
P
os
te
d
on

20
J
an

20
23

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
27
05
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

How is spatial homogeneity in precipitation extremes changing

globally?

Ankit Ghanghas1, Ashish Sharma2, Sayan Dey1, and Venkatesh Mohan Merwade1

1Purdue University
2University of New South Wales

January 20, 2023

Abstract

The effect of climate change on precipitation intensity is well documented. However, findings regarding changes in spatial

extent of extreme precipitation events are still ambiguous as previous studies focused on particular regions and time domains.

This study addresses this ambiguity by investigating the pattern of changes in the spatial extent of short duration extreme

precipitation events globally. A grid-based indicator termed Spatial-Homogeneity (SH) is proposed and used to assess the

changes of spatial extent in Global Precipitation Measurement (GPM) records. This study shows that i) rising temperature

causes significant shrinking of precipitation extent in tropics, but an expansion of precipitation extent in arid regions, ii) storms

with higher precipitation intensity show a faster decrease in spatial extent, iii) larger spatial extent storms are associated with

higher total precipitable water. Results imply that in a warming climate, tropics may experience severe floods as storms may

become more intense and spatially concentrated.
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Key Points: 13 

• A global trend of moisture accumulation towards the storm center as spatial extent 14 
decreases with a rise in temperatures 15 

• Rising temperature causes significant shrinking of precipitation extent in tropics, but an 16 
expansion in arid regions and central Europe. 17 

• Storms with higher precipitation intensity show a faster decrease in spatial extent. 18 
  19 



manuscript submitted to Geophysical Research Letters 

 

Abstract. 20 

The effect of climate change on precipitation intensity is well documented. However, findings 21 

regarding changes in spatial extent of extreme precipitation events are still ambiguous as 22 

previous studies focused on particular regions and time domains. This study addresses this 23 

ambiguity by investigating the pattern of changes in the spatial extent of short duration extreme 24 

precipitation events globally. A grid-based indicator termed Spatial-Homogeneity (SH) is 25 

proposed and used to assess the changes of spatial extent in Global Precipitation Measurement 26 

(GPM) records. This study shows that i) rising temperature causes significant shrinking of 27 

precipitation extent in tropics, but an expansion of precipitation extent in arid regions, ii) storms 28 

with higher precipitation intensity show a faster decrease in spatial extent, iii) larger spatial 29 

extent storms are associated with higher total precipitable water. Results imply that in a warming 30 

climate, tropics may experience severe floods as storms may become more intense and spatially 31 

concentrated. 32 

 33 

Plain Language Summary. 34 

Variation in extreme precipitation patterns can significantly impact flood risk, ecology as well as 35 

the efficacy of water supply and management strategies. With a changing climate, there is an 36 

overarching need to understand how alterations in climate changes precipitation patterns, 37 

particularly those corresponding to extreme precipitation events. Analyzing the intensity (amount 38 

of rainfall/hour) of precipitation, spatial extent of the precipitation event, duration of the 39 

precipitation event and total volume of precipitated water are key to understanding these extreme 40 

precipitation events. There is a clear consensus among the scientific community that higher 41 

temperatures result in more intense precipitation events, but the effect of temperature on spatial 42 

extent is still debated. This study uses a new Spatial-Homogeneity metric to analyse the global 43 

changes in spatial extent of extreme precipitation storms. The study finds that a higher 44 

temperature results in smaller size extreme storms in the tropics, but larger size storms in the arid 45 

regions. It is also observed that more intense precipitation events have smaller spatial extent, 46 

implying that rising temperatures will result in spatially smaller and more intense extreme 47 

precipitation storms. 48 

 49 
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1 Introduction 50 

The devastation from flash floods particularly in rapidly urbanizing environments is well 51 

documented, as intense precipitation storms can quickly turn into walls of water in highly 52 

impervious areas (Hapuarachchi et al., 2011). One of the greatest challenges to understanding 53 

flash floods is to understand the spatial and temporal distribution of precipitation, particularly of 54 

intense short period precipitation bursts (Archer & Fowler, 2018; Kelsch Matthew and Caporali, 55 

