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Abstract

Remotely sensed evapotranspiration (ETRS) is increasingly used for streamflow estimation. Earlier reports are conflicting as to

whether ETRS is useful in improving streamflow estimation skills. We believe that it is because earlier works used calibrated

models and explored only small subspaces of the complex relationship between model skills for streamflow (Q) and ET. To

shed some light on this complex relationship, we design a novel randomized, large sample experiment to explore the full ET-Q

skill space, using seven catchments in Vietnam and four global ETRS products. For each catchment and each ETRS product,

we employ 10,000 SWAT (Soil and Water Assessment Tool) model runs whose parameters are randomly generated via Latin

Hypercube sampling. We then assess the full joint distribution of streamflow and ET skills using all model simulations. Results

show that the relationship between ET and streamflow skills varies with regions, ETRS products, and the selected performance

indices. This relationship even changes with different ranges of ET skills. Parameter sensitivity analysis indicates that the

most sensitive parameters could have opposite contributions to ET and streamflow skills. Conditional probability assessment

reveals that with certain ETRS products, the probabilities of having good streamflow skills are high and increase with better

ET skills, but for other ETRS products, good model skills for streamflow are only achievable with certain intermediate ranges

of ET skills, not the best ones. Overall, our study provides a useful approach for evaluating the value of ETRS for streamflow

estimation.
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Key points 32 

● The relationship between model skills for streamflow and evapotranspiration is explored 33 
using a stochastic approach  34 

● The value of remotely sensed evapotranspiration for streamflow estimation varies with 35 
regions, satellite products, and performance indices 36 

● The probability of having good model skill for streamflow does not always increase with 37 
increasing model skill for evapotranspiration   38 
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Abstract 39 

Remotely sensed evapotranspiration (ETRS) is increasingly used for streamflow estimation. 40 
Earlier reports are conflicting as to whether ETRS is useful in improving streamflow estimation 41 
skills. We believe that it is because earlier works used calibrated models and explored only small 42 
subspaces of the complex relationship between model skills for streamflow (Q) and ET. To shed 43 
some light on this complex relationship, we design a novel randomized, large sample experiment 44 
to explore the full ET-Q skill space, using seven catchments in Vietnam and four global ETRS 45 
products. For each catchment and each ETRS product, we employ 10,000 SWAT (Soil and Water 46 
Assessment Tool) model runs whose parameters are randomly generated via Latin Hypercube 47 
sampling. We then assess the full joint distribution of streamflow and ET skills using all model 48 
simulations. Results show that the relationship between ET and streamflow skills varies with 49 
regions, ETRS products, and the selected performance indices. This relationship even changes 50 
with different ranges of ET skills. Parameter sensitivity analysis indicates that the most sensitive 51 
parameters could have opposite contributions to ET and streamflow skills. Conditional 52 
probability assessment reveals that with certain ETRS products, the probabilities of having good 53 
streamflow skills are high and increase with better ET skills, but for other ETRS products, good 54 
model skills for streamflow are only achievable with certain intermediate ranges of ET skills, not 55 
the best ones. Overall, our study provides a useful approach for evaluating the value of ETRS for 56 
streamflow estimation. 57 

 58 

Plain Language Summary 59 

Evapotranspiration (ET), the amount of water evaporated from the Earth’s surface through water 60 
bodies, soil, and plants, is an important component of the water cycle. It is often measured from 61 
space. These measurements are called remotely sensed ET (ETRS) and are increasingly used to 62 
improve estimates of the water cycle. However, earlier studies reported conflicting results as to 63 
whether using ETRS actually improves hydrological model performance. They calibrated their 64 
models with and without ETRS to see whether including ETRS would help simulating streamflow 65 
(river discharge), and found that it did in some cases but did not in other cases. To understand the 66 
added value of ETRS in model calibration, we design a novel experiment that is counter-intuitive 67 
at first sight: we do not calibrate our models; instead, we test 10,000 random models to see the 68 
full range of their performance—how well they simulate streamflow in relation to how well they 69 
simulate ET. We show that the relationship between ET and streamflow performance is complex, 70 
and the value of using ETRS for streamflow estimation is uncertain as it depends on where the 71 
calibrated models land on this space.  72 
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1 Introduction  73 

In recent decades, advances in remote sensing have facilitated the application of 74 
hydrological models—areas lacking ground observations may now be compensated by remotely 75 
sensed data (Dile et al., 2020). Remote sensing products have provided information on different 76 
components of the terrestrial water cycle at various spatial and temporal resolutions, for 77 
example, precipitation (Hsu et al., 1997), evapotranspiration (Mu et al., 2013; Senay et al., 78 
2013), soil moisture (Hornáček et al., 2012), groundwater storage dynamics (Tapley et al., 2004), 79 
lake water levels (Crétaux et al., 2011), and snow cover (Hall et al., 1995, 2002; Tran et al., 80 
2019). Remote sensing products have been used in addition to ground observations as model 81 
inputs since they can provide better spatiotemporal coverages (Baez-Villanueva et al., 2020; Liu 82 
et al., 2017). In ungauged or poorly gauged catchments, remote sensing products have been 83 
demonstrated as a potential source of data for streamflow estimation (Huang et al., 2020; 84 
Kunnath-Poovakka et al., 2016; Zhang et al., 2020).  85 

Evapotranspiration (ET) is an important component of the hydrological cycle—about 86 
60% of the Earth’s terrestrial precipitation returns to the atmosphere as evapotranspiration (Pan 87 
et al., 2015; Trenberth et al., 2009). ET-related variables have been extensively observed from 88 
space. Several remotely sensed ET (ETRS) products are available at the global scale with long 89 
temporal (decadal) coverage (Mu et al., 2013; Senay et al., 2013). In recent years, ETRS products 90 
have been increasingly used by the hydrological modeling community, as model input or as 91 
calibration data (Herman et al., 2018; Immerzeel & Droogers, 2008; Kunnath-Poovakka et al., 92 
2016; Zhang et al., 2009). Taking advantage of ETRS products with their global coverage is a 93 
promising approach to improve streamflow estimate (Martens et al., 2017; Mu et al., 2013). 94 
Evaluating the value of ETRS for streamflow estimation is especially important considering that a 95 
majority of the world’s river reaches do not have stream gauges installed to monitor flow 96 
(Krabbenhoft et al., 2022).  97 

