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Abstract

Whole-stream metabolism models are generally implemented with a steady flow assumption that does not hold true for many

systems with sub-daily flow variation, such as river sections downstream of dams. The steady flow assumption has confined

metabolism estimation to a limited range of river environments, thus limiting our understanding about the influence of hydrology

on biological production in rivers. Therefore, we couple a flow routing model with the two-station stream metabolism model

to estimate metabolism under unsteady flow conditions in rivers. The model’s applicability is further extended by including

advection-dispersion processes to facilitate metabolism estimation in transient storage zones. Metabolism is estimated using

two approaches: (1) an accounting approach similar to the conventional two-station method and (2) an inverse approach that

estimates metabolism parameters using least-squares minimisation method. Both approaches are complementary since we use

outputs of the accounting approach to constrain the inverse model parameters. The model application is demonstrated using a

case study of an 11 km long stretch downstream of a hydropower plant in the River Otra in southern Norway. We present and

test different formulations of the model to show that users can make an appropriate selection that best represents hydrology

and solute transport mechanism in the river system of interest. The inclusion of unsteady flows and transient storage zones in

the model unlocks new possibilities for studying metabolism controls in altered river ecosystems.
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Key Points:7

• A metabolism model is developed by coupling an unsteady flow routing model with8

the two-station stream metabolism model.9

• The influence of transient storage and flow regulation at upstream and downstream10

ends on solute transport time is considered in the model.11

• The model successfully estimates metabolism in the case study, but requires ac-12

curate characterisation of solute travel time parameters.13
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Abstract14

Whole-stream metabolism models are generally implemented with a steady flow assump-15

tion that does not hold true for many systems with sub-daily flow variation, such as river16

sections downstream of dams. The steady flow assumption has confined metabolism es-17

timation to a limited range of river environments, thus limiting our understanding about18

the influence of hydrology on biological production in rivers. Therefore, we couple a flow19

routing model with the two-station stream metabolism model to estimate metabolism20

under unsteady flow conditions in rivers. The model’s applicability is further extended21

by including advection-dispersion processes to facilitate metabolism estimation in tran-22

sient storage zones. Metabolism is estimated using two approaches: (1) an accounting23

approach similar to the conventional two-station method and (2) an inverse approach24

that estimates metabolism parameters using least-squares minimisation method. Both25

approaches are complementary since we use outputs of the accounting approach to con-26

strain the inverse model parameters. The model application is demonstrated using a case27

study of an 11 km long stretch downstream of a hydropower plant in the River Otra in28

southern Norway. We present and test different formulations of the model to show that29

users can make an appropriate selection that best represents hydrology and solute trans-30

port mechanism in the river system of interest. The inclusion of unsteady flows and tran-31

sient storage zones in the model unlocks new possibilities for studying metabolism con-32

trols in altered river ecosystems.33

Plain Language Summary34

Whole-stream metabolism is not only an integrative measure of river ecosystem health,35

but also characterises carbon transformations in freshwater systems. Therefore, it is im-36

portant to accurately estimate whole-stream metabolism in diverse river environments.37

To achieve this, we focus on addressing two limitations in the current metabolism mod-38

els. Firstly, we include the influence of sub-daily flow variation on metabolism. Such a39

variation is common below hydropower dams and has a potential to negatively impact40

metabolism downstream of dams. Secondly, we include the influence of transient stor-41

age zones on metabolism. These storage zones are like dead zones in rivers, where the42

movement of water and solutes may be slowed down compared to the rest of the flow-43

ing river. These zones may significantly influence metabolism because the travel time44

of water and solute particles in these zones is higher. Using a case study of the River Otra45
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in southern Norway, we show that the model successfully includes the influence of afore-46

mentioned river environments in whole-stream metabolism estimation. The model pro-47

vides opportunities to estimate metabolism in a wider range of river environments, which48

in turn will help reduce uncertainties in our global estimates of freshwater carbon fluxes.49

1 Introduction50

Biotic CO2 emissions from rivers can be estimated through the metabolic balance51

of rivers, thus contributing to our understanding of the global carbon cycle (Demars et52

al., 2016; Hotchkiss et al., 2015; Raymond et al., 2013). Whole-stream metabolism char-53

acterises carbon fixation and mineralisation through gross primary production (GPP)54

and ecosystem respiration (ER) in streams and rivers. GPP and ER are integral mea-55

sures of riverine biological processes (Bernhardt et al., 2018) and can serve as important56

indicators of whole-river health (Ferreira et al., 2020; Von Schiller et al., 2017; Young57

et al., 2008).58

Ecologists have developed robust models for whole-stream metabolism estimation59

based on diel oxygen changes in open channels (Demars et al., 2015; Holtgrieve et al.,60

2016; Odum, 1956) including book-keeping methods with Monte-Carlo simulation (Demars,61

2019) and inverse models with Bayesian procedure (Appling, Hall Jr, et al., 2018; Hall62

et al., 2016; Holtgrieve et al., 2010). However, these models were developed for reach-63

scale estimation and for a limited range of river environments (Appling, Read, et al., 2018).64

For example, the open-channel metabolism models do not account for the influence of65

sub-daily flow variation and transient storage zones on dissolved oxygen variation at river-66

network scale despite these features being prevalent in many rivers due to flow regula-67

tion (Zimmerman et al., 2010) and channel hydromorphological characteristics (Kurz et68

al., 2017), respectively. Civil engineers have also produced water quality models for oxy-69

gen prediction to address river sanitation issues (Beck & Young, 1975; Streeter & Phelps,70

1925). These models are applicable to entire river networks (Cox, 2003a, 2003b), whereas71

this is just emerging in the ecological literature (Pathak et al., 2022; Segatto et al., 2020,72

2021). Therefore, we can integrate implementations from both these fields to build par-73

simonious models applicable at river-network scale and to a wider range of river envi-74

ronments than those currently studied through open-channel metabolism models.75
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Quantification of transient storage in metabolism models may be crucial as these76

zones are potential hotspots of metabolism in rivers due to longer residence times (Argerich77

et al., 2011; Fellows et al., 2001; Mulholland et al., 2001). Transient storage zones are78

characterised by stagnant pockets of water due to presence of biofilms, dense patches of79

aquatic plants, hyporheos or eddies of deep pools (Bencala & Walters, 1983; Bottacin-80

Busolin et al., 2009; Ensign & Doyle, 2005). Several models have been developed to sim-81

ulate the impact of transient storage on solute transport in rivers such as the Transient82

Storage Model (Bencala & Walters, 1983; Manson et al., 2001; Runkel, 1998) and the83