2001). Knowledge of how such patterns change with time or with the intensity of the 56 

precipitation experienced, is of considerable use in designing effective stormwater systems and 57 

preparing for changes in climate. 58 

 59 

The variation of extreme-precipitation intensity with temperature is well documented, 60 

underpinning the understanding of how extreme precipitation patterns might change in future 61 

(Hardwick Jones et al., 2010; Lenderink et al., 2011; Lenderink & van Meijgaard, 2008; Mishra 62 

et al., 2012; Utsumi et al., 2011; Westra et al., 2014). It is generally accepted that in a warming 63 

climate the intensity of an extreme precipitation will increase because precipitation depends on 64 

the atmospheric water content which increases exponentially with temperature, as governed by 65 

the Clausius-Clapeyron(C-C) relationship (Roderick et al., 2019, 2020; Trenberth et al., 2003; 66 

Visser et al., 2021).While global daily precipitation exhibits a sensitivity (or scaling) of around 67 

6-7%/°C (C-C rate) with rise in temperature (Kharin et al., 2013; Pall et al., 2007; Tebaldi et al., 68 

2006), short duration (sub-daily and sub-hourly) precipitation storms are observed to scale at 69 

rates ranging from C-C to 2 C-C (called super C-C scaling) (Berg et al., 2013; Hardwick Jones et 70 

al., 2010; Lenderink et al., 2017; Lenderink & van Meijgaard, 2008; Mishra et al., 2012; Westra 71 

et al., 2014). This super C-C scaling is hypothesized to be a result of change in storm dynamics, 72 

particularly the morphing of the storm extent and underlying structure (Collins et al., 2013; 73 

Lenderink & van Meijgaard, 2008). 74 

 75 

Unlike the general acceptance of variation in intensity, the variation in the spatial extent of short 76 

duration storms is still debated with two contrasting hypotheses. The first hypothesis suggests a 77 

decreasing spatial extent with rising temperature due to dynamic factors dominating the storm 78 

dynamics, thereby redistributing the moisture towards the center (Figure 1a) (Wasko et al., 79 
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2016). The second, contrasting, hypothesis, suggests that if the thermodynamic factors dominate, 80 

rising temperature would result in increasing spatial extent owing to stronger cloud dynamics 81 

and larger shower clusters which will bring more moisture from larger areas (Lochbihler et al., 82 

2017). Findings from numerous studies analyzing the effect of temperature on spatial extent 83 

support the decreasing spatial extent hypothesis (Chang et al., 2016; Guinard et al., 2015; Han et 84 

al., 2020; J. Li et al., 2018; Peleg et al., 2018; Wasko et al., 2016), and several other support the 85 

increasing spatial extent hypothesis  (Bevacqua et al., 2021; Chen et al., 2021; Lochbihler et al., 86 

2017; Matte et al., 2022), while some others present no effect of temperature on spatial extent 87 

(Manola et al., 2018). However, most past studies have focused on specific regions, or on certain 88 

types of storms, or at daily precipitation extremes rather than short duration storms.  89 

 90 

To address the ambiguity of whether short duration precipitation extents are expanding or 91 

shrinking with rising temperature, this study investigates the global patterns of change in spatial 92 

extent. This study proposes a novel metric to quantify grid-homogeneity termed Spatial-93 

Homogeneity (SH) to compare the changes in spatial extent of extreme storms with different 94 

intensity and at different locations. The spatial-homogeneity metric can be used for radar as well 95 

as satellite measurements and is applicable for both short and long duration precipitation 96 

extremes. The study first investigates the global variability in spatial extent of short duration 97 

extreme storms in the recent past. Subsequently the relationship between temperature and spatial 98 

extent is examined. Finally, the study explores how total precipitable water, warm versus cold 99 

years and wet versus dry years impact the spatial extent.  100 

 101 

Even though the satellite products are known to underestimate rainfall rates for deep convective 102 

systems (Adhikari et al., 2019; Dinku et al., 2010; Duan et al., 2015; Kucera & Klepp, 2022; R. 103 

