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Abstract

Recent studies have demonstrated that it is possible to combine machine learning with data assimilation to reconstruct the

dynamics of a physical model partially and imperfectly observed. The surrogate model can be defined as an hybrid combination

where a physical model based on prior knowledge is enhanced with a statistical model estimated by a neural network. The

training of the neural network is typically done offline, once a large enough dataset of model state estimates is available. By

contrast, with online approaches the surrogate model is improved each time a new system state estimate is computed. Online

approaches naturally fit the sequential framework encountered in geosciences where new observations become available with

time. In a recent methodology paper, we have developed a new weak-constraint 4D-Var formulation which can be used to train

a neural network for online model error correction. In the present article, we develop a simplified version of that method, in

the incremental 4D-Var framework adopted by most operational weather centres. The simplified method is implemented in the

ECMWF Object-Oriented Prediction System, with the help of a newly developed Fortran neural network library, and tested

with a two-layer two-dimensional quasi geostrophic model. The results confirm that online learning is effective and yields a

more accurate model error correction than offline learning. Finally, the simplified method is compatible with future applications

to state-of-the-art models such as the ECMWF Integrated Forecasting System.
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Abstract14

Recent studies have demonstrated that it is possible to combine machine learning with15

data assimilation to reconstruct the dynamics of a physical model partially and imper-16

fectly observed. The surrogate model can be defined as an hybrid combination where a17

physical model based on prior knowledge is enhanced with a statistical model estimated18

by a neural network. The training of the neural network is typically done offline, once19

a large enough dataset of model state estimates is available. By contrast, with online ap-20

proaches the surrogate model is improved each time a new system state estimate is com-21

puted. Online approaches naturally fit the sequential framework encountered in geosciences22

where new observations become available with time. In a recent methodology paper, we23

have developed a new weak-constraint 4D-Var formulation which can be used to train24

a neural network for online model error correction. In the present article, we develop a25

simplified version of that method, in the incremental 4D-Var framework adopted by most26

operational weather centres. The simplified method is implemented in the ECMWF Object-27

Oriented Prediction System, with the help of a newly developed Fortran Neural Network28

library, and tested with a two-layer two-dimensional quasi geostrophic model. The re-29

sults confirm that online learning is effective and yields a more accurate model error cor-30

rection than offline learning. Finally, the simplified method is compatible with future ap-31

plications to state-of-the-art models such as the ECMWF Integrated Forecasting System.32

Plain Language Summary33

We have recently proposed a general framework for combining data assimilation34

and machine learning techniques to train a neural network for online model error cor-35

rection. In the present article, we develop a simplified version of this online training method,36

compatible with future applications to more realistic models. Using numerical illustra-37

tions, we show that the new method is effective and yields a more accurate model error38

correction than the usual offline learning approach. The results show the potential of in-39

corporating data assimilation and machine learning tightly, and pave the way towards40

an application to the Integrated Forecasting System used for operational numerical weather41

prediction at the European Centre for Medium-Range Weather Forecasts.42

1 Introduction: machine learning for model error correction43

In the geosciences, data assimilation (DA) is used to increase the quality of fore-44

casts by providing accurate initial conditions (Kalnay, 2003; Reich & Cotter, 2015; Law45

et al., 2015; Asch et al., 2016; Carrassi et al., 2018; Evensen et al., 2022). The initial con-46

ditions are obtained by combining all sources of information in a mathematically opti-47

mal way, in particular information from the dynamical model and information from sparse48

and noisy observations. There are two main classes of DA methods. In variational DA,49

the core of the methods is to minimise a cost function, usually using gradient-based op-50

timisation techniques, to estimate the system state. Examples include 3D- and 4D-Var.51

In statistical DA, the methods relies on the sampled error statistics to perform sequen-52

tial updates to the state estimation. The most popular examples are the ensemble Kalman53

filter (EnKF) and the particle filter.54

Most of the time, DA methods are applied with the perfect model assumption: this55

is called strong-constraint DA. However, despite the significant effort provided by the56

modellers, geoscientific models remain affected by errors (Dee, 2005), for example due57

to unresolved small-scale processes. This is why there is a growing interest of the DA58

community in weak-constraint (WC) methods, i.e. DA methods relaxing the perfect model59

assumption (Trémolet, 2006). This has led, for example, to the iterative ensemble Kalman60

filter in the presence of additive noise (Sakov et al., 2018) in statistical DA, and to the61

forcing formulation of WC 4D-Var (Laloyaux, Bonavita, Chrust, & Gürol, 2020) in vari-62

ational DA. In practice, the DA control vector has to be extended to include the model63
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error in addition to the system state. The downside of this approach is the potentially64

significant increase of the problem’s dimension since the model trajectory is not anymore65

described uniquely by the initial condition. By construction, WC 4D-Var is an online66

model error correction method, meaning that the model error is estimated during the67

assimilation process and only valid for the states in the current assimilation window.68

In parallel, following the renewed impetus of machine learning (ML) applications69

(LeCun et al., 2015; Goodfellow et al., 2016; Chollet, 2018), data-driven approaches are70

more and more frequent in the geosciences. The goal of these approaches (e.g., Brunton71

et al., 2016; Hamilton et al., 2016; Lguensat et al., 2017; Pathak, Hunt, et al., 2018; Dueben72

& Bauer, 2018; Fablet et al., 2018; Scher & Messori, 2019; Weyn et al., 2019; Arcomano73

et al., 2020, among many others) is to learn a surrogate of the dynamical model using74

supervised learning, i.e. by minimising a loss function which measures the discrepancy75

between the surrogate model predictions and an observation dataset. In order to take76

into account sparse and noisy observations, ML techniques can be combined with DA77

(Abarbanel et al., 2018; Bocquet et al., 2019; Brajard et al., 2020; Bocquet et al., 2020;78

Arcucci et al., 2021). The idea is to take the best of both worlds: DA techniques are used79

to estimate the state of the system from the observations, and ML techniques are used80

to estimate the surrogate model from the estimated state. In practice, the hybrid DA81

and ML methods can be used both for full model emulation and model error correction82

(Rasp et al., 2018; Pathak, Wikner, et al., 2018; Bolton & Zanna, 2019; Jia et al., 2019;83

Watson, 2019; Bonavita & Laloyaux, 2020; Brajard et al., 2021; Gagne et al., 2020; Wikner84

et al., 2020; Farchi, Bocquet, et al., 2021; Farchi, Laloyaux, et al., 2021; Chen et al., 2022).85

In the first case, the surrogate model is entirely learned from observations, while in the86

latter case, the surrogate model is hybrid: a physical, knowledge-based model is corrected87

by a statistical model, e.g. a neural network (NN), which is learned from observations.88

Even though from a technical point of view it can arguably be more difficult to imple-89

ment, model error correction has many advantages over full model emulation: by lever-90

aging the long history of numerical modelling, one can hope to end up with an easier learn-91

ing problem (Watson, 2019; Farchi, Laloyaux, et al., 2021).92

Most of the current hybrid DA-ML methods use offline learning strategies: the sur-93

rogate model (or model error correction) is learned using a large dataset of observations94