Aggregated Dead Zone (ADZ) model (Beer & Young, 1983; Wallis et al., 1989). The pro-84

portion of transient storage and the exchange rate of water molecules between the main85

channel and the storage zone may change with flow (Manson et al., 2010; Wallis & Man-86

son, 2018), but current models were designed to work under steady flows.87

The assumption of steady flow conditions in metabolism models may not be valid88

in regulated rivers. Wide-spread flow regulation for reservoir operations in rivers around89

the world has altered the frequency and magnitude of sub-daily flow variation and con-90

sequently impacted healthy ecosystem functioning (Poff & Zimmerman, 2010). The tim-91

ings and magnitude of flow releases determine trends in metabolism. Reduction in flow92

variability can elevate downstream metabolism (Aristi et al., 2014), whereas abrupt high93

flow releases can reduce tailwater metabolism (Uehlinger et al., 2003). The studies analysing94

flow regulation impacts on ecosystem metabolism have mainly looked at coarser tem-95

poral scale using Odum (1956)’s two-station method at a river-reach scale, where homo-96

geneous hydraulic conditions are assumed over a period of day, i.e. impact of average daily97

flow on average daily metabolism (e.g. Aristi et al., 2014; Chowanski et al., 2020; Uehlinger98

et al., 2003). However, metabolism models need to account for sub-daily flow variabil-99

ity, especially considering recent trends in the rapidly changing energy markets (e.g. switch100

to renewable energy) that may enhance the sub-daily variability in flow (hydropeaking)101

in tailwaters (Ashraf et al., 2018). To address these limitations, a river network model102

for stream metabolism requires the run of a flow routing model ahead of implementing103

the two-station method (Cimorelli et al., 2016; Payn et al., 2017; Whitehead et al., 1997).104

The prospect of simply adding water transient storage using advection-dispersion equa-105

tions (Chapra & Runkel, 1999; Demars et al., 2015) to these more complicated models106

is daunting because many additional parameters would need to be estimated or well con-107
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strained to apply the models at river-network scale under varying flow conditions, as ex-108

emplified with nutrient cycling (Ye et al., 2012).109

This study overcomes these limitations through development of a parsimonious model110

for Metabolism estimation in rivers with Unsteady Flow conditions and Transient stor-111

age zones (MUFT) that can be extended to a river-network scale. To demonstrate the112

model’s development and implementation, we used a case study of the River Otra in south-113

ern Norway. The MUFT model was implemented along an 11 km river stretch downstream114

of a hydropower plant, where dam operations cause significant diel fluctuations in flow.115

To include the influence of diel flow variation in the MUFT model, we coupled a sim-116

ple unsteady flow routing model adapted from the QUASAR (QUAlity Simulation Along117

River systems) model (Whitehead et al., 1997) with a two-station stream metabolism118

model (Odum, 1956). The study stretch also demonstrates delayed oxygen transport com-119

pared to water velocity, which could be attributed either to the transient storage cre-120

ated from excessive plant growth in the river reach or to the dual flow regulation by dams121

at the upstream and downstream ends of the study stretch. To account for these prob-122

able mechanisms of oxygen transport, we tested two model formulations, (1) ADZ model123

that accounts for transient storage zones (Wallis et al., 1989) and (2) ADV (advection)124

model that accounts for dual flow regulation impact on oxygen transport (Beck & Young,125

1975). In the MUFT model, these formulations (ADV or ADZ) are coupled with the un-126

steady flow routing and the two-station stream metabolism models. Previously, stud-127

ies have proposed modifications in the QUASAR flow routing model to simulate unsteady128

flows (Sincock & Lees, 2002) as well as proposed coupling of ADZ and original QUASAR129

(steady flow) models to simulate non-conservative solutes (Lees et al., 1998). The MUFT130

model combines these efforts by coupling the unsteady QUASAR model and the ADZ131

model to simulate non-conservative solutes.132

In this study, we show metabolism estimation using both inverse and accounting133

(book-keeping) approaches in the MUFT model. While the accounting method is not134

predictive, it allows an independent estimation of the light parameters for GPP that are135

used to better constrain the inverse model and avoid issues of equifinality. The modelling136

approaches presented in this study not only provide theoretical benefits for studying the137

impact of transient storage zones and unsteady flows on metabolism dynamics, but also138

promote practical applications for the management of tailwater river ecosystems.139

–5–



manuscript submitted to JGR: Biogeosciences

2 Theory140

We first selected a flow routing model to simulate discharge downstream of a hy-141

dropower plant, with upstream flow boundary conditions (from e.g. gauging station, rainfall-142

runoff simulations) as model input. We present the flow model equations in this section,143

but any flow routing model of user’s preference can be used. Further, we present asso-144

ciated metabolic models of dissolved oxygen (DO) concentrations under unsteady flow145

conditions with increasing complexity. In the next section, we show how to apply these146

models to a case study.147

2.1 Flow routing model148

To simulate unsteady flows in the MUFT approach, we adapted the flow routing149

model proposed by Sincock and Lees (2002), who based their approach on the QUASAR150

model (Whitehead et al., 1997) originally designed for slowly time-varying flows (quasi151

steady-state). Because of the steady flow assumption, the original QUASAR model as-152

sumes the flow and solute travel times to be equal. However, under unsteady flow con-153

ditions, the travel time of flood wave can be expressed in terms of kinematic wave ve-154

locity (celerity), which is higher than the mean flow velocity (Sincock et al., 2003) and155

consequently, solute velocity. The ratio m of the average celerity (c, m s-1) to the aver-156

age flow velocity (u, m s-1) is expressed following Sincock et al. (2003),157

m =
c

u
=

dQ/dA

Q/A
(1)158

where Q is discharge (m3 s-1), A is the cross section area of flow and m may be approx-159

imated as 5/3 (Chapra, 2008).160

The celerity (c, m s-1) of the flood wave for a reach of length L (m) is,161

c =
L

Tflow
(2)162

where Tflow represents the travel time of the flood wave (s).163

It is assumed that Tflow may be partitioned into dispersion (Tfladz) and advection164

(τfl) terms using a fraction of retention Fr,165

Tfladz = Fr × Tflow (3)166

τfl = (1 − Fr) × Tflow (4)167
168
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The flow routing model includes a simple mass-balance of incoming and outgoing169

flows and assumes fixed channel width with rectangular cross-section. Lateral ground-170

water inflows and discharge from small tributaries were assumed to be negligible within171

reaches. In a river network, the flow of major tributaries may be inserted at the upstream172

edge of a reach. River reaches may be represented as a series of non-linear reservoirs. The173

flow model simulates water transport through a series of n non-linear reservoirs followed174

by a time lag parameter (τfl, s) that lags the routed hydrograph without attenuation175

(Figure 1a). The changes in flow are represented as,176

dQt

dt
=

Qi,t−τfl
−Qt

FrTflow
(5)177

where Q is the flow leaving the reach at time t, Qi is the flow coming into the reach at178

time t. Eq. 5 accounts for the travel time (Tflow) derived from celerity (Eq. 2) as op-179

posed to the travel time derived from mean flow velocity as is commonly done in orig-180

inal QUASAR model applications.181

Figure 1. Conceptualisation of river reaches in the (a) unsteady flow model adapted from

Sincock and Lees (2002) and (b) ADZ model adapted from Lees et al. (2000) for conservative

solute C

–7–
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2.2 Metabolic model in a well-mixed reach under unsteady flow condi-182

tions183

We developed the metabolic model of DO dynamics (Eq. 6) by combining two ap-184

proaches, (1) the conservative solute transport model proposed by Whitehead et al. (1997)185

to simulate DO transport with unsteady flows and (2) the two-station stream metabolism186

method proposed by Odum (1956) to simulate in-stream DO sources and sinks from metabolism187

and air-water gas exchange processes. The detailed proofs of both models were given in188

the original publications. Note that Eq. 6 does not account for water transient storage.189

dCt

dt
=

Qi,t

(Qt × Tu)
(Ci,t − Ct) +

1

zt
(PGPP,t −RER,t) + k(Cs,t − Ct) (6)190

where Ci is the incoming DO in the reach (mg O2 L-1 equivalent to g O2 m-3), C is the191