Li et al., 2021), their high spatio-temporal resolution and global coverage make them useful in 104 

assessing change in the spatial extent of precipitation. Therefore, to have an acceptable global 105 

resolution, this study adopts satellite data products instead of the sparsely gauged ground 106 

observations available to represent variability in spatial extent across the world and to infer 107 

changes in this variability with local climatic variables including temperature, precipitation 108 

intensity and total precipitable water. 109 
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 110 

2 Data and Methods 111 

The Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) 112 

(version 6) dataset provides continuous records of satellite precipitation observation from 2000 - 113 

present, as the IMERG algorithm combines the early precipitation estimates from Tropical 114 

Rainfall Monitoring Mission (TRMM) (2000-2015) with the more recent precipitation estimates 115 

from Global Precipitation Measurement (GPM) (2014-present) (Huffman et al., 2020). However, 116 

to maintain the homogeneity of records only GPM IMERG estimates from 2014 to 2022 are used 117 

in this study. Due to the focus of this study on spatial extent of instantaneous/extreme 118 

precipitation bursts, analysis is performed on IMERG’s high spatial and temporal resolution 119 

3IMERGHH (version 6) (Huffman et al., 2020) product available at 0.1° X 0.1° spatial 120 

resolution and 30 minute time step. Earth ReAnalysis (ERA5), produced by European Center for 121 

Medium-Range Weather Forecasts (ECMWF), provides global reanalysis data for both 122 

temperature and moisture (Hersbach et al., 2020). ERA5 combines historical observations with 123 

the Integrated Forecasting System (IFS) Cy41r2 model to produce hourly outputs of numerous 124 

atmospheric, land and oceanic climate variables. Hourly Integrated Water Vapor (IWV) or Total 125 

Column Water Vapor (TCWV) at 0.25° X 0.25° spatial resolution is used in this study. Hourly 126 

2m surface air temperature at 0.1° X 0.1° spatial resolution are obtained from the land 127 

component of ERA5, the ERA5-Land dataset (Muñoz-Sabater et al., 2021). 128 

 129 

To analyze the spatial extent of extreme precipitation events, independent storm fields must be 130 

identified. In this study, a storm field is defined by considering a grid cell with extreme 131 

precipitation and its eight neighboring cells such that the center pixel corresponds to the center of 132 

the storm and receives more precipitation than the neighboring cells. To identify independent 133 

storm fields, the top ten Annual Maximum Precipitation (AMP) events at each grid cell of the 134 

GPM dataset are estimated for each year in the dataset. Further, for each grid cell, the 135 

precipitation for the eight neighboring cells surrounding the central precipitation event is 136 

extracted for the same time of occurrence as the central extreme precipitation event and 137 

compared to the center cell. If, for instance, the AMP event at the center cell has the same or 138 

lower precipitation than one of its eight neighbors, then the next maximum event (out of the top 139 
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ten annual maximum events) is considered and compared with neighboring precipitation at the 140 

time of its occurrence. The validity of independent storm field is enforced by choosing only the 141 

maximum event out of the top ten maximum events which has greatest intensity at the center cell 142 

than its neighbors.  143 

 144 

A new metric, “Spatial Homogeneity” denoted SH, is proposed to investigate and compare the 145 

changes in spatial extent of varying intensity extreme storms and at different locations. To 146 

understand the homogeneity metric for an extreme storm, precipitation for all the cells in the 147 

storm field is sorted in descending order of its intensity and a cumulative normalization 148 

performed. Consider the precipitation in descending order is represented as P0, P1, P2, P3, P4, P5, 149 P6, P7, P8 where in P0 is maximum precipitation and lies at the center of the storm field. The 150 

study ascertains the spatially accumulated precipitation average as P0/1, (P0+P1)/2, 151 (P0+P1+P2)/3, … , (P0+P1+P2+P3+P4+P5+P6+P7+P8)/9. Here the last term represents 152 

