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Abstract

The Central Highlands of Vietnam is the biggest Robusta coffee (Coffea canephora Pierre ex A.Froehner) growing region

in the world. This study aims to identify the most important climatic variables that determine the current distribution of

coffee in the Central Highlands and build a “coffee suitability” model to assess changes in this distribution due to climate

change scenarios. A suitability model based on neural networks was trained on coffee occurrence data derived from national

statistics on coffee-growing areas. Bias-corrected regional climate models were used for two climate change scenarios (RCP8.5

and RCP2.6) to assess changes in suitability for three future time periods (i.e., 2038-2048, 2059-2069, 2060-2070) relative to

the 2009-2019 baseline. Average expected losses in suitable areas were 62% and 27% for RCP8.5 and RCP2.6, respectively.

The loss in suitability due to RCP8.5 is particularly pronounced after 2060. Increasing mean minimum temperature during

harvest (October-November) and growing season (March-September) and decreasing precipitation during late growing season

(July-September) mainly determined the loss in suitable areas. If the policy commitments made at the Paris agreement are

met, the loss in coffee suitability could potentially be compensated by climate change adaptation measures such as making use

of shade trees and adapted clones.
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Key Points:6

• Climate change has a negative impact on the largest Robusta coffee-growing area7

of the world (the Central Highlands of Vietnam)8

• Key factors affecting suitability are minimum temperature during growing and har-9

vest, precipitation during flowering and late growing period10

• Significant losses are found in low-elevation areas, particularly below 800 m11
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Abstract12

The Central Highlands of Vietnam is the biggest Robusta coffee (Coffea canephora Pierre13

ex A.Froehner) growing region in the world. This study aims to identify the most im-14

portant climatic variables that determine the current distribution of coffee in the Cen-15

tral Highlands and build a “coffee suitability” model to assess changes in this distribu-16

tion due to climate change scenarios. A suitability model based on neural networks was17

trained on coffee occurrence data derived from national statistics on coffee-growing ar-18

eas. Bias-corrected regional climate models were used for two climate change scenarios19

(RCP8.5 and RCP2.6) to assess changes in suitability for three future time periods (i.e.,20

2038-2048, 2059-2069, 2060-2070) relative to the 2009-2019 baseline. Average expected21

losses in suitable areas were 62% and 27% for RCP8.5 and RCP2.6, respectively. The22

loss in suitability due to RCP8.5 is particularly pronounced after 2060. Increasing mean23

minimum temperature during harvest (October-November) and growing season (March-24

September) and decreasing precipitation during late growing season (July-September)25

mainly determined the loss in suitable areas. If the policy commitments made at the Paris26

agreement are met, the loss in coffee suitability could potentially be compensated by cli-27

mate change adaptation measures such as making use of shade trees and adapted clones.28

Plain Language Summary29

Coffee has been identified as a highly vulnerable crop to climate change. This study30

aims to identify the impact of climate change on the world’s biggest Robusta coffee-growing31

region, i.e., the Central Highlands of Vietnam. Our analysis identifies the key variables32

that determine the current distribution of coffee: mean minimum temperature during33

growing and harvest seasons and precipitation during flowering and late growing peri-34

ods. We assess changes in climate suitability using climate scenarios based on our suit-35

ability impact model and bias-corrected regional climate simulations. The results show36

that climate change may decrease the suitable Robusta coffee-growing area by 62% and37

27% in the high and low emissions scenarios, respectively.38

1 Introduction39

Agriculture is very vulnerable to climate change, particularly in the tropics. Cof-40

fee, a perennial tropical crop providing a vital livelihood to millions of smallholder farm-41

ers, has been identified as a highly vulnerable crop, with farmers mostly lacking the re-42

sources to invest in adaptation measures (Bunn et al., 2015; Verburg et al., 2019). There43

are two main economically important coffee species: Arabica coffee (Coffea arabica L.)44

and Robusta coffee (Coffea canephora Pierre ex A.Froehner). The latter has a broader45

environmental niche and higher genetic diversity (Herrera & Lambot, 2017) and there-46

fore is expected to be less sensitive to climate change than Arabica coffee. Supra-optimal47

temperatures as a result of climate change negatively affect the coffee quality and yields48

which is further exacerbated by unsuitable rainfall distribution (Bertrand et al., 2012;49

