation of the error statistics, the mean state is not considered in the following (the reader483

can consider the mean state as constant). Then, the ensemble of forecast is equivalent484

to the forecasts of an ensemble of perturbations (ek)k∈[1,Ne], with appropriate boundary485

conditions.486

Each time the variance, Eq. (16b) and Eq. (19b), and anisotropy tensor, Eq. (16c)487

and Eq. (19c), produced by the PKF dynamics are compared with the variance and anisotropy488

tensor diagnosed from an ensemble of Ne = 6400 forecasts.489

The domain is discretized in n = 241 grid points and the spatial derivative op-490

erator ∂x is discretized with a centered finite difference scheme leading to a second or-491

der of consistency. The temporal discretization scheme varies with each experiment and492

is detailed in each sections.493

5.2 Application to the transport equation494

In this experiment setting, the transport equation Eq. (15) is considered. The ve-495

locity wind for the simulation is set as the heterogeneous stationary field u(x) = 1 +496

1
4 sin(

2π
Λ x) shown in Fig. 1.497

The temporal discretization scheme used for the ensemble simulation as well as the498

PKF dynamics is a Runge-Kutta scheme of order 4 with a fixed time-step dt ≈ 4.10−3.499

The simulation is conducted from time t = 0 until tend = 2Tadv with the advection500

time scale Tadv = Λ
umax

.501

In order to generate a coherent set of perturbations for the ensemble simulation502

i.e. an initial condition and a boundary condition that are smoothly connected, an ex-503

tended domain [−u(0)tend,Λ] is created from the union of the physical domain [0,Λ] and504
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Figure 2: Sample of a generated perturbation split into an initial condition and a bound-
ary condition that are smoothly connected.
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(b) Length-scale fields at time t=0.0Tadv
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(c) Variance fields at time t=0.25Tadv
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(d) Length-scale fields at time t=0.25Tadv
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(e) Variance fields at time t=1.5Tadv
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(f) Length-scale fields at time t=1.5Tadv

Figure 3: Comparison of the forecast-error variance (left column) and normalized length-
scale (right column) fields dynamics for the heterogeneous advection equation on a 1D
bounded domain with Dirichlet boundary conditions at x = 0 and open boundary condi-
tion at x = Λ. The results are shown for times t = 0, t = 0.25Tadv and t = 1.5Tadv.
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(a) Time evolution of the variance
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(b) Time evolution of the length-scale
 at the center of the domain

Figure 4: Time evolution of the forecast-error variance (a) and normalized length-scale
(b) at x = 0.5Λ, for the advection equation with Dirichlet boundary conditions.

the time window [0, tend] brought back to a virtual physical extension of the domain by505

multiplying with −u(0).506

Then on this extended domain a variance field, V0 and a length-scale field L0 are507

defined which will be used to generate the perturbations. For this experiment the fields508

V0 and L0, that constitute the PKF initial and boundary conditions, are set as follows.509

The initial variance is set homogeneous and equal to 1 over the physical domain V0(t =510

0, x) = 1 and the boundary variance is set to the periodical function V0(t, x = 0) =511

5
4 − 1

4cos(
2π

Tadv
t). Like for the variance, the initial length-scale is set homogeneous and512

equal to 10% of the domain length L0(t = 0, x) = Lh = 0.1Λ and the boundary length-513

scale is set to the periodical function L0(t, x = 0) = 0.1Λ( 34 + 1
4cos(

2π
Tadv

t)).514

This setting for the variance and the length-scale is chosen so to represent a typ-515

ical behaviour encountered in numerical weather forecasting, where large scale are more516

predictable than small scales, which is also the case in radiation belts dynamics forecast-517

ing.518

Using Eq. (13) and the relation between the length-scale and the anisotropy ten-519

sor in 1D, s0 = L2
0, the covariance matrix, P0 = P(V0, s0), is defined from which the520

spatio-temporal perturbations are sampled for each k as ek = P
1/2
0 ζk, where ζk is a521

sample of a centered and normalized Gaussian random vector, and where P
1/2
0 stands522

for the square root matrix of P0, i.e. P0 = P
1/2
0

(
P

1/2
0

)T

. The square root P
1/2
0 has523

been computed from the singular value decomposition of the matrix P0.524

An example of a perturbation sample is presented in Fig. 2 where the temporal evo-525

lution e(t, x = 0) is shown in panel (a) while the initial condition within the domain,526

e(t = 0, x) is given in panel (b). Note that the time axis in panel (a) has been inverted527

so to facilitate the understanding. The blue dots corresponds to the value of the sam-528

pled error field e at t = 0 and x = 0.529

The figure Fig. 3 shows both variance and length-scale fields that are computed from530

the PKF and the ensemble simulations and compared at three different timestamps. The531

first panels (a) and (b) respectively show the variance and the length-scale normalized532

by Lh at initial time. As prescribed, the initial variance is homogeneous and equal to533