average precipitation for the entire grid for the extreme storm event considered. These values are 153 

then plotted against the number of grid points considered in formulating the accumulated spatial 154 

average.  The above accumulated precipitation distribution can be compared to the case where all 155 

neighbors have zero precipitation and only the center point received precipitation. In this 156 

scenario, the accumulated rainfall plot would represent P0/1, (P0)/2, (P0)/3 …… (P0)/9 against 157 

the number of grid points associated. The other comparison represented the case where all grid 158 

points receive the same amount of precipitation say P0, resulting in a constant value (P0) being 159 

depicted against the number of grid cells. An assessment of the spatial distribution of each storm 160 

is then formulated by noting how strongly the actual extreme event deviated from the two 161 

extreme cases considered. This assessment is depicted in Figure 1b giving an overview of the 162 

methodology adopted in assessing the spatial structure of the extreme precipitation event 163 

surrounding the central grid cell. The Spatial Homogeneity metric SH calculated using Equation 164 

1 is used to ascertain the spatial homogeneity or inhomogeneity of the extreme storm field. 165 

 𝑆𝐻 =  𝑎𝑎 + 𝑏 = 19 × ∑ 𝑃௜௜଼ୀ଴ − 𝑃଴9𝑃଴ − 𝑃଴9  (1) 
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 166 

The Spatial Homogeneity metric allows a comparison of the extreme storm from a fully uniform 167 

case to a case where an isolated extreme falls at the center of the grid. If a warmer future creates 168 

more isolated and convective rainfall events, the above metric will collapse to zero. If the 169 

opposite were to occur (more uniform rainfall extremes) the metric will assume a value of one. 170 

The increasing convection hypothesis outlined above is depicted in Figure 1a. The SH metric 171 

allows assessment of spatial distribution of extreme precipitation events without focusing on the 172 

intensity of the event as well as assessment of the spatial distribution of extreme events across 173 

the world. 174 

A sensitivity assessment of SH with associated temperature is performed using quantile 175 

regression with a focus on the median (50th percentile). The resulting regression coefficient is 176 

referred to as “sensitivity” in the remainder of this paper. The quantile regression sensitivity 177 

estimator by Wasko & Sharma (2014) has been adopted in this study. As only annual maximum 178 

precipitation (AMP) events are considered, the assessment results presented focus on the 50th 179 

percentile (median) instead of rarer percentiles. Details of the sensitivity estimation procedure, 180 

Figure 1. a) Depiction of increasing convection hypothesis, an increase in temperature results in higher 
intensity and redistribution of moisture towards storm center. Blue indicates lower temperature and red 

indicates higher temperature. Three-dimensional curves are also presented to emphasize the hypothesis. b) 
Representation of the SH methodology. Nine boxes represent the eight neighbors around the highest intensity 

center. The intensity of grey in each box indicates the intensity of rainfall at that grid.  
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its sensitivity to computational needs, and its motivation in the context of identifying trends in a 181 

highly variable response, are presented in Wasko & Sharma (2014) and Sharma et al. (2018).  182 

3 Results 183 

3.1.Changes in of Spatial Homogeneity (Spatial Extent) in recent past 184 

The Spatial-Homogeneity metric does not give a quantitative estimate of the exact spatial extent 185 

of the storm, but it is a quick and resourceful method to track the changes in spatial extent of 186 

storm. The SH-metric can also be used to understand the geographic distribution of spatial extent 187 

across the globe. The average SH-metric for AMP 30-min storms (Figure S1 in supporting 188 

information) shows smaller storm extents in tropics and mountainous regions. This is coherent 189 

with the findings of Tan et al. (2021), which concluded that extreme storms in tropics are 190 

typically smaller than those in northern and southern temperate regions.  191 

  192 

Figure 2 presents the average change in SH between 2014 to 2021 with reference to the 2014 SH. 193 

