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Abstract

Extreme heat waves beset western North America during 2021, including a 46.7°C (116°F) observation in Portland, Oregon,

an astonishing 5°C above the previous record. Using Portland as an example we provide evidence for a latent risk of extreme

heat waves in the Pacific Northwest (PNW) and along the west coast of the United States where a maritime climate and its

intrinsic variations yield a positive skewness in summertime daily maximum temperatures. A generalized Pareto extreme value

analysis yields a heavy tailed distribution with a return period of 300-1000 years, indicating that, while rare, the event was

possible, contrary to prior claims that the event was “virtually impossible”. We demonstrate that the extreme temperatures can

be explained by the coincident extreme values of geopotential heights, and that the relationship between heights and extreme

temperatures has not materially changed over the observational record. The dynamical nature of the event along with recent

developments in stochastic theory justifies the use of skewed and heavy-tailed distributions which may provide the basis for a

more proactive approach to managing the risk of future events.
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Abstract: Extreme heat waves beset western North America during 2021, including a 46.7°C 
(116°F) observation in Portland, Oregon, an astonishing 5°C above the previous record. Using 
Portland as an example we provide evidence for a latent risk of extreme heat waves in the Pacific 
Northwest (PNW) and along the west coast of the United States where a maritime climate and its 
intrinsic variations yield a positive skewness in summertime daily maximum temperatures. A 
generalized Pareto extreme value analysis yields a heavy tailed distribution with a return period 
of 300-1000 years, indicating that, while rare, the event was possible, contrary to prior claims 
that the event was “virtually impossible”. We demonstrate that the extreme temperatures can be 
explained by the coincident extreme values of geopotential heights, and that the relationship 
between heights and extreme temperatures has not materially changed over the observational 
record. The dynamical nature of the event along with recent developments in stochastic theory 
justifies the use of skewed and heavy-tailed distributions which may provide the basis for a more 
proactive approach to managing the risk of future events.  

 
Key Words: Heat wave, probability, climate change, risk  

 
1. Introduction 

 
The 2021, early-summer heat wave in the Pacific Northwest (PNW) of the United States 

and southwest British Columbia, Canada, broke numerous all-time records for daily maximum 
temperature (Tmax), resulting in hundreds of hospitalizations and deaths in the region (1). The 
heat wave was notable in that many records were not only broken, but were far exceeded (2, 3), 
including a record in Portland Oregon of 46.7°C (116°F) on the 28 June (Figure 1) that was 5°C 
(9° F) higher than the previous record for any day and 7.8°C (14°F) higher than the previous 
record for any day in June (4). National Weather Service forecasts for the Portland region 
warned of record-breaking temperatures and an “unprecedented heat wave” (5) for several days 
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preceding the event, with the event’s expectation itself generating significant media coverage (1, 
2, 6). Some numerical weather prediction models had been forecasting greater than 43.3°C 
(110°F) temperatures for over a week prior to the event.  

 
Such warnings notwithstanding, the event was surprising from a climatological 

perspective for this typically maritime dominated climate west of the Cascade mountains. The 
event severely tested resilience and in some cases exposed unforeseen vulnerabilities. In 
particular, the health impacts of this heat wave may have been exacerbated given acclimation to 
cooler conditions and by the surprising extremity of the temperature. In addition, prior 
assessments of observed trends and anthropogenic climate change focused on the greater 
potential for increases in the severity of nighttime (Tmin), rather than daytime (Tmax) heat waves 
in the coastal regions of the western US (7–10), or that heat waves would be moderated in 
coastal regions of the PNW (11) giving less reason to expect—and perhaps mitigate the effect 
of—such an extreme daytime heat event in 2021. 