1. The initial length-scale is also homogeneous and equal to Lh. The panels (c) and (d)534

present the evolution at time t = 0.25Tadv. As expected the variance (the length-scale)535
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increases (decreases) according to the specified boundary condition close to x = 0 (red536

dot). The length-scale is also modified over the whole domain, this is the effect of the537

velocity gradient of the term 2sc,xx∂xu in Eq. (16c). Since the velocity field is positive,538

the variance and the length-scale are transported to the right of the domain. Finally, pan-539

els (e) and (f) show the fields at time t = 1.5tadv. The information injected by the540

boundary condition at x = 0 has reached the other side of the domain unscathed for541

the variance and length-scale fields.542

In order to strengthen these results, we show in Fig. 4 the evolution through time543

of the fields for the middle point in the domain x = 0.5Λ. As expected, the variance544

in panel (a) remains constant until the information from the boundary condition arrives,545

where oscillations start, following the prescribed sine shape of the boundary condition546

shifted in time. In panel (b), the length-scale follows the same kind of dynamic except547

that the length-scale varies from t = 0 to t = 0.5Tadv, a variation that is not due to548

the boundary condition but to the heterogeneity of the wind field. Note that ensemble549

estimation of the variance and of the length-scale are subject to some sampling noise even550

with the large ensemble size Ne = 6400.551

Overall, this simulation shows no numerical artifact and the PKF and EnKF fore-552

casts overlap perfectly. Moreover, the continuous and differentiable error statistics of the553

EnKF statistics shows that the generated duets of errors for the initial condition and bound-554

ary condition have been appropriately specified.555

These results validate that the specification of the PKF boundaries proposed in Sec-556

tion 3.1 is correct when applying Dirichlet condition in a transport dynamics. Moreover557

it also validates the specification of the perturbations Eq. (25), introduced in Section 4,558

for the ensemble validation to build prescribed error statistics.559

Note that, this example has also shown the ability of the PKF to apply for open560

boundary condition.561

Now, we validate the PKF boundary conditions applied for a diffusion equation.562

5.3 Application to the diffusion equation563

In this experiment setting, the heterogeneous diffusion Eq. (17) is considered. The564

temporal discretization scheme used for the ensemble simulation is a backward Euler scheme565

(implicit Euler method) with a fixed time-step dtBE ≈ 2.10−4. For the PKF dynam-566

ics we used a Runge-Kutta scheme of order 4 with a fixed time-step dtRK4 ≈ 5.10−6.567

The simulation is performed from time t = 0 to tend = 1.2Tdiff with Tdiff = Λ2

4Dmax
568

the time scale of the diffusion of a half-domain.569

The diffusion coefficient for the simulation is set as the heterogeneous stationary570

field D(x) = 1 + A
Amax

with A(x) = sin(πx)(1 + x)8 where Amax = MaxxA(x), and is571

shown in Fig. 5. This diffusion field reproduces the kind of diffusion encountered in the572

dynamics of radiation belts in order to evaluate the ability of PKF to solve this prob-573

lem.574

5.3.1 Dirichlet boundary conditions575

To generate a coherent set of perturbations for the ensemble simulation, the same576

technique described in Section 5.2 is considered except that both boundaries at x =577

0 and x = Λ are subject to Dirichlet conditions. The extended domain considered is578

[−
√
D(0)tend, 0] ∪ [0,Λ] ∪ [Λ,Λ +

√
D(Λ)tend].579

This time, the parameters considered for the simulation and ensemble generation580

are as follows, the initial variance is set to the linear function V0(t = 0, x) = 1 + 3
Λx581

and the initial length-scale is set homogeneous and equal to 10% of the domain length582

