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Abstract

Numerical simulation of rupture dynamics provides critical insights for understanding earthquake physics, while the complex

geometry of natural faults makes numerical method development challenging. The discontinuous Galerkin (DG) method is

suitable for handling complex fault geometries. In the DG method, the fault boundary conditions can be conveniently imposed

through the upwind flux by solving a Riemann problem based on a velocity-strain elastodynamic equation. However, the

universal adoption of upwind flux can cause spatial oscillations in cases where elements on adjacent sides of the fault surface

are not nearly symmetric. Here we propose a nodal DG method with an upwind/central mixed-flux scheme to solve the spatial

oscillation problem, and thus to reduce the dependence on mesh quality. We verify the new method by comparing our results with

those from other methods on a series of published benchmark problems with complex fault geometries, heterogeneous materials,

off-fault plasticity, roughness, thermal pressurization, and various versions of fault friction laws. Finally, we demonstrate that

our method can be applied to simulate the dynamic rupture process of the 2008 Mw 7.9 Wenchuan earthquake along/across

multiple fault segments. Our method can achieve high scalability in parallel computing under different orders of accuracy,

showing high potential for adaptation to earthquake rupture simulation on natural tectonic faults.
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• We propose a mixed-flux-based nodal DG method to reduce dynamic rupture sim-10

ulation dependence on mesh quality.11
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Abstract16

Numerical simulation of rupture dynamics provides critical insights for understand-17

ing earthquake physics, while the complex geometry of natural faults makes numerical18

method development challenging. The discontinuous Galerkin (DG) method is suitable19

for handling complex fault geometries. In the DG method, the fault boundary conditions20

can be conveniently imposed through the upwind flux by solving a Riemann problem based21

on a velocity-strain elastodynamic equation. However, the universal adoption of upwind22

flux can cause spatial oscillations in cases where elements on adjacent sides of the fault23

surface are not nearly symmetric. Here we propose a nodal DG method with an upwind/central24

mixed-flux scheme to solve the spatial oscillation problem, and thus to reduce the de-25

pendence on mesh quality. We verify the new method by comparing our results with those26

from other methods on a series of published benchmark problems with complex fault ge-27

ometries, heterogeneous materials, off-fault plasticity, roughness, thermal pressurization,28

and various versions of fault friction laws. Finally, we demonstrate that our method can29

be applied to simulate the dynamic rupture process of the 2008 Mw 7.9 Wenchuan earth-30

quake along/across multiple fault segments. Our method can achieve high scalability in31

parallel computing under different orders of accuracy, showing high potential for adap-32

tation to earthquake rupture simulation on natural tectonic faults.33

Plain Language Summary34

Numerical modeling of the earthquake rupture process helps us better understand35

and investigate the underlying physics of earthquakes. However, it remains challenging36

to model the fault rupture process for natural earthquakes, partially due to the geomet-37

ric or/and geological complexities on/around the ruptured faults. To address these com-38

plexities, we develop a new numerical method for modeling the 3D fault rupture process39

of natural earthquakes. In this study we propose an improved, more flexible numerical40

scheme to reduce the dependency on mesh quality for earthquake rupture modeling and41

accommodate complex fault zone properties. We verify the correctness and efficiency of42

our method by benchmarking several typical models with complex fault geometries (e.g.,43

branch faults and rough faults). We also apply our method to simulate the multi-fault44

rupture process of the 2008 Wenchuan earthquake to demonstrate the broad potential45

for natural earthquake modeling applications.46

1 Introduction47

In recent decades, numerical simulation of rupture dynamics has become a pow-48

erful means to study the underlying physics of earthquake source mechanisms. Seismo-49

genic faults of natural earthquakes usually exhibit complex fault geometries such as dips,50

bends, branches, step-overs, and multi-fault coupling. For example, field investigations51

show the 2008 Wenchuan earthquake ruptured simultaneously on the two imbricate struc-52

tures of the Beichuan and Pengguan fault (Xu et al., 2009). Seismic and geodetic data53

joint inversion illustrates the simultaneous ruptures on the plate interface and the over-54

laying splay faults on the 2016 Kaikōura earthquake (Wang et al., 2018). In addition,55

the medium around the fault also exhibits strong heterogeneity, which affects the earth-56

quake rupture process. Ulrich et al. (2022) shows the importance of regional-scale struc-57