 
The severity of the PNW heat wave and its impacts on human health motivated 

investigations into its return period. Given knowledge of historical variability together with the 
fact that anthropogenic forcing is increasing global temperatures, the question arises how 
probable such an event is in today’s climate (3). One such estimate deemed the 2021 PNW heat 
wave ‘virtually impossible’, with greater than 150,000 year return period, even including an 
estimate of the trends in extreme values due to the influence of climate change. A moderated 
estimate of a 1,000 year return period, still pointing to extremely unlikely occurrence, was 
reached when including the event in the statistical fit (a procedure which does not allow one to 
foresee such an event). The interpretation from these initial analyses is that the event was nearly 
impossible to foresee even when accounting for present-day climate change drivers (3). These 
are not entirely satisfying conclusions given the certainty and occurrence of the event in 2021. In 
particular, the following questions remain unanswered: 1) Why was the PNW heat-wave so 
extreme relative to extreme heat events across the rest of the western US that summer?, 2) Could 
an alternative statistical analysis of the historical record have better forewarned of the 
possibility for an event like the 2021 PNW heat wave?, and 3) Is the PNW, among other possible 
areas, susceptible to such “surprises” owing to inherent physical constraints operating on their 
local historical temperature variability? Here we consider each of these questions. 
 

 
2. Materials and Methods  
 
 This analysis relies on historical climatological observations of temperature and 
geopotential heights for the Portland, OR International Airport station (KPDX) for the years 
leading up to the 2021 PNW heat wave and the event itself (Sec. 2.1). We apply both 
Generalized Extreme Value (Sec. 2.2) and Generalized Pareto Distribution (Sec 2.3) 
methodologies to estimate the probability of the 2021 event and utilize bootstrapping to quantify 
uncertainty in those estimations (Sec. 2.4). Following this, we leverage a Stochastically 
Generated Skew analysis based on recent advances in stochastic theory (Sec. 2.5) to support the 
results from the estimation of the event probability and then produce a regression analysis 
relating temperature extremes to geopotential heights (Sec. 2.6) to further support our 
understanding of the potential for the 2021 event. 
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2.1 Climate Observations 
 

Observations of daily maximum temperature (Tmax) were taken from the Global 
Historical Climatology Network daily (GHCNd) dataset of station climate observations (4,17) 
across North America. . Climate stations were screened to ensure sufficient record length for 
statistical evaluation. Station screening criteria required at least 50 years of data as of June 2020 
and a minimum of 90% of valid daily observations of Tmax during the months of May-August, 
i.e., non-missing data that pass quality control flagging applied by GHCNd (4, 17). The latitude 
and longitude information provided by GHCNd was used to map the location of all stations.  

 
The daily 500 hPa geopotential height index (GHI) was calculated as the area average 

geopotential height over the latitude-longitude rectangle bounded by 47°N-57°N, 135°W-
120°W. This area is the center of action for the composite of 500 hPa height anomalies 
associated with Pacific Northwest daytime (Tmax) heatwaves as demonstrated in Figure 3 of 
Bumbaco et al. (2013). Heights were obtained from the NCEP/NCAR reanalysis for the period 
1948-2021. Only data between 15 June and 15 July of each year were subsequently used in the 
analysis. This date range was selected so that the observations are centered on the date of 
occurrence of the 2021 Pacific Northwest heatwave and to partially mitigate the influence of a 
seasonal temperature cycle on the estimation of the probability of extremes. The sample 
skewness of daily Tmax was calculated from June 15th to July 15th for each station, shown in Fig. 
2, across all years on record using the Fisher-Pearson coefficient of skewness (18). 

	
2.2 Generalized Extreme Value Analysis 

 
Estimation of the Generalized Extreme Value (GEV) distribution for Portland Tmax 

utilizes the annual maxima for each year over the period 1948-2020, resulting in a sample size of 
n=73. Scale, location, and shape parameters for the GEV distribution were estimated from the 
data using the Maximum Likelihood Estimator (MLE) method described in (19) and executed 
using tools in the Python SciPy library (20). Estimated parameters were then used to generate a 
probability density function (PDF) of the GEV distribution from which we could calculate the 
probability of a 46.7 °C Tmax event. Our analysis adopted the convention that a negative shape 
parameter corresponds with a Weibull form of GEV and a positive shape parameter corresponds 
to a Fréchet form of GEV. We show in Fig. 3 that estimated parameters from the annual block-
maxima record of Tmax for Portland produce a GEV PDF that returns a zero probability of a 46.7 
°C Tmax event. Inset panels that show the uncertainty of the estimated return period equivalent to 
those shown for the Generalized Pareto Distribution were not included for GEV as the 
observations produce no parameter estimates that allow for the estimation of non-zero 
probabilities for the Tmax magnitude observed in Portland during the 2021 heatwave, consistent 
with a Weibull type GEV.  