Among pioneering works that evaluated the value of ETRS for streamflow estimation, 98 
Immerzeel & Droogers (2008) calibrated SWAT (Soil and Water Assessment Tool, Arnold et al., 99 
1998) models against Moderate Resolution Imaging Spectroradiometer (MODIS) derived ET for 100 
the Upper Bhima catchment (India). Their results showed that, qualitatively, the calibrated model 101 
is better at producing streamflow that resembled observations relative to the uncalibrated one. 102 
Later works quantified model performance for streamflow and ET under different calibration 103 
schemes, and results were inconclusive. For example, Zhang et al. (2009) calibrated a simple 104 
lumped model against (i) streamflow only, and (ii) both streamflow and ETRS. They found that 105 
the former had better performance for streamflow compared to the latter, suggesting that adding 106 
ETRS to the calibration process was not helpful. Herman et al. (2018) found that calibrating 107 
SWAT models against ETRS significantly reduced streamflow estimation skills, while a multi-108 
objective calibration scheme targeting both streamflow and ET improved the model performance 109 
for ET while maintaining an acceptable level of skills for streamflow. Nguyen et al. (2020a) 110 
found that the use of MODIS-derived ET does not affect model performance for streamflow 111 
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since model performance for ET and streamflow was highly positively correlated (only for 112 
behavioral simulations for Q and ET).  Many other studies (Dembélé et al., 2020; Demirel et al., 113 
2018; Gui et al., 2019; Jiang et al., 2020; Kunnath-Poovakka et al., 2016; Parajuli et al., 2018; 114 
Rajib et al., 2018; Sirisena et al., 2020; Willem Vervoort et al., 2014; Zhang et al., 2020) using 115 
various ETRS products and a wide range of models and calibration techniques, came to different 116 
conclusions (see Table S1). In summary, various experiments with numerous setups found that 117 
the value of having ETRS ranges from positive, neutral, to negative. 118 

This paradox suggests that the relationship between ET and streamflow skills is complex: 119 
there is sometimes a trade-off between ET skill (model performance for ET) and streamflow skill 120 
(model performance for streamflow) but not always. One common feature among previous 121 
experiments is that all of them calibrated models and evaluated model skills upon validation. We 122 
contend that using only a small set of calibrated models is insufficient to explore the complex 123 
relationship between ET and streamflow simulation skills. This is because different calibration 124 
schemes navigate towards different subspaces of the streamflow-ET skill relationship, leading to 125 
different conclusions.  126 

To shed some light on this complex relationship, we design a randomized, large sample 127 
experiment. Instead of calibrating hydrological models with and without ETRS and evaluating 128 
model performance post-calibration, as prior studies did, we simply generate a large number of 129 
models with random parameter values and calculate their skill scores with respect to ET and 130 
streamflow. Our approach may seem counter-intuitive at first, but there are two reasons that 131 
merits randomization over calibration. First, we can examine the full ET-streamflow skill space 132 
instead of a few points in that space from some calibrated models. The second reason lies in the 133 
randomness nature of model skills. Semi-distributed and distributed models are complex and 134 
thus prone to overparameterization (Beven, 2006)—i.e., models may be overfitted to small 135 
training data size—a problem particularly pertinent to poorly gauged basins. Thus, even after a 136 
model is calibrated, there is little guarantee that model skills are robust during validation or 137 
regionalization. In other words, model skills during validation and regionalization are essentially 138 
random.  139 

To demonstrate this approach, we use four global ETRS products and seven catchments in 140 
Vietnam (with diverse catchment characteristics and contrasting ET and streamflow regimes). 141 
For each catchment–ETRS pair, we simulate 10,000 SWAT models with randomized parameters 142 
to obtain a large ensemble of simulated streamflow and ET. We then use conditional probability 143 
to assess how likely a model is good for ET is good for streamflow simulation and vice versa. 144 
While our study is limited to specific regions, ETRS products, and a hydrological model, our 145 
findings could provide a useful approach for evaluating the value of ETRS for streamflow 146 
estimation in the study area and beyond. 147 

 148 
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2 Study Area and Data 149 

2.1 Study Area 150 

We selected seven catchments across Vietnam (Figure 1) to evaluate the use of ETRS 151 
products for streamflow modeling. These catchments do not have large dams, large urban areas, 152 
or substantial changes in land use during the 2000-2019 periods (Do et al., 2022). They cover a 153 
wide range of attributes, for example, catchment area ranges from 603 to 6392 km2, and areal 154 
percentages of forest land range from 6.2 to 84.9% (Table 1). The selected catchments are 155 
located in both lowland (median elevation of 106.5 m above mean sea level – m.a.s.l) and 156 
mountainous (median elevation of 1406 m.a.s.l) areas. The selected catchments represent seven 157 
Vietnamese sub-climatological regions (D. N. Nguyen & Nguyen, 2004; Phan et al., 2009). The 158 
four catchments in Central and Southern Vietnam (GSO, CDA, SDI and AHO) receive more 159 
annual rainfall than do the catchments in Northern Vietnam (CHU, XLA, and NKH). The runoff 160 
coefficients of SDI and AHO catchments (0.90 and 0.82, respectively) are significantly higher 161 
than those of the other catchments, indicating that evaporative losses are quite small in these 162 
catchments compared to the others. 163 

 164 

Figure 1. Location of the seven study catchments in Vietnam. The short names CHU, XLA, 165 
NKH, GSO, CDA, SDI, and AHO stand for Chu, Xa La, Nghia Khanh, Giang Son, Can Dang, 166 
Son Diem, and An Hoa catchments, respectively (Do et al., 2022). 167 
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Table 1. Characteristics of the seven study catchments. 168 