Läderach et al., 2017; Kath et al., 2021). Due to the high sensitivity of Arabica coffee50

to changes in temperature, most studies have focused on this species, while only a few51

studies have studied potential climate change impacts on Robusta coffee. Recent research,52

however, suggested that Robusta coffee yield is more sensitive to temperature increase53

than previously expected (Kath et al., 2020).54

Most climate change impact assessments for coffee relied on global climate mod-55

els (GCMs) as inputs for future climate projections. However, their coarse spatial res-56

olution is often lacking detailed regional information. In addition, GCMs could intro-57

duce large uncertainties, especially over some specific regions, e.g., Southeast Asia (SEA),58

where the climate is complex and spatially heterogeneous. Regional climate models (RCMs)59

could be considered as a better alternative source for climate change impact studies (Teutschbein60

& Seibert, 2010; Nguyen et al., 2022). Therefore, this study considers several RCMs of61
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the Coordinated Regional Climate Downscaling Experiment for Southeast Asia (CORDEX-62

SEA).63

Correlative species distribution models have been predominantly used to assess cli-64

mate changes in coffee suitability, e.g., in Davis et al. (2012), Bunn et al. (2015), or Moat65

et al. (2017). This approach often relates the present occurrence locations with climatic66

variables expected to determine the environmental niche for the species distribution. A67

classification algorithm is used to determine a relationship between the labeled data set68

(i.e., the presence and absence of coffee) and the selected input variables. It, therefore,69

identifies areas that are similar in terms of the most important variables selected to de-70

termine the distribution of the crop occurrence data. This relationship is used to deter-71

mine climate suitability, which represents the assumption that strong deviations in key72

climate characteristics relevant to the crop distribution will negatively affect the climate73

suitability of the crop. However, this approach needs to be treated with care as the re-74

lationship might not capture all relevant aspects determining the actual climate suitabil-75

ity for coffee. This can be due to biases in the occurrence data, missing climatic drivers,76

or biases in the climate data.77

Here, we investigate the possibility of obtaining a robust coffee suitability model.78

For instance, concerning the occurrence data, we develop a systematic scheme to iden-79

tify the presence of coffee based on the statistical coffee-growing areas at the district level.80

In addition, previous studies often used a set of bioclimatic variables (Bunn et al., 2015;81

Ovalle-Rivera et al., 2015). However, this set might not be the best option, especially82

in a statistical approach where the model is sensitive to overfitting (Dinh & Aires, 2022).83

Thus, a careful selection of potential climate variables can help improve the robustness84

of the coffee suitability model. Moreover, a calibration (or bias correction) method is used85

to post-process regional climate data before being used in the suitability model. This86

calibration is essential to minimize systematic biases and bring the climate simulations87

as close as possible to the observations.88

In the following, Section 2 introduces the data, including the study area, coffee-growing89

areas, potential climate predictors, and the selected climate data. Then, the methods90

used in this study are described in Section 3. Section 4 presents the results of the model91

validation and climate suitability. The results are discussed and concluded in Section 5.92

2 Data93

2.1 Study area and coffee-related data94

The study area is located along the longitude 104.22◦E to 109.94◦E and latitude95

9.02◦N to 17.82◦N, which covers the Vietnamese high-intensity Robusta coffee produc-96

tion area. A map of the study area is shown in Figure 1. In detail, Figure 1a shows the97

Southeast Asia domain covered by the regional climate models (see Section 2.3). Then,98