DO leaving the reach (mg O2 L-1), PGPP is the gross primary production (g O2 m-2 min-1),192

RER is the ecosystem respiration (g O2 m-2 min-1), k is the gas exchange coefficient (min-1)193

and Cs is the expected oxygen solubility (mg O2 L-1). Tu (min) represents the mean flow194

travel time, which is equal to the solute travel time for a well-mixed reach.195

2.3 Metabolic model with pure advection and a well-mixed reach un-196

der unsteady flows (ADV model)197

In long reaches where solute transport is dominated by advective transport as op-198

posed to dispersion, it may be necessary to explicitly take into account pure advection199

as shown in Eq. 7 (Beck & Young, 1975; Odum, 1956). The ADV formulation accounts200

for the effect of dual water regulation by dams at upstream and downstream ends of the201

study reach. The dual water regulation results in apparent faster water velocity com-202

pared to the solute velocity due to the early release of water by the downstream dam be-203

fore the water from the upstream dam reaches the downstream dam.204

dCt

dt
=

Qi,t−α

(Qt × Tsadv)
(Ci,t−α − Ct) +

1

zt
(PGPP,t −RER,t) + k(Cs,t − Ct) (7)205

α = Fadv × Tsadv (8)206
207

where Fadv is the advection delay coefficient. The addition of pure advection α (see Ta-208

ble 1) in the first term of the equation allows to have the two DO concentration curves209

in phase without modifying their shape (simple time translation), with α ≤ Tsadv (Beck210

& Young, 1975). Note that Tsadv is equivalent to Tu for the ADV model.211
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2.4 Metabolic model with pure advection and transient storage (disper-212

sion) under unsteady flows (ADZ model)213

The influence of transient storage in the metabolic model is included using the ADZ214

concept (Beer & Young, 1983; Wallis et al., 1989) as proposed by Sincock and Lees (2002),215

who coupled the unsteady QUASAR flow model with the ADZ model for a conservative216

solute. ADZ model was selected for its simplicity and its conceptual similarity to the un-217

steady QUASAR flow model (Figure 1). The original QUASAR model assumes the river218

reach to be a perfectly mixed system. ADZ model conceptualises the river reach as an219

imperfectly mixed system, where solute is subjected to pure advection followed by dis-220

persion in a lumped active mixing zone (Beer & Young, 1983; Lees et al., 2000; Wallis221

et al., 1989). The metabolic model becomes:222

dCt

dt
=

Qi,t−τs

(Qt × Tadz)
(Ci,t−τs − Ct) +

1

zt
(PGPP,t −RER,t) + k(Cs,t − Ct) (9)223

The ADZ model partitions the overall solute travel time Tsadz into dead-zone res-224

idence time Tadz and advection lag τs, equivalent to partitioning total reach volume into225

the volume of water transient storage and main channel.226

Tadz = Tsadz − τs (10)227

For reaches affected by transient storage, the effective solute transport velocity (us)228

is lower than the mean flow velocity (u) due to solute retention in the storage zone. The229

relationship between these velocities can be described using a solute-lag coefficient β (Lees230

& Camacho, 2000) as,231

us =
u

1 + β
(11)232

Considering Eq. 1, Eq. 2 and Eq. 11, travel time and advection lag for a solute in233

the ADZ model can be described in terms of flow parameters (Sincock, 2002),234

Tsadz = m(1 + β)Tflow (12)235

τs = m(1 + β)τfl (13)236
237

2.5 Modified two-station model for the accounting method238

Eq. 9 can be simplified to derive net ecosystem production (PNEP = PGPP−RER)239

using Euler finite-difference approach, which gives the two-station accounting approach240

–9–
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under varying discharge,241

PNEP,t =

(
Ct+∆t − Ct

∆t
− Qi,t−τs

(Qt × Tadz)
(Ci,t−τs − Ct) − k(Cs,t − Ct)

)
zt (14)242

Note that Eq. 14 can easily be adjusted for the other metabolic models presented243

above (Eq. 6 and Eq. 7). This approach allows to estimate average RER during the dark244

hours (photosynthetically-active radiation (PAR) < 1 µmol-photons m-2 s-1) and deduce245

PGPP,t by difference (PNEP,t−RER,t) during the light hours assuming constant RER246

throughout the day (see Demars et al., 2015). Daily GPP (PGPP ) is simply the sum of247

PGPP,t throughout a day,248

PGPP =

∫ tend

t0
PGPP,t dt

1 day
(15)249

2.6 Photosynthesis-light relationship250

The accounting method has the advantage, over the inverse modelling approach,251

of deriving instantaneous and daily GPP without making any assumption on the photosynthesis-252

light relationship. The most appropriate link function may thus be selected by plotting253

PGPP,t as a function of PARt. The function is substituted to PGPP,t in the metabolic254

models (Eq. 6, Eq. 7 or Eq. 9). The parameters of the link function may be used as con-255

stants or enabled to constrain the priors (through their uncertainties) in the inverse model,256

thus reducing issues of equifinality. Here, instantaneous gross primary production (PGPP )257

was modelled as a function of PAR with a Michaelis-Menten type equation to include258

the light-saturation effect on photosynthesis (Demars et al., 2011),259

PGPP,t =
PGPPmax × EPAR,t

kPAR + EPAR,t
(16)260

where EPAR,t is the photosynthetically-active radiation (µmol-photons m-2 s-1) at time261

t, PGPPmax is the maximum GPP (g O2 m-2 min-1) and kPAR is the PAR at which half262

the PGPPmax is attained (µmol-photons m-2 s-1).263

PGPPmax and kPAR in the inverse model were estimated using a least-squares min-264

imisation algorithm. It is implicitly assumed that light conditions are spatially uniform265

along the modelled channel length and PAR only varies with time.266
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2.7 Dissolved oxygen saturated concentration267

The expected oxygen solubility (Cs, mg L-1) was estimated from Standing Com-268

mittee of Analysts (1989) as follows,269

Cs =
Catm(P − VP )

101.325 − VP
(17)270

where Catm is the oxygen solubility under normal atmospheric pressure (mg L-1), P is271

the observed atmospheric pressure (kPa) and VP is the saturation vapour pressure of wa-272

ter (kPa). Catm and VP were estimated as a function of water temperature T (range of273

application 0-50°C, Demars et al., 2015),274

Catm = −0.00005858T 3 + 0.007195T 2 − 0.39509T + 14.586 (18)275

VP = 0.0000802T 3 − 0.000717T 2 + 0.0717T + 0.539 (19)276
277

3 Case study278

3.1 Study area279

The River Otra flows through forests and alpine uplands in the valley of Setesdal280

and is the largest river in southern Norway. The river drains a catchment area of 4000281

km2 and runs for about 240 km until it meets the North Sea at Kristiansand (Wright282

et al., 2017). The river is extensively used for hydropower production (about 4 TWh per283

year) through construction of dams and water transfers, with Brokke being the largest284

hydropower station in the valley (Rørslett, 1988; Wright et al., 2017).285

We applied the models within a 10780 m long river section located downstream of286

the Brokke hydropower plant (Figure 2). This section drains about 1900 km2 (Wright287

et al., 2017). The river stretch can be considered an artificial system with its flow and288

water level controlled by Brokke hydropower plant at the upstream end and Hekni dam289

at the downstream end. The oscillating demands on energy production can cause flow290

to vary from ∼ 20-80 m3 s-1 within 24 h under low summer flows. The hydropower plant291

effluent can also release water highly supersaturated in dissolved gases depending on wa-292

ter intakes (streams versus reservoirs) independently of discharge (Pulg et al., 2016). No293

such supersaturation events were observed during the short term study period here (Demars294

et al., 2021). In addition to the controlled flow, the river reach also shows profuse growth295

of the aquatic plant Juncus bulbosus, which may create significant amount of water tran-296