Catchment ID CHU XLA NKH GSO CDA SDI AHO 

Area (km2) 2176 6449 4315 3181 752 827 392 

Runoff deptha (mm/yr) 600.4 592.1 840.9 723.6 600.9 1629.7 2660.4 

Precipitationa (mm/yr) 1555.3 1479.1 1558.4 1802.0 1913.3 1994.5 2948.6 

Runoff coefficient 0.39 0.40 0.54 0.40 0.31 0.82 0.90 

Temperaturea (°C) 22 22.2 25.3 24.2 28.4 24.4 24.9 

Forestb (%) 31.7 36 48.3 42.2 6.2 84.9 81.5 

Agricultureb (%) 68.1 63.9 51.5 56.8 93.8 15.1 18.5 

Elevationc (m.a.s.l) 502.5 1190 1211.5 1406 106.5 956.5 512.5 

Catchment slopec (%) 25.8 39.4 26.7  14.3 10.22 33.7 32.7 

amean annual value from 2010 to 2019, bareal percentage, cmedian value 

 169 

2.2 Input data for SWAT 170 

We used the Soil and Water Assessment Tool (SWAT), a semi-distributed hydrological 171 
model that has been used widely in water research, to support our investigation (Arnold et al., 172 
1998, 2012). Data for several SWAT input variables, including Digital Elevation Model (DEM), 173 
land use, soil, and weather, were collected. A 30 m spatial resolution DEM product (ASTER, 174 
Advanced Spaceborne Thermal Emission and Reflection) released by the National Aeronautics 175 
and Space Administration (NASA) in collaboration with Japan's Ministry of Economic, Trade, 176 
and Industry, was downloaded from the USGS Earth Explorer website 177 
(https://earthexplorer.usgs.gov/). Land use data were obtained from the European Space Agency 178 
Climate Change Initiative Land Cover data set (ESA-LC, https://www.esa-landcover-cci.org/), 179 
which provides global land cover maps at 300 m spatial resolution between 1992–2019. This 180 
data set has been validated in several regions in Asia and Africa, demonstrating its good 181 
agreement with ground observation (ESA, 2017). Here we use the ESA-LC data set in the year 182 
2000. In addition, soil data were obtained from the Harmonized World Soil Database (HWSD) 183 
version 1.2 (Fischer et al., 2008). HWSD is a 30 arc-second raster database with over 15,000 184 
different soil mapping units that combine existing regional and national updates of soil 185 
information. Daily streamflow observations at the catchment outlets from 2010 to 2019 were 186 
obtained from the Vietnam Meteorological and Hydrological Administration. For climate data, 187 
daily precipitation was collected from local meteorological stations in each river basin, daily 188 
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maximum and minimum air temperature data, solar radiation, relative humidity, and wind speed 189 
data were collected from the Global Land Data Assimilation System 190 
(https://ldas.gsfc.nasa.gov/data; Rodell et al., 2004) for the period 2010–2019. 191 

2.3 Remote Sensing Evapotranspiration Products 192 

We used four global ETRS products (actual ET), namely, (1) the Global Land Evaporation 193 
Amsterdam Model (GLEAM, Martens et al., 2017), (2) the Moderate Resolution Imaging 194 
Spectroradiometer (MOD16A2; Mu et al., 2013),  (3) the operational Simplified Surface Energy 195 
Balance model (SSEBop; Senay et al., 2013), and (4) TerraClimate (Abatzoglou et al., 2018). 196 
These ETRS products are available at different spatiotemporal resolutions and are derived using 197 
different input data and techniques (Table 2). GLEAM and MOD16A2 use only satellite-based 198 
data to estimate ET. SSEBop uses both satellite observations and ground-based weather data as 199 
model input, while TerraClimate depends mainly on ground-based measurements. Three models 200 
(MOD16A2, SSEBop, and TerraClimate) are based on the Penman-Monteith (P-M) (Allen, 201 
1986; Monteith, 1965) equation to estimate reference potential ET, while GLEAM is based on 202 
the Priestley-Taylor (P-T, Priestley & Taylor, 1972) equation, which is a simplified solution of 203 
the P-M equation. The daily GLEAM ET product and the 8-day MOD16A2 ET product were 204 
aggregated to the monthly time step. ETRS data sets were spatially and temporally to catchment-205 
scale and monthly time step, respectively, for evaluating with SWAT outputs. 206 

Table 2. List of the four ETRS products used in this study. 207 

ETRS products 
Spatial/ temporal 

resolution 
Potential ET method Spectral/field measurements 

GLEAM 25 km/daily Priestley-Taylor  Red, NIR, PMW, AMW 

MOD16A2 0.5 km/8-day Penman–Monteith Red, NIR 

SSEBop 1 km/monthly Penman–Monteith Red, NIR, TIR, NOAA GDAS 

TerraClimate 4 km/monthly Penman–Monteith WorldClim, CRU, JRA-55 

NIR = Near InfraRed; TIR = Thermal InfraRed; PMW = Passive Microwave; AMW = Active 
Microwave; NOAA GDAS = National Oceanic and Atmospheric Administration Global Data 
Assimilation System; CRU = Climate Research Unit; JRA = Japanese 55-year Reanalysis 

The time series of the four ETRS products in each catchment are shown in Figure 2. In 208 
CHU, XLA, NKH, and SDI, the four ETRS products generally agree with one another. There are 209 
large discrepancies among the products at GSO, and, to a lesser extent, CDA and AHO, showing 210 
the spatial and temporal uncertainties among these products.  211 
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 212 

 213 

Figure 2. Temporal variation (a) and probability density function (b) of ETRS from different 214 
products at each catchment. 215 