–16–



manuscript submitted to Journal of Advances in Modeling Earth Systems

0.0 0.2 0.4 0.6 0.8 1.0
x/

1.0

1.2

1.4

1.6

1.8

2.0

M
ag

ni
tu

de
 o

f t
he

 d
iff

us
io

n

Diffusion coefficient for the simulation

Figure 5: Heterogeneous diffusion coefficient generated for the experiment

L0(t = 0, x) = Lh = 0.1Λ. For the left boundary condition at x = 0, the variance and583

the length-scale are stationary set equal to 1 and Lh respectively i.e. V0(t, x = 0) =584

1 and L0(t, x = Λ) = Lh. For the right boundary condition at x = Λ, the variance585

and the length-scale are stationary set equal to 4 and Lh respectively i.e. V0(t, x = Λ) =586

4 and L0(t, x = Λ) = Lh. From this specification, an ensemble of perturbations has587

been populated following the same procedure, ek = P
1/2
0 ζk, as detailed in Section 5.2.588

The resulting perturbations are similar to the ones shown in Fig. 2 for the advection, ex-589

cept that there is a right extension of the domain in addition of the left extension for the590

advection (not shown).591

The comparison between the PKF and EnKF predictions at different time steps592

are shown in Fig. 6. The first panels (a) and (b) are coherent with the specification of593

the initial condition for both the EnKF and the PKF. Panels (c) and (d) show the evo-594

lution of the variance and length-scale at t = 0.2Tdiff .595

Due to physical diffusion, far from the boundaries e.g. at the center of the domain,596

the magnitude of the error is expected to decrease over time with an attenuation of the597

variance, while the length-scale should increase; and at the boundaries the uncertainty598

should remained as specified by the Dirichlet conditions. This is precisely the behaviour599

observed for both the EnKF and the PKF, at the center of the domain and at the bound-600

aries where the Dirichlet condition imposes fixed values for the variance and the length-601

scale on both sides of the domain.602

However, panel (d) shows a noticeable gap between the length-scale computed by603

the PKF and the one estimated from the ensemble. This gap can be due to the closure604

Eq. (18) but it has a limited impact on the variance field (panel c) which makes appear605

that the PKF prediction of the variance is an accurate proxy for the EnKF estimation.606

On the last panels (e) and (f), the variance and the length-scale settle down and607

the values predicted by the PKF are close to the values computed from the ensemble ex-608

cept for the error observed between the length-scale fields in the middle of the domain.609

As seen in Fig. 7, the variance and length-scale are close to the permanent regime at t =610

1.2Tdiff showing that the PKF well performed even over a significant time period.611

To conclude, this experiment has confirmed the specification of the Dirichlet bound-612

ary conditions of Section 3.1 for the PKF applied to a heterogeneous diffusion equation.613

It has shown the ability of the PKF to accurately approximate the uncertainty dynam-614
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(f) Length-scale fields at time t=1.2Tdiff

Figure 6: Comparison of the forecast-error variance (left column) and normalized
length-scale (right column) fields dynamics for the heterogeneous diffusion equation
on a 1D bounded domain with Dirichlet boundary conditions, and shown at times t = 0,
t = 0.2Tdiff and t = 1.5Tdiff .
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(b) Time evolution of the length-scale
 at the center of the domain

Figure 7: Time evolution of the forecast-error variance (a) and normalized length-scale
(b) at x = 0.5Λ, for the diffusion equation with Dirichlet boundary conditions.
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Figure 9: Forecast-error metric field for the heterogeneous diffusion equation on a 1D
bounded domain with Neumann boundary conditions, shown at times t = 0, t = 0.2Tdiff

and t = 1.2Tdiff .

ics as diagnosed from the EnKF but at a lower cost corresponding the price of two time615

integration compared with the 6400 integrations needed for the ensemble. Another re-616

sult is that the simulations also validate the theoretical derivation of the time-scale set-617

ting Eq. (26) needed to obtain a specific length-scale at the boundaries.618

We end the numerical validation by considering the Neumann conditions applied619

to the heterogeneous diffusion equation.620

5.3.2 Neumann boundary conditions621

As above mentioned in Section 4, compared with the Dirichlet, the Neumann con-622

ditions are simulated in an ensemble of forecasts, as an initial condition problem with-623

out perturbation at the boundaries. The problem is then to produce an ensemble of ini-624

tial conditions that verify the Neumann conditions.625

To do so, a covariance model based on a homogeneous pseudo-diffusion equation626

has been considered (Weaver & Courtier, 2001). The terminology pseudo means that the627

diffusion is not physical but only a tricky way to create large covariance model as used628

in variational data assimilation. In particular the square-root covariance P
1/2
0 resulting629
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Figure 10: Comparison of the forecast-error variance (left column) and length-scale
(right column) fields dynamics for the heterogeneous diffusion equation on a 1D bounded
domain with Neumann boundary conditions, and shown at times t = 0, t = 0.2Tdiff and
t = 1.2Tdiff .