–11–
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sient storage, delaying solute transport time relative to the velocity of water (Ensign &297

Doyle, 2005; Kurz et al., 2017).298

Figure 2. Study stretch in the River Otra spanning from Brokke to Hekni. Monitoring loca-

tions of river flow (red circle) and dissolved oxygen (black filled circles) are marked on the map.
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3.2 Sensor deployment and bathymetry299

DO and water temperature were monitored using O2 and temperature sensors (miniDOT300

PME) at site 2 (Figure 2). A monitoring station was also installed at site 3 to monitor301

dissolved oxygen and water temperature (Xylem - Andeeraa optode 4831), photosynthetically-302

active radiation (LICOR Quantum LI190R-L), air temperature and atmospheric pres-303

sure (Barometer RM Young 061302V) using a Campbell data logger (CR1000X). Data304

from the monitoring station were transferred daily through a Campbell Scientific 4G mo-305

dem CELL215. Data were logged at 5 min time intervals from 4th (10:00 am) to 8th (15:35)306

August 2019. The sensor at site 2 was installed vertically facing down in the main cur-307

rent at mid depth, tied to a post. The sensor at site 3 was inserted into a plastic pipe308

fixed on Straume bridge, and protruded in the main current. The oxygen sensors were309

cross calibrated in 100% air saturated water in a bucket before and after deployment and310

small corrections (< 3% DO saturation) were applied, as previously reported (Demars,311

2019).312

Total dissolved gas (TDG) was monitored at site 1, 2, 3 and 4 every 30 min at in-313

frequent intervals during a five year period (2012-2017) with Total Gas Analysers 3.0 (Fisch-314

und Wassertechnik (Pulg et al., 2016) based on the Weiss-saturometer principle (Weiss,315

1970). The saturation is measured as the percent dissolved air in the water relative to316

expectation from ambient air pressure. The saturometer has an accuracy of ±10 hPa,317

which is approximately ±1% TDG.318

Several thousands georeferenced water depth points were taken throughout the reach319

with a measuring stick north of Straume and Lowrance sonar in the downstream part320

to Hekni (Figure A1), and cross calibrated with discharge. Changes in water depth were321

determined from absolute pressure difference (see Moe & Demars, 2017) between atmo-322

spheric pressure and submersible pressure sensors inserted into a perforated plastic tube323

at sites 1-4 recording at 30 min time intervals (Onset HOBO data loggers U20L-04, ac-324

curacy equivalent to 4 mm for water level).325

3.3 Flow-velocity326

Hourly flow data at Brokke (hydropower plant effluent and river) and Hekni sites327

were obtained for a duration of 8 days (3/8/2019-10/8/2019) from the hydropower com-328

pany. Flow observations were not available at Rysstad Øy and Straume, where metabolism329
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is estimated. Flood wave travel times at these sites were derived from solute travel time330

using the travel time relationships proposed by Sincock et al. (2003). We used these travel331

time relationships to back-calculate solute and flow travel time parameters from veloc-332

ity estimates (Table 1). Velocity estimates in the river reaches were derived using two333

approaches.334

Average velocities for the first section (site 1-2: steep, shallow, fast flowing, cob-335

ble bed) were determined using Manning’s equation: v = (1/n)A/Pm
2/3

S
1/2
c , where n336

is the Manning roughness coefficient (0.04, cobble bed), A is the cross-sectional area of337

the river channel (m2), Pm is the wetted perimeter of the river channel (m) and Sc is338

the channel slope (0.0016 m/m). A and Pm were calculated using changes in water depth.339

This method could not be applied further downstream due to partial control on water340

level by Hekni dam.341

Average velocities for the second section (site 2-3: very wide, gentle slope, sandy342

bed) and the third section (site 3-4: narrow, water level controlled by Hekni dam) were343

estimated from section length (L) and mean travel time (Ts) of large peaks in TDG, where344

us = L/Ts. We used cross correlation function in R (Venables & Ripley, 2002) to iden-345

tify average travel time lags (h) between TDG time-series across the sites. Large TDG346

super-saturation events (threshold > 130% at Brokke) with time lag correlation coeffi-347

cient > 0.4 were selected for the estimation of velocity. These velocities were plotted against348

discharge at Hekni (averaged for corresponding event duration) to establish flow-velocity349

relationship for each reach. TDG travel times ranged between 2-12 hours and 7-13 hours350

in the second (site 2-3) and third sections (site 3-4), respectively. This method could not351

be applied in the first section as the temporal resolution of the TDG data was too coarse352

relative to the mean travel time (< 1 h).353

We established relationships between flow and TDG velocity as us = bQc for three354

discernible sections. Ideally a conservative solute should be used to estimate flow-velocity355

parameters (b, c). While TDG is not a conservative tracer, the selection of the largest356

peaks to differentiate from noise and the very low gas exchange rate in these sections gave357

a similar result to a continuous addition of lime under high flow conditions (about 102358

m3 s-1) monitored with electric conductivity sensors deployed at Straume (site 3) and359

Hekni (site 4). Power regressions between the velocities of TDG waves and correspond-360

ing mean flows at Hekni provided values of constants b and c for the second (R2 = 0.78)361
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Table 1. Velocity and travel time formulations in the ADV and ADZ models for the River

Otra back-calculated based on the travel time relationships proposed by Sincock et al. (2003).

(CSTR, continuous stirred tank reactor)

ADV model ADZ model

Solute velocity us = bQc us = bQc

Solute-lag coefficient β = 0 β = 1.55 (see Appendix)

Mean flow velocity uadv = us uadz = (1 + β) × us

Celerity cadv = m× uadv cadz = m× uadz

Water residence time in CSTR Tuadv = L/uadv Tuadz = L/uadz

Total solute travel time Tsadv = Tuadv Tsadz = L/us

Advection delay α = FadvTsadv τs = Tsadz − Tuadz

Dead zone residence time Tadz = Tuadz

and third sections (R2 = 0.56) (Figure A2, Table A1). Water travelled fastest in the first362

section (Brokke-Rysstad Øy) with a mean velocity of 0.73 m s-1, slowest (0.14 m s-1) in363

the widest section with high plant growth (Rysstad Øy-Straume) and slow-flowing in the364

narrower and deeper third section (0.27 m s-1) for a 50 m3 s-1 discharge.365

3.4 Gas exchange rate366

The gas transfer velocity (kz) of CO2 was estimated as the flux of CO2 (FCO2, mmol367

m-2 h-1) determined using floating chambers equipped with infra-red gas analysers (following368