  216 
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3 Methodology 217 

This work involves four main stages: simulation, skill distribution analysis, sensitivity 218 
analysis, and probabilistic assessment (Figure 3). In stage 1, we aim to produce a wide range of 219 
model skills for streamflow (Q) and ET. Therefore, for each catchment–ETRS pair, we run 10,000 220 
SWAT models, each of which has a different, randomized set of parameters. The model 221 
configuration and parameter randomization scheme are presented in Sections 3.1 and 3.2. This 222 
step yields 70,000 pairs of ET and streamflow time series (seven catchments with 10,000 model 223 
runs for each catchment). In stage 2, we calculated the goodness-of-fit of each simulated time 224 
series against its corresponding ETRS products and observed streamflow, resulting in 280,000 225 
pairs of ET and streamflow skill values (seven catchments, 10,000 model runs for each 226 
catchment, four ETRS products). We also collected the best 100 NSE values for each case to 227 
understand the relationship between ET-streamflow skills in good models. In stage 3, sensitivity 228 
analysis was used to evaluate the effects of the most sensitive parameters (for both ET and 229 
streamflow) on the relationship between ET and streamflow skills (Section 3.4). Finally, in stage 230 
4, the conditional probability of ET skill on a given range of streamflow skills was calculated to 231 
find which ETRS products can produce better performances (Section 3.5), giving a statistical 232 
sense about the applicability of ETRS in streamflow estimation. In the remainder of this section, 233 
we describe each step in detail. 234 

 235 

Figure 3. Flow chart of the research methodology employed in this study. 236 
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3.1 SWAT Model and Model Setup 237 

 In SWAT, a catchment is divided into subcatchments, which are further divided into 238 
Hydrologic Response Units (HRUs) (Neitsch et al., 2011). An HRU is an area of land within a 239 
subcatchment with a unique combination of land use, soil type, and topographic slope. SWAT 240 
simulates different phases of the water cycle, e.g., evapotranspiration, soil-water dynamics, 241 
groundwater flow, and streamflow. Actual evapotranspiration (hereafter referred to as ET) was 242 
then calculated based on potential ET following one of the available approaches: the Penman–243 
Monteith (Allen, 1986; Allen et al., 1989; Monteith, 1965), Priestly–Taylor (Priestley & Taylor, 244 
1972), and Hargreaves (Hargreaves & Samani, 1985), depending on data availability. A detailed 245 
description of the implementation of these approaches was described in the SWAT model 246 
documentation (Neitsch et al., 2011).  247 

All of our SWAT models were set up using common settings. Specifically, (1) we used 248 
the same criteria for HRU definitions, (2) all models used the Penman–Monteith approach for 249 
calculating potential ET, and (3) all models were set to run at the daily time step from 2008-2009 250 
with three years of warm-up (2008-2009) and ten years (2010-2019) for model ET- and Q-skill 251 
evaluation.  252 

3.2 Parameter Randomization 253 

Our goal is to generate a wide range of model skills with respect to both streamflow and 254 
ET. Therefore, instead of calibrating our models against streamflow and/or ET, we generated 255 
10,000 random parameter sets for each catchment using the random Latin Hypercube Sampling 256 
(LHS) approach. The parameters and their ranges (Table 3) were selected based on our literature 257 
review of the most frequently used parameters for either ET or streamflow calibration (Neitsch et 258 
al., 2011; Nguyen et al., 2022a; Nguyen et al., 2020; Tobin & Bennett, 2017; Odusanya et al., 259 
2019; Le et al., 2022). Including both ET- and streamflow-sensitive parameters allowed us to 260 
explore the uncertainty in streamflow when the models are calibrated for ET, and vice versa. We 261 
also conduct a sensitivity analysis after the models are simulated (Section 3.3). Parameter 262 
randomization and model execution were done in the R environment (R Core Team, 2021) with 263 
R-SWAT (Nguyen et al., 2022b). 264 

 265 

  266 
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Table 3. The selected parameters for randomization and their ranges. These parameter ranges 267 
were used for all catchments. The prefixes “r” and “v” indicate relative change and actual value, 268 
respectively.  269 

Parameter Description Min Max 

r_CN2 SCS curve number II value (-) -0.25 0.25 

r_SOL_K Soil saturated hydraulic conductivity (mm/hr) -0.25 0.25 

r_SOL_AWC Soil available water content -0.25 0.25 

v_GW_DELAY Groundwater delay (days) 10 500 

v_ALPHA_BF Baseflow alpha factor (days) 0 1 

v_SHALLST Initial depth of water in the shallow aquifer (mm) 0 1000 

v_DEEPST Initial depth of water in the deep aquifer (mm) 0 1000 

v_GWQMN Threshold baseflow to occur (mm) 0 1000 

v_GW_REVAP Threshold for groundwater ‘revap’ to occur (mm) 0.02 0.2 

v_ESCO Soil evaporation compensation factor (-) 0.01 1 

v_EPCO Plant uptake compensation factor (-) 0.01 1 

v_CANMX Maximum canopy storage (mm) 1 10 

v_OV_N Manning's "n" value for overland flow 0.01 0.3 

v_CH_K2 Effective hydraulic conductivity (mm/hr) 0 25 

v_CH_N2 Manning's n value for main channel 0.025 0.065 

v_SURLAG Surface runoff lag time (days) 0.1 0 

 270 

3.3 Evaluation Metrics 271 

For each catchment, we analyzed the relationship between the model skills for ET and 272 
streamflow using ETRS products (Section 2.3) and observed streamflow. We used two common 273 
metrics: Nash-Sutcliffe Efficiency (NSE, Nash & Sutcliffe, 1970)  and Kling-Gupta Efficiency 274 
(KGE, Gupta et al., 2009), to evaluate the model skills. In the main analysis, we will focus on the 275 
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NSE, and we provide additional results with the KGE in the Supplementary Information (see 276 
Section 4). The NSE is formulated as 277 

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 − ∑ (𝑥𝑥𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠−𝑥𝑥𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜)2𝑛𝑛
𝑖𝑖=1
∑ (𝑥𝑥𝑖𝑖

𝑠𝑠𝑖𝑖𝑚𝑚−𝑥𝑥)2𝑛𝑛
𝑖𝑖=1

     (1) 278 

where xsim and xobs are the simulated (from SWAT) and observed/reference values, respectively, 𝑥𝑥 279 

is the mean of the observations/reference values, and n is the number of observations/reference 280 
values. 281 