A running median of 4°X4° grid has been used to smooth out the variability. The changes in SH 194 

from year to year are presented in Figure S2 in supporting information. The spatial extent of 195 

storms in the equatorial regions between 20° N and 20° S has increased homogenously over the 196 

years. The equator observes a significant and spatially consistent increase in spatial extent of 197 

storms. On the other hand, regions north of 30° N and south of 30° S have experienced spatially 198 

smaller storms in the recent years. The change of storm extent in these regions are inconsistent 199 

and sporadic increase in storm size can also be observed. Storms in the Arabian Peninsula, some 200 

parts of Africa near Mozambique and Madagascar, Mexico and parts of South America near Peru 201 

and Bolivia have consistently and significantly increased over the recent years. Contrasting 202 

results are observed in Northwest Africa around Morocco and Western Sahara, southern 203 

Argentina (Patagonian Dessert), and southern Australia, where storm sizes have consistently and 204 

significantly decreased in the immediate past.   205 
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 206 

Figure 2. A 4°X4° median of Average Change in SH between 2014 to 2021 with reference to 207 

2014 SH. Decrease in SH (spatial extent) is shown in red and increase in SH (spatial extent) is 208 

shown in blue. Boxes highlight regions with significant SH change, red box highlight decrease 209 

and blue-dashed box highlight increase. 210 

 211 

3.2. Sensitivity of Spatial Homogeneity (Spatial Extent) to temperature. 212 

To comprehensively understand the effect of local climate and atmosphere on the spatial extent 213 

of extreme storms, a sensitivity analysis of spatial extent with temperature, intensity of 214 

precipitation and total column water vapor is performed. Sensitivity of spatial extent with 215 

instantaneous temperature is presented in Figure 3. A 1°X1° moving median is applied to smooth 216 

out the variability. ERA5-land provides hourly temperature data, but GPM  provides 30-min 217 

precipitation so the instantaneous temperature here refers to the temperature at the time of the 218 

storm or in the hour before the storm. It is evident from the study that the tropical regions 219 
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dominated by convective precipitation have strong negative relation between spatial extent and 220 

instantaneous temperature. This implies that as temperature rises, the convective storms in 221 

tropics shrink in size and the moisture concentrates at the center. Parts of the Amazon and 222 

Indonesian Tropical Regions observe 4-5%/°C reduction in spatial extent. On the other hand, the 223 

arid regions particularly Eastern Sahara, the Thar desert in India, Southern Arabian Peninsula, 224 

Gobi Desert and Western Coast of United States show positive sensitivity and will observe 225 

spatially larger storms with the warming climate. The northern and southern temperate regions 226 

generally present slight positive sensitivity of spatial extent with temperature with slightly 227 

negative sensitivity seen in central and northern Europe (0.1-1%/°C), southern New Zealand and 228 

Southern Argentina (Patagonian Dessert) (0.1-1.5%/°C).  229 

 230 

This study uses instantaneous temperature rather than widely used mean daily temperature 231 

(Lenderink & van Meijgaard, 2008) because in case of convective storms, particularly in the 232 

tropics, temperature tends to drop at the advent of the storm and using daily temperature for 233 

sensitivity will result in inaccurate conclusions (Ali et al., 2018; Ali & Mishra, 2017). On 234 

comparing the results of Figure S3 and Figure 3, it is evident that the impact of using daily 235 

versus instantaneous temperature is concentrated in the equatorial regions. (Figure S3 in 236 

supporting information presents the sensitivity of spatial extent with mean daily temperature). 237 

Moreover, the sensitivity of spatial extent with instantaneous temperature is consistent and is 238 

conformable to the recommendations by (Visser et al., 2020). 239 

 240 

The results from this study are coherent with the findings from both Wasko et al. (2016) and 241 

Lochbihler et al. (2017) which published contrasting results. While Wasko et al. (2016) 242 

concluded a reduction in spatial extents in Australia, Lochbihler et al. (2017) concluded an 243 

increase in spatial extent in Netherlands. This study finds that both the findings are accurate and 244 

the behavior of spatial extent with temperature is indeed dependent on the geographic location 245 

and the local climate. 246 

 247 
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 Figure 3. 1°X1° median of 50th percentile quantile regression of SH with instantaneous 248 

temperature. Negative sensitivity (decrease in SH with rising temperatures) is shown in red and 249 

