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Abstract

Rock glaciers manifest the creep of mountain permafrost occurring in the past or at present. Their presence and dynamics are

indicators of permafrost distribution and changes in response to climate forcing. Knowledge of rock glaciers is completely lacking

in the West Kunlun, one of the driest mountain ranges in Asia, where widespread permafrost is rapidly warming. In this study,

we first mapped and quantified the kinematics of active rock glaciers based on satellite Interferometric Synthetic Aperture Radar

(InSAR) and Google Earth images. Then we trained DeepLabv3+, a deep learning network for semantic image segmentation,

to automate the mapping task. The well-trained model was applied for a region-wide, extensive delineation of rock glaciers from

Sentinel-2 images to map the landforms that were previously missed due to the limitations of the InSAR-based identification.

Finally, we mapped 413 rock glaciers across the West Kunlun: 290 of them were active rock glaciers mapped manually based on

InSAR and 123 of them were newly identified and outlined by deep learning. The rock glaciers are categorized by their spatial

connection to the upslope geomorphic units. All the rock glaciers are located at altitudes between 3,389 m and 5,541 m with

an average size of 0.26 km2 and a mean slope angle of 17°. The mean and maximum surface downslope velocities of the active

ones are 24 cm yr-1 and 127 cm yr-1, respectively. Characteristics of the rock glaciers of different categories hold implications

on the interactions between glacial and periglacial processes in the West Kunlun.
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Key Points:

• A combined use of deep learning and InSAR automates mapping rock glaciers at the regional scale
• We compile the first rock glacier inventory in West Kunlun with kinematic and geomorphic information

documented
• Geomorphologic characteristics of rock glaciers provide insights on the glacial and periglacial processes

and interactions in West Kunlun

Abstract

Rock glaciers manifest the creep of mountain permafrost occurring in the past or at present. Their presence
and dynamics are indicators of permafrost distribution and changes in response to climate forcing. Knowledge
of rock glaciers is completely lacking in the West Kunlun, one of the driest mountain ranges in Asia, where
widespread permafrost is rapidly warming. In this study, we first mapped and quantified the kinematics
of active rock glaciers based on satellite Interferometric Synthetic Aperture Radar (InSAR) and Google
Earth images. Then we trained DeepLabv3+, a deep learning network for semantic image segmentation, to
automate the mapping task. The well-trained model was applied for a region-wide, extensive delineation of
rock glaciers from Sentinel-2 images to map the landforms that were previously missed due to the limitations
of the InSAR-based identification. Finally, we mapped 413 rock glaciers across the West Kunlun: 290 of
them were active rock glaciers mapped manually based on InSAR and 123 of them were newly identified
and outlined by deep learning. The rock glaciers are categorized by their spatial connection to the upslope
geomorphic units. All the rock glaciers are located at altitudes between 3,389 m and 5,541 m with an average
size of 0.26 km2 and a mean slope angle of 17°. The mean and maximum surface downslope velocities of
the active ones are 24 cm yr-1 and 127 cm yr-1, respectively. Characteristics of the rock glaciers of different
categories hold implications on the interactions between glacial and periglacial processes in the West Kunlun.

Plain Language Summary

Rock glaciers are debris-ice landforms and indicators of the status of perennially frozen ground, as known
as permafrost, which is warming and thawing under climate change. The West Kunlun is among the driest
mountain ranges in Asia where permafrost has been changing over the past decades and the information
of rock glaciers is completely lacking. In this paper, we developed an effective workflow for mapping rock
glaciers in a semi-automated manner and characterized their geomorphology and kinematics. The compiled
dataset allows further investigation on rock glaciers for multiple scientific motivations such as geohazard
management, water resource assessment, and permafrost change monitoring. The documented geomorphic
characteristics provide insights into the genesis and evolution of rock glaciers in the arid mountains.

1 Introduction

Rock glaciers are debris-ice landforms widely distributed in areas of mountain permafrost globally (Ballantyne
2018). Rock glaciers have drawn a lot of research interest since their first identification at the beginning of
the 20th century (Capps 1910), because they serve as visible indicators for alpine permafrost which is
defined by its underground temperature and has been warming and undergoing degradation (Barsch 1996;
Biskaborn et al. 2019). Inventorying rock glaciers is therefore motivated by producing baseline knowledge
for addressing various scientific questions associated with alpine permafrost, such as indicating permafrost
occurrence through the rock glacier distribution, characterizing permafrost changes in the warming climate,
and assessing the future hydrological significance of rock glaciers. Several studies have revealed that multi-
annual acceleration of rock glaciers is synchronous with the rise of air and ground temperatures (Haeberli
et al. 2006; Delaloye et al. 2010; Delaloye et al. 2013; Sorg et al. 2015; Marcer et al. 2021), and their short-
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term velocity variations are sensitive to the pore pressure in the shear horizon which is adjusted by the
precipitation and snow melt conditions (Ikeda et al. 2008; Müller et al. 2016; Wirz et al. 2016; Cicoira et
al. 2019a; Cicoira et al. 2019b; Kenner et al. 2019). Hence rock glacier inventories are valuable databases
for studying how climatic factors cause permafrost changes manifesting in landform kinematics which can
be quantified continuously and remotely. Moreover, rock glaciers can contain massive amounts of ground ice
and contribute significantly to hydrological systems in some catchments, such as the Andes, Himalayas, and
Sierra Nevada (Azócar and Brenning 2010; Millar et al. 2013; Geiger et al. 2014; Jones et al. 2018; Schaffer
et al. 2019; Jones et al. 2021). A comprehensive inventory of rock glaciers lays the foundation for estimating
the potential water storage and evaluating their future role in maintaining water supplies.

Numerous efforts have been put into inventorying rock glaciers in various mountain ranges worldwide in the
past several decades, such as in Central Europe (Chueca 1992; Roer and Nyenhuis 2007; Scotti et al. 2013;
Onaca et al. 2017), South America (Brenning 2005; Falaschi et al. 2014; Rangecroft et al. 2014; Villarroel
et al. 2018), and North America (Ellis and Calkin 1979; Janke 2007; Millar and Westfall 2008; Liu et al.
2013). Rock glaciers are abundant in mountainous western China where a vast area of alpine permafrost is
underlying and undergoing accelerated degradation in response to the warming climate (Yang et al. 2010;
Cheng et al. 2019; Yang et al. 2019; Yao et al. 2019; Zhao and Sheng 2019; Ni et al. 2020; Zhao et al.
2020; IPCC 2021). However, few regional-scale inventories of rock glaciers have been compiled until recently
(Schmid et al. 2015; Wang et al. 2017; Ran and Liu 2018), which hinders rock glaciers functioning as a
permafrost indicator. Such lack of knowledge is attributed to the following reasons: (1) rock glaciers in
western China are mostly situated in remote and harsh environment where early in situ investigations are
scarce and limited to case studies or small catchment-scale research (e.g., Cui 1985; Cui and Zhu 1988; Zhu
et al. 1996; Harris et al. 1998); (2) mapping rock glaciers conventionally relies on manually detecting and
outlining the landforms from optical images (Schmid et al. 2015), which is labor-intensive to apply to large
permafrost region (e.g., West Kunlun Mountains) following an exhaustive strategy; (3) contentious opinions
of identifying rock glaciers exist due to the complexity of the landforms (Harris et al. 1998; Berthling 2011;
Hu et al. 2021), which obscures the definition of rock glaciers and makes it challenging to recognize the
landforms.

To address these problems, recent research progress in compiling rock glacier inventories includes (1) inte-
grating InSAR techniques to facilitate active rock glacier identification and kinematics quantification (e.g.,
Liu et al. 2013; Barboux et al. 2014; Wang et al. 2017; Cai et al. 2021; Reinosch et al. 2021; Zhang et al.
2021); (2) implementing Convolutional Neural Networks (CNN) to demonstrate the feasibility of automating
rock glacier delineation (Robson et al. 2020) or to improve the consistency of existing rock glacier inventories
(Erharter et al. 2022); and (3) establishing widely accepted inventorying guidelines by the international rock
glacier research community (RGIK, 2021).

Here we combine the InSAR technique and a state-of-the-art deep learning network, namely DeepLabv3+
(Chen et al. 2018), to map rock glaciers across the West Kunlun Mountains of China where widespread
permafrost is warming (Li 1986; Cheng et al. 2019), and knowledge of rock glaciers is completely lacking.
Manual delineation of rock glaciers based on InSAR and high-resolution optical imagery in this study is
guided by the baseline concepts proposed by the International Permafrost Association (IPA) Action Group
on rock glaciers to ensure a standard high-quality dataset utilized to train the deep learning network, and
thus, the final mapping results (RGIK, 2021). We adopted the deep learning method to improve the mapping
efficiency by automating the identification and delineation tasks, and more importantly, to generate a more
comprehensive geodatabase by overcoming the limitations of InSAR-based method (Cai et al., 2021).

This study aims to develop an automated approach to map rock glaciers on a regional scale in western
China, i.e., the West Kunlun Mountains. By producing the first automatically mapped inventory at the
mountain-range scale, we demonstrate the effectiveness of using a deep-learning-based method to delineate
rock glaciers in a consistent manner across the vast study area. We provide essential attributes to the mapped
landforms according to the inventorying guidelines. We also conduct statistical analyses to summarize the
spatial distribution and geomorphologic characteristics of the mapped rock glaciers. The compiled inventory
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will provide baseline knowledge for conducting long-term studies of rock glaciers and permafrost in a changing
climate.

2 Study area

The West Kunlun is a major mountain range situated in the northwest of Tibetan Plateau, extending ˜800
km from the eastern margin of Pamir Plateau to the Keriya Pass of Kunlun Mountains, with a total study
area of ˜124,000 km2(74–81.5°E, 35–39.5°N) (Figure 1). The elevation of the study region ranges between
3,000 m and 7,500 m.

Across the vast study area, a cold desert climate (Köppen climate classification BWk) is dominant (Peel et
al. 2007). Climatic conditions of the western part are revealed by the record of the nearest meteorological
station in Tashikurgan (75.23°E, 37.77°N; 3090 m a.s.l.) during 1957–2017: the mean annual air tempera-
ture (MAAT) and mean annual accumulated precipitation are 4.2°C and 51 mm, respectively (data source:
China Meteorological Administration,http://data.cma.cn/ ). The study area has been warming at a rate of
˜0.033°C/yr during the past six decades, similar to the average warming rate (0.031°C/yr) across the entire
plateau (Zhang et al. 2020). In the eastern part, the MAAT is -6 °C and the annual precipitation is 103.3
mm, as reported by the Tianshuihai meteorological station (79.55°E, 35.36°N; 4844 m a.s.l) from 2015 to
2018 (Zhao et al. 2021).

The easternmost part of the study region is overlapped with the West Kunlun permafrost survey area (78.8–
81.4°E, 34.5–36.0°N; 4,200–6,100 m a.s.l.) established by the Cryosphere Research Station (CRS) on the
Qinghai-Tibet Plateau, Chinese Academy of Sciences, where in situ observations are available to represent
the state of permafrost in the West Kunlun. Ice-rich permafrost is widely distributed in the survey area
(Zhao and Sheng, 2019). The mean annual ground temperature (MAGT) is higher than -2.7°C as revealed
by borehole measurements and permafrost was warming at an average rate of 0.11°C/10 yr from 2010 to 2017
(Cheng et al. 2019; Zhao and Sheng, 2019). The lowest altitudinal limit of permafrost occurrence is between
4,650 m and 4,800 m depending on different slope aspects according to previous field surveys focusing on a
subregion of the West Kunlun (Li et al. 2012).

4
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Figure 1 . (a) Distribution of the mapped rock glaciers in the West Kunlun. The red dots are manually
mapped rock glaciers (290 in total), and the yellow dots represent newly identified rock glaciers by our
deep learning method but were missed in the InSAR-based sub-dataset (123 in total). The background is a
topographical map showing the ground coverage of ALOS-1 PALSAR data used in this study (dashed black
box), with the path number of each ground track labelled aside. The dashed blue and orange boxes show the
extents of the CRS permafrost survey region (Zhao and Sheng 2019), and the previous in situ investigation
area (Li et al. 2012), respectively. The blue and purple stars denote the location of the Tashikurgan and
Tianshuihai meteorological stations, respectively. The topography is plotted based on the 1-arcsec SRTM
DEM (spatial resolution ˜30 m). (b) Permafrost distribution (Zou et al. 2017) and the location of the study
area on the Qinghai-Tibet Plateau.