We first calculated NSE for ET (NSEET) for all 10,000 simulated ET time series in each 282 
catchment against each ETRS product. This step results in 40,000 NSEET values. We then 283 
calculated NSE for streamflow (NSEQ) for all 10,000 simulated streamflow time series in each 284 
catchment against the respective observed streamflow time series. Finally, we explored the 285 
relationships between NSEET and NSEQ for all 10,000 parameter sets in each catchment, as well 286 
as for the best 100 parameter sets in Q and the best 100 parameter sets in ET. The procedure is 287 
repeated for the KGE to assess the robustness of our findings. 288 

3.4 Sensitivity Analysis 289 

 To understand how ET- and Q-sensitive parameters affect the model ET- and Q-skills, we 290 
first determined the most sensitive parameters for both ET and Q and then explored the 291 
relationships between the values of these parameters and skill scores. Sobol’ sensitivity analysis 292 
(SA) was employed to identify key parameters and characterize parameter sensitivities (Saltelli, 293 
2002; Sobol, 2001) as follows. First, using Analysis of Variance (ANOVA), the total variance of 294 
the NSE (or KGE) is decomposed into the variance contributions of individual parameters 295 
(Equation 2). 296 

𝐷𝐷(𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐾𝐾𝐾𝐾𝐾𝐾) = ∑ 𝐷𝐷𝑖𝑖
𝑁𝑁
𝑖𝑖=1 + ∑ 𝐷𝐷𝑖𝑖𝑖𝑖𝑗𝑗<𝑖𝑖 +. . . +𝐷𝐷1...𝑁𝑁                                         (2) 297 

where 𝐷𝐷𝑖𝑖 is the variance for the change of the ith model parameter,  N the number of model 298 
parameters, 𝐷𝐷𝑖𝑖𝑖𝑖 the variance of the pairwise interaction of ith and jth parameters (two-way 299 

interactions), and D1…N the N-way interaction term. An overall Sobol’ sensitivity index is then 300 
determined for each parameter (Equation 3): 301 

𝑆𝑆𝑖𝑖(𝑁𝑁𝑁𝑁𝑁𝑁) = 1 −
𝐷𝐷𝑎𝑎

𝐷𝐷(𝑁𝑁𝑁𝑁𝑁𝑁)
                                                            (3) 302 

where 𝑆𝑆𝑖𝑖 is the main sensitivity index for the change of a parameter i, 𝐷𝐷𝑖𝑖 is the variance averaged 303 

over the contributions resulting from all other parameters except i. 304 
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3.5 Assessment of model skills for each ET product using conditional probability  305 

 After the distribution of model skills is obtained, we assessed the probability that a model 306 
that is good for ET is also good for streamflow, and vice versa. We used a threshold of 0.6 for 307 
the NSE score to represent a good performance of a model for a variable (ET or streamflow). 308 
This threshold choice is somewhat arbitrary, but it is in line with the literature (Moriasi et al., 309 
2007). Based on this threshold, we calculated the conditional probability that a model will have a 310 
good streamflow score given that it is within a certain ET score, as well as the conditional 311 
probability that a model will have a good ET score given that it is within a certain range of 312 
streamflow score. These probabilities were calculated separately for each ET product so as to 313 
evaluate these products, but were calculated over the catchments altogether (i.e., the total number 314 
of 70,000 models for each ETRS product), as we aimed to generalize our findings for a “generic” 315 
unknown catchment. For example, the conditional probability P[NSEET > 0.6|NSEQ ∈ (0.6, 316 
0.65)] for GLEAM is calculated as follows:  317 

• Count all models whose NSEQ is within (0.6, 0.65) across all catchments; this gives a 318 
number N1.  319 

• Count among N1 the number of models whose NSEET with respect to GLEAM is above 320 
0.6; this gives a number N2.  321 

• The ratio N2/N1 is then the desired probability.  322 

The probability was then assessed to understand the complex relationship between Q- and ET-323 
performance. This procedure was also repeated for the KGE to assess whether the findings vary 324 
substantially when different evaluation metrics are used. 325 

4 Results and Discussion 326 

4.1 Model Skills for ET and Streamflow 327 

We first explore the relationship between model skills for ET and that for streamflow 328 
over each catchment (i.e., from 10,000 simulations for each ETRS product). Figure 4 shows the 329 
results using NSE, in which two patterns of relationship between NSEET and NSEQ are observed, 330 
and these patterns are similar across the four ETRS products (Figure 4a). For five catchments 331 
(CHU, XLA, NKH, GSO, and CDA), we observe first a positive correlation between NSEET and 332 
NSEQ, meaning that increased skill for ET is associated with an increased skill for Q. However, 333 
this is only true for the lower values of NSE, particularly with negative NSEET. As NSEET 334 
increases towards the highest ranges in each case, the positive correlation diminishes. It means 335 
that improving model skills for ET will not necessarily lead to an improvement in model skills 336 
for Q. Interestingly, a special case is observed in the GSO catchment with the SSEBop product, 337 
where NSEET correlates negatively with NSEQ (r = -0.73, p < 0.001). This is the only case with a 338 
statistically significant negative correlation. On the other hand, we observe no clear relationships 339 
between NSEET and NSEQ for the SDI and AHO catchments, where model skills tend to 340 
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concentrate along two lines: a horizontal line with fairly similar NSEQ, and a vertical line with 341 
fairly similar NSEET. Among the four ETRS products, two satellite-based products (GLEAM and 342 
MOD16A2) generally resulted in lower skills for ET compared to partially and mainly ground-343 
based products (SSEBop and TerraClimate). 344 

From the 10,000 models, we selected those that are either in the best 100 models for 345 
NSEQ or the best 100 models for NSEET (Figure 4b). Here, the trade-off between streamflow and 346 
ET prediction skills becomes apparent: the selected models lie along two perpendicular lines, 347 
closely resembling a Pareto frontier. In each catchment-product pair, the intersection of the best 348 
100 models for streamflow and the best 100 models for ET consists of only 2–11 models. This 349 
means most models either produce high NSEQ or high NSEET, and very few models could 350 
capture both processes. Positive NSEQ was achieved for all catchments while NSEET was 351 
comparatively lower (often negative) and varied in a wider range across different ETRS products, 352 
even within the same catchments and products (Figure 4b). This is due to the high uncertainties 353 
in different ETRS products as also illustrated in Section 2.3 (Figure 2). The low skills even for the 354 
best models mean that it is difficult for SWAT models to capture ET as expressed in the ETRS 355 
products in these tropical catchments. The reasons could be that SWAT is not suitable for these 356 
tropical catchments, or that the ETRS products have limitations in this region, or both. 357 