Figure 1b provides a close-up of the study area with the elevation information. Digital99

elevation data, SRTM 1 Arc-Second Global data (USGS EROS Center, 2018), are down-100

loaded from https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital101

-elevation-shuttle-radar-topography-mission-srtm-1. The data on planted cof-102

fee areas at the district level are obtained from the General Statistics Office of Vietnam103

(GSO). Figure 2a shows the planted coffee area (in ha) averaged from 2014 to 2018.104

2.2 Potential predictors105

We chose a set of 12 environmental variables (Table 1) as the potential model pre-106

dictors. These potential predictors are derived from precipitation, temperature, and evap-107

oration, characterizing growing conditions such as the flowering (i.e., from January to108

March), the growing season (i.e., from March to September), or the harvest period (i.e.,109
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Figure 1. Study area: (a) the Southeast Asia domain with a focus on (b) the study area

(104.22 - 109.94 ◦E and 9.02 - 17.82 ◦N) and topography elevation (m).

from October to December). They have been selected according to expert knowledge on110

coffee and a literature review (Bunn et al., 2015; Lambot et al., 2017; Kath et al., 2020,111

2021; Dinh et al., 2022).112

2.3 Climate data113

Monthly data on total precipitation, mean temperature, maximum and minimum114

daily temperature, and evaporation are considered for both current and future climate.115

For the current climate (1981-2019), we used the Era5-Land reanalysis dataset (Muñoz Sabater,116

2019). This dataset is available at a 0.1◦ × 0.1◦ resolution (about 10 km × 10 km at the117

Equator), and can be downloaded at https://cds.climate.copernicus.eu/cdsapp#118

!/home. We then integrated these data into a 0.22◦ × 0.22◦ grid to be consistent with119

the future climate data, which will be presented in the following.120

Regional climate simulations and projections are obtained from several model sim-121

ulations of the Coordinated Regional Climate Downscaling Experiment for Southeast Asia122

(CORDEX-SEA), with 0.22◦ × 0.22◦ resolution. The data are available at https://esg123

-dn1.nsc.liu.se/search/cordex/. The list of regional climate models (RCMs) car-124

ried out in this study is presented in Table 2. We considered the historical period from125

1981 to 2005, used for the calibration (or bias correction) in Section 3.3. We will inves-126

tigate the future period from 2031-2077 for the Representative Concentration Pathway127

(RCP) scenarios of the Coupled Model Intercomparison Project – Phase 5: the low (RCP2.6)128

and high (RCP8.5) greenhouse gas concentration scenarios (van Vuuren et al., 2011). The129

RCP2.6 scenario is a so-called “peak” scenario, which implies that the radiative forcing130

–4–



manuscript submitted to Earth’s Future

No Variables Name Months Units

1 P1012 Precipitation during harvest Oct. - Dec. mm
2 P79 Precipitation during late growing season Jul. - Sept. mm
3 P39 Precipitation during growing season Mar. - Sept. mm
4 P13 Precipitation during flowering Jan. - Mar. mm
5 Tmin1012 Mean minimum temperature during harvest Oct. - Dec. ◦C
6 Tmin39 Mean minimum temperature during growing season Mar. - Sept. ◦C
7 Tmax39 Mean maximum temperature during growing season Mar. - Sept. ◦C
8 Bio2 Annual mean diurnal range ◦C
9 Bio5 Maximum temperature of warmest month ◦C
10 Bio7 Annual temperature range ◦C
11 Bio15 Precipitation seasonality (CV) Percent
12 NDM Maximum number of consecutive dry months Month

Table 1. Description of the 12 environmental variables used in this study as potential predic-

tors for suitability model.