Positive sensitivity (increase in SH with rising temperature) is shown in blue. Blue boxes 250 

highlight regions with negative sensitivity. 251 

 252 

3.3. Effect of local climate on Spatial Homogeneity (Spatial Extent). 253 

To assess the impact of local climate on SH, variation of the difference in SH associated with: 254 

maximum and minimum intensity storm (Figure 4a), maximum total column water vapor and 255 

minimum total column water vapor (Figure 4b), wettest and driest year storm (Figure 4c), and 256 

warmest and coldest year storm (Figure 4d) is mapped. At any location, the annual maxima 257 

storm with maximum precipitation intensity / maximum accumulated total column water vapor 258 

in 24hr prior to the storm is compared to the annual storm with minimum precipitation intensity / 259 

minimum accumulated total column water vapor in 24hr prior to the storm. Among the 2014-260 

2021 period, the wettest and driest years at any location are estimated by comparing the total 261 
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annual precipitation, and warmest and coldest year are estimated by comparing the mean annual 262 

temperature.  263 

 264 

Figure 4. Change in SH when comparing SH corresponding to (a) Maximum vs Minimum 265 

Intensity storms, (b) Maximum vs Minimum Total Column Water Vapor Storms, (c) Wettest vs 266 

Driest Year storms and (d) Warmest vs Coldest Storms. Red indicates decrease in SH and blue 267 

indicates increase in SH 268 

The overall trend indicates that globally a rise in intensity of storms leads to a lower spatial 269 

extent (Figure 4a). A larger spatial extent for more intense storms is observed in Sahara, Arabian 270 

Peninsula, Central Russia, and southern Argentina (Patagonian Dessert). The overall global trend 271 

corroborates with the findings by Wasko et al. (2016) for Australia (extended here to a global 272 

scale) that the moisture is being redistributed from storm boundaries to the storm center. The 273 

findings from Figure 4a and Figure 3 support the hypothesis presented in Figure 1a implying that 274 

a rise in temperature will result in more intense and spatially concentrated extreme storm bursts. 275 

Moreover, the findings by Lochbihler et al. (2017) are also corroborated in Arid Regions around 276 
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the world. On the other hand, total column water vapor (TCWV) has an overall reinforcing 277 

relation with the SH. A rise in TCWV results in greater SH implying that at most locations, with 278 

exceptions of Eastern US and around central Russia, spatially larger storms are associated with 279 

higher TCWV (Figure 4b). The effect of total annual precipitation is regionally distinct as 280 

Sahara, Arabian Peninsula, India, Central Asia and Europe have larger spatial extent storms in 281 

wetter years. On the other hand, drier years observe larger spatial extent storms in tropical 282 

regions in Southern America, Africa, South East Asia and Northern and Western Australia. 283 

(Figure 4c). Mean annual temperature does not have a overall strong impact on SH globally and 284 

difference in SH is evenly distributed with least variance among all the variables (Figure 4d). 285 

The study here presents a preliminary analysis of the impact of local climate variables on change 286 

in spatial extent and a more extensive analysis may result in significant regional trends. 287 

 288 

4. Discussion  289 

 290 

While the data length used in the study is shorter than that used for point-based studies of spatial 291 

extent done in the past, it is interesting to note that the same conclusions are drawn from short 292 

time period as the conclusions from longer duration time period (Figure S4 in supplementary 293 

information provides sensitivity of SH with temperature for a time period of 2005-2021). 294 