0.0 0.2 0.4 0.6 0.8 1.0 1.2
t/Tdiff

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Va
ria

nc
e 

at
 x

/
=

0.
5

(a) Time evolution of the variance
 at the center of the domain

EnKF-Ne=6400
PKF

0.0 0.2 0.4 0.6 0.8 1.0 1.2
t/Tdiff

0.25

0.50

0.75

1.00

1.25

1.50

1.75

No
rm

al
ise

d 
le

ng
th

-s
ca

le
 L

/
 a

t x
/

=
0.

5

(b) Time evolution of the length-scale
 at the center of the domain

Figure 11: Time evolution of the forecast-error variance (a) and length-scale (b) at x =
0.5Λ, for the diffusion equation with Neumann boundary conditions.
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from the integration of the pseudo-diffusion equation reads as the linear operator630

P
1/2
0 = ΣWL, (27)631

where L = e
1
2κ∂

2
x is the propagator associated with the diffusion equation632

∂τu = κ∂2
xu (28)633

of pseudo-time τ , integrated from τ = 0 to τ = 1
2 , and using Neumann conditions at634

the boundaries (Mirouze & Weaver, 2010); W is a diagonal normalisation so that WL(WL)T635

is a correlation operator ; and Σ is a diagonal matrix of standard deviations, so that the636

spatial variance field is the linear profile with V0(t = 0, x = 0) = 1 and V0(t = 0, x =637

Λ) = 4. Note that the pseudo-diffusion coefficient κ is related to the length-scale l of638

the correlation functions as to κ = l2/2 (Pannekoucke & Massart, 2008). For the nu-639

merical application, lh = 0.1Λ.640

Again, an ensemble of initial conditions are populated from the square-root Eq. (27),641

ek = P
1/2
0 ζk, where ζk is a sample of centered Gaussian random vector. Fig. 8 shows642

some samples of the normalized error resulting from Eq. (27) i.e. εk = WLζk. As it643

is expected, the normalized error are plate at the boundaries (red arrows pointing toward644

the interior of the domain). The resulting anisotropy diagnosed from the ensemble of ini-645

tial condition t = 0 leads to the metric field shown in Fig. 9 (in blue but super-imposed646

by the orange line). As expected, far from the boundary, the metric is homogeneous equal647

to g = 1/l2h i.e. near x = 0.5Λ, but oscillates near the boundaries to reach a value of648

zero at the boundaries. The oscillations is due to the constraint of symmetry of the co-649

variance matrix (Pannekoucke et al., 2018).650

As discussed in Section 3.2, for Neumann conditions the PKF dynamics is solved651

following its metric formulation, which is given by Eq. (20) for the physical diffusion equa-652

tion Eq. (17). For the numerical validation of the Neumann BCs, the initial condition653

for the PKF is the variance field of linear profile shown in Fig. 10-(a) and the experiment654

metric field diagnosed from the ensemble of initial conditions shown in Fig. 9 for t =655

0 (orange line, superimposed to the blue line of the EnKF diagnosis).656

The PKF dynamics is computed and the results are compared with the ensemble657

of forecasts of the heterogeneous diffusion equation Eq. (17) and Neumann conditions658

on both sides. The results are shown in Fig. 9 for the variance and the length-scale (com-659

puted from the inverse of the metric), and in Fig. 9 for the metric. The results are shown660

for times of interest selected from the time evolution reproduced in Fig. 11 where a re-661

laxation toward a stationary state of uncertainty appears.662

As expected for a diffusion, the variance decreases along the time, while the length-663

scale increases. Note that for Neumann condition, the variance at the boundary also de-664

creases while it was constant in the Dirichlet condition. For the ensemble estimation, the665

length-scales at the boundaries (blue lines in panel (b-d-f) ) are large but finite where666