Table 1

List of Interferograms Generated from ALOS-1 PALSAR Data

Path/frame Start-end dates Perpendicular baseline (m)

515/700 20081213–20090128 300
515/710 20081213–20090128 307
516/700 20081114–20081230 -38
516/710 20081114–20081230 -31
517/700 20070829–20071014 364
517/710 20070829–20071014 370
518/710 20080317–20080502 652
519/710 20080102–20080217 972
519/720 20080102–20080217 337
520/710 20080119–20080305 581
520/720 20080119–20080305 587
521/710 20080205–20080322 62
521/720 20080205–20080322 71
522/720 20070822–20071007 212
523/720 20070608–20070724 288
523/730 20070608–20070724 289
524/730 20080210–20080327 115
524/740 20070810–20070925 108
524/750 20080210–20080327 130
524/760 20080210–20080327 137
525/770 20070712–20070827 292
526/770 20070613–20070729 471

3 Methodology

The method we adopted consists of two parts and is detailed below. First, we mapped active rock glaciers
manually from interferograms and Google Earth images. Second, we used the manually labelled images to
train a deep learning network, i.e., DeepLabv3+, for mapping rock glaciers automatically from Sentinel-2
optical images.

3.1 Mapping active rock glaciers from interferograms and Google Earth images

In this subsection, we first describe the strategy of delineating rock glaciers. Then we present the method
for quantifying rock glacier kinematics by InSAR. Finally, we introduce how to determine the geomorphic
attributes of the mapped landforms.

3.1.1 Manual identification and delineation of rock glaciers

5
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We mapped active rock glaciers by combining two imagery sources: interferograms and Google Earth im-
ages. The displacement maps generated by InSAR allow us to easily recognize moving parts of the ground
surface, meanwhile the high-resolution and multi-temporal Google Earth images provide geomorphic in-
formation to distinguish rock glaciers from the other active surface units, such as debris-covered glaciers,
solifluction lobes, and slow-moving landslides. Visual identification was conducted based on the geomor-
phological criteria proposed by RGIK (2021) including the frontal and lateral margin morphology, and the
surface ridge-and-furrow topography as an optional indicator. We then outlined the recognized landforms
along their extended geomorphological footprints, i.e., the frontal and lateral margins are included within the
boundaries. We followed the IPA guidelines because it provides practical and standardized baseline concepts
for identifying and outlining rock glaciers from remote sensing images and readily applicable to producing
consistent inventories over wide-extent regions.

3.1.2 Kinematic quantification by InSAR

In total, twenty-two interferograms generated from ALOS-1 PALSAR images covering the West Kunlun
Mountains were used for ground movement detection between 2007–2008 (Table 1). To maintain high
interferometric coherence and reduce topographic error, we selected image pairs with temporal spans of 46
days and perpendicular baselines smaller than 1,000 m. The topographic phase were estimated and removed
by using a digital elevation model (DEM) produced by the Shuttle Radar Topography Mission (SRTM)
with a spatial resolution of ˜30 m over most of the study region. A tile of TanDEM-X DEM (spatial
resolution ˜12 m) was adopted for correcting topographic phases for one interferogram overlapping with the
permafrost survey region. Multi-looking operation and adaptive Goldstein filter (8×8 pixels) were applied
in the interferometric processing, which was implemented by the open-source software InSAR Scientific
Computing Environment (ISCE) version 2.2.0 (available athttps://github.com/isce-framework/isce2 ). We
then unwrapped the interferograms with the SNAPHU (Chen and Zebker 2002) and selected one point located
at the flat and stable ground close to each rock glacier to re-reference the unwrapped phases measured within
the boundary of each landform. By doing so, we managed to remove the long-wavelength orbital errors and
the atmospheric artefacts including the water vapor delay and ionospheric effects, all of which can be assumed
identical within the extent of a rock glacier (Hanssen 2001).

We determined the surface downslope velocities of rock glaciers as their kinematic attributes. The surface ve-
locities along the SAR satellite line-of-sight (LOS) direction were derived from the unwrapped interferograms
and then projected to the downslope direction of each landform (Hu et al. 2021). Associated uncertainties
including the InSAR measurements and geometric parameters were quantified through error propagation
(Hu et al. 2021). We used the spatial mean velocity within a rock glacier to represent its overall kinematic
status. Then we refined the results by selecting data that fulfilled the following criteria: (1) after masking
out the pixels with low coherence (< 0.3) (Wang et al. 2017), the remaining pixels account for more than
40% of the entire landform extent; (2) the relative errors of the spatial mean velocities are lower than 20%.

3.1.3 Determination of geomorphic attributes

Essential geomorphic attributes such as the elevation range, mean slope angle, and landform aspect were
quantified using the SRTM DEM. Qualitative attributes including the spatial connection of the rock glacier
to the upslope unit and the activity category were described and assigned to the dataset following the
IPA guideline (RGIK, 2021). We primarily classified the mapped rock glaciers according to their spatial
connection to the upslope unit because it could provide implications regarding the landform genesis (Sect.
5.2). We used the Global Land Ice Measurements from Space (GLIMS) dataset to help recognize the
surrounding glacier units (GLIMS and NSIDC, 2005). Figure 2 presents examples of rock glaciers that were
classified by their upslope units into four categories. For instance, Figure 2b shows a glacier-connected rock
glacier, the frontal and lateral margins of which are discernible from the Google Earth image, though the
rooting zone is ambiguous. We separated the rock glacier from the upslope unit from surface structure in
this case. Finally, we created the InSAR-based sub-dataset. The entire workflow is illustrated in Figure 3
with one example shown in Figure 4.
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Figure 2 . Google Earth images showing rock glaciers of four different types and their spatial connections
to the upslope units. (a) shows a debris-mantled slope-connected rock glacier (DMS-RG) in orange (ID:
wkl234). (b) focuses on a glacier-connected rock glacier (G-RG) in green (ID: wkl059). The cyan polygons
are glaciers outlined by the GLIMS dataset and the feature in between is recognized as a debris-covered
glacier. (c) presents a glacier forefield-connected rock glacier (GF-RG) in purple (ID: wkl008). Note that
the GF-RG disconnects from the upslope glacier in cyan, whereas the G-RG in (b) is in continuation of the
upslope debris-covered glacier. (d) displays a talus-connected rock glacier in pink (ID: wkl117), from which
the upslope talus can be observed.
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Figure 3 . Diagram of the workflow to manually map active rock glaciers based on InSAR and Google
Earth images.

Figure 4 . An example of identified active rock glacier (ID: wkl037). (a) shows the contrasting wrapped
phases between the landform and surrounding background. The ALOS-1 PALSAR image pair generating the
interferogram were acquired on 14/11/2008 and 30/12/2008. (b) is the corresponding Google Earth image
presenting the geomorphic characteristics of the mapped active rock glacier. The white arrow indicates the
direction of the movement, and the red dot marks the location of reference point used for phase correction.
This rock glacier is debris-mantled slope-connected.
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3.2 Automated mapping of rock glaciers using deep learning

Deep learning is the computer algorithm based on neural networks that are capable of determining functions
to map from inputs to output (LeCun et al. 2015). It has proved powerful in semantic segmentation by using
a convolutional neural network to progressively extract visual features at different levels from input images
(Mottaghi et al. 2014), which is suitable for handling difficult mapping tasks as in the case of delineating
rock glaciers. Marcer (2020) first proposed a convolutional neural network to detect rock glaciers from
orthoimages and suggested further development of this methodology. Robson et al. (2020) has validated
a new methodology to detect rock glaciers semi-automatically by advanced image processing techniques
including deep learning and object-based image analysis, yet their method has not been used to compile
new inventories. Erharter et al. (2022) developed a framework based on U-Net architecture to support
the refinement of existing rock glacier inventories. Among the open-source deep learning architectures
designed for semantic segmentation, we adopted the DeepLabv3+ with the backbone of Xception71 (termed
as DeepLabv3+Xception71 hereafter) as the framework for us to develop the automatic mapping method
(Chen et al. 2018) because of its outstanding performance demonstrated in the past PASCAL VOC tests (the
benchmark dataset for assessing performance of semantic segmentation models, as detailed in Everingham
et al. 2015) and recent research applications to cryospheric remote sensing (Huang et al. 2020; Huang et al.
2021; Zhang et al. 2021a).

Development of the deep learning model for delineating rock glaciers can be divided into three major steps:
(1) preparing input data, (2) training and validating deep learning network, and (3) inferring and post-
processing results, as detailed below. Figure 5 illustrates the workflow and full details are provided below.

3.2.1 Preparing input data

The data preparation step aimed to produce a dataset of optical images and corresponding rock glacier label
images to feed into the convolutional neural network. The input optical images were cloud-free (cloud cover
< 5%) Sentinel-2 Level-2A products (spatial resolution ˜10 m) covering the West Kunlun region acquired
during July and August of 2018. We pre-processed the images by extracting the visible red, green, and
blue bands and converting to 8-bit, so that the satellite images were in the same format as the training
datasets used for pre-training the DeepLabv3+ network we adopted (Chen et al. 2018). To generate the
label images, i.e., binary rasters that have pixel values as 0 or 1, with 1 indicating rock glaciers and 0
indicating the background, we used the ESRI Shapefiles of the manually identified rock glaciers created in
the InSAR-based mapping process to label the Sentinel-2 images. We removed 118 rock glacier samples from
the training dataset because they are unrecognizable due to cloud cover or relatively low resolution (10 m) of
the Sentinel-2 images. In addition, we delineated 145 negative polygons, which are similar-looking landforms
such as debris-covered glaciers identified by GLIMS and solifluction slopes based on our image interpretation,
and environments where no rock glaciers occur, e.g., water bodies and villages. These negative polygons
were used to produce negative label images which constitute the input dataset along with the positive ones.
More negative samples were included during the iterative training and validating process by adding the
incorrectly inferred examples to the negative training dataset for the next experiment. We extracted the
positive polygons with their surrounding background (a buffer size of 1,500 m) from the optical images to
provide environmental information and cropped these sub-images into image patches of sizes no larger than
480x480 pixels. Finally, we split the whole dataset of input image patches by randomly selecting 90% of
the data as the training set (2,007 image patches) and the remaining 10% as the validation set (223 image
patches).

3.2.2 Training and validating deep learning network

Then we trained the DeepLabv3+Xception71 network with the initial hyper-parameters (e.g., learning rate,
learning rate decay, batch size, number of iterations) suggested by Chen et al. (2018) and evaluated the
model performance on the training and validation datasets. The evaluation was conducted throughout the
training process by monitoring the Intersection over Union (IoU) value, which is defined as:
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IoU=TP/(TP+FP+FN)

where TP (true positive), FP (false positive), and FN (false negative) are pixel-based. The mean IoU, which
is calculated by averaging the IoU of each class, is commonly adopted to indicate the accuracy of semantic
segmentation models. Our network classified each pixel of the optical images into two classes, namely the
rock glacier and the background. As the amounts of pixels in the two classes are imbalanced (the rock glacier
class only occupies a small portion (˜10%) of the image patches), we only used the IoU value of the rock
glacier class to represent the model performance. We set 0.80 as the threshold: when the IoU value of a
trained model was lower than it, we increased the size and diversity of the training dataset by performing
image augmentation (e.g., blurring, rotation, flip) on the positive samples and including incorrectly inferred
examples to the negative samples and conducted a new experiment until obtaining a model with target IoU
value on the validation dataset and regarded the deep learning network had been well trained. The IoU
threshold 0.80 was selected considering the validation mIoU (79.55%) of DeepLabV3+Xception71 on the
Cityscapes validation dataset, as detailed in Chen et al. (2018).

3.2.3 Inferring and post-processing results

We applied the trained model to map rock glaciers from Sentinel-2 images covering the West Kunlun. The
input data occupied ˜ 0.6% of the total mapping area. To refine the inference results, we excluded the
predicted polygons smaller than 0.03 km2 due to the limited spatial resolution of the Sentinel-2 images
and the usual areal extent of rock glaciers. Then we inspected each automatically delineated landform and
modified the boundaries when necessary. Finally, we determined the same set of landform attributes as
the InSAR-based sub-dataset (Sect 3.1) and compiled the outputs produced by the two methods into one
inventory.