tural heterogeneity to the hazards of the 2004 Sumatra–Andaman earthquake and In-58

dian Ocean tsunami. These physical complexities place extremely high demands on the59

flexibility of numerical methods for rupture dynamics.60

Earlier modelings of earthquake dynamic rupture use the semi-analytical bound-61

ary integration equation method (BIEM) (Das, 1976; Das & Aki, 1977). BIEMs are flex-62

ible in modeling geometric complex faults (Ando & Kaneko, 2018; Qian et al., 2019) but63

limited to homogeneous media. Therefore, pure numerical methods such as finite differ-64
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ence methods (FDMs) (Madariaga, 1976; Day, 1982), finite volume methods (FVMs) (Benjemaa65

et al., 2009) and finite element methods (FEMs) (Barall, 2009; Aagaard et al., 2013) are66

applied to three-dimensional (3D) dynamic rupture modelings. The FDM, especially the67

staggered-grid FDM (Day et al., 2005; Dalguer & Day, 2007), has a simple numerical scheme68

and high computational efficiency and is one of the most widely used methods. To over-69

come the limitations of these traditional FDMs on modeling geometrically complex faults,70

curvilinear FDMs (Kozdon et al., 2012; Z. Zhang et al., 2014; W. Zhang et al., 2020) are71

developed, which can handle more complex faults such as non-planar faults. Combined72

with multi-block grid technology, FDMs can model geometric complex megathrust earth-73

quakes such as the 2011 Tohoku-Oki earthquake (Kozdon et al., 2013; Kozdon & Dun-74

ham, 2013).75

Despite the high efficiency of FDMs and hexahedral-mesh-based FEMs (Ely et al.,76

2009; Kozdon et al., 2013; Z. Zhang et al., 2014; Galvez et al., 2014; Duru et al., 2021),77

it remains challenging for dynamic rupture modeling with geologically and geometrically78

complex faults. In contrast, the meshing process for tetrahedral meshes is automatic and79

more user-friendly even with open-source meshing software (Geuzaine & Remacle, 2009;80

Si, 2015). Therefore, tetrahedral mesh-based numerical methods for 3D rupture dynam-81

ics are developed, including FEMs (Oglesby et al., 2000; Ma & Archuleta, 2006; Aagaard82

et al., 2013), FVMs (Benjemaa et al., 2009) and discontinuous Galerkin (DG) methods83

(also called discontinuous FEM) (Pelties et al., 2012; Tago et al., 2012; Ye et al., 2020).84

Among them, the DG method combines the high-order advantages of the FEM with the85

advantages of the easy parallelization of the FVM and has become a competitive method86

for rupture dynamics. In DG methods, numerical flux is used for implementing various87

boundary conditions (Cockburn et al., 2012; Hesthaven & Warburton, 2008). The up-88

wind flux (one type of numerical flux) (de la Puente et al., 2009) can inherently suppress89

artificial high-frequency oscillations without adding artificial viscosity, which is used in90

many traditional FEMs (e.g., Aagaard et al. (2013); Galvez et al. (2014)).91

In this work, we develop a new method for 3D dynamic rupture modelings based92

on the Gauss-Lobatto-Legendre-based nodal discontinuous Galerkin (NDG) framework93

(Hesthaven & Warburton, 2008) and apply it to model natural earthquakes with mul-94

tiple faults. We use the velocity-strain form of the elastodynamic equation, which can95

better describe multi-geophysical problems such as acoustic-elastic coupling under the96

unified framework (Wilcox et al., 2010; Ye et al., 2016). For the first time, we derive an97

upwind flux formulation in the form of a velocity-strain equation to impose fault bound-98

ary conditions for dynamic rupture problems. The framework of upwind-flux-based on99

the velocity-strain equation has been extended to model seismic waves in more complex100

cases (e.g., anisotropy, viscoelasticity) (Zhan et al., 2020). Therefore, the use of the velocity-101

strain equation facilitates us to continue to incorporate these complexities to dynamic102

rupture problems in the future. The NDG method we use here is mathematically equiv-103

alent to the modal DG method but different in terms of computation (Hesthaven & War-104

burton, 2008). Extra conversions of the modal and nodal coefficients are required in the105

modal DG framework for the implementation of Drucker–Prager viscoplasticity (Wollherr106

et al., 2018). In contrast, the viscoplasticity can be straightforwardly incorporated in the107