level reaches 3.1 W m−2 by mid-century but returns to 2.6 W m−2 at the end of the cen-131

tury. On the other hand, RCP8.5 represents a future with a radiative forcing of 8.5 W m−2
132

by 2100.133

No.
Abbreviation of
RCM experiment

Driving model (GCM) Realisation RCM RCP2.6 RCP8.5

1 SMHI CNRM CNRM-CM5 (CNRM, France) r1i1p1 RCA4 (SMHI, Sweden) x
2 SMHI Had HadGEM2-ES (Hadley Centre, UK) r1i1p1 RCA4 (SMHI, Sweden) x
3 ICTP Had r1i1p1 RegCM4 (ICTP, Italy) x x
4 GERICS Had r1i1p1 REMO2015 (GERICS, Germany) x x
5 ICTP NCC NCC-NorESM1-M (NCC, Norway) r1i1p1 RegCM4 (ICTP, Italy) x x
6 GERICS NCC r1i1p1 REMO2015 (GERICS, Germany) x x
7 ICTP MPI MPI-ESM-MR (MPI-M, Germany) r1i1p1 RegCM4 (ICTP, Italy) x x
8 GERICS MPI r1i1p1 REMO2015 (GERICS, Germany) x x

Table 2. List of regional climate models used in this study.

3 Methods134

3.1 Learning database identification135

To develop a coffee suitability model, we need a database of samples indicating the136

presence (coffee samples) or absence (background samples) classes. Such a database can137

therefore be used to calibrate a statistical suitability model. Here, the presence data are138

based on observations (i.e., data from GSO); the absence data are generated and not ob-139

served. The detailed methodology to identify these two data is presented as follows.140

The current coffee samples are built from the available coffee areas with respect141

to the climate-gridded cell (0.22◦ × 0.22◦). Here, we neglected coffee-growing districts142

with less than 500 ha as they are relatively small compared to the size of one climate cell.143

For districts with a coffee-growing area of 500 ha, one corresponding gridded cell will be144

selected as a coffee sample (or coffee cell): (1) if the shape of the district is smaller than145

the cell or it contains only one cell, we chose that gridded cell; (2) if the shape is over-146

lapped by several cells (e.g., often two cells), the cell with higher overlap surface was se-147

lected; (3) if the shape contains several cells which was seldom the case, the coffee cell148

was randomly chosen among these cells. For districts with coffee-growing areas higher149

than 500 ha, several corresponding cells were considered and classed as current coffee sam-150

ples. For each district, the number of cells was defined by a scaling factor Sf , which is151
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computed by the ratio of the coffee area over 500 ha. For instance, let’s consider a dis-152

trict with 5000 ha of coffee. The corresponding scaling factor is Sf = 5000
500 = 10, mean-153

ing that there will be ten coffee cells associated with this district. We identified these154

ten cells by replicating the corresponding gridded cell(s).155

The background samples are randomly selected from a 4.4◦ buffer around present156

regions. The ratio of background samples to current coffee data is set to 1:1, as recom-157

mended in Barbet-Massin et al. (2012). Too few (or too many) background samples can158

lead to false alarms as the model is biased toward the coffee samples (or the background159

samples).160

The learning database was used to explore the corresponding elevation of the cof-161

fee and background samples. This information was used to exclude points that are un-162

suitable for coffee for both current climatic conditions and future climate projections.163

Figure 2a shows the map of the learning database — coffee (red points) and background164

(blue points) samples — together with the coffee area data over the study area. We also165

plot the normalized histogram of the elevation (in m) corresponding to these coffee and166

background points in Figure. 2b. The learning database suggests that Robusta coffee in167

the Central Highlands of Vietnam requires an elevation higher than 100 m and mostly168

from 450 m to 1100 m. Thus, in the climate change impact assessments, we excluded all169

cells below 100 m.170

Figure 2. (a) The coffee planted area (in ha) averaged from 2014 to 2018, and the learning

database including current coffee (in red) and background (in blue) samples; (b) normalized

histogram of the learning database in term of elevation (in m).