Results for the KGE metric (see Figure S1) show that the relationship between model 358 
performance for ET and streamflow also depends on the metric used. For example, with the GSO 359 
catchment and MOD16A2 product, a negative correlation between KGEET and KGEQ (Figure 360 
S1a) is observed while that between NSEET and NSEQ is positive (Figure 4a). It means that 361 
depending on a certain aspect of streamflow (reflect by the evaluation metric) the modelers are 362 
focusing on, ETRS product could be useful or even have negative consequences for streamflow 363 
estimation. For example, the best 100 models for ET, in this case, have much lower KGEQ 364 
compared to other KGEQ from the models which have lower KGEET (Figure S1b, GSO 365 
catchment, MOD16A2 product). Furthermore, considering the uncertainty in ETRS products, the 366 
use of ETRS products for stream estimation in this case (negative correlation between KGEET and 367 
KGEQ) is in question. 368 



manuscript submitted to Water Resources Research 

16 

 369 

Figure 4. Distribution of NSE scores for ET (NSEET) versus NSE scores for streamflow (NSEQ) 370 
for each catchment and ETRS product. Panel a shows the scores of all 10,000 models and panel b 371 
shows the scores of models that are in either the top 100 for NSEQ or the top 100 for NSEET. 372 
Note the large differences in x- and y-axis scales among the catchments. 373 

  374 

4.2 Parameter Sensitivity 375 

 Figure 5 shows the total sensitivity of each parameter with respect to streamflow and ET 376 
(the objective function is NSEET + NSEQ). In line with prior studies (e.g., Nguyen et al., 2020; 377 
Odusanya et al., 2019), we found that both streamflow and ET are highly sensitive to the curve 378 
number (CN2). In addition, ET is sensitive to soil evaporation compensation factor ESCO, and to 379 
a lesser extent, to soil available water content SOL_AWC. On the other hand, streamflow (Q) is 380 
sensitive to groundwater delay GW_DELAY and threshold to baseflow occur GWQMN, 381 
although the sensitivity varies among catchments. Results from the sensitivity analysis with the 382 
objective function is the KGE (KGEET + KGEQ) show similar results in term of sensitivity 383 
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ranking (e.g., both CN2 and ESCO are the most sensitive parameters among all catchments and 384 
ETRS products), however, higher variation in the sensitive indices among different ETRS product 385 
(Figure S2). In the remaining, only results from the sensitivity analysis with the NSE as objective 386 
functions are shown. 387 

 388 

Figure 5. Total sensitivity (S) of streamflow and ET with respect to each model parameter in 389 
each catchment and variable (ETRS product and observed streamflow Q).  390 

 391 

Based on the results of parameter sensitivity analysis, we selected four parameters, 392 
namely CN2, ESCO, GW_DELAY, and GWQMN for further analysis. Figure 6 shows the 393 
relationships between the values of these four parameters and their NSE scores. As expected 394 
from the sensitivity analysis, NSEQ and NSEET are strongly dependent on CN2, and two patterns 395 
can be observed. For the first group of five catchments (CHU, XLA, NKH, GSO, and CDA), the 396 
CN2–NSEET and CN2–NSEQ relationships vary in the same direction: for both streamflow and 397 
ET, high values of CN2 are associated with low NSE, and NSE increases as CN2 decreases, to a 398 
certain threshold when NSE is much less or no longer dependent on CN2. This explains our 399 
observations in Figure 4a. At first, NSEET and NSEQ increase together because they covary with 400 
CN2, and then in the higher NSE ranges, NSEET and NSEQ no longer correlate with each other 401 
because they are less or no longer dependent on CN2.  402 
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 403 

Figure 6. Relationships between model skills and parameter values for ET (first four columns) 404 
and streamflow (last four columns). Each row represents one catchment. 405 

 406 

For the second group of catchments (AHO and SDI), the CN2–NSEET and CN2–NSEQ 407 
relationships vary in opposite directions: high CN2 values are associated with low NSEET but 408 
high NSEQ, and vice versa. Again, this could explain the NSEQ–NSEET relationship we observed 409 
for these two catchments in Figure 4a. As CN2 has opposite effects on NSEQ and NSEET, models 410 
tend to concentrate on two perpendicular lines, one with high NSEET and low NSEQ, and one 411 
with high NSEQ and low NSEET. 412 
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Interestingly, in the region of high NSE where CN2 becomes less sensitive, some other 413 
parameters become more sensitive, although their sensitivity levels are less consistent across all 414 
catchments and products compared to that of CN2. For example, high NSEQ values are sensitive 415 
to GW_DELAY, particularly in the AHO catchment (Figure 6, column 7). This means that 416 
model parameters do not have the same sensitivity throughout their ranges, and the relative 417 
sensitivity among parameters also changes. Therefore, it is important to explore a wide range of 418 
model skills and parameters. This is an advantage that our randomization approach offers. 419 

 420 

4.3 Conditional Probabilities of Good Skills 421 

 Using an NSE threshold of 0.6, we calculated the conditional probability that a model 422 
having a certain skill score with respect to one variable (ET or streamflow) will be good at 423 
capturing the other variable (as described in Section 3.5). Figure 7a shows that the models that 424 
have good NSEET scores are likely to have good NSEQ scores as well, indicated by a probability 425 
of 0.75 or more. Here, we can also see the discrepancies among the ETRS products. None of the 426 
models were able to achieve NSEET > 0.6 against the MOD16A2 product. The highest NSEET 427 
range was 0.7, 0.8, and 0.85 for GLEAM, SSEBop and TerraClimate respectively. This result 428 
also reflects the varying agreement between the simulated ET from SWAT and different ETRS 429 
products. Specifically, SWAT can generally capture ETRS from TerraClimate better than others 430 
in our regions. 431 