Figure 5 . Diagram of the workflow to automatically map rock glaciers using DeepLabv3+ network. AI
stands for artificial intelligence.

4 Results

We compiled an inventory consisting of 413 rock glaciers across the West Kunlun Mountains: 290 of them
were mapped by the conventional method based on interferograms and Google Earth images, the other 123
landforms were identified by deep learning network with supplementary modifications to the automatically
delineated boundaries (Figure 1).
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In this section, we first present the accuracy of the automated mapping method. Then we analyze the
features of all the mapped rock glaciers from the geomorphological perspective. Finally, we summarize the
kinematic characteristics of the active rock glaciers measured by InSAR.

4.1 Performance of the automated mapping approach

After iteratively training and improving the model (Sect. 3.2), we trained a model attaining a performance
of IoU = 0.801 on both the training and validation datasets (Figure 6).

Over the entire West Kunlun region, our trained model automatically identified and delineated 337 landforms
as rock glaciers, among which 123 rock glaciers were newly discovered, 49 predicted polygons were false
positives, the rest (165) were true positives but already present in the InSAR-based sub-dataset. Figure 7a
and b present the satisfactory accuracy of automated delineation by comparing the deep learning mapped
rock glaciers with the manually mapped boundaries in the training and validation datasets, respectively. And
Figure 7b is an example just passing the IoU threshold. The delineation accuracy was also acceptable for the
newly discovered rock glaciers in general, as shown in Figure 7c. However, we still conducted modifications
to 100 out of the 123 landforms to ensure the quality of the mapping results after manual inspection (Figure
7d). The modification was made based on the Sentinel-2 optical images according to the geomorphic criteria
presented in the IPA guideline (RGIK, 2021).

Figure 6. Performance of the deep learning model for recognizing rock glaciers from background on the
training and validation datasets, respectively.
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Figure 7. (a) Comparison of the deep learning mapped rock glacier boundary (in yellow) with the manually
delineated polygon (in red) in the training dataset. The IoU between the two is 0.871. The black arrow
indicates the flow direction. (b) Similar visual comparison between the automatically outlined boundary (in
yellow) and the manually mapped one (in red) in the validation dataset, with an IoU of 0.804. (c) Example
of a rock glacier newly discovered by deep learning with good delineation accuracy. (d) Examples of two
automatically identified and outlined rock glaciers (in yellow) that need manual modifications (in blue). The
landform IDs of these examples are labelled on the figures. The background is a Sentinel-2 image acquired
on July 12th, 2018.

4.2 Geomorphic characteristics of the mapped rock glaciers

Table 2 presents the overall geomorphic information of the mapped rock glaciers. Among the 413 rock glaciers
(RGs), almost half of them (202 in total) are spatially connected to glaciers or debris-covered glaciers (G-
RGs), and the debris-mantled slope-connected rock glaciers (DMS-RGs) are the second largest category,
accounting for ˜35% (143 in total) of the mapped landforms. There are 41 rock glaciers occurring at the
glacier forefield (GF-RGs) and 27 developing at the terminus of talus (T-RGs), taking up ˜10% and ˜7% of
the total amount, respectively.

All RGs are located at altitudes between 3,389 m and 5,541 m, with an average of 4,623 m. The G-RGs
have a similar mean altitude of 4,546 m. Both groups (namely all RGs and the G-RGs) of landforms show a
norm distribution in altitude (Figure 8a, c). The DMS-RGs generally occur at a higher altitude (Figure 8b),
the average of which is up to 4,889 m, whereas the GF-RGs and T-RGs are distributed at a lower elevation
band (Figure 8d, e), whose average altitudes are 4,265 m and 4,332 m, respectively.

The G-RGs are the largest with an average area of 0.40 km2 for individual landforms, followed by GF-RGs
with a mean area of 0.38 km2. Both are much (˜50%) larger than the mean area (0.26 km2) of all RGs.
The DMS-RGs are the smallest (0.05 km2), covering ˜7% of the total area occupied by all RGs in the study
region. The mean surface slope of all RGs is 17º, which is similar to the mean slope (18º) of the T-RGs.
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The G-RGs and GF-RGs have relatively flat surfaces with mean slope angles of 14º and 15º, respectively,
whereas the DMS-RGs develop a steeper average slope angle of 23º. Most (64%) of the mapped RGs occur on
east-facing (0º–180º) slopes (Figure 9a) as the movement towards eastern direction is sensitive to the InSAR
detection, though the AI-based sub-dataset does not suffer from this problem. Among different categories,
the G-RGs and GF-RGs are more frequently located on northeastern-facing (0º–90º) slopes (Figure 9c, d),
whereas the DMS-RGs and T-RGs mostly move towards southeastern directions (90º–180º) (Figure 9b, e).

Table 2

Statistical Summary of the Geomorphic Parameters of the Mapped Rock Glaciers (All RGs), the Debris-
mantled Slope-connected Rock Glaciers (DMS-RGs), the Glacier-connected Rock Glaciers (G-RGs), the Gla-
cier forefield-connected Rock Glaciers (GF-RGs), and the Talus-connected Rock Glaciers (T-RGs). Each
Column Presents the Mean Values of the Geomorphic Parameter Following by the Corresponding Standard
Deviations in the Brackets.

Number Mean altitude (m) Slope (º) Area (km2) Total area (km2)

All RGs 413 4623 (431) 17 (6) 0.26 (0.28) 108.27
DMS-RGs 143 4889 (325) 23 (5) 0.05 (0.04) 7.44
G-RGs 202 4546 (412) 14 (4) 0.40 (0.29) 79.79
GF-RGs 41 4265 (430) 15 (5) 0.38 (0.32) 15.51
T-RGs 27 4332 (224) 18 (5) 0.20 (0.13) 5.53

Figure 8. Histograms of the average altitudes for (a) all RGs, (b) DMS-RGs, (c) G-RGs, (d) GF-RGs, and
(e) T-RGs, respectively. The altitudes are calculated from the SRTM DEM data.
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Figure 9. Histograms of the landform aspects for (a) all RGs, (b) DMS-RGs, (c) G-RGs, (d) GF-RGs, and
(e) T-RGs.

4.3 Surface kinematics of the mapped active rock glaciers

Among the 290 active rock glaciers mapped based on InSAR, we obtained the surface velocities of 256 rock
glaciers in total, including 115 DMS-RGs, 97 G-RGs, 21 GF-RGs, and 23 T-RGs (Figure 10). We lacked
high-quality InSAR data over the rest of the mapped rock glaciers. Each velocity result was presented in the
format of apparent annual velocity (unit: cm yr-1) while the observation period was labelled in the dataset.
Figure 11 gives examples of the velocity distributions of the four categories of rock glaciers. The spatial
average velocities of the four rock glaciers are 79±6 cm yr-1 (Figure 11a), 44±1 cm yr-1(Figure 11b), 32±1
cm yr-1 (Figure 11c), and 24±1 cm yr-1 (Figure 11d), respectively. The movement rates usually decrease
towards the terminus with the highest values occurring in the upper and middle parts of the landforms.

Table 3 presents the general statistics of the documented rock glacier velocities. Most (90%) RGs move
towards the downslope direction at a rate lower than 50 cm yr-1, with a mean velocity of 24 cm yr-1. The
G-RGs and GF-RGs have faster mean velocities of 31 cm yr-1 and 35 cm yr-1, respectively, whereas the
DMS-RGs and T-RGs creep at a relatively lower rate of 17 cm yr-1. The median velocities of the mapped
rock glaciers are all smaller than the corresponding mean velocities, indicating most of the kinematic data
are distributed near the lower end, as shown in Figure 12. Among all the mapped rock glaciers, a DMS-RG
has the largest mean velocity of 127±7 cm yr-1.
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Figure 10. (a) Distribution of the mapped active rock glaciers in the study area. The four categories of rock
glaciers are marked by different colours: orange for DMS-RGs, green for G-RGs, purple for GF-RGs, and
pink for T-RGs. The size of the dots indicates the mean downslope velocity of each landform. (b) shows the
distribution of rock glaciers in a sub-region as indicated by the black arrows. The background is a Sentinel-2
image acquired on July 12, 2018.

Figure 11. Velocity field maps show the downslope movement rates of rock glaciers of different categories

15



P
os

te
d

on
20

J
an

20
23

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

10
02

/e
ss

oa
r.

10
51

27
00

.1
—

T
h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

including a DMS-RG outlined in orange (ID: wkl214), a G-RG in green (ID: wkl062) a GF-RG in purple
(ID: wkl141), and a T-RG in pink (ID: wkl164). Their IDs and coordinates of central locations are labelled
beside the landforms. The dates on the upper-left corners show the time spans of the velocity measurements.
The background maps are Sentinel-2 images acquired in July of 2018.

Table 3

Statistical Summary of the Kinematic Features of the Mapped Rock Glaciers. The Mean Velocity Column
Gives the Mean Value of the Rock Glacier Movement Rate for Each Category and the Standard Deviations
in the Brackets. The Median and Maximum Velocity Columns Present the Median and Largest Landform
Creep Velocity in Each Category with Their Associated Uncertainties, Respectively.

Number Mean velocity (cm yr-1) Median velocity (cm yr-1) Maximum velocity (cm yr-1)

All RGs 256 24 (22) 17±1 127±7
DMS-RGs 115 17 (18) 12±1 127±7
G-RGs 97 31 (22) 25±1 110±1
GF-RGs 21 35 (30) 25±1 124±4
T-RGs 23 17 (8) 16±1 36±1

Figure 12. Histograms of the downslope velocities for (a) all RGs, (b) DMS-RGs, (c) G-RGs, (d) GF-RGs,
and (e) T-RGs, respectively.

5 Discussion

In this section, we firstly summarize the potential and limitations of using the combined methodology for
mapping rock glaciers (Sect. 5.1). Then we discuss the genetic and evolutional implications carried by the
geomorphic characteristics of the mapped rock glaciers (Sect. 5.2).

5.1 Potential and limitations of the InSAR-Deep learning combined method for mapping rock glaciers

We used an InSAR-Deep learning combined approach to map rock glaciers across the West Kunlun Moun-
tains. The advantage of the combined methodology is twofold: the InSAR-based mapping approach provides
essential information on surface kinematics and accurate manual delineation for training the deep learning
model; whereas the automated method improves mapping efficiency and more importantly, overcomes the
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conservativeness of the former approach and expands the InSAR-based sub-dataset. More specifically, some
rock glaciers cannot be detected by InSAR due to coherence loss in interferogram, geometric distortions, their
topographic orientations insensitive to InSAR line-of-sight measurements, or simply their inactive kinematic
status (Wang et al. 2017; Robson et al. 2020). As we used the conventional Differential InSAR method, the
smaller amount of interferograms adopted for identifying rock glaciers could lead to more serious omission
in the dataset compared with using multi-temporal data (Cai et al., 2021; Zhang et al., 2021; Bertone et
al., 2022). By combining the deep learning method, we can map the landforms that had been omitted due
to coherence loss in the limited number of interferograms. In addition, rock glaciers moving parallel to the
satellite direction, or along a steep slope, or at a very fast or slow pace, can be mapped as well.

However, our deep learning approach has a limited level of automation: the results produced by this method-
ology still requires manual inspections and modifications to increase the accuracy. Among the factors con-
trolling the deep learning performance, the amount and quality of training and validation samples is one
primary factor that affects the mapping accuracy. In this study, the training and validation datasets consist
of the boundaries of active rock glaciers in the InSAR-based sub-dataset overlying the Sentinel-2 optical im-
ages (examples as shown in Figure 5). The amount of rock glaciers (172) as training and validation samples
is in the same order of magnitude as the landform amount (338) used by Robson et al. (2020) for training
their deep learning network; yet the training data size can be improved to fully achieve the potential of the
state-of-the-art network (DeepLabv3+Xception71) we adopted. Quality of the input images is also moderate,
as the Sentinel-2 images have a medium spatial resolution of ˜10 m, making it challenging to characterize
some rock glaciers, especially small ones with areas smaller than 30,000 m2, from these optical images and
possibly leading to inaccuracy in the output. Therefore, manual inspection is required in the post-processing
to improve the accuracy of the automatically delineated boundaries. Additionally, the cloud cover of the
images hinders the compilation of a complete inventory across the large area. Finally, the Google Earth
images (2009–2020) we referred to while creating the InSAR-based sub-dataset are unsynchronized with the
Sentinel-2 images (Jul–Aug of 2018) used for producing the training data and for predicting rock glaciers by
the trained model. Accordingly, we conducted additional manual inspections while preparing the input data
and recognized few differences requiring corrections to the training data because the rock glacier activity is
relatively low in the study area (Sect. 4.3), yet this asynchronization may lead to errors in areas where rock
glaciers have been moving fast in recent decades.