(or analyses) and should be generalisable to other situations (i.e. outside the dataset).95

There are two main reasons for this choice. First, surrogate modelling requires a large96

amount of data to provide accurate results – certainly more than what is available in a97

single assimilation update with online learning. Second, by doing so, it is possible to use98

the full potential of the ML variational tools. Nevertheless, online learning has on pa-99

per several advantages over offline learning.100

• Online learning fits the standard sequential DA approach in the geosciences. Each101

time a new batch of observations becomes available, the surrogate model param-102

eters can be corrected.103

• With online learning, the system state and the surrogate model parameters are104

jointly estimated, which is often not the case with offline learning. Joint estima-105

tion is in general more consistent, and hence potentially more accurate, than sep-106

arate estimation.107

• With offline learning, the training only starts once a sufficiently large dataset is108

available. With online learning, the training begins from the first batch of obser-109

vations, which means that improvements can be expected before having a large110

dataset.111

• With online learning, since the surrogate model is constantly updated, it can adapt112

to new (previously unseen) conditions. An example could be, in the case of model113

error correction, an update of the physical model to correct. Another example could114

be slowly-varying effects on the dynamics (e.g., seasonality).115
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Fundamentally, online learning is very similar to parameter estimation in DA: the goal116

is to estimate at the same time the system state and some parameters – in this case the117

surrogate model parameters. Several example of online learning methods have recently118

emerged. Bocquet et al. (2021) and Malartic et al. (2022) have developed several vari-119

ants of the EnKF to perform a joint estimation of the state and the parameters of sur-120

rogate model which fully emulates the dynamics. Gottwald and Reich (2021) have used121

a very similar approach for the parameters of an echo state network used as surrogate122

model. Finally, Farchi, Bocquet, et al. (2021) have derived a variant of WC 4D-Var to123

perform a joint estimation of the state and the parameters of a NN which correct the124

tendencies of a physical model. In this article, we revisit the method of Farchi, Bocquet,125

et al. (2021). A new simplified method is derived, compatible with future applications126

to more realistic models. The method is implemented in the Object-Oriented Prediction127

System (OOPS) framework developed at the European Center for Medium-Range Weather128

Forecasts (ECMWF), and tested using the two-layer quasi-geostrophic channel model129

developed in OOPS. To us, this is a final step before considering an application with the130

Integrated Forecasting System (IFS, Bonavita et al., 2017), since the IFS will soon rely131

on OOPS for its DA part.132

The article is organised as follows. Section 2 presents the methodology. The quasi-133

geostrophic (QG) model is described in section 3. The experimental results are then pre-134

sented in section 4 for offline learning, and in section 5 for online learning. Finally, con-135

clusions are given in section 6.136

2 A simplified neural network variant of weak-constraint 4D-Var137

2.1 Strong-constraint 4D-Var138

Suppose that we follow the evolution of a system using a series of observations taken139

at discrete times. In the classical 4D-Var, the observations are gathered into time win-140

dows (y0, . . . ,yL). The integer L ≥ 0 is the window length, and yk ∈ RNy , the k-th141

batch of observations, contains all the observations taken at time tk, for k = 0, . . . , L.142

For convenience, we assume that the time interval between consecutive observation batches143

tk+1 − tk = ∆t is constant. This assumption is not fundamental; it just makes the pre-144

sentation much easier. Within the window, the system state xk ∈ RNx at time tk is145

obtained by integrating the model in time from t0 to tk:146

xk = Mk:0 (x0) , (1)147

where Mk:l : RNx → RNx is the resolvent of the dynamical (or physical) model from148

tl to tk. Moreover, the observations are related to the state by the observation operator149

Hk : RNx → RNy via150

yk = Hk (xk) + vk, (2)151

where vk is the observation error at time tk, which could be a random vector. Let us make152

the assumption that the observation errors are independent from each other.153

The 4D-Var cost function is defined as the negative log-likelihood:154

J sc (x0) ≜ − ln p (x0|y0, . . . ,yL) , (3a)155

∝ − ln p (x0)− ln p (y0, . . . ,yL|x0) , (3b)156

∝ − ln p (x0)−
L∑

k=0

ln p (yk|x0) , (3c)157

158

where conditional independence of the observation vectors on x0 was used. The back-159

ground p (x0) is Gaussian with mean xb
0 and covariance matrix B, and the observation160

errors vk are also Gaussian distributed with mean 0 and covariance matrices Rk, in such161
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a way that J sc becomes:162

J sc (x0) =
1

2

∥∥x0 − xb
0

∥∥2
B−1 +

1

2

L∑
k=0

∥yk −Hk ◦Mk:0 (x0)∥2R−1
k
, (4)163

where we have dropped the constant terms and where the notation ∥v∥2M stands for the164

squared Mahalanobis norm v⊤Mv.165

This formulation is called strong-constraint 4D-Var because it relies on the perfect166

model assumption eq. (1). In practice, eq. (4) is minimised using scalable gradient-based167

optimisation methods to provide the analysis xa
0. In cycled DA, the model is then used168

to propagate xa
0 till the start of the next window, yielding thus a value for the background169

state xb
0.170

2.2 Weak-constraint 4D-Var171

Recognising that the model is not perfect, we can replace the strong constraint eq. (1)172

by the more general model evolution173

xk+1 = Mk+1:k (xk) +wk, (5)174

where wk ∈ RNx is the model error from tk to tk+1, potentially random. Let us make175

the assumption that the model errors are independent from each other and independent176

from the background errors. This implies that the model evolution satisfies the Markov177

property.178

The updated cost function now depends on all states inside the window:179

J wc (x0, . . . ,xL) ≜ − ln p (x0, . . . ,xL|y0, . . . ,yL) , (6a)180

∝ − ln p (x0, . . . ,xL)− ln p (y0, . . . ,yL|x0, . . . ,xL) , (6b)181

∝ − ln p (x0)−
L−1∑
k=0

ln p (xk+1|xk)−
L∑

k=0

ln p (yk|xk) . (6c)182

183

With the Gaussian assumptions of section 2.1 and the additional hypothesis that the model184

errors wk also follow a Gaussian distribution with mean wb
k and covariance matrices Qk,185

J wc becomes186

J wc (x0, . . . ,xL) =
1

2

∥∥x0 − xb
0

∥∥2
B−1 +

1

2

L−1∑
k=0

∥∥xk+1 −Mk+1:k (xk)−wb
k

∥∥2
Q−1

k

187

+
1

2

L∑
k=0

∥yk −Hk (xk)∥2R−1
k
, (7)188

189

where we have once again dropped the constant terms. This formulation is called weak-190

constraint 4D-Var (Trémolet, 2006) because it relaxes the perfect model assumption eq. (1),191

which means that the analysis
(
xa
0, . . . ,x

a
L−1

)
is not any more a trajectory of the model.192

However, this comes at a price: the dimension of the problem has increased from Nx to193

LNx.194

This dimensionality increase can be mitigated by making additional assumptions.195

For example, one can assume that the model error is constant throughout the window,196

i.e.197

w0 = . . . = wL−1 ≜ w, (8a)198

wb
0 = . . . = wb

L−1 ≜ wb, (8b)199

Q0 = . . . = QL−1 ≜ LQ. (8c)200
201
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In this case, the trajectory (x0, . . . ,xL) is fully determined by (w,x0):202

xk = Mk+1:k (xk) +w = Mk+1:k (Mk:k−1 (xk−1) +w) +w = . . . ≜ Mwc
k+1:0 (w,x0) ,

(9)
203

204

with x 7→Mwc
k+1:0 (w,x) being the resolvent of the w-debiased model from t0 to tk+1.205

The Gaussian cost function J wc eq. (7) can hence be written206

J wc (w,x0) =
1

2

∥∥x0 − xb
0

∥∥2
B−1 +

1

2

∥∥w −wb
∥∥2
Q−1 +

1

2

L∑
k=0

∥yk −Hk ◦Mwc
k:0 (w,x0)∥2R−1

k
.