–6–
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3.2 Suitability model171

3.2.1 Model selection172

Our suitability model relies on neural networks (NN) (Schmidhuber, 2015). As in173

a classification task, NN trains the generic feedforward neural network to map each in-174

put vector into its corresponding target vector. The target is based on the learning database175

introduced previously. The inputs are chosen from 12 potential predictors (Section 2.2).176

A forward selection method is used: the first selected input is the one that gives the best-177

performing network (i.e., the smallest mean squared error). The second one is selected178

among the remaining potential predictors. The two selected inputs define a two-input179

model that gives the best-performing network. We continue this process until all poten-180

tial predictors are selected to obtain the hierarchy of the explanatory variables. How-181

ever, for the final model we only used four inputs as the use of more inputs leads to over-182

fitting related to a poor generalization ability (Dinh & Aires, 2022).183

3.2.2 Model training and evaluation184

To assess the model’s generalization, we divided our database into three sets: train-185

ing (60%), validation (20%), and testing (20%). The model is then evaluated using per-186

formance metrics derived from the confusion matrix, which are commonly used for eval-187

uating classification models. We considered two common metrics:188

• precision p: the measure of correctly identified coffee samples over the number of189

all correctly identified samples;190

• recall r: the measure of correctly identified coffee samples over the count of ac-191

tual coffee samples.192

3.2.3 Impacts193

We first trained and tested the model on the learning database for the current cli-194

mate (2009-2019) to obtain optimal model parameter values. Then, the model is applied195

to all cells in the study area for different periods: current (i.e., 2009-2019) and future196

(i.e., 2038-2048, 2049-2059, and 2060-2070 periods). The results are visualized as maps197

with continuous scores, which are normalized from 0 (not suitable) to 1 (suitable). A thresh-198

old is used to determine if a cell is suitable or not for coffee. The threshold is based on199

the probability density functions of these two classes in the actual learning database (Fig-200

ure 3) and the coffee area. As shown in Figure 3, a threshold of 0.5 helps to distinguish201

very well between the coffee and background samples. In addition, with this threshold,202

our model was able to identify about 70 × 104 ha of suitable areas in the Central High-203

lands, which is comparable to the actual coffee-growing area in this region (i.e., 57 × 104 ha).204

The area is computed by summing the entire land area within suitable cells (i.e., a pixel205

cell of 0.22◦ × 0.22◦).206

For suitability assessments of future climate projections, we first applied the suit-207

ability model for each of the eight calibrated RCMs (Table 2) for the high-end emission208

scenario RCP8.5. Then, we compared the suitability changes under RCP2.6 and RCP8.5209

scenarios using only six RCMs, i.e., all models presented in Table 2 except SMHI CNRM210

and SMHI Had as they do not have simulations for the RCP2.6 scenario. We investigated211

the area changes respective to elevation.212

3.3 Calibration of climate simulations213

3.3.1 Calibration method214

A calibration (also known as a bias correction) is a necessary prerequisite for cli-215

mate change impact studies as climate models often suffer from substantial biases and216
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Figure 3. Normalized histogram of the coffee suitability prediction. A threshold of 0.5 is cho-

sen for the coffee or background (no coffee) classification.

errors (i.e., structural biases or parametric uncertainties) compared to the observations217

(Hawkins & Sutton, 2011; Teutschbein & Seibert, 2012; Chen et al., 2013; Maraun & Wid-218

mann, 2018). This study used the equidistant quantile mapping (EqQM) (Li et al., 2010;219

Pierce et al., 2015) or equiratio CDF matching (Wang & Chen, 2014) to calibrate the220

CORDEX-SEA data before using them in the coffee suitability model. The calibration221

was done using three datasets, including:222

• the historical observations XO,h (integrated Era5-Land, 1981-2005),223

• the corresponding simulations XM,h on the historical record (CORDEX-SEA22,224

1981-2005),225

• and the simulations XM,f for the future (CORDEX-SEA22 for 3 periods 2031-2055,226

2042-2066, and 2053-2077).227

The calibrated data XC,f , for the 2031-2055 period, for instance, are computed as:228