Furthermore, as we evaluated the effectiveness of the deep learning-based method by applying the trained
model to a test area outside the original study area and the validation IoU, which reached a value of ˜0.8
comparable with the previous milestone research (Chen et al., 2018), the imperfect metric we achieved (i.e.,
validation IoU < 1) reveals the possibility that some rock glaciers may still be missed in our inventory. We
estimated the magnitude of landform underestimation by calculating an index from the validation IoU and a
test experiment in a new region (methodology detailed in Text S1); yet it is challenging to provide a precise
estimate given that no ground truth data is available over the study region.

In addition, our combined approach is limited to mapping intact landforms, i.e., active and transitional
rock glaciers according to the updated categorization scheme of rock glacier activity proposed by RGIK
(2021). The InSAR-based sub-inventory contains active rock glaciers, the surface of which display coherent
downslope motion as revealed by the interferograms. The transitional rock glaciers, on the other hand, show
little movement over the surface, yet their geomorphologic characteristics are less distinguishable from the
active landforms. Our deep learning model essentially learned the visual features of active rock glaciers
through the optical images in the training dataset, and thus the model is likely to identify and delineate
transitional rock glaciers as well. In contrast, relict rock glaciers usually develop distinct geomorphologic
features such as subdued topography and vegetation cover, which cannot be mapped by the deep-learning
model.

Considering the above limitations, several improvements can be implemented in our future research: (1) to
increase the amount and diversity of training samples by including rock glacier boundaries from other regions;
(2) to adopt higher-resolution and more cloud-free optical images for producing input dataset; and (3) to
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use generative adversarial network for translating optical images (for landform inference) to the domain of
training data and include them during training. Nevertheless, the developed model will be useful for regions
where data gap exists, such as many mountain ranges on the Tibetan Plateau. The inventory produced
by this work will serve as an important database for scientific investigations such as managing geohazards
(e.g., Kummert and Delaloye, 2018), assessing sediment budget (e.g., Kofler et al., 2022), and monitoring
permafrost changes (e.g., Thibert and Bodin, 2022).

5.2 Genetic and evolutional implications from the geomorphic characteristics of rock glaciers

We classified the mapped rock glaciers into glacier-connected (G-RGs), glacier-forefield-connected (GF-RGs),
debris-mantled slope-connected (DMS-RGs), and talus-connected rock glaciers (T-RGs). This classification
scheme was adopted firstly for a practical reason: spatial connection of the rock glacier to its upslope
unit is mostly well discernible from the optical images (as illustrated in Figure 2). Moreover, we take the
distinction as an indication of the evolution of rock glaciers in terms of their ice origin, sediment source, and
debris transfer process. In this subsection, we interpret the genetic and evolutional implications held by the
characteristics of rock glaciers in the regional geomorphologic context.

Nearly half (˜49%) of the mapped rock glaciers are spatially connected to glaciers. The amount appears to
be reasonable because much of the West Kunlun Mountains (˜12,500 km2) is occupied by modern glaciers
(Kääb et al. 2015), constituting one of the most prominent glacierization centers on the Tibetan Plateau
(Shi 2006). G-RGs occurring at the immediate downslope of the modern glaciers are likely to have the ice
core embedded within the landforms, representing the transitional process from glacier (or debris-covered
glacier) to rock glacier (Potter 1972; Whalley and Azizi 1994). However, we postulate that such transition
is not actively ongoing given that glaciers in the West Kunlun are in mass balance or even slightly gaining
mass in recent decades (Bao et al. 2015; Kääb et al. 2015; Wang et al. 2018; Zhou et al. 2018). The G-RGs
are likely to gradually evolve from glaciers since the last cold period, i.e., the Little Ice Age (LIA, 200–600
aBP), and this transitional process tends to slow down in the past several decades (Shi 2006).

Although the landform transition is currently not active in our study area, we propose that the glacier-to-
rock glacier continuum, as one classical theory about rock glacier genesis (Berthling 2011), can be adopted
to interpret the evolution of the GF-RGs in our inventory. The GF-RGs are spatially disconnected from
the upslope modern glaciers (Figure 2c), occurring at the lowest altitudes among all the categories in the
study area (Sect. 4.2). Interactions between the GF-RGs and the glacier units are likely to take place during
the glacier advance phases in geologic history. Anderson et al. (2018) modelled the glacier – debris-covered
glacier – rock glacier evolutional process by simulating the rise of environmental equilibrium line altitude in
response to climate warming: a pure glacier melts and separates from the emerging debris-covered terminus,
which preserves its ice core due to insulation effect produced by the surface sediment and finally transforms
into a rock glacier. Accordingly, we postulate that the GF-RGs in our study area once were part of the
upslope glaciers during the Neoglaciation (3000–4000 aBP), when glaciers extended to altitudes hundreds of
meters lower than the present glacier termini in the West Kunlun (Li and Shi 1992; Shi 2006).

Interactions between glaciers and rock glaciers are highlighted in the West Kunlun Mountains by the oc-
currence of abundant surge-type glaciers, whose flow velocities peaking at 0.2–1 km yr-1 during their active
phases (Quincey et al. 2015; Yasuda and Furuya 2015). Excess materials consisting of ice and debris are
carried downslope to areas far beyond the normal termini of the surge-type glaciers and may deliver sedi-
ments to the nearby glaciers (or debris-covered glaciers), whereby the surge events tend to contribute to the
glacier-to-rock glacier transition provided that glaciers in the West Kunlun will retreat in the future as the
glaciers in other alpine regions worldwide nowadays. A comparable case is the ongoing glacier-to-rock gla-
cier transition in the Himalayas: based on field observation and sedimentologic analysis, Jones et al. (2019)
elaborated that debris supply from the environmental sediment sources (in addition to the sediment derived
from glaciation of the transitional landform per se) drives the evolution as an important factor. Moreover,
the ice-debris body transferred and deposited at the far end of a surge-type glacier may gradually evolve
into a rock glacier under favorable climatic and topographic conditions. Figure 13 presents an example of
the potential evolutional process: the terminus of a surge-type glacier is covered by debris (Chudley and
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Willis, 2019) and many thermokarst lakes develop on the surface of the ice-debris mixture, which is likely to
transform into a rock glacier in a warming climate. Two rock glaciers (wkl019 and wkl020) are situated in
the surroundings and may receive debris and ice input during the surge events.

The genesis of two categories of rock glaciers, namely the T-RGs and the DMS-RGs, are related to periglacial
processes. The T-RGs are conventionally considered as features originated in the periglacial domain: the rock
glaciers contain interstitial ice developed by various processes such as burial of surface snow that typically
occur in the formation of frozen ground (Humlum 1988; Haeberli 2000; Berthling 2011). The DMS-RGs are
seldomly reported in the literature (Hu et al. 2021), yet display unique geomorphologic characteristics and
constitute the second largest category (˜35%) in the study area. In the absence of an upslope glacial system,
we suggest that the DMS-RGs also represent the periglacial processes controlling the landform genesis. In
comparison with the other three categories, the DMS-RGs occupy the highest and steepest slopes, where
mechanical weathering dominates and produces sufficient sediments transferred and accumulated to the base
of the slopes. During the glacial period, interstitial ice is formed within the deposits. The ice-debris mixture
gradually develops and at one point overcomes the friction and starts to creep as an active rock glacier.
Considering the lack of a headwall and the very small dimension (˜one fifth of the average size of all mapped
landforms, 0.05 km2 vs. 0.26 km2), it is likely that the DMS-RGs began to emerge during the Little Ice Age
and are still at their embryonic stage.

Figure 13. The blue line delineates the boundary of a surge-type glacier (Chudley and Willis 2019). Two
rock glaciers (wkl019 and wkl020) in our inventory are situated in the surroundings.

6 Conclusions

We mapped rock glaciers at a regional scale and quantified their surface kinematics by combining InSAR
and image semantic segmentation powered by deep learning. The combined method was applied to map rock
glaciers across the West Kunlun Mountains, where the extremely dry climate represents one characteristic
environmental setting on the Tibetan Plateau. We draw the main conclusions as follows:
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(1) The DeepLabv3+ network trained by manually labelled data based on InSAR and Google Earth images
can successfully identify and delineate rock glaciers from Sentinel-2 images, attaining an IoU value of 0.801 for
both training and validation datasets. The well-trained model newly mapped 123 rock glaciers to supplement
the non-exhaustive InSAR-based sub-inventory of 290 active rock glaciers.

(2) There are 413 rock glaciers mapped over the study area, including 202 glacier-connected rock glaciers
(G-RGs), 143 debris-mantled slope-connected rock glaciers (DMS-RGs), 41 glacier forefield-connected rock
glaciers (GF-RGs), and 27 talus-connected rock glaciers (T-RGs). The mapped rock glaciers occupy a total
area of ˜ 108 km2 and are located at altitudes between 3389 m and 5541 m. The average slope angle is 17°
and the dominating landform aspect is towards the east.

(3) Among the mapped rock glaciers, the G-RGs and GF-RGs are larger (average areas: 0.40 km2 and 0.38
km2) and occur on gentler slopes (14° and 15°) predominantly facing northeast, whereas the DMS-RGs are
the smallest (0.05 km2) and occupy steep (23°) southeastern-facing slopes at the highest altitudes (4889 m).
The T-RGs display a medium size (0.20 km2) and slope angle (18°) and mostly occur on southeastern-facing
slopes at lower altitudes (4332 m). The GF-RGs have the lowest average altitude (4265 m).

(4) Considering the geomorphologic context, we postulated that the glacier – debris-covered glacier – rock
glacier transition is currently inactive due to the abnormal mass gain of glaciers in the West Kunlun: the
mapped G-RGs and GF-RGs evolved from glacier to rock glacier during the past Holocene glacial periods,
e.g., the Little Ice Age and the Neoglaciation. Surge events of glaciers may provide material supply and
promote the glacier-to-rock glacier transition in the future.

(5) Based on the geomorphic characteristics of mapped rock glaciers, we suggest that the genesis of T-RGs
and DMS-RGs are controlled by periglacial processes. The DMS-RGs, as a distinct type of rock glaciers in
our study area, represent embryonic rock glaciers derived from prevalent mechanical erosion of the slopes and
interstitial ice formation during the Little Ice Age. Note that the hypothesis on landform genesis formulated
here needs further validation based on measured evidence.

(6) We adopted the spatial average velocity of all pixels within the boundary of each rock glacier to represent
the landform surface kinematics. In total, 256 rock glaciers have valid kinematic quantifications. Nearly 90%
of the rock glaciers move slower than 50 cm yr-1. The mean downslope velocity is 24 cm yr-1, and the standard
deviation is 22 cm yr-1. The median and maximum velocities are 17 cm yr-1 and 127 cm yr-1, respectively.

(7) Among the active rock glaciers, the G-RGs and GF-RGs move faster at mean velocities of 31 cm yr-1

and 35 cm yr-1, respectively. The DMS-RGs and T-RGs creep at a slower average velocity of 17 cm yr-1.

In summary, combining InSAR and high-resolution optical imagery to manually map active rock glaciers
proves to be an effective way to quantify rock glacier kinematics consistently in remote areas. With the
utilization of deep learning techniques, it is promising to compile rock glacier inventories efficiently over
a significant extent of permafrost areas, e.g., the Tibetan Plateau, which provides a baseline dataset and
allows the monitoring of rock glaciers as indicators of permafrost degradation and potential water sources
in a changing climate.