 295 

The study uses 9 grid cells (3x3 grid) to define the storm field and estimate SH. This 9-cell grid 296 

structure implies that the storm field extends over 30x30 km which will be smaller than that 297 

observed for daily storms, but it is sufficient for short duration (30 min) precipitation extremes. It 298 

is noteworthy that using a larger size storm field (25 neighboring grid cells or more) 299 

quantitatively changes the overall SH for short duration storms (Figure S5 (b)) however, using a 300 

larger storm field does not alter the patterns for change in SH. The overall conclusions regarding 301 

sensitivity of spatial extent (SH) with temperature and other parameters remain the same whether 302 

using 9-cell storm field or 25-cell storm field (Figure S6).  303 

 304 

These short duration storm systems are susceptible to presence of zero precipitation cells in the 305 

storm field thus presenting larger inhomogeneity and less linearity in spatially accumulated 306 

average precipitation. Although, the formulation of SH metric uses linear proportionality to 307 
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estimate the spatial homogeneity, a sensitivity analysis using non-linear proportionality to 308 

calculate SH does not significantly alter SH estimates. This establishes that linear proportionality 309 

can capture the spatial homogeneity even for short duration storms. It is also noteworthy that the 310 

zero-precipitation cells primarily affect SH for precipitation sparse arid regions (Figure S5(a)) 311 

which are hotspots for increasing spatial extent with temperature. 312 

 313 

5. Conclusions 314 

 315 

There is clear understanding that intensity of extreme storms will increase with increase in 316 

temperature but the studies on the spatial organization of storms have been conflicting. Use of 317 

daily average temperatures instead of sub-daily temperatures, focus on specific regions, or on 318 

certain type of storms, or at daily precipitation extremes rather than short duration storms; 319 

contributed to conflicting results in previous studies. The results of this study show that the 320 

geographic location and the local climate play a crucial role in how moisture is being distributed 321 

around a storm, particularly for short duration extreme storms. The following conclusions are 322 

drawn from this study:  323 

1. Spatial extent of short duration precipitation extremes has increased in the equatorial 324 

tropics and decreased in the northern and southern temperate in the recent past. However, 325 

sensitivity of spatial extent with temperature has contrasting results. 326 

2. An overall global trend of moisture accumulation towards the storm center as spatial 327 

extent decreases with a rise in temperatures. 328 

3. Spatial extent of storms in arid regions (excluding Australia) and parts of central Europe 329 

tends to increase with increasing temperature. 330 

 331 

Some other conclusions from the preliminary analysis with local climate variables can also be 332 

made. Higher intensity storms typically result in lower spatial extent storms. Furthermore, the 333 

study finds that spatially larger storms are globally associated with higher total precipitable 334 

water. Wet years in Sahara, Arabian Peninsula, India, Central Asia and Europe have larger 335 

spatial extent storms whereas dry years observe larger spatial extent storms in tropical regions in 336 

Southern America, Africa, Southeast Asia, Northern and Western Australia. Warm vs Cold year 337 
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do not have a consistent impact on spatial extent, although a more regressive analysis will result 338 

in concrete conclusions. 339 

 340 

These results along with previous understanding that intensity of extreme storms increase in 341 

warmer climate, have significant implications as short duration extreme storms in warmer 342 

climate will be more intense and concentrated. If these trends of spatial extent continue as the 343 

global temperature rise, the tropics may experience intense and concentrated storms which may 344 

lead to severe floods. 345 

 346 

Future studies may focus on analyzing if similar patterns on change in spatial extent (spatial 347 

homogeneity) are observed for longer duration storms. This study concludes that short (sub-348 

hourly) extreme storms show significant change alteration in spatial extent, however the change 349 

in spatial extent may not be equally conspicuous for longer duration storms. This is routed in the 350 

fact that super CC scaling is observed for shorter (sub-hourly, hourly, sub-daily) duration storms 351 

and becomes less prominent as the duration of storm increases.  352 

 353 

Data Availability Statement 354 

 355 

All observational datasets and model simulations used in this study are publicly available. ERA5 356 

and ERA5-Land are available from the European Centre for Medium-Range Weather Forecasts’ 357 

(ECMWF) Copernicus Climate Change Service (C3S) Climate Date Store at 358 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview and 359 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview. 360 

GPM IMERG data are available at https://gpm.nasa.gov/data.   361 

  362 
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