Bastviken et al., 2015) relative to the CO2 saturation deficit as follows (Cs−C, mmol369

m-3),370

kz =
FCO2

Cs − C
(20)371

More specifically, CO2 efflux (or influx) were estimated in 33 half-hour runs, from372

the average of three chambers for each run drifting freely at the water surface and log-373

ging at 30 s time intervals. The runs were conducted between March 2020 and August374

2020 under varying temperature, discharge and depth. The calculations of CO2 flux for375

individual chambers followed Martinsen et al. (2018). Water samples were collected at376

the beginning and end of each run in 120 mL glass bottles to determine the CO2 sat-377

uration deficit. Water bottles were filled to the rim and capped underwater, then crimped.378
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Mercuric chloride (HgCl2) was immediately added to stop biological processes (100µL379

of half saturated solution per 120 mL bottle). The samples were kept cool (+4°C) and380

in the dark until the day of gas analysis. The samples were warmed and weighed at room381

temperature, a 30 mL helium headspace was created, the samples were weighed again382

(to determine the volume of water removed from the bottle), and shaken gently horizon-383

tally for at least an hour. The headspace was analysed by gas chromatography and con-384

centrations were calculated following Yang et al. (2015). It was checked that the addi-385

tion of HgCl2 did not affect the determination of CO2 (Borges et al., 2019; Koschorreck386

et al., 2021).387

The specific flux FCO2 was not related to water temperature, discharge, depth or388

velocity. Thus kz = 0.022 ± 0.004 m h-1 was estimated as the slope of the regression389

line between specific CO2 flux and CO2 saturation deficit (Figure A3). In theory the re-390

gression line should go through the origin, but the uncertainties were reasonable given391

the modest range of dissolved CO2 saturation (70-267%). Thus, knowing the average depth392

(z = 1.82 m) during the chamber runs, the gas exchange coefficient was calculated for393

CO2 as kCO2 = 0.012 ±0.002 h-1.394

Finally, the oxygen gas exchange coefficient kO2 was simply calculated from kO2 =395

kCO2/0.81 (Demars, 2019), where the constant 0.81 accounts for differences in the rates396

of CO2 and O2 diffusion in water independently of temperature (Davidson, 1957). The397

estimate of kO2 (0.35±0.07 d-1) indicated low gas exchange, comparable to other rivers398

with similar depth-velocity (< 2 d-1, Palumbo & Brown, 2014). kO2 was used as a con-399

stant in the metabolism models (k in Eq. 6, Eq. 7, Eq. 9) to simulate reaeration flux.400

3.5 Model application and parameter estimation401

We developed the model code in Python (3.6.3) and it is available on Zenodo repos-402

itory (Pathak, 2022). Flow and solute dynamics in the river were described using ordi-403

nary differential equations, and solved through an accounting method using finite dif-404

ference approximation and inverse modelling using odeint() function from the Scipy pack-405

age (v1.5.0) in python. The odeint() function solves ordinary differential equations us-406

ing lsoda solver from the FORTRAN library odepack.407

The boundaries of the river network for model implementation were decided based408

on data availability. The modelling approach presented here requires observations at min-409
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imum two sites in the river, one for input and one for parameter calibration. The flow410

routing model was first implemented at 5 min time-steps for the river stretch between411

Brokke and Hekni since flow hydrographs were available at these two sites. Flows at Rysstad412

Øy and Straume were then simulated using the optimised parameters between Brokke413

and Hekni. The solute model was implemented at 5 min time-steps for the river stretch414

between Rysstad Øy and Straume since oxygen observations were available at these sites.415

Although the metabolism model implementation in this study is limited to one reach,416

the model can be extended for multi-reach application (code available by Pathak (2022)).417

Model parameters in the inverse model were estimated using a two-step calibra-418

tion process (similar to Sincock & Lees, 2002), where flow parameters were first optimised419

with respect to the observed flow, prior to the optimisation of metabolic parameters. Flow420

parameters can be optimised between the gauging sites on reach-by-reach basis in down-421

stream direction. Flow time-series at Brokke and Hekni were used to first optimise Fr422

parameter. Flow at Rysstad Øy and Straume were then modelled using the optimised423

value of Fr.424

Solute travel times in the River Otra were derived based on velocities as described425

in section 3.3 (Table 1). Next, metabolic parameters (PGPPmax, kPAR, RER) were op-426

timised in the process of fitting oxygen time-series. Model parameters were optimised427

using a least-squares minimisation approach with the Nelder-Mead algorithm (Gao &428

Han, 2012) from the lmfit package (v1.0.1) in Python. Lower and upper bounds were429

provided from prior knowledge to constrain the inverse model parameters and avoid pa-430

rameter equifinality. Initial values of PGPP , kPAR and RER were provided from the out-431

puts of the two-station accounting method. Fadv was optimised in the modified two-station432

model (ADV formulation, accounting method) by minimising the residual sum of squares433

of GPP-PAR link function (Eq. 16), and was used as a constant in the inverse ADV model.434

Metabolism parameters were assumed to be constant over a period of 24 h for a given435

reach.436

We sampled Bayesian posterior distribution of solute model parameters using the437

Markov Chain Monte Carlo (MCMC) algorithm using the emcee package (v3.0.2) in python.438

This method calculated the log-posterior probability (ln p(θtrue|D)) of the model param-439

eters (θ) given the data (D),440

ln p(θtrue|D) ∝ ln p(θtrue) −
1

2

∑
n

[
(gn(θtrue) −Dn)

2

Sn
2 + ln(2πSn)

2
)] (21)441
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where ln p(θtrue) is the log-prior. The second term on the right represents log-likelihood,442

ln p(D|θtrue), where gn is the generative model, Dn is the data and Sn is the measure-443

ment uncertainty. Note that we did not use the MCMC algorithm for parameter opti-444

misation. Instead, we first optimised the model parameters using the Nelder-Mead al-445

gorithm and later used the MCMC algorithm to sample from the posterior distribution446

of these optimised values to obtain parameter uncertainties and covariance.447

4 Results448

Performances of flow routing and metabolism models were evaluated separately.449

River flows were simulated ahead of the metabolism estimation and outputs from the450

flow routing model were fed as inputs in the metabolism model. An initial visual inspec-451

tion of flow and DO curves showed that water travelled faster than DO within the study452

reach (Figure A4). Such a time lag could result either from the dual water regulation453

at Brokke and Hekni or from the excessive vegetation in the river reach between Rysstad454

Øy and Straume. Therefore, to account for this time lag, we included both potential causes455

in the model formulations i.e., pure advection (ADV, Eq. 7) and also including transient456

storage (ADZ, Eq. 9) for metabolism estimation. In this section, we present the results457

of the flow routing and metabolism model applications. Furthermore, we provide pos-458

terior probability distribution of optimised model parameters in the inverse metabolism459

model.460

4.1 Influence of hydropower plant on DO dynamics along the reach461

The O2 turnover in the second section (site 2-3) was only 14%, calculated as O2,turnover =462

1−1/exp(kL/u) (rearranged oxygen footprint equation, Demars et al., 2015), where L = reach463

length (4660 m), u = average water velocity (8.03 m min-1) and k = reaeration coeffi-464

cient (0.00025 min-1). The output suggests that 86% of the oxygen variability at Straume465