Data Availablity Statement

The rock glacier inventory produced by this work will be available on PANGAEA (htt-
ps://doi.org/10.1594/PANGAEA.938686, the link will become accessible once the related paper is publis-
hed). The training data will be provided by Y. Hu upon request. Codes are available on GitHub (htt-
ps://github.com/cryoyan/Landuse DL).
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Key Points:

• A combined use of deep learning and InSAR automates mapping rock
glaciers at the regional scale

• We compile the first rock glacier inventory in West Kunlun with kinematic
and geomorphic information documented

• Geomorphologic characteristics of rock glaciers provide insights on the
glacial and periglacial processes and interactions in West Kunlun

Abstract

Rock glaciers manifest the creep of mountain permafrost occurring in the past
or at present. Their presence and dynamics are indicators of permafrost distri-
bution and changes in response to climate forcing. Knowledge of rock glaciers
is completely lacking in the West Kunlun, one of the driest mountain ranges in
Asia, where widespread permafrost is rapidly warming. In this study, we first
mapped and quantified the kinematics of active rock glaciers based on satellite
Interferometric Synthetic Aperture Radar (InSAR) and Google Earth images.
Then we trained DeepLabv3+, a deep learning network for semantic image seg-
mentation, to automate the mapping task. The well-trained model was applied
for a region-wide, extensive delineation of rock glaciers from Sentinel-2 images
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to map the landforms that were previously missed due to the limitations of the
InSAR-based identification. Finally, we mapped 413 rock glaciers across the
West Kunlun: 290 of them were active rock glaciers mapped manually based
on InSAR and 123 of them were newly identified and outlined by deep learning.
The rock glaciers are categorized by their spatial connection to the upslope ge-
omorphic units. All the rock glaciers are located at altitudes between 3,389 m
and 5,541 m with an average size of 0.26 km2 and a mean slope angle of 17°.
The mean and maximum surface downslope velocities of the active ones are 24
cm yr-1 and 127 cm yr-1, respectively. Characteristics of the rock glaciers of
different categories hold implications on the interactions between glacial and
periglacial processes in the West Kunlun.

Plain Language Summary

Rock glaciers are debris-ice landforms and indicators of the status of perennially
frozen ground, as known as permafrost, which is warming and thawing under
climate change. The West Kunlun is among the driest mountain ranges in Asia
where permafrost has been changing over the past decades and the information
of rock glaciers is completely lacking. In this paper, we developed an effective
workflow for mapping rock glaciers in a semi-automated manner and character-
ized their geomorphology and kinematics. The compiled dataset allows further
investigation on rock glaciers for multiple scientific motivations such as geohaz-
ard management, water resource assessment, and permafrost change monitoring.
The documented geomorphic characteristics provide insights into the genesis and
evolution of rock glaciers in the arid mountains.

1 Introduction

Rock glaciers are debris-ice landforms widely distributed in areas of mountain
permafrost globally (Ballantyne 2018). Rock glaciers have drawn a lot of re-
search interest since their first identification at the beginning of the 20th cen-
tury (Capps 1910), because they serve as visible indicators for alpine permafrost
which is defined by its underground temperature and has been warming and un-
dergoing degradation (Barsch 1996; Biskaborn et al. 2019). Inventorying rock
glaciers is therefore motivated by producing baseline knowledge for addressing
various scientific questions associated with alpine permafrost, such as indicating
permafrost occurrence through the rock glacier distribution, characterizing per-
mafrost changes in the warming climate, and assessing the future hydrological
significance of rock glaciers. Several studies have revealed that multi-annual
acceleration of rock glaciers is synchronous with the rise of air and ground tem-
peratures (Haeberli et al. 2006; Delaloye et al. 2010; Delaloye et al. 2013;
Sorg et al. 2015; Marcer et al. 2021), and their short-term velocity variations
are sensitive to the pore pressure in the shear horizon which is adjusted by the
precipitation and snow melt conditions (Ikeda et al. 2008; Müller et al. 2016;
Wirz et al. 2016; Cicoira et al. 2019a; Cicoira et al. 2019b; Kenner et al. 2019).
Hence rock glacier inventories are valuable databases for studying how climatic
factors cause permafrost changes manifesting in landform kinematics which can
be quantified continuously and remotely. Moreover, rock glaciers can contain
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massive amounts of ground ice and contribute significantly to hydrological sys-
tems in some catchments, such as the Andes, Himalayas, and Sierra Nevada
(Azócar and Brenning 2010; Millar et al. 2013; Geiger et al. 2014; Jones et al.
2018; Schaffer et al. 2019; Jones et al. 2021). A comprehensive inventory of
rock glaciers lays the foundation for estimating the potential water storage and
evaluating their future role in maintaining water supplies.

Numerous efforts have been put into inventorying rock glaciers in various moun-
tain ranges worldwide in the past several decades, such as in Central Europe
(Chueca 1992; Roer and Nyenhuis 2007; Scotti et al. 2013; Onaca et al. 2017),
South America (Brenning 2005; Falaschi et al. 2014; Rangecroft et al. 2014;
Villarroel et al. 2018), and North America (Ellis and Calkin 1979; Janke 2007;
Millar and Westfall 2008; Liu et al. 2013). Rock glaciers are abundant in moun-
tainous western China where a vast area of alpine permafrost is underlying and
undergoing accelerated degradation in response to the warming climate (Yang et
al. 2010; Cheng et al. 2019; Yang et al. 2019; Yao et al. 2019; Zhao and Sheng
2019; Ni et al. 2020; Zhao et al. 2020; IPCC 2021). However, few regional-
scale inventories of rock glaciers have been compiled until recently (Schmid et
al. 2015; Wang et al. 2017; Ran and Liu 2018), which hinders rock glaciers
functioning as a permafrost indicator. Such lack of knowledge is attributed to
the following reasons: (1) rock glaciers in western China are mostly situated in
remote and harsh environment where early in situ investigations are scarce and
limited to case studies or small catchment-scale research (e.g., Cui 1985; Cui and
Zhu 1988; Zhu et al. 1996; Harris et al. 1998); (2) mapping rock glaciers conven-
tionally relies on manually detecting and outlining the landforms from optical
images (Schmid et al. 2015), which is labor-intensive to apply to large per-
mafrost region (e.g., West Kunlun Mountains) following an exhaustive strategy;
(3) contentious opinions of identifying rock glaciers exist due to the complexity
of the landforms (Harris et al. 1998; Berthling 2011; Hu et al. 2021), which
obscures the definition of rock glaciers and makes it challenging to recognize the
landforms.

To address these problems, recent research progress in compiling rock glacier
inventories includes (1) integrating InSAR techniques to facilitate active rock
glacier identification and kinematics quantification (e.g., Liu et al. 2013; Bar-
boux et al. 2014; Wang et al. 2017; Cai et al. 2021; Reinosch et al. 2021;
Zhang et al. 2021); (2) implementing Convolutional Neural Networks (CNN) to
demonstrate the feasibility of automating rock glacier delineation (Robson et al.
2020) or to improve the consistency of existing rock glacier inventories (Erharter
et al. 2022); and (3) establishing widely accepted inventorying guidelines by the
international rock glacier research community (RGIK, 2021).

Here we combine the InSAR technique and a state-of-the-art deep learning net-
work, namely DeepLabv3+ (Chen et al. 2018), to map rock glaciers across the
West Kunlun Mountains of China where widespread permafrost is warming (Li
1986; Cheng et al. 2019), and knowledge of rock glaciers is completely lacking.
Manual delineation of rock glaciers based on InSAR and high-resolution optical
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imagery in this study is guided by the baseline concepts proposed by the Inter-
national Permafrost Association (IPA) Action Group on rock glaciers to ensure
a standard high-quality dataset utilized to train the deep learning network, and
thus, the final mapping results (RGIK, 2021). We adopted the deep learning
method to improve the mapping efficiency by automating the identification and
delineation tasks, and more importantly, to generate a more comprehensive
geodatabase by overcoming the limitations of InSAR-based method (Cai et al.,
2021).

This study aims to develop an automated approach to map rock glaciers on a
regional scale in western China, i.e., the West Kunlun Mountains. By produc-
ing the first automatically mapped inventory at the mountain-range scale, we
demonstrate the effectiveness of using a deep-learning-based method to delin-
eate rock glaciers in a consistent manner across the vast study area. We pro-
vide essential attributes to the mapped landforms according to the inventorying
guidelines. We also conduct statistical analyses to summarize the spatial dis-
tribution and geomorphologic characteristics of the mapped rock glaciers. The
compiled inventory will provide baseline knowledge for conducting long-term
studies of rock glaciers and permafrost in a changing climate.

2 Study area

The West Kunlun is a major mountain range situated in the northwest of Ti-
betan Plateau, extending ~800 km from the eastern margin of Pamir Plateau to
the Keriya Pass of Kunlun Mountains, with a total study area of ~124,000 km2

(74–81.5°E, 35–39.5°N) (Figure 1). The elevation of the study region ranges
between 3,000 m and 7,500 m.

Across the vast study area, a cold desert climate (Köppen climate classifica-
tion BWk) is dominant (Peel et al. 2007). Climatic conditions of the west-
ern part are revealed by the record of the nearest meteorological station in
Tashikurgan (75.23°E, 37.77°N; 3090 m a.s.l.) during 1957–2017: the mean
annual air temperature (MAAT) and mean annual accumulated precipitation
are 4.2°C and 51 mm, respectively (data source: China Meteorological Admin-
istration, http://data.cma.cn/). The study area has been warming at a rate of
~0.033°C/yr during the past six decades, similar to the average warming rate
(0.031°C/yr) across the entire plateau (Zhang et al. 2020). In the eastern part,
the MAAT is -6 °C and the annual precipitation is 103.3 mm, as reported by the
Tianshuihai meteorological station (79.55°E, 35.36°N; 4844 m a.s.l) from 2015
to 2018 (Zhao et al. 2021).

The easternmost part of the study region is overlapped with the West Kunlun
permafrost survey area (78.8–81.4°E, 34.5–36.0°N; 4,200–6,100 m a.s.l.) estab-
lished by the Cryosphere Research Station (CRS) on the Qinghai-Tibet Plateau,
Chinese Academy of Sciences, where in situ observations are available to repre-
sent the state of permafrost in the West Kunlun. Ice-rich permafrost is widely
distributed in the survey area (Zhao and Sheng, 2019). The mean annual ground
temperature (MAGT) is higher than -2.7°C as revealed by borehole measure-
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ments and permafrost was warming at an average rate of 0.11°C/10 yr from
2010 to 2017 (Cheng et al. 2019; Zhao and Sheng, 2019). The lowest altitudinal
limit of permafrost occurrence is between 4,650 m and 4,800 m depending on dif-
ferent slope aspects according to previous field surveys focusing on a subregion
of the West Kunlun (Li et al. 2012).

Figure 1. (a) Distribution of the mapped rock glaciers in the West Kunlun.
The red dots are manually mapped rock glaciers (290 in total), and the yellow
dots represent newly identified rock glaciers by our deep learning method but
were missed in the InSAR-based sub-dataset (123 in total). The background
is a topographical map showing the ground coverage of ALOS-1 PALSAR data
used in this study (dashed black box), with the path number of each ground
track labelled aside. The dashed blue and orange boxes show the extents of
the CRS permafrost survey region (Zhao and Sheng 2019), and the previous
in situ investigation area (Li et al. 2012), respectively. The blue and purple
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stars denote the location of the Tashikurgan and Tianshuihai meteorological
stations, respectively. The topography is plotted based on the 1-arcsec SRTM
DEM (spatial resolution ~30 m). (b) Permafrost distribution (Zou et al. 2017)
and the location of the study area on the Qinghai-Tibet Plateau.