NDG framework, which greatly simplifies the numerical implementation.108

The upwind flux is advantageous in suppressing spurious high-frequency oscilla-109

tions, resulting in smooth and accurate simulated time series of the rupture process (de110

la Puente et al., 2009). However, in some dynamic rupture modeling cases, universal adopt-111

ing upwind flux for all boundary conditions can be problematic. If the mesh adjacent112

to the fault is not approximately symmetric, the use of upwind flux can lead to spatially113

oscillating results, especially in the normal or shear stress components. This phenomenon114

is not a bug in the code implementation, as a similar phenomenon also occurs in the modal115

DG method using upwind flux (Breuer & Cui, 2016, 2018). The existence of this prob-116

lem makes mesh generation for dynamic rupture problems challenging. For some sim-117
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ple geometries, such as a vertical planar fault, we can construct a mirrored mesh to make118

sure the mesh is symmetric to the fault surface, resulting in oscillation-free simulation119

results. While for non-planar faults or low-dip-angle thrust faults, it is impossible to gen-120

erate an ideally symmetric mesh and challenging to generate a nearly symmetric mesh.121

To solve this problem, we propose a mixed flux scheme, that is, using a mixture of up-122

wind fluxes and central fluxes. The benchmark examples we tested show that the mesh-123

induced spatial oscillations in the upwind-flux-based DG method are removed after us-124

ing our proposed mixed flux scheme. Therefore, by using our improved DG method with125

mixed flux, we reduce the dependence on mesh quality, enabling modelers to choose more126

mesh generation software for constructing complex fault models.127

We tested our NDG method with MPI and found good parallel scalability for tests128

up to about 500 CPU processors. At the current stage, the parallel scalability of this method129

has enabled us to simulate the rupture dynamics of various complex fault systems of large130

earthquakes, and our method holds the potential to adapt to a larger parallel scale in131

supercomputers (Fu et al., 2017). By comparing with benchmark examples from “The132

SCEC/USGS Spontaneous Rupture Code Verification Project” (Harris et al., 2009, 2018),133

we verify the accuracy and flexibility of our method in modeling rupture dynamics with134

the bimaterial property, branched faults, off-fault plasticity, fault roughness, thermal pres-135

surization and various friction laws. Finally, we demonstrate the preliminary dynamic136

rupture modeling of the complex fault system of the 2008 Wenchuan earthquake. We in-137

clude topography and complex geometries with multi-faults in our simulations. The multi-138

fault system of the Wenchuan earthquake includes the Beichuan fault, Pengguan fault139

and Xiaoyudong fault (Xu et al., 2009). By using the method developed in this work,140

we further added the Xiaoyudong fault, which is confirmed to be ruptured during the141

earthquake but was difficult to be incorporated in previous simulations (Tang et al., 2021).142

Both benchmark models and the Wenchuan earthquake model illustrate the advantages143

of this method in simulating dynamic rupture process of complex fault systems.144

2 The Nodal Discontinuous Galerkin Method145

In this section, we show the framework of the NDG method, and demonstrate how146

to implement fault boundary conditions by solving exact Riemann problems under the147

velocity-strain form of elastodynamic equations.148

2.1 DG Discretization149

We consider an elastic media in this work. A velocity-strain form of elastodynamic150

equations is adopted, which is suitable to describe multi-physics problems under the same151

unified framework (Wilcox et al., 2010; Ye et al., 2016; Zhan et al., 2020). In the velocity-152

strain DG framework, the solution vector is consists of velocity and strain variables:153

q = (ρvx, ρvy, ρvy, ϵxx, ϵyy, ϵzz, ϵyz, ϵxz, ϵxy)
T , (1)154

where ρ is density, vi is the particle velocity, ϵij is the strain and γij is the engineering155

strain (γij =
1
2ϵij). Let Ω denote the computational domain (Figure 1). Ω is discretized156

into Ne non-overlapping tetrahedral elements Ωi(i = 1, 2, ..., Ne) with the boundary ∂Ωi.157

The solution vector in each element Ωi is approximated as:158

qi(r, t) =

Np∑
k=1

qi,k(t)lk(r), (2)159

here lk is the nodal Lagrangian basis function with the maximum number of Np =
N(N+1)(N+2)