(site 3) can be attributed to the variability of oxygen at Rysstad Øy (site 2). It is known466

that the hydropower plant affects greatly total dissolved gas variation at Rysstad Øy (Pulg467

et al., 2016). Hence, the conventional one-station model (Odum, 1956; Appling, Hall Jr,468

et al., 2018) or averaged two-station model (Demars et al., 2011; Demars, 2019) would469

not provide reliable metabolism estimates in the study section. It also highlights the dif-470

ficulty of the task of disentangling metabolism from background noise, notably the hy-471
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dropower plant effluent at Brokke representing 87% of median flow i.e., most of the O2472

mass flux.473

4.2 Flow routing model474

The flow routing model was able to capture the timing and magnitude of flow peaks475

and troughs (Figure 3). The model estimated average 61% retention for flow in the river476

stretch (Fr = 0.61). Minor discrepancies between modelled and observed flows were ex-477

pected because the flow routing model does not account for the effect of flow regulation478

at the downstream (Hekni) end that causes rapid rises and falls in water level at Hekni.479

Nevertheless, the flow routing model satisfactorily reproduced flow variation at Hekni480

with goodness-of-fit (R2) of 0.87 (Figure 3b).481

Figure 3. Comparison of flow observations at Brokke and Hekni sites (a) and modelled and

observed flows at Hekni site (b) at 5 min time-steps

4.3 Modified two-station model (accounting method)482

Modified two-station model formulation with only pure advection (ADV) performed483

better than the formulation with pure advection plus transient storage (ADZ) (Figure 4).484

The two-station ADZ model simulated sudden drops in NEP at Straume around mid-485

day, suggesting a sudden decrease in GPP around mid-day since ER was assumed to be486
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constant. Variation in PAR did not explain the mid-day drops in GPP (Figure 4c). While487

an afternoon lull in GPP has often been reported, the estimated mid-day drops in NEP488

were not driven by biological production, but indicated a systematic error in the metabolism489

estimates resulting from errors in the simulation of DO mass flux. The mass flux of DO490

in the river largely followed flow variation. The upstream site (Rysstad Øy) showed con-491

current decline in flow and DO in the afternoon owing to changing water demand for power492

plant operations (Figure A4). The downstream site (Straume) did not show a concur-493

rent decline in DO and flow, but showed shoulders in the DO time-series earlier in the494

day (around mid-day). These shoulders result from delayed transport of DO from Rysstad495

Øy to Straume (Figure A4) since oxygen variation at Straume is highly influenced by496

oxygen variation at Rysstad Øy (explained in section 4.1). Although the two-station ADZ497

model accounts for these delayed transport mechanisms through transient storage influ-498

ence, the model was unable to model NEP variation accurately. The ADV model, on the499

other hand, was able to resolve the issue of mid-day drops in GPP to a larger extent.500

Both models showed a positive relationship between photosynthesis and light, with501

saturation of photosynthesis under high light intensity (Figure 4). The ADV model (R2 = 0.56,502

Figure 4a) represented a slightly better regression fit than the ADZ model (R2 = 0.44,503

Figure 4b) for GPP-PAR link function (Eq. 16). The estimates of half-saturation light504

intensity in both models (Figure 4) were in line with what is commonly observed in fresh-505

water systems (kPAR = 100-500 µ mol quanta m-2 s-1, Demars et al., 2011). The esti-506

mates of PGPPmax and kPAR fitted in the GPP-PAR link function (Figure 4) served as507

priors in the inverse model when simulating GPP as a function of PAR.508
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Figure 4. Non-linear regression between gross primary production (GPP) and

photosynthetically-active radiation (PAR) in the modified two-station (a) ADV and (b) ADZ

models at Straume. (c) shows the variation in net ecosystem production (NEP) and PAR in the

modified two-station models at Straume.

4.4 Inverse metabolism model509

Both ADV and ADZ formulations captured the overall DO variation at Straume510

(Figure 5), but the ADV model performed significantly better than the ADZ model to511

capture the overall trend and magnitude of oxygen variation. The ADZ model showed512

a small time lag between the observed and modelled DO concentrations, which indicates513

inaccuracies in the simulation of DO mass flux with flow. Note that the flow-velocity re-514

lationships derived for TDG in the study reach does not cover the entire range of observed515

flows during the modelling period (e.g. equations derived for velocities at Q > 50 m3 s-1516

for reach 2, Figure A2).517

Estimated values of metabolism parameters in the ADV model are generally lower518

than the estimates of the ADZ model (Table A2). The ADV model (R2 = 0.96) derived519

a better overall goodness-of-fit than the ADZ model (R2 = 0.83). Therefore, we selected520
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Figure 5. Comparison of modelled and observed dissolved oxygen concentrations at 5 min

time-steps at Straume in the inverse (a) ADV and (b) ADZ formulations

the ADV model to sample Bayesian posterior distribution of metabolism parameters us-521

ing the MCMC algorithm. PGPPmax and RER parameters showed a strong positive cor-522

relation during the first two days of the modelling period (> 0.86). Other significant cor-523

relations were observed between kPAR-PGPPmax (0.95) and kPAR-RER (-0.63) on the524

third day. Despite these high correlations, we find that the median values (and maxi-525

mum likelihood estimates) of all metabolism parameters lie in a close range of the val-526

ues optimised by the Nelder-Mead minimisation algorithm (within 1-σ uncertainty) (Ta-527

ble 2, Figure 6). The performance of the MCMC algorithm was judged using the esti-528

mate of average acceptance fraction, which was found to be within an acceptable range529

(0.2-0.5, Foreman-Mackey et al., 2013) in all cases. Figure 7 shows the variation in NEP530

and the relationship between GPP-PAR as estimated in the inverse ADV model.531
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Table 2. Median values of posterior probability distribution of the inverse ADV model pa-

rameters with 1-σ uncertainty derived from the MCMC runs and optimised parameter values by

the Nelder-Mead least-squares minimisation algorithm (in brackets). Units are g O2 m-2 d-1 for

PGPPmax and RER, and µmol quanta m-2 s-1 for kPAR.

Parameter Day 1 Day 2 Day 3

PGPPmax 8.64±0.16 (8.64) 12.38±0.12 (12.96) 11.52±0.24 (11.52)

kPAR 144±5 (144) 144±1 (144) 461±32 (461)

RER 3.46±0.09 (3.46) 4.61±0.05 (4.32) 4.03±0.04 (4.03)

Figure 6. Posterior distribution of inverse ADV model parameters gppmax (PGPPmax), kpar

(kPAR) and er (RER) using MCMC algorithm on day 3. Blue lines show the median values of

posterior probability distribution of model parameters. lnsigma parameter is used to estimate

the true uncertainty in the data.
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Figure 7. Estimated net ecosystem production (NEP) (a) and modelled GPP-PAR relation-

ship (b) at Straume in the inverse ADV model. GPP = gross primary production and PAR =

photosynthetically-active radiation.