 
2.3. Generalized Pareto Distribution Analysis 

 
The Generalized Pareto Distribution (GPD) was applied to estimate the probability 

distribution of peaks over a threshold. We computed GPD estimates based on thresholds of the 
90th and 95th percentiles from all observed daily records of Tmax from June 15th to July 15th across 
all years. The GPD parameters (shape, scale and location) were estimated using methods 
outlined in (21, 22). The parameters were applied to generate a probability density function 
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(PDF) using tools in the Python SciPy library (20). The PDF was then used to estimate the 
exceedance probability of a daily Tmax of 46.7 °C, which was converted to a return period using 
methods described in (23, 24). 

 
2.4. Uncertainty in GEV and GPD parameters 

 
Uncertainty bounds for the return period calculation were estimated (21) using bootstrap 

resampling with replacement. For the GEV analysis, years were resampled with replacement to 
create 10,000 bootstrap samples from which GEV parameters were calculated. For the GPD 
analysis daily Tmax values within the seasonal window of June 15th – July 15th were resampled 
with replacement to create 10,000 samples of the equivalent size to the historical daily Tmax 
(n=2,263 days). GEV resampling yielded no samples with a finite return period for the Portland 
record event. The histogram of bootstrap generated GPD return periods is shown in the inset 
panels of Fig 3. The estimated return period uncertainty bounds reported in the manuscript 
represent the 2.5 and 97.5 percentile values from the distribution of ranked estimated return 
periods. Reported for both 90th and 95th percentile thresholds, the central GPD fits are the median 
values of annual return period from all 10,000 boot-strapped samples.  

 
2.5. Stochastically Generated Skew (SGS) Analysis 

 
The Stochastically Generated Skew (SGS) distribution estimates were made using the 

online ATMOS Distributions tool from Web-based Reanalyses Intercomparison Tools (WRIT, 
https://psl.noaa.gov/data/writ/ ) including the option to analyze station data from the GHCN 
dataset. As only whole months are available as options we chose to include data from the months 
of June and July, for the 1948-2016 time period. At the time of this analysis, only data through 
2016 were available in that web tool. In calculating the return period, we computed the 
autocorrelation of Tmax to estimate the number of effective samples in the June-July period. See 
for example, (25) for a discussion of autocorrelation in Tmax, and (26) for the role of 
autocorrelation in the stochastic process that generates the SGS distribution.  

 
 

2.6. Regression Analysis  
 
We fit a linear regression predictive model on the 500 hPa geopotential height index to 

predict Tmax for all daily observations for both the early (1948-1983) and late (1984-2020) 
periods using methods described in (27) and tools from the Python SciPy library (20). The best 
fit linear regression using a least-squares method is plotted on Fig. 4 as a solid green/orange line. 
The period of record was split into two periods of equal length—mid-20th century (1948-1984), 
and late-20th-to-early-21st century (1984-2020)—in order to evaluate potential climatological 
changes in the linear relationship between 500 hPa geopotential height anomalies and Tmax. 

 
In order to estimate the dependence of probable extremes on geopotential heights from 

the historical record we applied a linear regression predictive model to the 99th percentile of Tmax 
observations from uniformly binned sub-samples of the coinciding observations of 500 hPa 
geopotential heights. All observations of 500 hPa heights were sorted in ascending order and 
sub-sampled into bins of 100 observations each. For each bin, we selected the observation pair of 
500 hPa geopotential height and Tmax with the greatest magnitude of Tmax, approximating the 99th 
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percentile for this bin. This process was repeated until the entire sample of daily June 15th to July 
15th observations from 1948-2020 was analyzed. The same linear regression predictive model 
technique described above was then applied to the 99th percentile sub-set of observations with 
the best fit linear regression shown on Fig. 4 as a solid black line.  