6 ,160

N is the polynomial order. Therefore, the expansion coefficients qi,k are also the nodal161

solution variables on the collocation points r on Ωi. Following the classic workflow of DG162

method (Text S1-S2 in Supporting Information S1), we apply the DG testing (set test163
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fault

absorb

free

f(q,q+)

f +(q,q+)f(q)

f(q+)

ˆ

ˆ

(a)

(b) (c)

(d)

continuous

Ωi

∂Ωi

Ω

Ωi

Figure 1. (a) A 2D schematic dynamic rupture model, Ω denotes the entire computational

domain, including the fault (red lines), free (green lines) and absorbing boundaries (magenta

lines). (b) The continuous Galerkin (traditional FEM) discretization, solution vectors q are de-

fined in the nodal points (blue squares). Fault surfaces are represented as “split nodes” (points

share locations but have double values), and continuous boundaries (gray lines) are represented

as shared points. (c) The discontinuous Galerkin (DG) discretization, both fault and continuous

boundaries are represented as “split nodes”. (d) The element Ωi with three boundaries ∂Ωi and

one of its neighbouring element. f(q), f(q+) are the flux function vectors. f̂(q, q+), f̂+(q, q+)

are the “numerical” flux vectors, which are used to implement all boundary conditions in the DG

framework.

function as basis function) to the velocity-strain form of elastodynamic equations:164 ∫
Ωi

lk[∂tq −∇ · (f , g,h)]dV =

∫
∂Ωi

lkT
−1(f̂ − f)dS, (3)165

here f , g,h is the flux functions in the x, y, z directions:166

f = (τxx, τxy, τxz, vx, 0, 0, 0, vz, vy)
T ,167

g = (τxy, τyy, τyz, 0, vy, 0, vz, 0, vx)
T , (4)168

h = (τxz, τyz, τzz, 0, 0, vz, vy, vx, 0)
T ,169

where f̂ is the “numerical” flux, which is a combination of the solution vectors in the170

split faces of the two adjacent elements: f̂ = f̂(q, q+) (see Figure 1, the superscript171

“+” indicates the neighboring elements). Numerical flux is the core of the FVM and DG172

methodologies (LeVeque, 2002; Toro, 2009). T is the rotation matrix which is used to173

rotate the global coordinate to the element face aligned local coordinate (Text S3 in Sup-174

porting Information S1) for the convenience of deriving the numerical flux. Note that175

the flux f , f̂ in the right term of the Equation 3 is in the local coordinate. Once the nu-176

merical flux f̂ is derived in the local coordinate, it should be rotated back into the global177

coordinate using the inverse rotation matrix T−1.178

2.2 Boundary Conditions179

How to implement the boundary conditions is crucial for developing numerical meth-180

ods for dynamic rupture models. There are four types of boundary conditions in the model181

(Figure 1): 1) fault surface, where the elements have relative motion (dislocation); 2) free182

surface, where the traction force vanishes; 3) absorbing boundaries of the model domain,183
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where inward-going waves are vanished; 4) continuous boundaries, unbroken elements184

without relative motion. In the continuous Galerkin (traditional FEM) framework, con-185

tinuous boundary conditions are implicitly implemented as the solution/flux vectors in186

the boundary share the same value: q = q+, f(q) = f(q+). While in the DG frame-187

work, all interior boundaries (including continuous boundaries) are represented as split188

nodes with double values, i.e., f ̸= f+ holds even for continuous boundary conditions189

(Figure 1d). All the boundary conditions are implemented in the numerical flux term190

(e.g., f̂ = f̂+ for continuous boundary conditions), rather than the flux term f .191

In this work, we choose the upwind flux for the numerical flux term f̂ (Equation192

3) for its advantage for suppressing spurious high-frequency oscillations (de la Puente193

et al., 2009). However, in Section 3, we show that the universal adoption of the upwind194

flux for all boundary conditions can be problematic in some dynamic rupture cases and195

a modification of upwind flux will be introduced. In the following two subsections, we196

start to derive the upwind flux for a dynamic rupture model by introducing the Riemann197

solvers.198

2.2.1 Riemann Solver for Continuous Boundaries199

Following the framework of Toro (2009); Zhan et al. (2020), assuming x is the nor-200

mal direction of the element boundary, we solve the Riemann problem under the Rankine-201