(10)207

This approach is called forcing formulation of WC 4D-Var (Trémolet, 2006; Fisher et al.,208

2011; Laloyaux, Bonavita, Chrust, & Gürol, 2020) and is the one that is implemented209

at ECMWF (Laloyaux, Bonavita, Dahoui, et al., 2020). By construction, the perfect model210

assumption eq. (1) is relaxed, but the analysis (wa,xa
0) yields a trajectory of the wa-debiased211

model. In cycled DA, this wa-debiased model is used to propagate xa
0 until the start of212

the next window to provide the background state xb
0. However this time, a background213

is also needed for model error wb. The simplest option is to use wa as is, in other words214

make the assumption that the dynamical model for model error is persistence.215

Hereafter, the forcing formulation of WC 4D-Var is simply called WC 4D-Var.216

2.3 A neural network formulation of weak-constraint 4D-Var217

Following the approach of Farchi, Bocquet, et al. (2021), we now assume that the218

dynamical model is parametrised by a set of parameters p ∈ RNp constant over the219

window, in such a way that the model integration eq. (1) becomes220

xk = Mnn
k:0 (p,x0) , (11)221

where x 7→Mnn
k:0 (p,x) is the resolvent of the p-parametrised model from t0 to tk. Us-222

ing the state augmentation principle (Jazwinski, 1970), the model parameters p can be223

included in the control variables and hence be estimated in DA. If we further assume that224

the background for model parameters and system state are independent, and that the225

background for model parameters is Gaussian with mean pb and covariance matrix P,226

then the Gaussian cost function eq. (4) becomes227

J nn (p,x0) =
1

2

∥∥x0 − xb
0

∥∥2
B−1+

1

2

∥∥p− pb
∥∥2
P−1+

1

2

L∑
k=0

∥yk −Hk ◦Mnn
k:0 (p,x0)∥2R−1

k
. (12)228

This formulation is called neural network 4D-Var because in the present article, the set229

of parameters p are typically the weights and biases of a NN. Nevertheless, we would230

like to emphasise the fact that this formulation is not restricted only to NNs and can be231

used to estimate any parameters. The similarity between eqs. (10) and (12) is clear, which232

is why NN 4D-Var should be seen as another formulation of WC 4D-Var. By construc-233

tion, the perfect model assumption eq. (1) is once again relaxed, but this time the anal-234

ysis (pa,xa
0) yields a trajectory of the pa-parametrised model. In cycled DA, this pa-parametrised235

model is used to propagate the analysis state xa
0 until the start of the next window to236

provide the background state xb
0. Once again, a background is also needed for model pa-237

rameters pb. The simplest option is to use pa as is, in other words make the assumption238

that the evolution model for model parameters is persistence.239

Even though there are a lot of similarities between NN 4D-Var and the WC 4D-240

Var, two essential differences should be highlighted:241

1. The model error w lies in the state space RNx while the model parameters lies in242

the parameter space RNp , which has consequences on the design of the covariance243

matrices Q ∈ RNx×Nx and P ∈ RNp×Np .244
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2. More importantly, Mwc
k:0 and Mnn

k:0 may have different functional forms. In par-245

ticular, in the first case the model error w is constant while in the second case, it246

is the model parameters p which are constant.247

2.4 A simplified NN 4D-Var for model error correction248

In the present article, we want to use NN 4D-Var for model error correction. Let249

us consider the case where the parametrised model is written250

xk+1 = Mnn
k+1:k (p,xk) = Mk+1:k (xk) +F (p,xk) , (13)251

where F is a NN correction added to Mk+1:k, the resolvent of the (non-corrected) phys-252

ical model from tk to tk+1, and p are the parameters of this NN. Following the approach253

of section 2.2, we assume that the NN is autonomous, i.e. the NN correction is constant254

throughout the window. The model evolution eq. (13) can hence be written255

Mnn
k+1:k (p,xk) = Mk+1:k (xk) +w, w = F (p,x0) . (14)256

This evolution model can then be plugged into the cost function J nn eq. (12), which yields257

a simplified variant of NN 4D-Var where the NN is used only once per cycle. Further-258

more, comparing this to eq. (9), we conclude that259

Mnn
k:0 (p,x0) = Mwc

k:0 (F (p,x0) ,x0) . (15)260

This means that it will be possible to build this new method on top of the currently im-261

plemented WC 4D-Var framework, which is a major practical advantage.262

In practice, the minimisation method implemented at ECMWF relies on an incre-263

mental approach with outer and inner loops (Courtier et al., 1994). In each outer loop,264

the cost function is linearised about the first-guess, and the linearised cost function is265

then minimised in the inner loop, typically using the conjugate gradient algorithm. Let266

us see how this works for our simplified NN 4D-Var. Using the change of variables (δp, δx0) ≜267 (
p− pi,x0 − xi

0

)
, where

(
pi,xi

0

)
is the first guess, we have268

J nn (p,x0) = J nn
(
pi + δp,xi

0 + δx0

)
, (16a)269

=
1

2

∥∥xi
0 − xb

0 + δx0

∥∥2
B−1 +

1

2

∥∥pi − pb + δp
∥∥2
P−1270

+
1

2

L∑
k=0

∥∥yk −Hk ◦Mnn
k:0

(
pi + δp,xi

0 + δx0

)∥∥2
R−1

k

, (16b)271

≈ 1

2

∥∥xi
0 − xb

0 + δx0

∥∥2
B−1 +

1

2

∥∥pi − pb + δp
∥∥2
P−1272

+
1

2

L∑
k=0

∥∥∥dk −HkM
nn
k:0 (δp, δx0)

⊤
∥∥∥2
R−1

k

, (16c)273

≜ Ĵ nn (δp, δx0) . (16d)274
275

where dk ≜ yk −Hk ◦Mnn
k:0

(
pi,xi

0

)
, Hk is the tangent linear (TL) operator of Hk276

taken at Mnn
k:0

(
pi,xi

0

)
, and Mnn

k:0 is the TL operator of Mnn
k:0 taken at

(
pi,xi

0

)
. The lin-277

earised or incremental cost function Ĵ nn is sometimes also called the quadratic cost func-278

tion because it has the advantage of being quadratic in δp and δx0, where the conjugate279

gradient algorithm could be very efficient. Its gradient can be computed using algorithm 1,280

in which the following notation has been used: Fp and Fx are the TL operators of F with281

respect to p and x, respectively, both taken at
(
pi,xi

0

)
, and Mk+1:k is the TL operator282

of Mk+1:k taken at Mk:0

(
pi,xi

0

)
. In this algorithm, lines 2 to 14 corresponds to the283

gradient of the incremental cost function of the WC 4D-Var cost function (without the284

background terms).285
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Algorithm 1 Gradient of the incremental cost function Ĵ nn eq. (16d).