XC,f (i) = XM,f (i) + F−1
O,h[FM,f (XM,f (i))]− F−1

M,h[FM,f (XM,f (i))] (1)

for temperature variables, and229

XC,f (i) = XM,f (i)×
F−1
O,h[FM,f (XM,f (i))]

F−1
M,h[FM,f (XM,f (i))]

(2)

for precipitation and evaporation variables. In Equations (1) and (2), i is the time step,230

F is the cumulative distribution function, and F−1 is the inverse of F .231

3.3.2 Temporal configuration232

To better preserve the temporal evolution of climate change, the calibration is done233

for several time blocks (Switanek et al., 2017). In detail, we used 25-year periods with234

an 11-year sliding window to calibrate the 11 middle years. For instance, the 2038-2048235

period was calibrated using a model set up in the 2031-2055 (future) versus the 1981-236

2005 (historical) periods. Next, we calibrated 2049-2059 data using the future 2042-2066237

period and the same historical period. Finally, we used the model set up in the 2053-238

2077 and 1981-2005 periods to obtain the 2060-2070 calibration.239
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4 Results240

4.1 Model validation and variable contribution241

The suitability model, which is trained and tested over the learning database, shows242

a good predictive performance for the current period (2009-2019). The model precision243

is p = 95.4%, meaning that less than 5% of background samples are misclassified as cof-244

fee regions. We also obtain a high model recall of r = 96.9%, which implies that the245

model can identify the actual coffee cells very well on the historical record, based on ac-246

tual observations.247

Among 12 potential predictors, the most important variables are (1) the mean min-248

imum temperature during the harvest and growing season (i.e., Tmin1012 and Tmin39249

shown in Table 1); (2) the precipitation variables are also crucial for robusta coffee, in-250

cluding precipitation during the late growing season (P79) and flowering (P13). The least251

important variables are the mean maximum temperature during the growing season (Tmax39)252

and the maximum temperature in the warmest months (Bio5) (Supplementary Mate-253

rial Table S1).254

4.2 Climate suitability255

4.2.1 Current and future suitabilities256

The (trained and tested) suitability model is applied over all study cells for the cur-257

rent period, i.e., 2009-2019 (Figure 4). The highly suitable areas are located in higher258

elevation areas of the Central Highlands of Vietnam. We then applied this suitability259

model for eight RCMs (presented in Table 2) under the RCP8.5 emission scenario. Fig-260

ure 4 shows the mean and standard deviation of the future suitabilities resulting from261

these eight simulations for three different future periods, i.e., 2038-2048, 2049-2059, and262

2060-2070. Compared to the current suitability, highly suitable areas will decrease sig-263

nificantly in the future. These areas become smaller and smaller in time. For example,264

the suitable area is about 81 × 104 ha for the current period (2009-2019); however, it265

will be reduced by half in the 2065s (≈ 42 × 104 ha). In addition, the eight simulations266

give similar predictions by showing small standard deviation values, i.e., 15% on aver-267

age, for all three projected periods.268

4.2.2 Sensitivity to climate scenarios269

We now study the suitability model’s sensitivity to different climate scenarios. As270

presented in Table 2, only six of the eight RCMs provide the simulations for both RCP2.6271

and RCP8.5 scenarios. Therefore, in the following comparisons, we will use only six RCM272

simulations (all models in Table 2 except SMHI CNRM and SMHI Had).273

First, let us look at the changes in suitability (the difference between future and274

current suitability) for different future periods under the RCP2.6 and RCP8.5 scenar-275

ios shown in Figure 5. As expected, climate change impacts are less pronounced in the276

low CO2 emission scenario (a1 to a3) than in the high CO2 emission scenario (b1 to b3).277

For the 2038-2048 period, for instance, the number of magenta cells, which signify the278

negative change, is much less and lighter in (a1) than (b1). Similar behaviours are ob-279

tained for two other considered periods, as shown in (a2) versus (b2) and (a3) versus (b3).280