Hugoniot conditions (Text S4.1 in Supporting Information S1) for the continuous bound-202

ary condition (f̂+ = f̂):203

Jv̂θK = 0, Jτ̂xθK = 0, (θ = x, y, z), (5)204

yielding the upwind flux:205

f̂ − f = (Zpα1, Zsα2, Zsα3, α1, 0, 0, 0, α3, α2)
T , (6)206

where α1 =
JτxxK+Z+

p JvxK
Zp+Z

+
p

, α2 =
JτxyK+Z+

s JvyK
Zs+Z

+
s

, α3 =
JτxzK+Z+

s JvzK
Zs+Z

+
s

, Zp, Zs are the impedance207

of P and S waves. The superscript “+” indicates the neighboring elements. J·K denotes208

the difference between the solutions on the face of two adjacent elements: JθK ≡ θ+ −209

θ. For the free surface boundaries and the exterior boundaries, Equation 6 is also used210

by setting the artificial solution vector q+ as stress imaged solution (τ+xθ = −τxθ, θ =211

x, y, z) or vanished solution (q+ = 0), respectively.212

2.2.2 Riemann Solver for Ruptured Boundaries213

The spontaneous rupture problem requires mixed continuous-discontinuous bound-214

ary conditions, i.e., f̂+ ̸= f̂ (the stress components are continuous while the velocities215

are discontinuous). We rotate the coordinate to set the fault normal direction as x, hence216

the fault slips at y and z direction. Then the fault boundary conditions are expressed217

using the numerical flux as follows:218

Jv̂xK = 0, Jv̂yK = Vy, Jv̂zK = Vz, Jτ̂xθK = 0, (θ = x, y, z). (7)219

Solving the Riemann problem for rupture boundary conditions (Text S4.2 in Support-220

ing Information S1) yields the following relationship:221

τ̂xθ = Φθ − ηVθ, (θ = y, z), (8)222

where η =
ZsZ

+
s

Zs+Z
+
s

. Φθ is the shear stress component when the fault is locked (Equa-223

tion 9, Φy = Zsα2, Φz = Zsα3). Applying the parallel condition τ
|τ | =

V
|V| , we obtain224

the relationship for the absolute slip rate V and shear stress τ :225

τ̂ = Φ− ηV. (9)226
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Equation 9 is crucial for implementing fault boundary conditions. Combining Equation227

9 and the friction laws, we can solve the stress shear and the slip rate on the fault. Next,228

we will illustrate the details for implementing slip weakening and rate-state friction laws.229

For slip weakening friction law, the friction coefficient is slip dependent:230

µf = µf (s) = max{µd, (µs − µd)
s

Dc
}, (10)231

where µs, µd is the static and dynamic friction, Dc is the characteristic slip distance. s232

is the fault slip which can be obtained by integrating fault slip rate V . The fault nor-233

mal stress is solved by implementing the continuous and the “non-open” condition:234

σ = min{0, τ̂xx + τ0xx}, (11)235

the superscript “0” in τ0xx denotes prestress. τ̂xx is the numerical flux of the normal stress236

component when the fault is locked. From Equation 6 we can know τ̂xx = Zpα1. If τ̂ =237 √
τ̂2xy + τ̂2xz is larger than the shear strength µfσ, which means that the fault cannot re-238

main locked and begins to slip, then the shear stress should be µfσ. Otherwise, when239

the fault stress τ is below the level of the fault strength, indicating the fault is locked,240

the absolute fault shear stress should be τ̂+τ̂0 . The formula of relative fault stress un-241

der these two circumstances can be summarized as the following equation:242

τ̂ = min{τ̂ , µfσ − τ0}, (θ = y, z). (12)243

Once we obtain the shear stress, the slip rate can be solved by the relationship between244

shear stress and slip rate (Equation 9).245

For rate-state friction laws, since the fault is always sliding, then we can directly246

set the shear stress as µfσ. Combined with Equation 9, a nonlinear equation can be ob-247

tained:248

τ̂ = Φ− ηV = µf (V, ψ)σ. (13)249

In this case, the friction µf is rate (V ) and state (ψ) dependent. A nonlinear solver, such250

as Newton-Rasphson or Regula Fasi, can be used to solve the slip rate V in Equation251