it is expected to be infinite: this is due to the numerical estimation of the length-scale667

deduced from Eq. (12), while the metric remains zero at the boundaries during the sim-668

ulation (see Fig. 9 the red dots).669

Compared with the EnKF diagnosis, the PKF perform well by reproducing the same670

behaviour of the uncertainty dynamics as for the EnKF, except that the length-scale pre-671

dicted from the PKF underestimates the length-scale diagnosed from the ensemble. How-672

ever, the very large length-scale values, larger than the domain size Λ, as diagnosed from673

the ensemble is subject to the limitation of the numerical computation of Eq. (12) for674

large correlations that can present a positive bias (Pannekoucke et al., 2008). Moreover,675

the large length-scale of the EnKF can also be influenced by model error (Pannekoucke676

et al., 2021). Because of these limitations, it is not certain that the EnKF reproduces677

the true dynamics of the uncertainty for these extreme values of the length-scales, while678
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it is considered as the reference. Hence, the discrepancy between the PKF and the EnKF679

reference, may not be due to a defect of the PKF that could be better than the ensem-680

ble estimation here.681

To conclude, this experiment has confirmed the specification of the Neumann bound-682

ary conditions of Section 3.2 for the PKF applied to a heterogeneous diffusion equation.683

It has shown the ability of the PKF to accurately approximate the uncertainty dynam-684

ics as diagnosed from the EnKF but at a lower cost corresponding the price of two time685

integration compared with the 6400 integrations needed for the ensemble.686

This ends the validation of the specification of the boundary conditions for the PKF.687

The summary of the results obtained in the paper as well as the perspective of the work688

are given in the following section of conclusion.689

6 conclusion690

This work contributed to explore the parametric Kalman filter (PKF), that is a re-691

cent approximation of the Kalman filter proposed for application in large systems. The692

parametric approach investigated here consist to approximate the forecast-error covari-693

ance matrix by a covariance model parameterized from the variance and the anisotropy.694

The anisotropy can be specified in term of metric tensor or its inverse, the aspect ten-695

sor, that is the square of the length-scale in 1D domains. The PKF dynamics describes696

how the mean, the variance and the anisotropy evolve in time, leading to a low cost pre-697

diction of the error statistics that is the full covariance propagation in the Kalman fil-698

ter or an ensemble of forecast in the ensemble Kalman filter approximation.699

In this contribution, we proposed how to specify the error statistics at the bound-700

ary of a domain when considering a PKF forecast of the uncertainty. We detail here prag-701

matic solutions for large systems with strong variability at their domain’s edge, such as702

atmospheric weather and radiation belts ”weather”.703

Two kind of boundaries have been considered, the Dirichlet and the Neumann con-704

ditions depending on the dynamics. We obtained that the Dirichlet condition for the dy-705

namics translates for the PKF dynamics as Dirichlet conditions for the variance and the706

metric or the aspect tensor. For Neumann conditions, the PKF conditions are Neumann707

for the variance and Dirichlet for the metric, and the formulation of the PKF in metric708

is more adapted than in aspect tensor which would required infinite boundary conditions.709

The theoretical specification of the boundary conditions has been tested and val-710

idated for two important dynamics: the transport and the diffusion equation. Both dy-711

namics are important for weather forecasting, air quality or radiation belt dynamics, which712

are some of the problems we are interested in.713

To validate the specification of the boundary conditions and to evaluate the accu-714

racy of the PKF to predict the dynamics of the uncertainty, a numerical test-bed has715

been considered in a 1D domain for the advection and the diffusion equation. An ensem-716

ble of forecast has been considered as a reference, where appropriate time-scale for the717

perturbation of the boundaries have been proposed in this paper for Dirichlet conditions718

and dependent on the dynamics. For both the advection and the diffusion, the PKF has719

been shown able to reproduce the uncertainty dynamics diagnosed from the ensemble720

of forecast. This indirectly validates the time-scale introduced to create the boundary721

perturbations introduced for the ensemble of forecast, and constitutes a contribution to722

the ensemble methods while it is not needed for the PKF.723

In particular, it appears that the specification of boundary conditions in the PKF724

is much easier than for the EnKF, that needs perturbations of the boundary for Dirich-725

let conditions or plate error at the boundary for Neumann conditions. While in practice,726
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EnKF applied for bounded domains often relies on ensemble computed on larger domain727