 
For each regression line, we also plot a shaded region of the like color for the 

corresponding best fit model that represents the in-sample boot-strapped 95% confidence interval 
of the linear regression using methods described in (28) and executed using tools from the 
Python Seaborn library (29). The 95% out of sample confidence interval, often called the 
prediction interval, was estimated for the quantile regression using methods described in (30) and 
the upper and lower bounds of that interval are shown as dotted black lines. 
 
 
3. Results and Discussion  

 
 

Why was the PNW heatwave so extreme compared to extreme heat events across the rest 
of the western US that summer? Estimation of the probability of events of record-breaking 
magnitude presents a major challenge as it is necessarily an extrapolation from observed data. 
Uncertainties due to choice of statistical method/model, short length of the observed record, and 
climate non-stationarity can lead to inaccurate estimation of the likelihood of a record-breaking 
extreme event (12–15). Furthermore, infrequent, heat wave-inducing atmospheric circulation 
patterns can produce extreme heat events that fall far outside the range of observed maximum 
temperatures (16). Though these challenges are ever present for planning and risk management, 
historical meteorological observations can help to identify regions at higher risk of record-
breaking temperatures. Here, by taking Portland, OR as an example, we demonstrate how 
positively skewed regions, i.e., those with a longer tail of the daily temperature distribution for 
hot values, such as the PNW have a higher potential for record-breaking heat waves than other 
regions across the interior western US.  

 
Daily Tmax observations from the Global Historical Climate Network (GHCN) stations 

reveal a positive skewness in early-summer (June 15th – July 15th) for the PNW and along the 
entire West Coast (Figure 2). The long right (hot) tail of the empirical probability density 
function (PDF) associated with positive skewness indicates the potential for larger temperature 
excursions–greater hot deviations from normal–compared to the interior southwest US where the 
skewness is negative and the right (hot) tail of the PDF is actually shortened. (Figure 2). 
Positively skewed Tmax have been widely observed in coastal regions (31). These are attributed to 
the infrequent advection of inland hot air masses that briefly replace the more typical maritime 
airmass that moderate temperatures via sea breezes that spread the influence of cool ocean 
temperatures (31) and associated low clouds onto the coastal margin (32). In the farther inland 
PNW (~100 km from the coast, in the Puget Sound trough and the Willamette Valley), the long 
positive tail of the historical Tmax PDF has been associated with both a failure of maritime 
temperature modulation paired with downslope warming along the western slope of the Cascades 
(10). This historic PNW heat wave exemplified each of these operative but rare conditions in the 
days leading up to and during the 26th-28th of June 2021.  
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Could an alternative statistical analysis of the historical record have better forewarned 
of the possibility for an event akin to the 2021 PNW heat wave? Because daily Tmax at the local 
and regional scale is non-Gaussian across much of North America (16, 31, 33), statistical 
methods must take such non-Gaussianity (14, 26, 34) into account to ensure robust estimation of 
the likelihood for extreme temperature events. Here we apply two parametric statistical methods 
from extreme value theory and describe how the choice of methodology could limit the ability to 
anticipate a record-breaking heat wave, leading to unwarranted surprise when such an event 
arises.  

 
The generalized extreme value (GEV) distribution is a three-parameter (location, scale, 

and shape) distribution used to model the distribution of block-maxima of a random process, in 
this case to seasonal or annual meteorological extremes (3, 35–37). The sign of the shape 
parameter is critical in determining the qualitative nature of extremes. Estimations of the shape 
parameter of the GEV distribution for maximum annual temperatures often yield a negative 
value (3), which implies a strict upper bound on the maximum possible temperature that can 
arise from the upper tail distribution (15). The implication is that the rarity of a single event 
above that bound is, from a frequentist perspective, thought to be not significantly 
distinguishable from zero probability (14). Because of the difficulty in estimating the shape 
parameter the value is sometimes determined from a regional analysis or by assuming a “typical” 
value. The analysis in (3) assumes the shape parameter is -0.2 for the Southwest US overall.  