13. The state variable ψ, obeying different evolution laws: dψ
dt = G(V, ψ), is updated252

by the same time integration method for solution vector q. In this work, the time inte-253

gration method is the fourth-order low-storage Runge-Kutta method (Carpenter & Kennedy,254

1994).255

3 Method Improvement256

In this section, we will demonstrate that the upwind flux introduced in the previ-257

ous section is problematic when the near-fault mesh is not nearly symmetric in some mod-258

eling cases. We then propose a new mixed flux scheme to improve the performance of259

the DG method for dynamic rupture modeling.260

3.1 The Problematic Upwind Flux in Rupture Dynamics261

To show the upwind flux is a double-edged sword for dynamic rupture modelings,262

we start with its advantages. The upwind flux is intensively used in wave propagation263

problems (Käser & Dumbser, 2006; Wilcox et al., 2010; Zhan et al., 2020) for its inher-264

ent dissipation effect and hence free of spurious high-frequency oscillations. de la Puente265

et al. (2009) first applied the upwind-flux-based modal DG method to dynamic rupture266

modeling and demonstrated that this method is free of spurious high-frequency oscilla-267

tions without artificial damping (Kaneko et al., 2008). Figure 2 shows the different os-268

cillation behaviours of the upwind-flux DG method and the SEM. Using a non-dissipative269

central flux have similar spurious high-frequency oscillation problem (Tago et al., 2012,270
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Figure 2. An example showing the spurious high-frequency oscillations using the

SCEC/USGS dynamic rupture benchmark problem TPV5. (a) Slip rate (b) shear stress time

series on a station of fault surface, which is 7.5 km away from the nucleation center along strike,

and at the same depth as the nucleation center. The black color indicates the results of the

SEM (Kaneko et al., 2008) and the red color is calculated by a modal DG method (Pelties et al.,

2012).

Figure 9 therein) as the SEM. These studies show the use of upwind flux is advantageous271

for suppressing the spurious high-frequency oscillations in dynamic rupture modeling.272

However, we found that the use of the upwind flux results in other types of numer-273

ical “oscillations” under certain circumstances. As shown in Figure 3, when the mesh274

adjacent to the fault is not symmetric, the use of upwind flux is prone to spatial oscil-275

lations, especially in the stress components. To avoid confusion and to distinguish it from276

the “spurious high-frequency oscillation” described in Figure 2, we name the oscillations277

in Figure 3 as “spatial spikes”. The spatially oscillated “spikes” are not oscillated in the278

time series but are deviated from true values (Figure 2e,2f). The spurious high-frequency279

oscillations (Figure 2) are mesh-independent and can be suppressed by adding the ar-280

tificial damping (e.g. Kelvin-Voigt viscosity), and it does not lead to numerical insta-281

bilities and can be reduced by mesh refinement. In contrast, the “spatial spikes” (Fig-282

ure 3) is mesh-dependent and can lead to serious instability, especially when the mesh283

size is refined and/or the polynomial order increases since the “filtering effect” by the284

dissipation of the upwind flux is less.285

The phenomenon of “spatial spikes” exists not only in our nodal DG method based286

on the velocity-strain equation, but also in the modal DG (ADER-DG) method based287

on the velocity-stress equation (Pelties et al., 2012). There are two independent imple-288

mentations for the ADER-DG method, SeisSol and EDGE. Breuer and Cui (2016) re-289

ported that the “spatial spaikes” exists in both implementations, which indicates a “trou-290

bled numerical” scheme rather than a bug in the actual implementation. Our numer-291

ical implementation is completely different from SeisSol or EDGE since our method is292

based on the velocity-strain nodal DG framework (Hesthaven & Warburton, 2008). There-293

fore, the fact that “spatial spikes” exist in both methods (Figure 3) Breuer and Cui (2016,294

Figure 4) further confirms the problem of the upwind-flux-based numerical scheme. Breuer295

and Cui (2018) tried to solve this problem by using limiters, which is commonly used296
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Figure 3. An example showing the mesh induced “spatial spikes”. (a) and (b) are cross

sections perpendicular to the fault plane. (a) symmetric mesh with an extruded layer; (b) asym-

metric mesh without an extruded layer. A and B are two neighbouring elements which are im-

mediately adjacent to the fault. Both meshes are generated by the Gmsh software (Geuzaine &