5 Discussion532

The MUFT model application here demonstrates how the impact of hydropeak-533

ing (i.e. sub-daily flow fluctuations) and transient storage can be included in the esti-534

mation of metabolism. The better performance of the ADV model compared to the ADZ535

model here suggests that despite the initial hypothesis, river vegetation may not produce536

significant transient storage (ADZ) and that introduction of pure transportation delay537

(ADV) in the model may be sufficient to characterise DO dynamics at Straume during538

the modelling period. However, due to limited data availability, it is difficult to confi-539

dently pinpoint the dominant transport mechanism in the river. Since, the aim of this540

study is to present a general model application for metabolism estimation, we do not delve541

in to the specifics of the process-dynamics in the River Otra. In this section, we discuss542

the differences in the inverse and accounting modelling approaches along with their lim-543

itations and the possibilities of future model improvements.544

5.1 Comparison of the inverse model with the modified two-station model545

Discrepancies in the outputs of the inverse and modified two-station models mainly546

arise from the differences in the model structures. For example, the numerical solution547

of the ODE equation in the modified two-station model uses a simple Euler finite dif-548

ference scheme as opposed to a more robust lsoda solver from the FORTRAN library ode-549
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pack (Hindmarsh, 1983) in the inverse model. Moreover, both models characterise GPP550

in different ways. The accounting approach, although advantageous for not assuming the551

type of relationship between GPP and PAR, may fail to segregate the influence of flow552

on DO mass flux from the influence of biological production on DO transformations, when553

DO mass flux and/or solute-lag coefficient are not characterised accurately. On the other554

hand, the inverse model is able to segregate these influences up to a certain extent be-555

cause GPP is modelled as a function of PAR.556

Another difference between the two approaches is the parameter calibration pro-557

cess. The two-station method involves an accounting approach where NEP is directly558

estimated from oxygen observations without any parameter calibration procedure. Daily559

average ER is then estimated during dark hours, and GPP is calculated as a difference560

between NEP and daily average ER. The inverse model, on the other hand, optimises561

model parameters in the process of fitting modelled DO to observed DO time-series us-562

ing a least-squares minimisation algorithm; hence, providing more confidence in the model563

estimates. Admittedly, the inverse approach includes more number of model parameters,564

corresponding to a larger number of degrees of freedom and consequently, the risk of pa-565

rameter equifinality (Spear & Hornberger, 1980). However, as demonstrated in this study,566

equifinality may be reduced by constraining the parameter space with prior knowledge567

of the river system and by minimising the number of unknown parameters by using field568

measurements to the extent feasible (e.g. Du et al., 2014). Often, random sampling meth-569

ods such as MCMC algorithms are useful to estimate uncertainty in the optimised model570

parameters (e.g. Segatto et al., 2021) as represented in this study. Furthermore, sensi-571

tivity analysis may also be used to identify the most influential parameters for the sim-572

ulations (e.g. Vandenberghe et al., 2001).573

Although the modified two-station approach is simpler and quicker compared to574

the inverse model, its application is limited to a much smaller spatial scale, i.e. river-575

reach scale. Additionally, the two-station accounting approach relies on continuous DO576

measurements at both sites in the river reach of interest, which is often not possible due577

to adverse field conditions, drifting of sensors, etc. (Wagner et al., 2006). On the con-578

trary, the inverse model is an apt alternative to estimate long-term trends in metabolism579

at a river-network scale even when there are gaps present in continuous DO measure-580

ments at calibration sites. Despite the differences laid out here, we showed that the out-581

comes from the two-station accounting approach are useful to constrain the metabolism582
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parameters in the inverse model. Therefore, both approaches are complementary rather583

than competitive.584

5.2 Modelling limitations and future efforts585

The parsimonious model MUFT relies on certain assumptions. For example, the586

flow routing model approximates constant flow parameters for the entire reach between587

Brokke and Hekni because it employs reach-by-reach calibration method between gaug-588

ing stations. In this study, a constant retention parameter was assumed for the entire589

river section between Brokke and Hekni. This assumption is not realistic since river hy-590

draulics vary within the stretch (discussed in section 3.3). Although we accounted for591

heterogeneity using reach-wise flow-velocity relationships in the flow routing model, such592

data may not be easily available in other rivers. It is important to estimate flow param-593

eters precisely because small errors in flow parameters may result in large errors in metabolism594

estimates when flow dominates the mass flux of oxygen in the river. Multiple non-linear595

storage tanks (nc > 1) may be more appropriate when the river section is heterogeneous,596

but increasing nc value did not significantly improve model performance in this case. Pa-597

rameter sensitivity analysis (e.g. Sincock et al., 2003) may also be employed prior to MCMC598

simulations to identify an appropriate model structure and reduce bias in the flow pa-599

rameters. However, a more detailed investigation of parameter bias is out of the scope600

of this study.601

It is difficult to derive a physical understanding of travel time mechanisms because602

of the lumped parameter structure of the MUFT model. Characterisation of oxygen travel603

time from flow based parameters integrates flow and metabolism models and therefore,604

overcomes this issue to a certain extent. However, it is still difficult to relate travel time605

parameters to river hydraulic properties and interpret the physical significance of model606

coefficients because of the crude description of dead zone (ADZ, Wallis et al., 1989) and607

advective transport (ADV, Beck, 1976) in the model. For example, we found ADZ res-608

idence time to be poorly related to metabolism. A lack of strong relationship may partly609

be attributed to the assumption that TDG velocity ≈ solute velocity in the river. This610

assumption may introduce some bias in NEP estimates. Conservative tracer experiment611

may help characterise solute travel time parameters (e.g. Tsadz, Tadz, β) more accurately612

and consequently, help reduce the bias in metabolism estimates. A poor relationship may613

also occur from model’s inability to account for the diversity of transient storage com-614
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ponents that contribute to different metabolic processes (e.g. autotrophic and heterotrophic615

production) (Haggerty et al., 2009). One way to account for diverse transient storage616

zones is through resazurin tracer experiments, to segregate metabolically active transient617

storage from a less-active transient storage (Haggerty et al., 2009; Argerich et al., 2011).618

However, the possibility of a weak or non-existent relationship between transient stor-619

age and ecosystem functioning cannot be neglected (Bernhardt et al., 2002; Webster et620

al., 2003). Nonetheless, in spite of limited available data and a simplified structure, both621

formulations of the model are able to provide fairly accurate predictions of oxygen trans-622

port and dispersion in this as well as previous studies (Lees et al., 2000; Santos Santos623

& Camacho, 2022). The MUFT model thus offers an alternative with a trade-off between624

accuracy and complexity.625

Another simplification in the MUFT model is in the way in-stream processes are626

modelled. The ADZ formulation, in particular, assumes that metabolic activity occurs627

in the transient storage zone, and not during oxygen advection. Lees et al. (1998) pro-628

posed a mass decay term for non-conservative solutes (e.g. ammonium). However, it is629

difficult to characterise mass decay of oxygen during advection through a single term,630

when coupled with stream metabolism approach. On the other hand, the ADV formu-631

lation does not have this issue since it assumes that advection process is dominant in the632

river reach. The model also includes a simple formulation of metabolism fluxes, but a633

more complex formulation may be included if necessary. We find that a Michaelis-Menten634

type equation adequately simulates GPP in the River Otra, but the model can be eas-635

ily modified to include other formulations such as linear (Payn et al., 2017) or hyper-636

bolic tangent function (Holtgrieve et al., 2010; Jassby & Platt, 1976). We assume con-637

stant ER over a day to keep the model structure simple, but ER may be varied as a func-638