Conditional probabilities of having a good NSEET when NSEQ is good are near zero for 432 
the GLEAM and MO16DA2 products (Figure 7b), for all ranges of NSEQ. For the SSEBop and 433 
TerraClimate products, conditional probabilities are higher and generally increase with larger 434 
NSEQ. However, the highest probabilities (when NSEQ ∈ (0.9, 0.95]) are only around 0.65, much     435 
lower than those in Figure 7a. Thus, the probability that a model performing well for streamflow 436 
also does well for ET is quite low (relative to the probability of the converse case, that a model 437 
performing well for ET also does well for streamflow). This indicates that a model constrained 438 
by streamflow alone might not be able to reproduce a realistic ET estimate. Results from the 439 
conditional probability with KGE index show shows similar features but different in magnitudes 440 
with that of the NSE (Figure S3).  441 
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 442 

Figure 7. a) Conditional probability of having a good streamflow score (NSEQ > 0.6) given a 443 
range of values of NSEET. b) Conditional probability of having a good ET score (NSEET > 0.6) 444 
given a range of values of NSEQ. In panel a, some conditional probabilities, such as in the case of 445 
GLEAM when NSEET > 0.7, are not available because no models achieved the range of NSEET 446 
for the conditional probabilities to be calculated. In panel b, all probabilities are positive. 447 

 448 

4.4 Implications for streamflow prediction using ETRS, and limitations 449 

Our findings suggest that prior to using ETRS in model calibration, a randomized 450 
experiment, such as the one presented here, should be performed to explore the relationship 451 
between streamflow and ET skills. In areas where a negative correlation between model skills for 452 
ET and streamflow exists, the used of ETRS products for streamflow estimation is in question 453 
especially considering the uncertainty in the accuracy of ETRS. With the GLEAM and 454 
MOD16A2 products, we have demonstrated that the probabilities of having good model skills for 455 
streamflow is only observed within a certain range but not the best range model skill for ET. This 456 
means that trying to improve the model skill in simulating ET could lead to lower model skill for 457 
streamflow. The definition of behavioral model for streamflow prediction should corresponds to 458 
only a certain range but not the best range of model skill for ET. With all ETRS products, we 459 
suggest using a behavioral range of model skill for streamflow estimation. Only using the best or 460 
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a single good model skill for ET could results in a very uncertain model skill for streamflow, as 461 
the probability of having good model skill for streamflow when model skill for ET is good is not 462 
always 100%. This is in line with the concept of the equifinality thesis (Beven, 2006). 463 

In ungauged catchments, the relationship between ET- and streamflow-skill is unknown. 464 
However, this might be inferred from neighboring gauged catchments with similar catchment 465 
characteristics. In addition, using a large sample of catchments for such a study could help to 466 
inferred the spatial pattern of the relation between model skill for ET and streamflow as well as 467 
the effect of catchment and meteorological characteristics on this relation. Furthermore, the 468 
approach proposed in this study can be combined with other parameter regionalization 469 
techniques (Hrachowitz et al., 2013; Razavi & Coulibaly, 2013), allowing a robust estimation of 470 
streamflow in ungauged catchments. 471 

It is important to highlight a caveat in our investigation: ETRS products used in this study 472 
are not “ground-truth”; rather, they were obtained from satellite images via algorithms and 473 
models with certain assumptions and limitations. Therefore, a low ET skill score does not 474 
necessarily mean that the model is bad in simulating ET. It simply means that the simulated ET 475 
from the model and the calculated ET from satellite images disagree, and both can be inaccurate. 476 
In regions where ETRS products have been validated and shown to have high accuracies, they 477 
still can be used to improve streamflow estimation with more confidence.   478 

5 Conclusions 479 

Using seven catchments with diverse characteristics, and a large number of model runs 480 
with randomized parameters, we found that model parameters can influence model performance 481 
for streamflow and ET in different ways, thus there is no guarantee that a model that captures 482 
well one variable in calibration can perform well with respect to another variable. With certain 483 
ETRS products (GLEAM and MOD16A2), the relationship between model performance with 484 
respect to streamflow and ET are asymmetric: models that perform well with ET are likely to 485 
perform well with streamflow, but not vice versa. Our results suggest that there are potential 486 
values in using remote sensing ET products for model calibration, but there is also a lot of 487 
uncertainty. This shed some light on the conflicting findings of earlier studies: depending on 488 
where the calibrated models landed on the spectrum of model skills, one may find using ET 489 
helpful or not helpful. A large-scale study with different types of models and a larger number of 490 
catchments spanning over more climatic and landscape characteristics is needed to pinpoint how 491 
catchment characteristics affect these different behaviors and the spatial patterns of the relation 492 
between model performance for streamflow and ET. 493 
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Table 1. List of different studies using ETRS for streamflow estimation and their findings. 

References ETRS products Stuy area/Model/Calibration technique Key findings 

Kunnath-
Poovakka 
et al. 
(2016) 

• CMRSET 
(ET) 

• AMSR-E 
(Soil 
moisture) 

• Study area: 11 catchments in eastern 
Australia 

• Model: Simplified Australian Water 
Resource Assessment – Landscape model 
(AWRA-L) 

• Calibration technique: Shuffled Complex 
Evolution Uncertainty Algorithm with 15 
different objective functions by combining 
the Root Mean Square Error and the 
correlation coefficient for ET and soil 
moisture 

• Streamflow prediction in 
catchments with low average 
runoff can be improved using 
reliable ET products. 

 

Demirel et 
al. (2018) 

• Actual 
evapotranspir
ation (AET) 
based on 
MODIS data 
under cloud-
free 
conditions 

• Study area: The Skjern river basin in 
Denmark. 