Table 1

List of Interferograms Generated from ALOS-1 PALSAR Data

Path/frame Start-end dates Perpendicular baseline (m)
515/700 20081213–20090128 300
515/710 20081213–20090128 307
516/700 20081114–20081230 -38
516/710 20081114–20081230 -31
517/700 20070829–20071014 364
517/710 20070829–20071014 370
518/710 20080317–20080502 652
519/710 20080102–20080217 972
519/720 20080102–20080217 337
520/710 20080119–20080305 581
520/720 20080119–20080305 587
521/710 20080205–20080322 62
521/720 20080205–20080322 71
522/720 20070822–20071007 212
523/720 20070608–20070724 288
523/730 20070608–20070724 289
524/730 20080210–20080327 115
524/740 20070810–20070925 108
524/750 20080210–20080327 130
524/760 20080210–20080327 137
525/770 20070712–20070827 292
526/770 20070613–20070729 471

3 Methodology

The method we adopted consists of two parts and is detailed below. First, we
mapped active rock glaciers manually from interferograms and Google Earth
images. Second, we used the manually labelled images to train a deep learn-
ing network, i.e., DeepLabv3+, for mapping rock glaciers automatically from
Sentinel-2 optical images.

3.1 Mapping active rock glaciers from interferograms and Google Earth images

In this subsection, we first describe the strategy of delineating rock glaciers.
Then we present the method for quantifying rock glacier kinematics by InSAR.
Finally, we introduce how to determine the geomorphic attributes of the mapped
landforms.
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3.1.1 Manual identification and delineation of rock glaciers

We mapped active rock glaciers by combining two imagery sources: interfero-
grams and Google Earth images. The displacement maps generated by InSAR
allow us to easily recognize moving parts of the ground surface, meanwhile the
high-resolution and multi-temporal Google Earth images provide geomorphic in-
formation to distinguish rock glaciers from the other active surface units, such
as debris-covered glaciers, solifluction lobes, and slow-moving landslides. Visual
identification was conducted based on the geomorphological criteria proposed
by RGIK (2021) including the frontal and lateral margin morphology, and the
surface ridge-and-furrow topography as an optional indicator. We then outlined
the recognized landforms along their extended geomorphological footprints, i.e.,
the frontal and lateral margins are included within the boundaries. We followed
the IPA guidelines because it provides practical and standardized baseline con-
cepts for identifying and outlining rock glaciers from remote sensing images and
readily applicable to producing consistent inventories over wide-extent regions.

3.1.2 Kinematic quantification by InSAR

In total, twenty-two interferograms generated from ALOS-1 PALSAR images
covering the West Kunlun Mountains were used for ground movement detec-
tion between 2007–2008 (Table 1). To maintain high interferometric coherence
and reduce topographic error, we selected image pairs with temporal spans of
46 days and perpendicular baselines smaller than 1,000 m. The topographic
phase were estimated and removed by using a digital elevation model (DEM)
produced by the Shuttle Radar Topography Mission (SRTM) with a spatial
resolution of ~30 m over most of the study region. A tile of TanDEM-X DEM
(spatial resolution ~12 m) was adopted for correcting topographic phases for one
interferogram overlapping with the permafrost survey region. Multi-looking
operation and adaptive Goldstein filter (8×8 pixels) were applied in the in-
terferometric processing, which was implemented by the open-source software
InSAR Scientific Computing Environment (ISCE) version 2.2.0 (available at
https://github.com/isce-framework/isce2). We then unwrapped the interfero-
grams with the SNAPHU (Chen and Zebker 2002) and selected one point lo-
cated at the flat and stable ground close to each rock glacier to re-reference
the unwrapped phases measured within the boundary of each landform. By
doing so, we managed to remove the long-wavelength orbital errors and the at-
mospheric artefacts including the water vapor delay and ionospheric effects, all
of which can be assumed identical within the extent of a rock glacier (Hanssen
2001).

We determined the surface downslope velocities of rock glaciers as their kine-
matic attributes. The surface velocities along the SAR satellite line-of-sight
(LOS) direction were derived from the unwrapped interferograms and then pro-
jected to the downslope direction of each landform (Hu et al. 2021). Associ-
ated uncertainties including the InSAR measurements and geometric parameters
were quantified through error propagation (Hu et al. 2021). We used the spa-
tial mean velocity within a rock glacier to represent its overall kinematic status.
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Then we refined the results by selecting data that fulfilled the following criteria:
(1) after masking out the pixels with low coherence (< 0.3) (Wang et al. 2017),
the remaining pixels account for more than 40% of the entire landform extent;
(2) the relative errors of the spatial mean velocities are lower than 20%.

3.1.3 Determination of geomorphic attributes

Essential geomorphic attributes such as the elevation range, mean slope an-
gle, and landform aspect were quantified using the SRTM DEM. Qualitative
attributes including the spatial connection of the rock glacier to the upslope
unit and the activity category were described and assigned to the dataset fol-
lowing the IPA guideline (RGIK, 2021). We primarily classified the mapped
rock glaciers according to their spatial connection to the upslope unit because
it could provide implications regarding the landform genesis (Sect. 5.2). We
used the Global Land Ice Measurements from Space (GLIMS) dataset to help
recognize the surrounding glacier units (GLIMS and NSIDC, 2005). Figure 2
presents examples of rock glaciers that were classified by their upslope units into
four categories. For instance, Figure 2b shows a glacier-connected rock glacier,
the frontal and lateral margins of which are discernible from the Google Earth
image, though the rooting zone is ambiguous. We separated the rock glacier
from the upslope unit from surface structure in this case. Finally, we created
the InSAR-based sub-dataset. The entire workflow is illustrated in Figure 3
with one example shown in Figure 4.
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Figure 2. Google Earth images showing rock glaciers of four different types
and their spatial connections to the upslope units. (a) shows a debris-mantled
slope-connected rock glacier (DMS-RG) in orange (ID: wkl234). (b) focuses on
a glacier-connected rock glacier (G-RG) in green (ID: wkl059). The cyan poly-
gons are glaciers outlined by the GLIMS dataset and the feature in between is
recognized as a debris-covered glacier. (c) presents a glacier forefield-connected
rock glacier (GF-RG) in purple (ID: wkl008). Note that the GF-RG disconnects
from the upslope glacier in cyan, whereas the G-RG in (b) is in continuation of
the upslope debris-covered glacier. (d) displays a talus-connected rock glacier
in pink (ID: wkl117), from which the upslope talus can be observed.

Figure 3. Diagram of the workflow to manually map active rock glaciers based
on InSAR and Google Earth images.
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Figure 4. An example of identified active rock glacier (ID: wkl037). (a)
shows the contrasting wrapped phases between the landform and surrounding
background. The ALOS-1 PALSAR image pair generating the interferogram
were acquired on 14/11/2008 and 30/12/2008. (b) is the corresponding Google
Earth image presenting the geomorphic characteristics of the mapped active
rock glacier. The white arrow indicates the direction of the movement, and the
red dot marks the location of reference point used for phase correction. This
rock glacier is debris-mantled slope-connected.

3.2 Automated mapping of rock glaciers using deep learning
Deep learning is the computer algorithm based on neural networks that are
capable of determining functions to map from inputs to output (LeCun et al.
2015). It has proved powerful in semantic segmentation by using a convolu-
tional neural network to progressively extract visual features at different levels
from input images (Mottaghi et al. 2014), which is suitable for handling diffi-
cult mapping tasks as in the case of delineating rock glaciers. Marcer (2020)
first proposed a convolutional neural network to detect rock glaciers from or-
thoimages and suggested further development of this methodology. Robson
et al. (2020) has validated a new methodology to detect rock glaciers semi-
automatically by advanced image processing techniques including deep learning
and object-based image analysis, yet their method has not been used to com-
pile new inventories. Erharter et al. (2022) developed a framework based on
U-Net architecture to support the refinement of existing rock glacier invento-
ries. Among the open-source deep learning architectures designed for semantic
segmentation, we adopted the DeepLabv3+ with the backbone of Xception71
(termed as DeepLabv3+Xception71 hereafter) as the framework for us to develop

11



the automatic mapping method (Chen et al. 2018) because of its outstanding
performance demonstrated in the past PASCAL VOC tests (the benchmark
dataset for assessing performance of semantic segmentation models, as detailed
in Everingham et al. 2015) and recent research applications to cryospheric re-
mote sensing (Huang et al. 2020; Huang et al. 2021; Zhang et al. 2021a).

Development of the deep learning model for delineating rock glaciers can be
divided into three major steps: (1) preparing input data, (2) training and vali-
dating deep learning network, and (3) inferring and post-processing results, as
detailed below. Figure 5 illustrates the workflow and full details are provided
below.

3.2.1 Preparing input data

The data preparation step aimed to produce a dataset of optical images and
corresponding rock glacier label images to feed into the convolutional neural
network. The input optical images were cloud-free (cloud cover < 5%) Sentinel-
2 Level-2A products (spatial resolution ~10 m) covering the West Kunlun region
acquired during July and August of 2018. We pre-processed the images by
extracting the visible red, green, and blue bands and converting to 8-bit, so that
the satellite images were in the same format as the training datasets used for pre-
training the DeepLabv3+ network we adopted (Chen et al. 2018). To generate
the label images, i.e., binary rasters that have pixel values as 0 or 1, with 1
indicating rock glaciers and 0 indicating the background, we used the ESRI
Shapefiles of the manually identified rock glaciers created in the InSAR-based
mapping process to label the Sentinel-2 images. We removed 118 rock glacier
samples from the training dataset because they are unrecognizable due to cloud
cover or relatively low resolution (10 m) of the Sentinel-2 images. In addition,
we delineated 145 negative polygons, which are similar-looking landforms such
as debris-covered glaciers identified by GLIMS and solifluction slopes based
on our image interpretation, and environments where no rock glaciers occur,
e.g., water bodies and villages. These negative polygons were used to produce
negative label images which constitute the input dataset along with the positive
ones. More negative samples were included during the iterative training and
validating process by adding the incorrectly inferred examples to the negative
training dataset for the next experiment. We extracted the positive polygons
with their surrounding background (a buffer size of 1,500 m) from the optical
images to provide environmental information and cropped these sub-images into
image patches of sizes no larger than 480x480 pixels. Finally, we split the whole
dataset of input image patches by randomly selecting 90% of the data as the
training set (2,007 image patches) and the remaining 10% as the validation set
(223 image patches).

3.2.2 Training and validating deep learning network

Then we trained the DeepLabv3+Xception71 network with the initial hyper-
parameters (e.g., learning rate, learning rate decay, batch size, number of iter-
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ations) suggested by Chen et al. (2018) and evaluated the model performance
on the training and validation datasets. The evaluation was conducted through-
out the training process by monitoring the Intersection over Union (IoU) value,
which is defined as:

IoU=TP/(TP+FP+FN)

where TP (true positive), FP (false positive), and FN (false negative) are pixel-
based. The mean IoU, which is calculated by averaging the IoU of each class,
is commonly adopted to indicate the accuracy of semantic segmentation mod-
els. Our network classified each pixel of the optical images into two classes,
namely the rock glacier and the background. As the amounts of pixels in the
two classes are imbalanced (the rock glacier class only occupies a small portion
(~10%) of the image patches), we only used the IoU value of the rock glacier
class to represent the model performance. We set 0.80 as the threshold: when
the IoU value of a trained model was lower than it, we increased the size and
diversity of the training dataset by performing image augmentation (e.g., blur-
ring, rotation, flip) on the positive samples and including incorrectly inferred
examples to the negative samples and conducted a new experiment until ob-
taining a model with target IoU value on the validation dataset and regarded
the deep learning network had been well trained. The IoU threshold 0.80 was
selected considering the validation mIoU (79.55%) of DeepLabV3+Xception71
on the Cityscapes validation dataset, as detailed in Chen et al. (2018).

3.2.3 Inferring and post-processing results

We applied the trained model to map rock glaciers from Sentinel-2 images cov-
ering the West Kunlun. The input data occupied ~ 0.6% of the total mapping
area. To refine the inference results, we excluded the predicted polygons smaller
than 0.03 km2 due to the limited spatial resolution of the Sentinel-2 images and
the usual areal extent of rock glaciers. Then we inspected each automatically
delineated landform and modified the boundaries when necessary. Finally, we
determined the same set of landform attributes as the InSAR-based sub-dataset
(Sect 3.1) and compiled the outputs produced by the two methods into one
inventory.
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Figure 5. Diagram of the workflow to automatically map rock glaciers using
DeepLabv3+ network. AI stands for artificial intelligence.

4 Results

We compiled an inventory consisting of 413 rock glaciers across the West Kunlun
Mountains: 290 of them were mapped by the conventional method based on
interferograms and Google Earth images, the other 123 landforms were identified
by deep learning network with supplementary modifications to the automatically
delineated boundaries (Figure 1).