Input: δp and δx0

1: δw← Fpδp+ Fxδx0 ▷ TL of the NN F
2: z0 ← R−1

0 (H0δx0 − d0)
3: for k = 1 to L− 1 do
4: δxk ←Mk:k−1δxk−1 + δw ▷ TL of the dynamical model Mk:k−1

5: zk ← R−1
k (Hkδxk − dk)

6: end for
7: δx̃L−1 ← 0 ▷ AD variable for system state
8: δw̃L−1 ← 0 ▷ AD variable for model error
9: for k = L− 1 to 1 do

10: δx̃k ← H⊤
k zk + δx̃k

11: δw̃k−1 ← δx̃k + δw̃k

12: δx̃k−1 ←M⊤
k:k−1δx̃k ▷ AD of the dynamical model Mk:k−1

13: end for
14: δx̃0 ← H⊤

0 z0 + δx̃0

15: δx̃0 ← [Fx]
⊤
δx̃0 ▷ AD of the NN F

16: δp̃← [Fp]
⊤
δw̃0 ▷ AD of the NN F

17: δx̃0 ← B−1
(
xi
0 − xb

0 + δx0

)
+ δx̃0

18: δp̃← P−1
(
pi − pb + δp

)
+ δp̃

Output: ∇δpĴ nn = δp̃ and ∇δx0Ĵ nn = δx̃0

In the end, in order to implement the simplified NN 4D-Var we can reuse most of286

the framework already in place for WC 4D-Var and we need to provide:287

• the forward operator F of the NN to compute the nonlinear trajectory at the start288

of each outer iteration;289

• the TL operators Fx and Fp of the NN for line 1 of algorithm 1;290

• the adjoint (AD) operators [Fx]
⊤

and [Fp]
⊤

of the NN for lines 15 and 16 of al-291

gorithm 1.292

From a technical perspective, all these operators have to be computed in the model core,293

where the components of the system state are available. In OOPS, the model core is im-294

plemented in Fortran, which implies that we need a ML library in Fortran. The only one295

that we could find, namely the Fortran–Keras Bridge (FKB, Ott et al., 2020), does not296

provide all the required operators. For this reason, we have implemented our own NN297

library in Fortran, called Fortran neural networks (FNN, Farchi et al., 2022). In this li-298

brary, we have manually implemented, for each layer that we need, functions for the for-299

ward, but also the TL and adjoint operators with respect to both NN parameters and300

NN input. We have then included the FNN library in OOPS and added the interface be-301

tween OOPS and FNN for two forecast models, OOPS-QG and OOPS-IFS. Finally, we302

have included the NN parameters in the control variables in OOPS, in such a way that303

they can be estimated using the simplified NN 4D-Var method.304

3 The quasi-geostrophic model305

The simplified NN 4D-Var formulation provides a convenient alternative to the orig-306

inal NN 4D-Var. It has the advantage of being much easier to implement because it is307

built on top of WC 4D-Var, which is already implemented in OOPS. We first test and308

validate the method using OOPS-QG. In particular, we want to confirm that the sim-309

plified NN 4D-Var method is able to make an accurate online estimation of model error.310
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Table 1. Set of parameters for the reference setup (middle row) and the perturbed setup (right

row).

Parameter Reference setup Perturbed setup

Top layer depth 6000m 5750m
Bottom layer depth 4000m 4250m
Integration time step 10min 20min

3.1 Brief model description311

The quasi-geostrophic (QG) model in the present article is the same as the one used312

by Fisher and Gürol (2017), Laloyaux, Bonavita, Chrust, and Gürol (2020) and later by313

Farchi, Laloyaux, et al. (2021). In the following, we only outline the model description.314

More details about this model can be found in Fisher and Gürol (2017); Laloyaux, Bonavita,315

Chrust, and Gürol (2020).316

The QG model’s equations express the conservation of the (non-dimensional) po-317

tential vorticity q for two layers of constant potential temperature in the x− y plane.318

The potential vorticity is related to the stream function ψ through a specific variant of319

Poisson’s equation. The domain is periodic in the x direction, and with fixed boundary320

conditions for q in the y direction. We use a horizontal discretisation of 40 grid points321

in the x direction and 20 in the y direction. In OOPS, the control vector x contains all322

values of the stream function ψ for both levels, i.e. a total of Nx = 1600 variables.323

3.2 The reference and perturbed setups324

In the test series reported in sections 4 and 5, we rely on twin experiments. The325

synthetic truth is generated using the reference setup described by Farchi, Laloyaux, et326

al. (2021). Model error is then introduced by using a perturbed setup, in which the val-327

ues of both layer depths and the integration time steps have been modified, as reported328

in table 1. Note that, by contrast with the perturbed setup of Farchi, Laloyaux, et al.329

(2021), the orography term has not been changed, because we have found that the model330

error setup is sufficiently challenging as is and an orography perturbation does not add331

meaningful complexity here.332

3.3 Neural network architecture for model error correction333

By construction, NN 4D-Var (both the original and simplified formulations) is very334

similar to parameter estimation, which is very challenging when the number of param-335

eters is high. For this reason, it is important to use smart NN architectures to be param-336

eter efficient, i.e. reduce as much as possible the number of parameters. This typically337

involves applying prior knowledge about the system under study to the choice of the NN338

architecture. A typical smart architecture is the monomial architecture introduced by339

Bocquet et al. (2019), in which the model tendencies are parametrised by a set of regres-340

sors (the monomials) and then integrated in time to build the resolvent between two time341

steps. In the present article, we follow another approach, introduced by Bonavita and342

Laloyaux (2020) for the IFS. In this case, the NN is applied independently for each at-343

mospheric column and for several groups of variables: mass (temperature and surface344

pressure), wind (vorticity and divergence), and humidity. Horizontal and temporal vari-345

ations are taken into account by adding latitude, longitude, time of the day, and month346

of the year to the set of predictors. This choice is imposed by operational constraints –347

variables in different columns may come from different processes when using parallelism.348

It also makes sense because a significant amount of the model error in the IFS comes from349
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w1
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Figure 1. Illustration of the NN architecture. On the left in red, the input layer. In the

centre in blue, the two hidden layers, with tanh activation. On the right in green, the output

layer.