e.g. in weather forecasting, in some applications, no such larger simulation is available728

e.g. in radiation belts forecasting. As already demonstrated for the understanding of the729

model error covariance, the PKF approach provides new tools to better understand and730

modeled the dynamics of uncertainty that is of interest not only for the PKF itself, but731

also for the widely used ensemble methods.732

The next step will be to study the BC conditions for domains of larger dimensions,733

where we expect some changes e.g. non-zero components of the metric tensor along the734

tangential direction to the boundary in Neumann conditions.735

We can mention that the dynamics of the uncertainty for bounded domains can736

be of importance in variational data assimilation or observation targeting applied for lo-737

cal area models, that could be another topics to investigate with the PKF.738

Beyond these challenging topic, we can mention that the results in 1D should al-739

ready found important applications e.g. in the dynamics of uncertainty in the bound-740

ary layer for air quality, wild-land fire predictions or atmosphere-ocean coupling.741

Appendix A Closure of the PKF Dynamics for the diffusion equation742

The computation of the PKF dynamics for the diffusion equation Eq. (17), with
SymPKF, leads to the dynamical system

∂tf = D∂2
xf + ∂xD∂xf, (A1a)

∂tVf = −2DVf

sf,xx
+D∂2

xVf − D (∂xVf )
2

2Vf
+ ∂xD∂xVf , (A1b)

∂tsf,xx = 2Ds2f,xxE
(
εf∂

4
xεf

)
− 3D∂2

xsf,xx − 2D+

6D (∂xsf,xx)
2

sf,xx
− 2Dsf,xx∂

2
xVf

Vf
+

D∂xVf∂xsf,xx
Vf

+

2Dsf,xx (∂xVf )
2

V 2
f

− 2sf,xx
d2

dx2
D+

2∂xD∂xsf,xx − 2sf,xx∂xD∂xVf

Vf
(A1c)

where this time the term E
[
εf∂

4
xεf

]
is not determined from f , Vf and sf,xx. This dy-743

namics can be closed considering the closure Eq. (18).744

Appendix B Specification of the temporal metric tensor for evolution745

equations746

This section details the link between the temporal metric Eq. (23a), gtt = E [∂tε∂tε],747

and the dynamics of the error. Since the trend of the normalized error reads as748

∂tε =
1√
V
∂te−

1

2V 3/2
e∂tV, (B1)749

then the temporal metric tensor writes as750

gtt =
1

V
E
[
(∂te)

2
]
− 1

V 2
E [e∂te] ∂tV +

1

4V 3
E
[
e2
]
(∂tV )

2
. (B2)751

However, we recognize the expression of the variance V = E
[
e2
]
and its trend, Eq. (14a),752

so that the temporal metric simplifies as753

gtt =
1

V
E
[
(∂te)

2
]
− 1

4V 2
(∂tV )

2
. (B3a)754
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Introducing the trend of the error Eq. (2) and by definition of ε = e/
√
V , the tempo-755

ral metric reads as756

gtt =
1

V
E
[(

M(ε
√
V , ∂(ε

√
V ))

)2
]
− 1

4V 2
(∂tV )

2
. (B3b)757

Appendix C Time auto-correlation boundary condition for the diffu-758

sion equation759

The computation of the time auto-correlation metric Leverages on SymPKF. For
the diffusion equation, SymPKF leads to

gf,tt = D2E
(
εf∂

4
xεf

)
+ 2D2∂2

xgf,xx − D2gf,xx∂
2
xVf

Vf
+

D2∂xVf∂xgf,xx
Vf

+
3D2gf,xx (∂xVf )

2

2V 2
f

+
D2

(
∂2
xVf

)2
4V 2

f

− D2 (∂xVf )
2
∂2
xVf

4V 3
f

+
D2 (∂xVf )

4

16V 4
f

+D∂xD∂xgf,xx+

Dgf,xx∂xD∂xVf

Vf
+

Dgf,xx∂tVf

Vf
+

D∂xD∂xVf∂
2
xVf

2V 2
f

− D∂tVf∂
2
xVf

2V 2
f

− D∂xD (∂xVf )
3

4V 3
f

+
D∂tVf (∂xVf )

2

4V 3
f

+

gf,xx (∂xD)
2
+

(∂xD)
2
(∂xVf )