• Model: mesoscale Hydrologic Model 
• Calibration technique: 7 behavioral 

simulations from the Shuffled complex 
evolution approach with the model 
performance criteria is the KGE for 
streamflow and SPAEF for AET. Three 
calibration scenarios: streamflow only, 
AET only, and both streamflow and AET 

 

• Comparable model performance 
for streamflow in the case of 
streamflow calibration only and in 
the case of using both streamflow 
and AET for model calibration. 

• Much poorer model performance 
for streamflow for the case of 
AET-calibration only compare to 
the case of streamflow-calibration 
only. 

Parajuli et 
al. (2018) 

• SEBAL 
• Study area: Big Sunflower River Watershed 

in Northwestern, Mississippi. 
• Model: SWAT 
• Calibration technique: Best parameter from 

SUFI-2 approach, three calibration 
scenarios: streamflow only, ET only, and 
both streamflow and ET 

 

The streamflow-only and ET-only 
modeling scenarios showed equally 
good model performances for 
streamflow, followed by the flow-
ET calibration scenario. 

Rajib et al. 
(2018) 

• MOD16A2 • Study area: Pipestem Creek watershed in 
North Dakota, United States 

• Model: modified SWAT 
• Calibration technique: SUFI-2 approach, 4 

calibration scenarios: (M1) streamflow only, 
(M2) streamflow with biophysical 
parameters, (M3) streamflow and ET 
(lumped approach), (M4) streamflow and 
ET (distributed approach). KGE was used as 
the performance index for both streamflow 
and ET 

• Including biophysical parameters 
(calibration scenario M2) slightly 
improve the model performance 
for ET and streamflow compared 
to that of M1 

• Model performance for ET and 
streamflow in case of calibration 
scenario M3 increases compared to 
that of M1 and M2 for the 
validation increases 

• Model performance for ET and 
streamflow during the calibration 
period in the case of calibration 
scenario M3 is comparable with 
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References ETRS products Stuy area/Model/Calibration technique Key findings 

that of calibration scenarios M1 
and M2. Model performance (M3) 
is the best for the validation period 
(among 4 calibrations scenarios) 

Gui et al. 
(2019) 

• NDVI-based 
ET algorithm 

• Study area: 208 watersheds in the U.S. 
• Model: Xinanjiang model 
• Calibration technique: Three calibration 

scenarios: (1) streamflow only, (2) both 
streamflow and using both streamflow and 
ETRS for the entire period of record, (3) 
same as (2) but using ETRS only during 
rainless periods. The optimal parameter set 
was determined by combining different 
optimization approaches. 

• Lower model performance (mean 
NSE across 208 watershed) for 
streamflow was observed in 
calibration scenarios 2 and 3 
compared to that of scenario 1. 

Dembele 
et al. 
(2020) 

• Twelve 
different 
ETRS 
products 

• Study area: Volta River basin, West Africa 
• Model: mesoscale Hydrologic Model 

(mHM)  
• Calibration technique: (1) Streamflow only 

and (2) 48 calibration scenarios as a 
combination of four distinct multivariate 
calibration strategies (the basin-average, 
pixel-wise, spatial bias accounting, and 
spatial bias-insensitive) using streamflow 
and ET. 

• Adding ETRS into the calibration 
scheme slightly tradeoff model 
performance for streamflow to 
improve the performance of the 
terrestrial water storage, temporal 
dynamics of soil moisture and 
spatila patterns of soil moisture.  

Jiang et al. 
(2020) 

• MOD16 ET • Study area: 28 basins in the U.S. 
• Model: VIC 
• Calibration technique: Shuffled Complex 

Evolution, two calibration scenarios: (1) 
streamflow only, (2) spatial distributed ET 
calibration 

• ET calibration yields better or 
similar streamflow performance in 
29% of the basins compared to 
that from streamflow-based 
calibration, 

Zhang et 
al. (2020) • PLM-ET 

• Study area: 222 basins in Australia 
• Model: Xinanjang and SIMHYD 
• Calibration technique: Genetic algorithm, 

four calibration scenarios: (1) streamflow-
only, (2) ET only, (3) and (4) both ET and 
streamflow but with different objective 
functions. 

• Model performance for 
streamflow in case of including 
ETRS in the calibration (scenarios 
2-4) calibration only is not as good 
as calibration against Q, especially 
in drier regions 

Sirisena et 
al. (2020) GLEAM ET • Study area: four basins in the Chindwin 

River basin, Myanmar 

• Model: SWAT model 

• Calibration technique: three calibration 
scenarios: streamflow only,  (2) ET only, 
and (3) both streamflow and ET 

•  In the single variable calibration 
scenarios (1 and 2), model 
performance for the targeted 
variable increases but for the other 
variable decreases. 

• Calibration that targets both ET 
and streamflow, acceptable model 
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References ETRS products Stuy area/Model/Calibration technique Key findings 

performance was achieved with 
both variables 

Willem 
Vervoort 
et al. 
(2014) 

 

• MOD16A3 • Study area: four catchments in New South 
Wales, Australia 

• Model: IHACRES 

• Calibration technique: shuffled complex 
evolution, three calibration scenarios: (1) 
streamflow only, (2) ET only, and (3) both 
streamflow and ET, results were compared 
with the case of using parameter 
regionalization and using ETRS as direct 
model input. 

 

• Calibration with ET and 
streamflow does not improve 
streamflow skills. Calibration 
against only ET is the worst, even 
worse than the parameter 
regionalization approach. 
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Figure S1. Distribution of KGE scores for ET (KGEET) versus KGE scores for streamflow 
(KGEQ) for each catchment and ETRS product. Panel a shows the scores of all 10,000 models and 
panel b shows the scores of models that are in either the top 100 for KGEQ or the top 100 for 
KGEET. Note the large differences in x- and y-axis scales among the catchments. 
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Figure S2. Total sensitivity (S) of streamflow and ET with respect to each model parameter in 
each catchment and variable (ETRS product and observed streamflow Q).  The objective function 
used in this analysis is the KGEET + KGEQ. 
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Figure S3. a) Conditional probability of having a good streamflow score (KGEQ > 0.6) given a 
range of values of KGEET. b) Conditional probability of having a good ET score (KGEET > 0.6) 
given a range of values of KGEQ. 
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