the parametrisation of physical processes, which is applied in vertical model columns (Polichtchouk350

et al., 2022), and because in this configuration, the amount of samples is multiplied by351

the number of vertical columns in the data, which is highly beneficial to the training. Fur-352

thermore, it has been shown that the performance of simple vertical NNs is roughly sim-353

ilar to that of non-vertical convolutional neural networks in a realistic model error cor-354

rection problem (Laloyaux et al., 2022).355

The QG model has only two vertical layers and one variable, the stream function356

ψ, and it is autonomous, i.e. the model does not explicitly depend on time. This means357

that our NN for model error correction, independently applied to all 40× 20 columns,358

has four predictors:359

1. ψ1 the bottom layer stream function;360

2. ψ2 the top layer stream function;361

3. sin [2π (θ − 1/2) /40], where θ is the longitude index between 1 and 40;362

4. sin [π (λ− 1/2− 10) /20] where λ is the latitude index between 1 and 20;363

and two predictands:364

1. w1 the model error estimate for the bottom layer stream function;365

2. w2 the model error estimate for the top layer stream function.366

Note that the sinus function is used here to make the NN aware of the periodicity. We367

have tested several NNs, and ended up with the following sequential architecture, illus-368

trated in fig. 1: (i) a first internal dense layers with 16 neurons and with the tanh acti-369

vation function; (ii) a second internal dense layers with 16 units and with the tanh ac-370

tivation function as well; (iii) one output dense layer with 2 units and no activation func-371

tion. This NN has a total of (2× 4 + 4) + (4× 4 + 4) + (4× 2 + 2) = 386 parameters,372

which is significantly less than the number of variables (1600).373

To stay within the scope of the simplified NN 4D-Var defined in section 2.4, we as-374

sume that the NN correction is constant throughout the window, and that it is added375

after every model time step (i.e. every 20min in our case) as it is enforced in the cur-376
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rent implementation of WC 4D-Var. According to the classification of Farchi, Laloyaux,377

et al. (2021) and Farchi, Bocquet, et al. (2021), this approach is a resolvent correction,378

because it is added after the integration scheme. However, a classical resolvent correc-379

tion would add the correction after every window, in other words much less frequently380

than after every model time step. Hence, the spirit of the present correction is closer to381

that of a tendency correction.382

4 Offline learning results383

We begin the numerical experiments by using offline learning to train the NN. Of-384

fline learning here serves two purposes: it provides a baseline for comparison as well as385

a pre-trained NN for online learning.386

4.1 Observation and data assimilation setup387

In the present test series, we use for the QG model the same initial condition as388

Farchi, Laloyaux, et al. (2021). After a first relaxation run of 256 d, the state is perturbed389

and a second relaxation run of 256 d is performed to provide the initial state for the DA390

experiment. At this point, observations are available every 2 h, starting at 01:00 every391

day, at 30 fixed locations, whose distribution mimics the coverage provided by (polar-392

orbiting) satellite soundings. The observation operator is simply a bilinear interpolation393

of the stream function at the observation locations. The observations are independently394

perturbed using a Gaussian noise with zero mean and standard deviation equal to 0.2395

(about 4% of the model variability).396

We start by assimilating the observations using cycled strong-constraint 4D-Var,397

with consecutive windows of 1 d starting at 00:00 each. Hence, there are 12 batches of398

observations, for a total of 360 observations per window. The observation error covari-399

ance matrix is set to R = 0.22I to be consistent with how the synthetic observations400

are produced. For the first cycle, the background state xb
0 is set to be the initial condi-401

tion before the two relaxation runs. For the following cycles, the background state is ob-402

tained by forecasting the previous analysis state. Finally, the background error covari-403

ance matrix is set to B = b2C, where C is a short-range correlation matrix, the same404

as the one used by Farchi, Laloyaux, et al. (2021), and where b is the standard deviation,405

a free parameter. The accuracy of the estimations is measured with the instantaneous406

root-mean-squared error (RMSE) between the estimate and the truth for all 1600 state407

variables, possibly averaged over time. In particular, the first-guess (respectively anal-408

ysis) RMSE is defined in this article as the instantaneous RMSE between the first-guess409

(or analysis) trajectory, the trajectory originated from the first-guess (or analysis) at the410

start of the window, and the true trajectory, averaged over the entire DA window. The411

time-averaged first-guess (respectively analysis) RMSE is then defined as this first-guess412

(or analysis) RMSE averaged over a sufficiently large number of cycles.413

In order to be close to operational conditions, we tune the value of b to minimise414

the time-averaged first-guess RMSE. Preliminary experiments (not detailed here) have415

shown that, for the present DA setup, the optimal value is b = 0.4. With this value,416

we run a cycled DA experiment of N total
t = 2100 cycles. The results of the first N spinup

t =417

51 cycles are dropped as spin-up process of the experiment. Then, for each remaining418

cycles t = 1, . . . , Ndata
t = 2049, we keep xb

0 (t) and xa
0 (t), respectively the first-guess419

and the analysis at the start of the t-th window.420

4.2 Neural network training421

As shown by Farchi, Laloyaux, et al. (2021), the analysis increment xa
0 (t)−xb

0 (t)422

can be chosen as a proxy of the model error for a 1-window-long integration, provided423
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that the analysis is a reasonably accurate estimation of the true state:424

xa
0 (t+ 1)− xb

0 (t+ 1) = xa
0 (t+ 1)−Mt (x

a
0 (t)) ≈ xt

0 (t+ 1)−Mt

(
xt
0 (t)

)
, (17)425

where Mt corresponds to the resolvent of the model between the start of the t-th win-426

dow and the start of the (t+ 1)-th window, and where xt
0 (t) is the true state of the427

system at the start of the t-th window. However, as explained in section 3.3, the NN cor-428

rection is added after every model time step, which means that we need a proxy of the429

model error for a 1-step integration. Without further knowledge on the model error dy-430

namics, we assume a uniform linear growth of model error in time and hence we rescale431

the analysis increments by a factor δt/∆T = 1/72, where δt = 20min is the model432

time step and ∆T = 1d is the window length. Note that, even if the analysis was avail-433

able at a 1 model step frequency, we would not use it because the accuracy of the anal-434

ysis would most probably be insufficient to detect a model error signal in the analysis435

increments.436

To summarise, we use the following dataset for the training of the NN:437 {
xa
0 (t) 7→

δt

∆t

[
xa
0 (t+ 1)− xb

0 (t+ 1)
]
, t = 1, . . . , Ndata

t − 1 = 2048

}
. (18)438

Note the time lag between the input xa
0 (t) and the output δt/∆T

(
xa
0 (t+ 1)− xb

0 (t+ 1)
)
.439

Indeed, the analysis increment xa
0 (t+ 1)− xb

0 (t+ 1) of the (t+ 1)-th window does in-440

form about the model error during the t-th window, which is exactly what we need ac-441

cording to the model formulation described in section 2.4. Also note that we have cho-442

sen to use the analysis xa
0 (t) as predictor, but we could have equivalently chosen the first-443

guess xb
0 (t). Preliminary experiments (not illustrated here) have shown that both choices444

yield similar results. Since the NN is applied independently to each atmospheric column,445

there are actually 40× 20 = 800 samples per pair (analysis 7→ analysis increment). Fi-446

nally, in order to accelerate the convergence, the input and output of the training dataset447

are standardised before the training, using independent normalisation coefficients for each448

variable.449

In order to evaluate the sensitivity to the length of the dataset, we train the NN450

using only the last N train
t pairs (analysis 7→ analysis increment) for several values of Nt.451