In addition, both scenarios show that most of the study regions suffer negative impacts281

or could become unsuitable for coffee, i.e., shown in many magenta cells in Figure 5. Nev-282

ertheless, a small area in the northern Central Highlands could actually become more283

suitable for coffee. This area covers high mountains ranging from 875 to 1200 m. The284

change in climate is compatible with the increase in elevation. For the RCP2.6 scenario,285

the impact of climate change is relatively constant over time. On the other hand, for the286

RCP8.5 scenario, the negative impacts become stronger toward the end of the century:287
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Figure 4. Current and future suitability for coffee. The mean and standard deviation (std)

of future suitabilities are computed from eight RCMs presented in Table 2 under the RCP8.5

scenario. Dark blue (or 100%) indicates high suitability, and white (or 0%) means low suitability.

The corresponding suitable areas (in 104 ha) are indicated in each panel. The area is computed

by summing the entire land area within suitable cells.

more regions suffer from negative impacts in the 2060-2070 period (b3) than in the 2038-288

2048 period (b1).289

4.2.3 Distribution of climate change impacts290

Figure 6 shows the distribution of the suitable regions by elevation for three future291

periods (i.e., 2038-2048, 2049-2059, and 2060-2070). Here, we compute the suitable ar-292

eas by summing the entire land area within suitable cells across 100 m elevation classes.293

In general, suitable areas under the RCP2.6 scenario (green lines and shaded ar-294

eas in Figure 6) are somewhat comparable to the currently suitable areas (black lines295
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Figure 5. Suitability change (future suitability - current suitability) for three future periods

(2038-2048, 2049-2059, and 2060-2070) in the RCP2.6 and RCP8.5 scenarios. Dark magenta (or

-100%) presents areas with drastic changes from suitable to unsuitable, and dark green (or 100%)

indicates positive changes.

in Figure 6). The average losses are about 27% over three projected periods. The most296

considerable loss of suitable area could be up to 36% for the 2060-2070 period. For the297

high impact scenario RCP8.5, the suitable areas decrease significantly for three projected298

periods, with the losses ranging from 39% up to 83%. The total suitable areas do not299

change very much from 2038-2048 to 2049-2059. However, we observe a substantial de-300

crease (i.e., about 15%) after the 2060s compared to the two previous projected periods.301

The suitability is very sensitive to the elevation. The major losses are found in low-elevation302

areas (i.e., below 800 m). In contrast, the total suitable areas do not change much in higher303

elevations, especially above 850 m.304

5 Conclusions and Discussions305

This study assessed climate suitability for Robusta coffee within a climate change306

context in the world’s largest Robusta coffee-growing area, i.e., the Central Highlands307

of Vietnam. This is the first climate change impact study for the climate suitability of308

coffee using bias-corrected RCMs rather than GCMs. The RCMs are considered here as309

they provide finer spatial resolution outputs and more adequately represent the climate310

and weather processes over a complex and spatially heterogeneous Southeast Asia re-311

gion that includes mountains and coastal areas. The coffee suitability model indicates312

that projected climate change scenarios will negatively impact the suitability for grow-313

ing coffee in the Central Highlands of Vietnam. The degree of suitability change depends314
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Figure 6. Distribution of suitable areas by elevation for three future periods (i.e., 2038-2048,

2049-2059, and 2060-2070). Black lines indicate the current (2009-2019) suitable area. Color lines

and corresponding shaded areas present the mean and standard deviation of future suitable ar-

eas induced from six RCMs (all models in Table 2 except SMHI CNRM and SMHI Had) under

RCP2.6 (top) and RCP8.5 (bottom) scenarios. The areas are calculated by summing the entire

land area within suitable cells across 100 m elevation classes.