2

4V 2
f

− ∂xD∂tVf∂xVf

2V 2
f

+

(∂tVf )
2

4V 2
f

. (C1)

Considering the analytical closure Eq. (18) for the unclosed term E
(
εf∂

4
xεf

)
, the cor-

respondence writes as

gf,tt = 3D2g2f,xx − D2gf,xx∂
2
xVf

Vf
+

D2∂xVf∂xgf,xx
Vf

+

3D2gf,xx (∂xVf )
2

2V 2
f

+
D2

(
∂2
xVf

)2
4V 2

f

− D2 (∂xVf )
2
∂2
xVf

4V 3
f

+

D2 (∂xVf )
4

16V 4
f

+D∂xD∂xgf,xx +
Dgf,xx∂xD∂xVf

Vf
+

Dgf,xx∂tVf

Vf
+

D∂xD∂xVf∂
2
xVf

2V 2
f

− D∂tVf∂
2
xVf

2V 2
f

− D∂xD (∂xVf )
3

4V 3
f

+
D∂tVf (∂xVf )

2

4V 3
f

+

gf,xx (∂xD)
2
+

(∂xD)
2
(∂xVf )

2

4V 2
f

− ∂xD∂tVf∂xVf

2V 2
f

+
(∂tVf )

2

4V 2
f

. (C2)

The latter expression being quite complex, simplifications are introduced. First the vari-
ance field is assumed locally homogeneous at the boundary i.e. ∂xVf (t, x = 0) = 0,
so that Eq. (C2) simplifies as

gf,tt = 3D2g2f,xx +D∂xD∂xgf,xx +
Dgf,xx∂tVf

Vf
+

gf,xx (∂xD)
2
+

(∂tVf )
2

4V 2
f

. (C3)
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Then, if the variance is moreover assumed stationary, then Eq. (C3) becomes760

gf,tt = 3D2g2f,xx +D∂xD∂xgf,xx + gf,xx (∂xD)
2
. (C4)761

Eventually, then the diffusion coefficient field is homogeneous, then the spatio-temporal762

connection between the temporal metric and the spatial metric reads763

gf,tt = 3D2gf,xx. (C5)764

While Eq. (C5) is a particular case, this equality is considered as a proxy for setting the765

auto-correlation time scale of the boundary perturbation even when the variance and the766

diffusion fields are heterogeneous.767

Note that another expression for the spatio-temporal consistency Eq. (C2) can be
obtained when first considering the dynamics of the variance given by Eq. (19b), lead-

ing to replace the trend of the variance by ∂tVf = −2DVfgf,xx +D∂2
xVf − D(∂xVf )

2

2Vf
+

∂xD∂xVf , so that Eq. (C2) simplifies as

gf,tt = 2D2g2f,xx +
D2∂xVf∂xgf,xx

Vf
+

D2gf,xx (∂xVf )
2

V 2
f

+D∂xD∂xgf,xx+

2Dgf,xx∂xD∂xVf

Vf
+ gf,xx (∂xD)

2
, (C6)

from which the assumption of local homogeneity at the boundary i.e. ∂xVf (t, x = 0) =768

0, leads to769

gf,tt = 2D2g2f,xx +D∂xD∂xgf,xx + gf,xx (∂xD)
2
. (C7)770

When the diffusion field is constant, then the time auto-correlation metric is related to771

the space auto-correlation metric by772

gf,tt = 2D2gf,xx, (C8)773

which is a different result from Eq. (C5).774

It is not clear whether the appropriate consistency should be given by Eq. (C5) or775

Eq. (C8) i.e. if it is right to replace the trend of the variance Eq. (19b) in the consistency776

relation Eq. (C2).777

From numerical experiment, it appears that setting the time auto-correlation of bound-778

ary perturbation with Eq. (C5) in the EnKF is in agreement with the PKF results. This779

suggests that taking into account the trend of the variance would lead to a kind of over-780

specification of the boundary condition for the diffusion equation in an EnKF approach.781

Appendix D Open Research782

V1.0 of the Boundary conditions for the parametric kalman filter forecast software783

used to compute and analyze the numerical experiments presented in this paper is pre-784

served at 10.5281/zenodo.7193985 and developed openly at https://github.com/opannekoucke/pkf-785

boundary. Sabathier et al. (2022)786
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