Among all these N train
t pairs, the first 7/8th form the training dataset and the last 1/8th452

the validation dataset. The test dataset is formed by N test
t = 2048 pairs (truth 7→ true453

model error) originated from a different trajectory of the model. With this setup, the454

NN is trained for a maximum of 1024 epochs using Adam algorithm (Kingma & Ba, 2015),455

a variant of the stochastic gradient descent, with the typical learning rate 1 × 10−3.456

The loss function is the mean-squared error (MSE). To accelerate the training, we use457

a relatively large batch size (1024) as well as an early stopping callback on the valida-458

tion MSE with a patience of 256 epochs. After the training, we compute the test MSE.459

This experiment is repeated 16 times with different sets of trajectories for training and460

testing and different random seeds for Adam. For comparison, we have also performed461

the exact same set of experiments but with dense and perfect observations, i.e. when the462

analysis is equal to the true state. This second set of experiments illustrates the full pre-463

dictive power of the NN representation of the model error.464

Figure 2 shows the evolution of the test MSE as a function of the length of the train-465

ing dataset N train
t . The score is normalised by the averaged squared norm of the model466

error, in such a way that it is equal to 1 when the NN predicts a zero model error. In467

all experiments, the normalised test MSE is lower than 1. This means that, on average,468

the model error prediction is useful. When using the truth, both training and test datasets469

are statistically equivalent. The normalised test MSE decreases with the size of the train-470

ing dataset N train
t . The final value is 0.334 for N train

t = 2048, but the score is already471

quite good (0.351) for N train
t = 128. The residual error for a large training dataset472

comes from the limited predictive power of the NN. We have checked that better scores473
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Figure 2. Offline NN training. Evolution of the normalised test MSE as a function of the

length of the training dataset N train
t for the NN trained with the truth (in blue) and the NN

trained with the analysis (in red).

can easily be obtained when using larger, non column-wise NNs. Unsurprisingly, when474

using the analysis the normalised test MSE is significantly higher (0.735 at best) and stops475

improving for N train
t ≥ 256. The primary reason for these discrepancies is the fact that476

the statistical moments (e.g. the time average and time standard deviation) are not the477

same between the analysis increments and the true model error. In particular, the av-478

erage analysis increment norm is lower than the average model error norm. This means479

that the NN trained with the analysis generally underestimates the model error. This480

is consistent with what has been found by Crawford et al. (2020) and Farchi, Laloyaux,481

et al. (2021).482

4.3 Corrected data assimilation483

Now that the NN has been trained, we would like to test the hybrid model in fore-484

cast and DA experiments. We start with DA using the exact same setup as in section 4.1,485

but with a true state taken from a different trajectory of the model. Four 4D-Var vari-486

ants are compared:487

1. SC: strong-constraint with the physical model (no model error correction).488

2. WC: weak-constraint with the physical model – in this case the model error correc-489

tion comes from the constant, online estimated forcing.490

3. SC-NNt: strong-constraint with the hybrid model, where the NN correction has491

been trained with the truth using the largest dataset (N train
t = 2048).492

4. SC-NNa: strong-constraint with the hybrid model, where the NN correction has493

been trained with the analysis using the largest dataset (N train
t = 2048).494

In all cases, we use the same background error covariance matrix B as in section 4.1, be-495

cause we want to highlight the benefit of each approach without the need to re-tune B.496

The initial background state xb
0 corresponds to the background obtained after a spin-up497

of 32 DA cycles with strong-constraint 4D-Var. For weak-constraint 4D-Var, we need to498

provide in addition (i) the initial background for model error wb (0), and (ii) the back-499

ground error covariance matrix for model error Q. We choose to use wb (0) = 0 and500

Q = q2Ĉ, where Ĉ is a long-range correlation matrix, the same as the one used by501

Laloyaux, Bonavita, Chrust, and Gürol (2020), and where q is the standard deviation,502

another free parameter. We choose q = 0.004 in order to minimise the time-averaged503
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Table 2. Offline DA results. Time-averaged first-guess and analysis RMSE for the four 4D-Var

variants presented in section 4.3. For each variant, we report the mean (main numbers) and

standard deviation (in parentheses) values over the 128 experiments.

Variant 4D-Var constraint Model error correction First-guess RMSE Analysis RMSE

SC strong — 0.350 (0.020) 0.157 (0.003)
WC weak constant, online estimated 0.271 (0.016) 0.128 (0.003)
SC-NNt strong NN trained offline with the truth 0.263 (0.018) 0.133 (0.003)
SC-NNa strong NN trained offline with the analysis 0.265 (0.020) 0.144 (0.003)

first-guess RMSE. In each case, we run a cycled DA experiment of Nassim
t = 257 cy-504

cles, which we empirically consider to be sufficiently long. The results of the first 33 cy-505

cles are dropped as spin-up. For the remaining 224 cycles, we compute the first-guess506

and analysis RMSE. Each experiment is repeated 128 times with different trajectories507

for the synthetic truth. Note that in the second and third case, the 128 repetitions are508

equally spread over the 16 trained NN obtained in section 4.2: experiments 1 to 8 use509

the first trained NN, experiments 9 to 16 use the second, experiments 17 to 24 use the510

third, etc.511

The time-averaged first-guess and analysis RMSE are reported in table 2. The re-512

sults show the efficiency of model error corrections: in all cases, the first-guess and the513

analysis are more accurate with model error correction (WC/SC-NNt/SC-NNa) than with-514

out (SC). As expected, the model error correction provided by the NN is more efficient515

when the NN has been trained with the truth (SC-NNt) than when it has been trained516

with the analysis (SC-NNa). Furthermore, using the offline correction provided by the NN517

(SC-NNt/SC-NNa) yields in both cases a more accurate first-guess but a less accurate anal-518

ysis than using the online correction computed with weak-constraint 4D-Var (WC).519

4.4 Corrected forecast520

To conclude this first test series, we evaluate the accuracy of the model in the four521

cases described in section 4.3. To this end, we extend the previous set of experiments.522

After each analysis cycle, we compute a 32-day forecast starting from the DA analysis523

using the same model as in the 4D-Var cost function. In the case of weak-constraint 4D-524

Var (WC), the constant, online estimated forcing is used throughout the entire forecast.525

In the case of strong-constraint 4D-Var with the hybrid model (SC-NNt/SC-NNa), the NN526

correction is also used throughout the entire forecast, but in a flow-dependent way: the527

correction values are updated at a 1-day frequency using the forecasted state. With these528

specifications, the error in the first day of forecast corresponds to the analysis error and529

the error in the second day of forecast corresponds to the first-guess error. Figure 3 shows530

the evolution of the forecast RMSE, averaged over the last 32 DA cycles and over the531