In this section, we first present the accuracy of the automated mapping method.
Then we analyze the features of all the mapped rock glaciers from the geomor-
phological perspective. Finally, we summarize the kinematic characteristics of
the active rock glaciers measured by InSAR.

4.1 Performance of the automated mapping approach

After iteratively training and improving the model (Sect. 3.2), we trained a
model attaining a performance of IoU = 0.801 on both the training and valida-
tion datasets (Figure 6).

Over the entire West Kunlun region, our trained model automatically identified
and delineated 337 landforms as rock glaciers, among which 123 rock glaciers
were newly discovered, 49 predicted polygons were false positives, the rest (165)
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were true positives but already present in the InSAR-based sub-dataset. Fig-
ure 7a and b present the satisfactory accuracy of automated delineation by
comparing the deep learning mapped rock glaciers with the manually mapped
boundaries in the training and validation datasets, respectively. And Figure 7b
is an example just passing the IoU threshold. The delineation accuracy was also
acceptable for the newly discovered rock glaciers in general, as shown in Figure
7c. However, we still conducted modifications to 100 out of the 123 landforms
to ensure the quality of the mapping results after manual inspection (Figure 7d).
The modification was made based on the Sentinel-2 optical images according to
the geomorphic criteria presented in the IPA guideline (RGIK, 2021).

Figure 6. Performance of the deep learning model for recognizing rock glaciers
from background on the training and validation datasets, respectively.
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Figure 7. (a) Comparison of the deep learning mapped rock glacier boundary
(in yellow) with the manually delineated polygon (in red) in the training dataset.
The IoU between the two is 0.871. The black arrow indicates the flow direction.
(b) Similar visual comparison between the automatically outlined boundary (in
yellow) and the manually mapped one (in red) in the validation dataset, with an
IoU of 0.804. (c) Example of a rock glacier newly discovered by deep learning
with good delineation accuracy. (d) Examples of two automatically identified
and outlined rock glaciers (in yellow) that need manual modifications (in blue).
The landform IDs of these examples are labelled on the figures. The background
is a Sentinel-2 image acquired on July 12th, 2018.

4.2 Geomorphic characteristics of the mapped rock glaciers

Table 2 presents the overall geomorphic information of the mapped rock glaciers.
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Among the 413 rock glaciers (RGs), almost half of them (202 in total) are spa-
tially connected to glaciers or debris-covered glaciers (G-RGs), and the debris-
mantled slope-connected rock glaciers (DMS-RGs) are the second largest cate-
gory, accounting for ~35% (143 in total) of the mapped landforms. There are
41 rock glaciers occurring at the glacier forefield (GF-RGs) and 27 developing
at the terminus of talus (T-RGs), taking up ~10% and ~7% of the total amount,
respectively.

All RGs are located at altitudes between 3,389 m and 5,541 m, with an average
of 4,623 m. The G-RGs have a similar mean altitude of 4,546 m. Both groups
(namely all RGs and the G-RGs) of landforms show a norm distribution in
altitude (Figure 8a, c). The DMS-RGs generally occur at a higher altitude
(Figure 8b), the average of which is up to 4,889 m, whereas the GF-RGs and
T-RGs are distributed at a lower elevation band (Figure 8d, e), whose average
altitudes are 4,265 m and 4,332 m, respectively.

The G-RGs are the largest with an average area of 0.40 km2 for individual
landforms, followed by GF-RGs with a mean area of 0.38 km2. Both are much
(~50%) larger than the mean area (0.26 km2) of all RGs. The DMS-RGs are the
smallest (0.05 km2), covering ~7% of the total area occupied by all RGs in the
study region. The mean surface slope of all RGs is 17º, which is similar to the
mean slope (18º) of the T-RGs. The G-RGs and GF-RGs have relatively flat
surfaces with mean slope angles of 14º and 15º, respectively, whereas the DMS-
RGs develop a steeper average slope angle of 23º. Most (64%) of the mapped
RGs occur on east-facing (0º–180º) slopes (Figure 9a) as the movement towards
eastern direction is sensitive to the InSAR detection, though the AI-based sub-
dataset does not suffer from this problem. Among different categories, the G-
RGs and GF-RGs are more frequently located on northeastern-facing (0º–90º)
slopes (Figure 9c, d), whereas the DMS-RGs and T-RGs mostly move towards
southeastern directions (90º–180º) (Figure 9b, e).

Table 2

Statistical Summary of the Geomorphic Parameters of the Mapped Rock Glaciers
(All RGs), the Debris-mantled Slope-connected Rock Glaciers (DMS-RGs), the
Glacier-connected Rock Glaciers (G-RGs), the Glacier forefield-connected Rock
Glaciers (GF-RGs), and the Talus-connected Rock Glaciers (T-RGs). Each
Column Presents the Mean Values of the Geomorphic Parameter Following by
the Corresponding Standard Deviations in the Brackets.

Number Mean altitude (m) Slope (º) Area (km2) Total area (km2)
All RGs 413 4623 (431) 17 (6) 0.26 (0.28) 108.27
DMS-RGs 143 4889 (325) 23 (5) 0.05 (0.04) 7.44
G-RGs 202 4546 (412) 14 (4) 0.40 (0.29) 79.79
GF-RGs 41 4265 (430) 15 (5) 0.38 (0.32) 15.51
T-RGs 27 4332 (224) 18 (5) 0.20 (0.13) 5.53
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Figure 8. Histograms of the average altitudes for (a) all RGs, (b) DMS-RGs, (c)
G-RGs, (d) GF-RGs, and (e) T-RGs, respectively. The altitudes are calculated
from the SRTM DEM data.
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Figure 9. Histograms of the landform aspects for (a) all RGs, (b) DMS-RGs,
(c) G-RGs, (d) GF-RGs, and (e) T-RGs.

4.3 Surface kinematics of the mapped active rock glaciers

Among the 290 active rock glaciers mapped based on InSAR, we obtained the
surface velocities of 256 rock glaciers in total, including 115 DMS-RGs, 97 G-
RGs, 21 GF-RGs, and 23 T-RGs (Figure 10). We lacked high-quality InSAR
data over the rest of the mapped rock glaciers. Each velocity result was pre-
sented in the format of apparent annual velocity (unit: cm yr-1) while the
observation period was labelled in the dataset. Figure 11 gives examples of the
velocity distributions of the four categories of rock glaciers. The spatial aver-
age velocities of the four rock glaciers are 79±6 cm yr-1 (Figure 11a), 44±1 cm
yr-1 (Figure 11b), 32±1 cm yr-1 (Figure 11c), and 24±1 cm yr-1 (Figure 11d),
respectively. The movement rates usually decrease towards the terminus with
the highest values occurring in the upper and middle parts of the landforms.

Table 3 presents the general statistics of the documented rock glacier velocities.
Most (90%) RGs move towards the downslope direction at a rate lower than 50
cm yr-1, with a mean velocity of 24 cm yr-1. The G-RGs and GF-RGs have faster
mean velocities of 31 cm yr-1 and 35 cm yr-1, respectively, whereas the DMS-
RGs and T-RGs creep at a relatively lower rate of 17 cm yr-1. The median
velocities of the mapped rock glaciers are all smaller than the corresponding
mean velocities, indicating most of the kinematic data are distributed near the
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lower end, as shown in Figure 12. Among all the mapped rock glaciers, a DMS-
RG has the largest mean velocity of 127±7 cm yr-1.

Figure
10. (a) Distribution of the mapped active rock glaciers in the study area. The
four categories of rock glaciers are marked by different colours: orange for
DMS-RGs, green for G-RGs, purple for GF-RGs, and pink for T-RGs. The
size of the dots indicates the mean downslope velocity of each landform. (b)
shows the distribution of rock glaciers in a sub-region as indicated by the black
arrows. The background is a Sentinel-2 image acquired on July 12, 2018.
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Figure 11. Velocity field maps show the downslope movement rates of rock
glaciers of different categories including a DMS-RG outlined in orange (ID:
wkl214), a G-RG in green (ID: wkl062) a GF-RG in purple (ID: wkl141), and
a T-RG in pink (ID: wkl164). Their IDs and coordinates of central locations
are labelled beside the landforms. The dates on the upper-left corners show the
time spans of the velocity measurements. The background maps are Sentinel-2
images acquired in July of 2018.

Table 3

Statistical Summary of the Kinematic Features of the Mapped Rock Glaciers. The
Mean Velocity Column Gives the Mean Value of the Rock Glacier Movement Rate
for Each Category and the Standard Deviations in the Brackets. The Median and
Maximum Velocity Columns Present the Median and Largest Landform Creep
Velocity in Each Category with Their Associated Uncertainties, Respectively.
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Number Mean velocity (cm yr-1) Median velocity (cm yr-1) Maximum velocity (cm yr-1)

Number Mean velocity (cm yr-1) Median velocity (cm yr-1) Maximum velocity (cm yr-1)
All RGs 256 24 (22) 17±1 127±7
DMS-RGs 115 17 (18) 12±1 127±7
G-RGs 97 31 (22) 25±1 110±1
GF-RGs 21 35 (30) 25±1 124±4
T-RGs 23 17 (8) 16±1 36±1

Figure 12. Histograms of the downslope velocities for (a) all RGs, (b) DMS-RGs,
(c) G-RGs, (d) GF-RGs, and (e) T-RGs, respectively.

5 Discussion

In this section, we firstly summarize the potential and limitations of using the
combined methodology for mapping rock glaciers (Sect. 5.1). Then we discuss
the genetic and evolutional implications carried by the geomorphic characteris-
tics of the mapped rock glaciers (Sect. 5.2).

5.1 Potential and limitations of the InSAR-Deep learning combined method for
mapping rock glaciers
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We used an InSAR-Deep learning combined approach to map rock glaciers across
the West Kunlun Mountains. The advantage of the combined methodology is
twofold: the InSAR-based mapping approach provides essential information on
surface kinematics and accurate manual delineation for training the deep learn-
ing model; whereas the automated method improves mapping efficiency and
more importantly, overcomes the conservativeness of the former approach and
expands the InSAR-based sub-dataset. More specifically, some rock glaciers
cannot be detected by InSAR due to coherence loss in interferogram, geomet-
ric distortions, their topographic orientations insensitive to InSAR line-of-sight
measurements, or simply their inactive kinematic status (Wang et al. 2017;
Robson et al. 2020). As we used the conventional Differential InSAR method,
the smaller amount of interferograms adopted for identifying rock glaciers could
lead to more serious omission in the dataset compared with using multi-temporal
data (Cai et al., 2021; Zhang et al., 2021; Bertone et al., 2022). By combining
the deep learning method, we can map the landforms that had been omitted
due to coherence loss in the limited number of interferograms. In addition, rock
glaciers moving parallel to the satellite direction, or along a steep slope, or at a
very fast or slow pace, can be mapped as well.

However, our deep learning approach has a limited level of automation: the re-
sults produced by this methodology still requires manual inspections and mod-
ifications to increase the accuracy. Among the factors controlling the deep
learning performance, the amount and quality of training and validation sam-
ples is one primary factor that affects the mapping accuracy. In this study, the
training and validation datasets consist of the boundaries of active rock glaciers
in the InSAR-based sub-dataset overlying the Sentinel-2 optical images (exam-
ples as shown in Figure 5). The amount of rock glaciers (172) as training and
validation samples is in the same order of magnitude as the landform amount
(338) used by Robson et al. (2020) for training their deep learning network;
yet the training data size can be improved to fully achieve the potential of the
state-of-the-art network (DeepLabv3+Xception71) we adopted. Quality of the
input images is also moderate, as the Sentinel-2 images have a medium spatial
resolution of ~10 m, making it challenging to characterize some rock glaciers, es-
pecially small ones with areas smaller than 30,000 m2, from these optical images
and possibly leading to inaccuracy in the output. Therefore, manual inspection
is required in the post-processing to improve the accuracy of the automatically
delineated boundaries. Additionally, the cloud cover of the images hinders the
compilation of a complete inventory across the large area. Finally, the Google
Earth images (2009–2020) we referred to while creating the InSAR-based sub-
dataset are unsynchronized with the Sentinel-2 images (Jul–Aug of 2018) used
for producing the training data and for predicting rock glaciers by the trained
model. Accordingly, we conducted additional manual inspections while prepar-
ing the input data and recognized few differences requiring corrections to the
training data because the rock glacier activity is relatively low in the study area
(Sect. 4.3), yet this asynchronization may lead to errors in areas where rock
glaciers have been moving fast in recent decades.
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Furthermore, as we evaluated the effectiveness of the deep learning-based
method by applying the trained model to a test area outside the original
study area and the validation IoU, which reached a value of ~0.8 comparable
with the previous milestone research (Chen et al., 2018), the imperfect metric
we achieved (i.e., validation IoU < 1) reveals the possibility that some rock
glaciers may still be missed in our inventory. We estimated the magnitude of
landform underestimation by calculating an index from the validation IoU and
a test experiment in a new region (methodology detailed in Text S1); yet it is
challenging to provide a precise estimate given that no ground truth data is
available over the study region.