 
The Generalized Pareto Distribution (GPD), another commonly applied three-parameter 

distribution, is used to directly model the tail distribution by looking only at peak values over a 
given threshold. This approach has the feature of more flexibly capturing the extreme behavior 
of a distribution (22, 38), although it is sensitive to the threshold that is set for the peaks (39). 
Lower thresholds allow for larger samples at the expense of introducing some bias into the 
estimates. Here we use GPD to demonstrate how such an alternate, but justifiable, method to 
GEV could inform estimates of heat wave probability and answer the question of why the PNW 
heat wave was so extreme compared to concurrent extreme heat events across the rest of the 
western US in 2021 (Figure 3), and importantly why the event should not have surprised.  

 
The GEV fit to the Portland annual maximum Tmax data indicates a negative shape 

parameter and zero probability (infinite return period) of the June 28, 2021 event. On the other 
hand, the GPD fit yields a positive shape parameter corresponding to a heavy upper tail and 
finite return periods. For peaks over the 90th percentile threshold the estimated return period is 
337 years, 95% CI [62, 687], and for peaks over the 95th percentile the return period is 1,188 
years, 95% CI [152, 2248]. The uncertainty in the mean return period stemming from different 
but reasonable choices of the threshold is ~ 200 years (Figure 3). Even taking this range of 
estimated return periods into account as some indication of uncertainty, the contrast to the GEV 
estimate is evident with results from the latter all but indicating the 2021 heat wave event could 
not have occurred, echoing the conclusions of (3). Critically, we can see the problematic nature 
of GEV for the analysis of Portland data due to its estimated negative shape parameter and hence 
strict upper bound on the potential maximum daily temperatures beyond which all events are 
considered to have zero probability (Figure 3). Such an event did in fact occur. That GPD 
estimates a non-negligible probability of the event using only prior data offers an obvious 
strength compared to GEV from a risk-management perspective.  
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While in theory GEV and GPD analyses should return the same shape parameter, the use 
of these distributions is strictly justified only in an asymptotic sense: large block size from which 
the maximum is selected for GEV, and high threshold above which peaks are chosen for GPD. 
The limitations of real-world temperature data imply that these functional forms and parametric 
fits will only be approximate. The GEV block size is inherently limited by the choice of summer 
months when annual maxima occur, whereas the GPD threshold is limited by the sample size, 
which in turn is only limited by the period of record. One might conjecture that for annual 
maximum temperature where long records are available, GPD may be a more robust method, 
however more research would be needed to establish this. Instead, we discuss below a third 
approach using stochastic theory, that suggests a heavy tailed GPD may be the appropriate 
functional form for regions of skewed temperature distribution.  

 
Is the PNW, among other possible areas, susceptible to such “surprises” owing to 

inherent physical constraints operating on their local temperature variations? Regional heat 
waves in the PNW have been historically linked to ridges in the 500 hPa heights of the 
atmosphere (10), so we examine the potential for the 2021 event from a dynamical  perspective 
based on assessing atmospheric circulation conditions that accompanied the “heat-dome” of late 
June 2021 (6). We calculated a 500 hPa geopotential height index (GHI) based on the composite 
500 hPa pattern associated with daytime (Tmax) heat waves identified in (14). A comparison of 
this index with daily Tmax at the Portland International Airport reveals the positive correlation 
(Figure 4) for the bulk of the distribution of geopotential heights.  

 
We estimate the “probable extreme” Portland temperature that would be associated with a 

given value of the GHI (Figure 4) by binning geopotential height data and determining the 
highest Tmax observed for each bin in the historical period (1948-2020; excluding the 2021 event) 
(Methods). The linear regression curve of these upper-quantile values of temperature with 
respect to the GHI is plotted in the dark gray line of Fig, 4. This regression analysis demonstrates 
that the extreme value of the GHI in June 2021 provided a physical line of evidence for the risk 
of occurrence of the most extreme heat wave event in Portland in the modern climate. The 95% 
confidence intervals for in-sample uncertainty (shaded grey band) and out-of-sample/prediction 
uncertainty (dashed lines) are also shown. Given our estimated range of the probability of the 
2021 event from the GPD analysis (0.01% - 2%) it is perhaps unsurprising that the most extreme 
day of the heat wave June 28th (46.7°C) falls above our 95% prediction confidence interval.  