128 repetitions of the experiments, as a function of the forecast lead time.532

With weak-constraint 4D-Var (WC), the model error correction is calibrated over533

the DA window, i.e. over the first day. Overall, the correction is efficient and yields a534

more accurate forecast than with the non-corrected model (SC). After several days, the535

true model error has significantly evolved and this initial error estimate gets less accu-536

rate. This is why the reduction of the forecast error vanishes after several days. Also note537

that the model has a periodic behaviour, with a period around 16 days. This means that,538

after 16 days, the model state (and hence the model error) is roughly the same as at the539

beginning, which explains the forecast error reduction around day 16 and around day540

32.541
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Figure 3. Offline forecast results. Evolution of the forecast RMSE, averaged over the last 32

cycles and over the 128 experiments, as a function of the forecast lead time for the four 4D-Var

variants: SC in blue, WC in orange, SC-NNt in green, and SC-NNa in red. The insert zooms in the

short forecast lead times.

By contrast, when using the hybrid model (SC-NNt/SC-NNa), the model error cor-542

rection is flow-dependent (updated every day). This yields overall an even more accu-543

rate forecast than with weak-constraint 4D-Var (WC). In the first few days, the correc-544

tion accumulates and positively interacts with the physical model, which is why the fore-545

cast error reduction increases over time. After several days however, the model error cor-546

rection becomes less efficient, because the forecasted state – the most important predic-547

tor of the NN – has become significantly different from the true state. At this point, the548

model error correction does not any more yield a forecast error reduction. Worse, it even549

increases the forecast errors. This explains the quick increase of the forecast errors af-550

ter 10 days when the NN is trained with the truth (SC-NNt) and after 15 days when the551

NN is trained with the analysis (SC-NNa). In an operational perspective, it would be in-552

teresting to progressively mitigate the model error correction over time, but this is be-553

yond the scope of the present study. Surprisingly, the validity period of the model error554

correction is longer for SC-NNa (NN trained with the analysis) than for SC-NNt (NN trained555

with the truth). This could be due to the fact that a NN trained with the analysis un-556

derestimates the model error: if the model error estimate is pointing in the wrong direc-557

tion, it is better to have an underestimated model error (Crawford et al., 2020). Finally,558

after about 13 days, the forecast is more accurate with SC-NNa. We believe that this re-559

sult is related to the limited predictive power of the chosen NN. Indeed, we have checked560

that with larger NNs, the accuracy of the forecast is always more accurate with SC-NNt561

than with SC-NNa.562

5 Online learning results563

In the present section, we test the simplified online NN 4D-Var presented in sec-564

tion 2.4 using the same QG model as in the offline experiments.565
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5.1 Data assimilation setup566

In this last test series, we use the same DA setup as in sections 4.1 and 4.3. Once567

again, the true state stems from a different trajectory. We keep the same initial back-568

ground state xb
0 and background error covariance matrix B as in section 4.3, once again569

to highlight the benefit of each approach without the need to re-tune B. In addition, we570

need to provide (i) the initial background for model parameters pb
0 and (ii) the background571

error covariance matrix for model parameters P. For pb
0, we choose to use the param-572

eters of the NN that has been trained offline with the analysis, in other words we use573

offline learning as a pre-training step for online learning. Hence we hope to immediately574

see the potential benefits of online learning. Finally, without any prior knowledge on the575

model parameters, we use P = p2I, where p is the standard deviation, a free parame-576

ter. After several preliminary tests, we have chosen p = 0.02. Following the approach577

of section 4.4, at each DA cycle, we compute a 32-day forecast starting from the DA anal-578

ysis using the hybrid model with the updated parameters. Finally, once again, each ex-579

periment is repeated 128 times with as many different trajectories for the synthetic truth.580

In the following paragraphs, we use the label NN to refer to this fifth 4D-Var variant.581

5.2 Temporal evolution of the forecast errors582

Figure 4 shows the temporal evolution of the errors in the first day of forecast (the583

analysis), in the second day of forecast (the first-guess), and in the eighth day of fore-584

cast (which corresponds to a medium-range forecast). The evolution in all three cases585

is very similar. At the start of the experiment, the forecast errors with NN (NN trained586

online) are close to those with SC-NNa (NN trained offline with the analysis). This was587

expected because in the NN variant, we have initialised the parameters of the NN using588

the parameters obtained by offline training with the analysis. The added positive effect589

of the online NN training is then rapidly visible. After a few cycles, the forecast errors590

have decreased. This improvement is quicker for shorter forecast horizons. For the medium-591

range errors, we even see an increase at the start of the experiments before they even-592

tually decrease, after several dozens of cycles. At the end of the experiments, the fore-593

cast is significantly more accurate with NN than with SC-NNa, which is what we hoped594

for. In some cases (first-guess and medium range), the forecast is even better with NN595

than SC-NNt (NN trained offline with the truth). This results may seem at first some-596

what surprising because, unless there has been some optimisation issues, the NN trained597

offline with the truth should provide the most accurate model error predictions. How-598

ever, one must keep in mind that two essential simplifications have been made:599

1. the model error growth is linear in time (section 4.2);600

2. the model error correction is constant over the DA window (section 2.4).601

This explains why the NN trained offline with the truth is suboptimal in the DA and fore-602

cast experiments considered here. The first assumption could be circumvented by using603

samples of the true model error for a δt = 20min forecast (obviously, this would not604

be possible when training with the truth) but the second assumption is intrinsic to the605

simplified NN 4D-Var formulation. This second assumption allows us to build NN 4D-606

Var as a relatively simple extension of the currently implemented weak-constraint 4D-607

Var, but it has a negative impact on the forecast that we will illustrate in the following608

section.609

5.3 Focus on the first day of forecast610

Figure 5 shows the temporal evolution of the errors in the second day of forecast611

in two cases: (i) the NN correction is updated every day (as has been done previously612

– this corresponds to the first-guess errors) or (ii) it is kept constant throughout the en-613

tire forecast. The forecast errors with the NN (SC-NNt/SC-NNa/NN) are systematically614