on the emission scenarios (RCPs) and time periods. As expected, suitability decreases315

over time, particularly in the period 2060-2070. Towards the mid-century (2038-2048),316

suitability is negatively affected under the RCP8.5 scenario with a loss in suitable ar-317

eas of about 56.5%, while changes are more subtle under the RCP2.6 scenario with 21.7%318

losses. The RCP8.5 scenario is the worst-case emissions pathway assuming no policy suc-319

cess towards climate change mitigation, high population growth and a lot of coal use,.320

The RCP2.6 is more consistent with current trajectories pointing to a 2◦-3◦C warming321

range (Hausfather & Peters, 2020; Pielke Jr et al., 2022) yet it does not mean that RCP8.5322

is impossible. The suitable area could decrease up to 83% with the RCP8.5 emissions323

scenario with significant losses below 800 m. However, if policy action continues with the324

current path, including the planned actions committed to at the Paris agreement, suit-325

able areas are expected to decrease by 27%, mainly at the lowest elevations (i.e., below326

500 m). Losses in suitable areas are particularly striking in Dak Lak province where cur-327

rent climate is hotter and drier compared to other coffee-growing areas in the Central328

Highlands.329

Not surprisingly, and consistent with previous studies focusing on the climate sen-330

sitivity of Robusta coffee (Bunn et al., 2015; Kath et al., 2020; Dinh et al., 2022), tem-331

perature is a major determinant of the distribution of climate suitability of coffee. In-332

creased temperature accelerates bean development and ripening and increases plant res-333

piration (DaMatta et al., 2019). Under the RCP2.6 scenario, changes in agronomic prac-334

tices (e.g., the use of shade trees) and the use of more adapted clones could potentially335

compensate for the loss of suitability. However, further research is required to translate336

changes in climate suitability into changes in coffee quality and yield. Kath et al. (2020)337

identified that Robusta coffee yields in Vietnam were highest at low temperatures and338

that every 1◦C increase in mean minimum/maximum temperatures above 16.2/24.1◦C339

during the growing season results in yield decreases of about 14%. The most important340

climate variables identified by our suitability model (i.e., mean minimum temperature341

during the growing season and harvest, precipitation during flowering and the late grow-342

ing season) are in agreement with Kath et al. (2020) who used correlative models on ac-343

tual yield time series rather than coffee occurrence alone.344

In this study, we only sampled the environments close to where Robusta coffee is345

grown in Vietnam to assess the suitability of these specific Robusta coffee clones (Tram346

–12–



manuscript submitted to Earth’s Future

et al., 2021) under specific management conditions. Robusta coffee genotypes from other347

regions might thrive better under the projected future climate conditions and could there-348

fore be considered for climate-resilient breeding efforts. Further research is needed to an-349

alyze how climate variability and climate extremes affect the economic viability of Ro-350

busta coffee growing, an aspect that cannot be fully accounted for when using correla-351

tive species distribution modeling. Short-term climate hazards, for example, heat stress352

during peak days of flowering, could be more harmful to Robusta coffee than what can353

be identified from climate predictors based on monthly averages.354
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usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm360

-1 (last access: 02 Mar 2022). The current climate data (Era5-Land reanalysis dataset)361
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Table S1. Variable contribution
Rank of variableUnitsMonthsNameNo Variables

9mmOct. - Dec.Precipitation during harvestP10121
3mmJul. - Sept.Precipitation during late growing seasonP792

Mar. - Sept. mmPrecipitation during growing seasonP39 103
mmJan. - Mar.P13 Precipitation during flowering 44

Tmin1012 Mean minimum temperature during harvest Oct. - Dec.5 ◦C 2
Mean minimum temperature during growing season Mar. - Sept.Tmin396 ◦C 1
Mean maximum temperature during growing season Mar. - Sept.Tmax397 ◦C 11
Annual mean diurnal rangeBio28 ◦C 7
Maximum temperature of warmest monthBio59 ◦C 12
Annual temperature rangeBio710 ◦C 5

PercentPrecipitation seasonality (CV)Bio15 611
MonthMaximum number of consecutive dry monthsNDM 812