 
Splitting the period of record from 1948-2020 into two distinct time periods 1948-1983 

and 1984-2020 (Methods) we find that the central value of the GHI and daily Tmax both shift to 
higher values consistent with estimations of current impacts of anthropogenic climate change. 
Importantly, however, no significant change in the slope of the linear relationship between GHI 
and Portland Tmax is found from the early period to the late period of the historical record (Figure 
4). This indicates that the GHI has comparable predictive power for Portland daytime Tmax 
currently as it did before appreciable global warming occurred. This line of evidence indicates 
that the Portland heat wave was consistent with the historical relationship between atmospheric 
circulation and probable extreme temperatures and was primarily a result of record-breaking 
anomalies in the geopotential heights. The critical importance of anomalous atmospheric 
circulation for the extremeness of this event has been documented in more detail in (40) 

 
The above evidence of a clear role for atmospheric dynamics in the Portland heat wave 

motivates a third line of statistical analysis based on stochastic theory. A stochastically generated 
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skew (SGS) distribution has been developed to explain the full PDF of many atmospheric 
quantities, and is a natural consequence of the quadratic, advective nonlinearities that dominate 
mid-latitude dynamics (26, 34). In the SGS distribution, skewness and heavy (power-law) tails 
are inextricably linked by the dynamics of a multiplicative noise stochastic process. If one 
applies the SGS approach to all daily Tmax for Portland for June 15th to July 15th, the return 
period of 116°F in Portland is 254 years (Methods), qualitatively in line with the GPD central 
estimate of 337 years(41). The SGS distribution has heavy (power-law) tails for parameters 
where the skewness is non-zero. Specifically, both tails of the SGS converge to the GPD with 
positive shape parameters for large extremes (26), providing further support for the GPD 
approach as a more appropriate estimator for these positively skewed regions.  

 
Despite the observed historical and projected future increase in hot extremes across much 

of the western US, the PNW shows no significant increase in the frequency of Tmax heat waves in 
the modern observed record (9, 10, 42). Additionally, there is little evidence for historical 
magnification of the intensity of heat waves (42) or heat stress days (43) over recent decades in 
the PNW. In general terms, small increases to the mean and variance of the distribution of Tmax 
have been shown to significantly increase the probability of temperature extremes (13), but 
evaluation of the observed impact of changes to skewness remains uncertain and regionally 
variable. Nonetheless there is some indication that projected declines in the skewness of the Tmax 
could lead to less intense warm summer anomalies in the PNW (44), while in contrast, regional 
and global climate models suggest that hot extremes have increased in likelihood in the historical 
period across much of the interior western US (45) and will continue to increase as mean global 
temperature rises (46, 47).  

 
For much of the rest of the US, the negative skewness of daily Tmax has been cited as a 

factor that allows for more effective detection of the influence of climate change on the 
frequency of heat waves as mean temperatures warm (16). Conversely, for the PNW and coast 
regions, the positive skewness of daily Tmax would make detection of a climate change signal on 
heat wave frequency more difficult. Whether climate change may affect atmospheric dynamics 
itself and thereby alter heat wave risks, for instance via resonant amplification in 500 hPa height 
anomalies (48–50) is an open question. However, given that our analysis points to an extreme 
circulation anomaly as the primary driver of this event, further investigation of this connection is 
warranted.  

 
4. Conclusions 
 

The June PNW heat wave of 2021 was rare by all accounts. However, multiple lines of 
evidence indicate that the possibility of an event of this magnitude could have been foreseen 
using only data from prior years. The positive skewness of daily Tmax in the PNW informs that 
large excursions in temperature are rare, but possible in this region. This positive skewness has 
been seen in the observational record of coastal regions, but the maritime influence extends 
much farther inland in the PNW, which primes the region for “surprise” extreme temperature 
events. This can be contrasted with regions such as the interior southwest US, where the strong 
negative skewness of the probability distribution of daily Tmax reflects a smaller probability of 
extreme heat wave “surprises”.  
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The regional 500 hPa height anomalies were unprecedented in magnitude during late 
June 2021. However, the circulation regime over the PNW region showed the same spatial 
pattern as other historical heat waves. Given the strong relationship between the height 
anomalies and maximum surface temperatures, one could have anticipated a heat wave of record-
breaking magnitude if one could have foreseen the heights. Indeed, sub-seasonal numerical 
weather prediction models did foresee the late June 2021 circulation pattern(40), and this factor 
was cited by National Weather Service forecasters in the days leading up to the event (51). 