–16–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

0 32 64 96 128 160 192 224 256 288
Time in days

1.00

2.00

3.00

4.00

5.00

6.00

R
M

SE
, P

8D
-P

9D

P8D-P9D
SC
WC
SC-NNt
SC-NNa
NN

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

R
M

SE
, P

1D
-P

2D

P1D-P2D
SC
WC
SC-NNt
SC-NNa
NN

0.12

0.13

0.14

0.15

0.16

R
M

SE
, P

T0
S-

P1
D

PT0S-P1D
SC
WC
SC-NNt
SC-NNa
NN

Figure 4. Forecast scores for the online experiments. Evolution of the forecast RMSE, aver-

aged over the 128 experiments and over PT0S-P1D (top panel), over P1D-P2D (middle panel), or

over P8D-P10D (bottom panel), as a function of time for the five 4D-Var variants: SC in blue, WC

in orange, SC-NNt in green, SC-NNa in red, and NN in teal. The thin lines report the instantaneous

values and the thick lines report the running-average over 32 cycles.
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Figure 5. Forecast scores for the online experiments. Evolution of the forecast RMSE, av-

eraged over the 128 experiments and over P1D-P2D, as a function of time for the five 4D-Var

variants: SC in blue, WC in orange, SC-NNt in green, SC-NNa in red, and NN in teal. The NN correc-

tion is either updated every day (top panel, same as the middle panel of fig. 4) or kept constant

throughout the entire forecast (bottom panel). The thin lines report the instantaneous values and

the thick lines report the running-average over 32 cycles.
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over the last 32 cycles and over the 128 experiments, as a function of the forecast horizon for the

five 4D-Var variants: SC in blue, WC in orange, SC-NNt in green, SC-NNa in red, and NN in teal.The

insert zooms in the short forecast lead times.

lower in the second case than in the first. Indeed, in the 4D-Var variants considered here,615

the NN correction is constant over the DA window, hence the forecast model is more con-616

sistent with the 4D-Var analysis when the NN correction is not updated. Of course, there617

is a limit to this logic because the model error evolves over time – see the discussion on618

the accuracy of the forecast with WC in section 4.4 – which is why it is important to up-619

date the NN correction for the forecast accuracy. Therefore, we believe that implement-620

ing NN 4D-Var without the assumption of a constant model error over the window should621

have a positive impact on the analysis, but also in the forecast. Rge implementation of622

such a formulation would not be trivial, as it could not be built directly on top of the623

existing WC 4D-Var. Although we have not attempted it in this study, we envisage con-624

sidering it in further studies.625

5.4 Forecast errors at the end of the experiments626

Finally, fig. 6 shows the evolution of the forecast RMSE, averaged over the last 32627

cycles and over the 128 repetitions of the experiments, as a function of the forecast lead628

time. The errors are the same as the ones in sections 5.2 and 5.3, but aggregated and629

shown in a different way. For the NN variant, the forecast errors up to day 10 are con-630

sistent with the description in section 5.2. After day 10, the forecast errors increase ac-631

celerate, which indicates that the NN correction is not any more valid. This is the same632

phenomenon as what has been described in section 4.4 for SC-NNt and SC-NNa, but this633

time, the error increase is earlier and quicker. Once again, we believe that this result is634

related to the limited predictive power of the chosen NN. However, using a larger and635

deeper NN (i.e. with more parameters) is not necessarily a good strategy with online learn-636

ing. Indeed, based on preliminary experiments, we conclude that if the number of pa-637

rameters is large, the background error covariance matrix for parameters (called P in638

section 2.3) must be small to avoid a quick divergence of the method. The downside of639
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this choice is that it naturally slows down the learning process. This is why, with online640

learning, it is important to keep the number of parameters as small as possible, as ex-641

plained by (Farchi, Bocquet, et al., 2021). Hence, the use of online learning could initially642

be limited to the correction of short-term forecasts.643

6 Conclusions644

In this article, we have developed a new variant of weak-constraint 4D-Var, in which645

a set of parameters can be jointly estimated alongside the system state. The new method646

is called NN 4D-Var to emphasise the fact that it is used in this article to estimate the647

coefficients (weights and biases) of a NN. It can be seen as a simplified variant of the orig-648

inal NN 4D-Var method introduced by Farchi, Bocquet, et al. (2021), dedicated to model649

error correction. It is assumed that the NN provides a correction to a physical model,650

added after each integration, and constant over the DA window. These simplifications651

make the method very similar to the forcing formulation of weak-constraint 4D-Var, and652

hence easier to implement on top of an existing implementation of weak-constraint 4D-653

Var, such as the one available in the OOPS framework.654

In the second part of the article, we have provided a numerical illustration of the655

new, simplified NN 4D-Var algorithm in conditions which are as close as possible to op-656

erational. The illustrations use twin experiments with OOPS-QG, a two-layer two-dimensional657

QG model. A simple yet non-trivial model error setup is introduced, where the layer depths658

and integration step of the model are perturbed. The model error correction is computed659

using a small, dense NN acting on vertical columns, like the one used for an operational660

model by Bonavita and Laloyaux (2020). The NN is first trained offline, using the anal-661

yses and analysis increments of a DA experiment with the non-corrected model, follow-662

ing the method originally introduced by Brajard et al. (2020). The corrected model is663

then used in forecast and DA experiments, and provides in both cases significant improve-664

ments in the scores as already shown by Farchi, Laloyaux, et al. (2021). Then, the NN665

is trained online using the new, simplified NN 4D-Var algorithm. The results confirm666

the findings of Farchi, Bocquet, et al. (2021) for the original NN 4D-Var algorithm. With667

proper tuning of the background error covariance matrices, an online, joint estimation668

of the system state and the NN parameters is possible. As new observations become avail-669

able, the model error correction becomes more accurate, which translates into lower anal-670

ysis, first-guess, and short- to mid-term forecast errors than in the offline training case.671

The results also illustrate two limitations of the simplified NN 4D-Var method. The672

first is related to the assumption of a constant model error throughout the window. This673

is necessary to build the new method on top of an existing weak-constraint 4D-Var im-674

plementation, but we believe that relaxing this simplification could improve the analy-675

sis and short-term forecast errors. This could be the topic of further studies on the the676

method. The other limitation is somewhat more fundamental: the online training pro-677

cess is slower as the number of parameters to estimate is larger, as already highlighted678

by Farchi, Bocquet, et al. (2021). This underlines the importance of choosing smart, parameter-679

efficient NNs.680

At this point, we estimate that the simplified NN 4D-Var method is mature enough681

for more realistic applications, for example with the IFS. Implementing the new formu-682

lation in this operational model will only require developing an interface to the NN li-683

brary with all the algorithmic developments already in place in the OOPS framework.684

For such application, we would typically use the vertical NN architecture of Bonavita685

and Laloyaux (2020), for which the number of parameters is much lower than the num-686

ber of system state variables. In this case however, the main difficulty would come from687

the fact that the true state of the system is unknown, which makes the evaluation much688

harder because the diagnostics should be based on observations. Nevertheless, we should689
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be able to rely on the test suite developed by ECMWF to evaluate the potential bene-690

fits of proposed upgrades to the operational assimilation and forecast systems.691

Finally, the current implementation of the simplified NN 4D-Var method in OOPS692

is dedicated to model error correction only, i.e. the NN is trained for model error cor-693

rection only. Nevertheless, there is no obstacle to use this method to train the NN for694

other tasks (e.g. observation bias correction) provided that we are able to model their695

effect on the 4D-Var cost function.696

Open Research697

The numerical experiments in this article rely on OOPS and the FNN library (ver-698

sion 1.0.0). The source code of OOPS is property of ECMWF and is not publicy avail-699

able. The source code of FNN (Farchi et al., 2022) is preserved at 10.5281/zenodo.7245291,700

available via the MIT licence and developed openly at https://github.com/cerea-daml/701

fnn.702
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