tion of water temperature (Holtgrieve et al., 2010; Song et al., 2018) if deemed neces-639

sary in the river system. Estimate of gas-exchange coefficient k is crucial since a small640

bias in k may lead to a large bias in metabolism estimates (Hall Jr & Ulseth, 2020). k641

may be modelled as a function of river hydraulic properties (Raymond et al., 2012) or642

may be estimated during model calibration with prior information from empirical rela-643

tionships or direct measurements (Holtgrieve et al., 2010). Here, k is estimated from float-644

ing chamber studies, performed under a limited range of flows. Use of a constant k value645

during the modelling period was adequate in this case because the study reach repre-646
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sented slow-flowing water with considerably low gas-exchange compared to metabolism,647

thus limiting biases in metabolism from biases in k.648

In the River Otra, we find that both inverse modelling approaches are able to pre-649

dict oxygen variation in the study reach, although performance of the ADV model is sig-650

nificantly better than the ADZ model. The MUFT modelling approach presents oppor-651

tunities to estimate metabolism in rivers with unsteady flows and/or transient storage652

zones. Popular approaches of solute modelling with unsteady flows (e.g. flood routing653

models based on Saint-Venant equations) or including transient storage zone effects with654

steady flows (Bencala & Walters, 1983; Manson et al., 2010; Runkel, 1998) use partial655

differential equations (one-dimensional) to simulate water and solute movement. The MUFT656

model, on the other hand, takes a simpler approach by characterising river reaches as657

non-linear storage zones in series (zero-dimensional), and simulates water and solute move-658

ment using ordinary differential equations. Due to its parsimonious structure, the model659

includes fewer calibration parameters. Furthermore, the model offers flexibility in select-660

ing an appropriate formulation (e.g. unsteady flows, solute transport mechanisms) that661

best represents the river conditions.662

6 Summary and conclusion663

This study presents a coupled modelling approach (MUFT) to estimate whole-stream664

metabolism in rivers with unsteady flow conditions and transient storage zones. The MUFT665

model integrates flow and oxygen modelling based on travel-time relationships proposed666

by Sincock and Lees (2002), which were originally built on QUASAR (Whitehead et al.,667

1997) and ADZ (Lees et al., 2000; Wallis et al., 1989) model equations. We propose an668

additional model formulation for dominant advective transport (ADV) based on the model669

developed by Beck and Young (1975). The MUFT approach can be applied through in-670

verse modelling or accounting method (two-station method) according to user’s prefer-671

ence and data availability. We demonstrated the application of the MUFT model in the672

River Otra in southern Norway. We found that the accounting method is simpler, but673

shows high bias in metabolism estimates when oxygen mass flux is not precisely mod-674

elled. The inverse modelling approach is more robust as it employs least-squares min-675

imisation algorithm to optimise model parameters. Moreover, the inverse model supports676

investigation of parameter uncertainties and correlations through Bayesian sampling of677

posterior distributions.678
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The MUFT approach presents opportunities to estimate whole-stream metabolism679

in hydropeaking river environments as well as in rivers influenced by transient storage680

zones. With increasing feasibility of high-resolution, long-term oxygen monitoring in rivers681

(Appling, Hall Jr, et al., 2018; Appling, Read, et al., 2018; Bernhardt et al., 2022), it is682

possible to extend the model for network-scale metabolism prediction. Using the knowl-683

edge of river hydraulics, the inverse model may also be able to predict metabolism rates684

at sites within the river network where continuous monitoring is not carried out (e.g. Pathak685

et al., 2022). In future, the model can be implemented for metabolism prediction under686

changes such as warming, extreme weather events and river management practices - a687

research area that calls for more attention (Bernhardt et al., 2018).688

Appendix A Appendix689

A1 Estimation of solute-lag coefficient690

Using average TDG travel time (Table A1), m = 5/3 (Chapra, 2008) and average691

flood wave travel time in Eq. A1, β = 1.55 is derived for the river section between Brokke692

and Hekni.693

m =
c

u
=

c

us × (1 + β)
=

10780
190

10780
807 × (1 + β)

(A1)694

A2 Estimation of flow routing parameters695

Flood wave travel time Tflow can be dervied from reach length and avereage celer-696

ity as shown in Eq. 2. Based on Eq. 2 and travel time relationships provided in Table697

1,698

Tflow =
L

c
=

L

m(1 + β)us
(A2)699

Solute travel time (Ts) at time t for a reach i is expresses as,700

Ts =
Li

us
=

Li

biQ
ci
t

(A3)701

Substituting Eq. A3 in Eq. A2,702
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Tflow =

L1

b1Q
c1
t

+ L1

b2Q
c2
t

+ L3

b1Q
c3
t

m(1 + β)
(A4)703

Values of b and c constants for each reach are provided in Table A1.704

A3 Model application and outputs705

Table A1. Description of river reaches (L = length, W = mean width, v = velocity, τ = travel

time)

Reach

no

Reach

name

L

(m)

W

(m)
b c

Mean v

(m s-1)

Mean τ

(min)

1 Brokke - Rysstad Øy 3130 107 0.1554 0.3967 0.73 71

2 Rysstad Øy – Straume 4660 316 0.0047 0.8699 0.14 550

3 Straume - Hekni 2990 119 0.0489 0.4352 0.27 186

Table A2. Parameter values in the inverse ADV and ADZ models optimised using the Nelder-

Mead algorithm. Units are g O2 m-2 d-1 for PGPPmax and RER, and µmol quanta m-2 s-1 for kPAR.

Model Parameter Day 1 Day 2 Day 3

ADV PGPPmax 8.64 12.96 11.52

kPAR 144 144 460

RER 3.46 4.32 4.03

ADZ PGPPmax 13.82 14.40 12.53

kPAR 144 144 173

RER 6.48 6.48 5.90
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Figure A1. Spatial distribution of depth measurements in the Otra River. Data points are

represented with different colours to segregate depths taken on different days during June, 2020.

The triangle markers highlight the locations of the gauging sites in the catchment (see Fig 2)
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Figure A2. Flow-velocity relationship for reach 1 (maroon, triangle markers), reach 2 (green,

diamond markers) and reach 3 (blue, square markers) derived using total dissolved gas observa-

tions. Point in orange (circle marker) represents average velocity for a flow of 102 m3 s-1 derived

from a lime addition study between Straume and Hekni.

Figure A3. Estimation of gas transfer velocity from a regression between specific flux of CO2

derived from the floating chamber runs and CO2 saturation deficit derived from the gas chro-

matograph analyses
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Figure A4. Time-series of observed dissolved oxygen concentrations C and observed flow Q

(a) and time-series of observed mass flow rate of oxygen and observed flow Q at sites within the

study stretch (b)
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Figure A5. Day 1. Posterior distribution of inverse ADV model parameters gppmax

(PGPPmax), kpar (kPAR) and er (RER) using MCMC algorithm. Blue lines show the median

values of posterior probability distribution of model parameters. lnsigma parameter is used to

estimate the true uncertainty in the data.
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Figure A6. Day 2. Posterior distribution of inverse ADV model parameters gppmax

(PGPPmax), kpar (kPAR) and er (RER) using MCMC algorithm. Blue lines show the median

values of posterior probability distribution of model parameters. lnsigma parameter is used to

estimate the true uncertainty in the data.
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