 
Though the positive skewness of the daily Tmax is limited to coastal regions of the 

western US and the extended PNW region, the large population of those regions gives cause for 
further consideration of skewness in the estimation of extreme heat risk. A similar, though less 
extreme, heat wave in 2006 in coastal central California led to a disproportionate number of 
hospitalizations (52) and is indicative of the risk of large and outwardly surprising temperature 
anomalies in these regions. If a record-breaking event as extreme as the 2021 PNW heat wave is 
considered all but “impossible” based on a particular statistical inference, then there is 
diminished potential for effective planning for such an event. Here we have demonstrated that an 
alternative statistical analysis of the historical record could have forewarned of the possibility for 
an event akin to the 2021 PNW heat wave based solely on historical observations. A statistical 
approach that appropriately captures the underlying dynamics–as reflected in the skewness and 
potentially heavy-tailed nature of the distribution–can support a more proactive approach to risk 
management for future extremes.  
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Fig. 1. Daily Tmax from Portland International Airport (GHCN USW00024229) from 1948 
to 2021 for June 15th to July 15th. The larger black points are all of the daily Tmax values from 
2021 with the points for the June PNW heat wave labelled. Transparent gray points are the daily 
Tmax from 1948 to 2021. The yellow, orange, and red colored bands represent one, two and three 
standard deviations from the mean calculated from the daily Tmax from the years 1948-2021. 
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Fig. 2. Skewness of daily Tmax probability distributions from 1948-2020 for June 15th to 
July 15th from GHCN stations that have sufficiently long and continuous records 
(Methods). Each point is a single GHCN station colored by the skewness of the daily Tmax 
temperature distribution. The inset panels highlight two individual stations to demonstrate the 
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shape of distributions with both a positive (Portland International Airport, top inset panel) and 
negative (Albuquerque International Airport, bottom inset panel) Tmax skew. 

 

Fig. 3. Estimation of return period for PNW 2021 heat wave using GEV and GPD. Panel 
(a): Histogram of annual max Tmax from Portland International Airport (GHCN USW00024229) 
from 1948 to 2020 (blue). The solid black curve shows the estimated GEV fit of the annual 
maximum Tmax and the vertical line labelled “Unable to calculate return-period” reflects the 
temperature of the most extreme daily Tmax of the June 2021 PNW heat wave (46.7°C). Panel 
(b): Histogram of daily Tmax from Portland International Airport (GHCN USW00024229) from 
1948 to 2020 for June 15th to July 15th (blue), only showing the data above the 90th percentile 
that was used for the GPD fit. The solid black curve shows the median estimated GPD fit of the 
annual maximum Tmax and the same as in panel (a). The top right inset panel shows the 
histogram of the bootstrap-calculated return periods (10,000 samples) using a 90th percentile 
threshold (green) with the vertical black line showing the median estimated return period (337 
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years). The bottom right inset panel shows the same as the top inset panel using a 95th percentile 
threshold (purple) with a median estimated return period of (1,188 years). 

 

Fig 4. Daily observations of Tmax and 500 hPa geopotential heights from Portland 
International Airport (GHCN USW00024229) from 1948 to 2021 for June 15th to July 15th. 
Observations are split into three groups by year: 1948-1983 (orange), 1984-2020 (green) and 
2021 (red). Points represent daily observations for each group and solid colored lines show the 
linear regression for the entire population of each group with shaded 95% confidence intervals 
about the regression line. Non-parametric kernel density estimations of daily 500 hPa 
geopotential heights and daily Tmax are plotted on the top and right axes respectively. The dark 
gray line shows the linear regression of the binned maximum Tmax (Methods) with shaded 95% 
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confidence intervals for the regression line and dashed lines demonstrating the 95% out-of-
sample confidence interval of the regression. 

 

 

 

 

 

 