In addition, our combined approach is limited to mapping intact landforms, i.e.,
active and transitional rock glaciers according to the updated categorization
scheme of rock glacier activity proposed by RGIK (2021). The InSAR-based
sub-inventory contains active rock glaciers, the surface of which display coher-
ent downslope motion as revealed by the interferograms. The transitional rock
glaciers, on the other hand, show little movement over the surface, yet their ge-
omorphologic characteristics are less distinguishable from the active landforms.
Our deep learning model essentially learned the visual features of active rock
glaciers through the optical images in the training dataset, and thus the model
is likely to identify and delineate transitional rock glaciers as well. In con-
trast, relict rock glaciers usually develop distinct geomorphologic features such
as subdued topography and vegetation cover, which cannot be mapped by the
deep-learning model.

Considering the above limitations, several improvements can be implemented
in our future research: (1) to increase the amount and diversity of training
samples by including rock glacier boundaries from other regions; (2) to adopt
higher-resolution and more cloud-free optical images for producing input dataset;
and (3) to use generative adversarial network for translating optical images (for
landform inference) to the domain of training data and include them during
training. Nevertheless, the developed model will be useful for regions where
data gap exists, such as many mountain ranges on the Tibetan Plateau. The
inventory produced by this work will serve as an important database for scientific
investigations such as managing geohazards (e.g., Kummert and Delaloye, 2018),
assessing sediment budget (e.g., Kofler et al., 2022), and monitoring permafrost
changes (e.g., Thibert and Bodin, 2022).

5.2 Genetic and evolutional implications from the geomorphic characteristics of
rock glaciers

We classified the mapped rock glaciers into glacier-connected (G-RGs), glacier-
forefield-connected (GF-RGs), debris-mantled slope-connected (DMS-RGs), and
talus-connected rock glaciers (T-RGs). This classification scheme was adopted
firstly for a practical reason: spatial connection of the rock glacier to its upslope
unit is mostly well discernible from the optical images (as illustrated in Figure
2). Moreover, we take the distinction as an indication of the evolution of rock
glaciers in terms of their ice origin, sediment source, and debris transfer process.
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In this subsection, we interpret the genetic and evolutional implications held by
the characteristics of rock glaciers in the regional geomorphologic context.

Nearly half (~49%) of the mapped rock glaciers are spatially connected to
glaciers. The amount appears to be reasonable because much of the West
Kunlun Mountains (~12,500 km2) is occupied by modern glaciers (Kääb et al.
2015), constituting one of the most prominent glacierization centers on the Ti-
betan Plateau (Shi 2006). G-RGs occurring at the immediate downslope of the
modern glaciers are likely to have the ice core embedded within the landforms,
representing the transitional process from glacier (or debris-covered glacier) to
rock glacier (Potter 1972; Whalley and Azizi 1994). However, we postulate that
such transition is not actively ongoing given that glaciers in the West Kunlun
are in mass balance or even slightly gaining mass in recent decades (Bao et al.
2015; Kääb et al. 2015; Wang et al. 2018; Zhou et al. 2018). The G-RGs are
likely to gradually evolve from glaciers since the last cold period, i.e., the Little
Ice Age (LIA, 200–600 aBP), and this transitional process tends to slow down
in the past several decades (Shi 2006).

Although the landform transition is currently not active in our study area, we
propose that the glacier-to-rock glacier continuum, as one classical theory about
rock glacier genesis (Berthling 2011), can be adopted to interpret the evolution of
the GF-RGs in our inventory. The GF-RGs are spatially disconnected from the
upslope modern glaciers (Figure 2c), occurring at the lowest altitudes among all
the categories in the study area (Sect. 4.2). Interactions between the GF-RGs
and the glacier units are likely to take place during the glacier advance phases
in geologic history. Anderson et al. (2018) modelled the glacier – debris-covered
glacier – rock glacier evolutional process by simulating the rise of environmental
equilibrium line altitude in response to climate warming: a pure glacier melts
and separates from the emerging debris-covered terminus, which preserves its
ice core due to insulation effect produced by the surface sediment and finally
transforms into a rock glacier. Accordingly, we postulate that the GF-RGs in
our study area once were part of the upslope glaciers during the Neoglaciation
(3000–4000 aBP), when glaciers extended to altitudes hundreds of meters lower
than the present glacier termini in the West Kunlun (Li and Shi 1992; Shi 2006).

Interactions between glaciers and rock glaciers are highlighted in the West Kun-
lun Mountains by the occurrence of abundant surge-type glaciers, whose flow
velocities peaking at 0.2–1 km yr-1 during their active phases (Quincey et al.
2015; Yasuda and Furuya 2015). Excess materials consisting of ice and debris
are carried downslope to areas far beyond the normal termini of the surge-type
glaciers and may deliver sediments to the nearby glaciers (or debris-covered
glaciers), whereby the surge events tend to contribute to the glacier-to-rock
glacier transition provided that glaciers in the West Kunlun will retreat in the
future as the glaciers in other alpine regions worldwide nowadays. A compara-
ble case is the ongoing glacier-to-rock glacier transition in the Himalayas: based
on field observation and sedimentologic analysis, Jones et al. (2019) elaborated
that debris supply from the environmental sediment sources (in addition to the
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sediment derived from glaciation of the transitional landform per se) drives the
evolution as an important factor. Moreover, the ice-debris body transferred and
deposited at the far end of a surge-type glacier may gradually evolve into a rock
glacier under favorable climatic and topographic conditions. Figure 13 presents
an example of the potential evolutional process: the terminus of a surge-type
glacier is covered by debris (Chudley and Willis, 2019) and many thermokarst
lakes develop on the surface of the ice-debris mixture, which is likely to trans-
form into a rock glacier in a warming climate. Two rock glaciers (wkl019 and
wkl020) are situated in the surroundings and may receive debris and ice input
during the surge events.

The genesis of two categories of rock glaciers, namely the T-RGs and the DMS-
RGs, are related to periglacial processes. The T-RGs are conventionally consid-
ered as features originated in the periglacial domain: the rock glaciers contain
interstitial ice developed by various processes such as burial of surface snow that
typically occur in the formation of frozen ground (Humlum 1988; Haeberli 2000;
Berthling 2011). The DMS-RGs are seldomly reported in the literature (Hu et
al. 2021), yet display unique geomorphologic characteristics and constitute the
second largest category (~35%) in the study area. In the absence of an upslope
glacial system, we suggest that the DMS-RGs also represent the periglacial pro-
cesses controlling the landform genesis. In comparison with the other three cate-
gories, the DMS-RGs occupy the highest and steepest slopes, where mechanical
weathering dominates and produces sufficient sediments transferred and accu-
mulated to the base of the slopes. During the glacial period, interstitial ice is
formed within the deposits. The ice-debris mixture gradually develops and at
one point overcomes the friction and starts to creep as an active rock glacier.
Considering the lack of a headwall and the very small dimension (~one fifth of
the average size of all mapped landforms, 0.05 km2 vs. 0.26 km2), it is likely
that the DMS-RGs began to emerge during the Little Ice Age and are still at
their embryonic stage.
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Figure 13. The blue line delineates the boundary of a surge-type glacier (Chud-
ley and Willis 2019). Two rock glaciers (wkl019 and wkl020) in our inventory
are situated in the surroundings.

6 Conclusions

We mapped rock glaciers at a regional scale and quantified their surface kine-
matics by combining InSAR and image semantic segmentation powered by deep
learning. The combined method was applied to map rock glaciers across the
West Kunlun Mountains, where the extremely dry climate represents one char-
acteristic environmental setting on the Tibetan Plateau. We draw the main
conclusions as follows:

(1) The DeepLabv3+ network trained by manually labelled data based on InSAR
and Google Earth images can successfully identify and delineate rock glaciers
from Sentinel-2 images, attaining an IoU value of 0.801 for both training and
validation datasets. The well-trained model newly mapped 123 rock glaciers to
supplement the non-exhaustive InSAR-based sub-inventory of 290 active rock
glaciers.

(2) There are 413 rock glaciers mapped over the study area, including 202
glacier-connected rock glaciers (G-RGs), 143 debris-mantled slope-connected
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rock glaciers (DMS-RGs), 41 glacier forefield-connected rock glaciers (GF-RGs),
and 27 talus-connected rock glaciers (T-RGs). The mapped rock glaciers oc-
cupy a total area of ~ 108 km2 and are located at altitudes between 3389 m and
5541 m. The average slope angle is 17° and the dominating landform aspect is
towards the east.

(3) Among the mapped rock glaciers, the G-RGs and GF-RGs are larger (aver-
age areas: 0.40 km2 and 0.38 km2) and occur on gentler slopes (14° and 15°)
predominantly facing northeast, whereas the DMS-RGs are the smallest (0.05
km2) and occupy steep (23°) southeastern-facing slopes at the highest altitudes
(4889 m). The T-RGs display a medium size (0.20 km2) and slope angle (18°)
and mostly occur on southeastern-facing slopes at lower altitudes (4332 m). The
GF-RGs have the lowest average altitude (4265 m).

(4) Considering the geomorphologic context, we postulated that the glacier –
debris-covered glacier – rock glacier transition is currently inactive due to the
abnormal mass gain of glaciers in the West Kunlun: the mapped G-RGs and
GF-RGs evolved from glacier to rock glacier during the past Holocene glacial
periods, e.g., the Little Ice Age and the Neoglaciation. Surge events of glaciers
may provide material supply and promote the glacier-to-rock glacier transition
in the future.

(5) Based on the geomorphic characteristics of mapped rock glaciers, we suggest
that the genesis of T-RGs and DMS-RGs are controlled by periglacial processes.
The DMS-RGs, as a distinct type of rock glaciers in our study area, represent
embryonic rock glaciers derived from prevalent mechanical erosion of the slopes
and interstitial ice formation during the Little Ice Age. Note that the hypothesis
on landform genesis formulated here needs further validation based on measured
evidence.

(6) We adopted the spatial average velocity of all pixels within the boundary of
each rock glacier to represent the landform surface kinematics. In total, 256 rock
glaciers have valid kinematic quantifications. Nearly 90% of the rock glaciers
move slower than 50 cm yr-1. The mean downslope velocity is 24 cm yr-1, and
the standard deviation is 22 cm yr-1. The median and maximum velocities are
17 cm yr-1 and 127 cm yr-1, respectively.

(7) Among the active rock glaciers, the G-RGs and GF-RGs move faster at mean
velocities of 31 cm yr-1 and 35 cm yr-1, respectively. The DMS-RGs and T-RGs
creep at a slower average velocity of 17 cm yr-1.

In summary, combining InSAR and high-resolution optical imagery to manually
map active rock glaciers proves to be an effective way to quantify rock glacier
kinematics consistently in remote areas. With the utilization of deep learning
techniques, it is promising to compile rock glacier inventories efficiently over a
significant extent of permafrost areas, e.g., the Tibetan Plateau, which provides
a baseline dataset and allows the monitoring of rock glaciers as indicators of
permafrost degradation and potential water sources in a changing climate.
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Data Availablity Statement

The rock glacier inventory produced by this work will be available on PANGAEA
(https://doi.org/10.1594/PANGAEA.938686, the link will become accessible
once the related paper is published). The training data will be provided by Y.
Hu upon request. Codes are available on GitHub (https://github.com/cryoyan
/Landuse_DL).
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