Remacle, 2009) and strong mesh coarsening is applied (The edge length of the element size near

the fault is 200 m, and increases to 5 km at the domain boundary). The “frontal-Delaunay” algo-

rithm is used to generate the 2D surface mesh and the “Delaunay” algorithm to generate the 3D

volumetric mesh. (c) and (d) are the snapshots of shear stress at time 4 seconds calculated with

mesh (a) and (b). (e) and (f) show the comparison of shear stress time series calculated by the

symmetric (a) or asymmetric (b) mesh. (e) and (f) are results of two nearby stations: (1.9 km,1.9

km) and (1.9 km, 1.92 km) (the first number is along-strike distance and the second is along dip

distance).

in DG methods to deal with numerical oscillations caused by the non-linearity of the equa-297

tions (Dumbser & Loubère, 2016). However, as we show in the following, this phenomenon298

is not caused by non-linearity, therefore adding a limiter does not remove the spatial spikes,299

as confirmed by their test results (Breuer & Cui, 2018). We show in the next section that300

this phenomenon is caused by the upwind flux and a modification of the upwind flux treat-301

ment can remove such spatial spikes.302

We need to emphasize that the “spatial spikes” instability only occurs when cer-303

tain types of meshes are involved. Based on the comparison in Figure 3, we found the304

asymmetry of the mesh adjacent to the fault are the most important contributing fac-305

tor. Therefore, we define a parameter to measure the mesh quality for dynamic rupture306

models:307

rv ≡ max{VA
VB

,
VB
VA

}, (14)308

where A and B are the pair of neighbouring elements adjacent to the fault surface (Fig-309

ure 3a, 3b), VA and VB are respective volumes and rv is the volume ratio. When the el-310
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a) b)

upwind ux

central ux

Figure 4. A 2D schematic illustration for the scheme of (a) “mixed flux 1” and (b) “mixed

flux 2”. The fault surface is highlighted by the thick black line. The light green color indicates

the elements using mixed fluxes. In each light green element, the upwind flux are used for the

black edges (including the fault), while the central flux are used for the red edges. In this 2D

example, a total of 3090 edges require numerical flux to implement boundary conditions. For (a),

2994 edges (97%) use central flux (red color); for (b), only 250 edges (8%) use central flux (red

color).

ements adjacent to the fault are completely symmetric (Figure 3a), the volume ratio is311

1. When the volume ratio is much larger than 1, it indicates that the elements adjacent312

to the fault are very asymmetric (Figure 3b), which leads to the instability shown in Fig-313

ure 3d. While a perfectly symmetric mesh is ideal, for many non-planar faults it is very314

difficult to achieve. In our experience, when rv > 1.5, instabilities like Figure 3d will315

occur. For 3D dynamic rupture problems, the use of unstructured triangular meshes can-316

not always guarantee that rv < 1.5, especially when the strong mesh coarsening strat-317

egy is implemented. This suggests that the problem of upwind flux in rupture dynam-318

ics needs to be addressed.319

3.2 The Mixed Flux320

Here we introduce a “mixed flux” scheme to improve the performance of the up-321

wind flux in dynamic rupture modelings. Mixed flux, as the name suggests, is a mix of322

upwind flux and other flux (here, the central flux). The application of specific types of323

numerical flux schemes will be dependent on the types of boundary conditions. Figure324

4 is a schematic diagram of our proposed mixed flux method. In the first scenario “mixed325

flux 1”, We use central flux for all the continuous boundary conditions (Equation 6):326

f̂(q, q+) =
f(q) + f(q+)

2
(15)327

while keep the upwind flux for the rest of the boundaries, including the fault surfaces,328

free surfaces, and absorbing boundaries (Figure 4a). But since most of the element bound-329

aries are continuous boundaries, “mixed flux 1” (Figure 4a) results in an extremely high330

proportion (e.g., 97% in the case of Figure 4a) of central flux usage. That is, the mixed331

flux 1 is close to the central flux method, which is prone to spurious high-frequency os-332

cillations (Tago et al., 2012) (note that it is different from the spatial spikes discussed333

in previous section). To solve this problem, we propose a more advantageous “mixed flux334

2” scheme by limiting the use of the central flux only on the surfaces immediately ad-335

jacent to the fault, while for other surfaces the upwind flux is still used to impose con-336

tinuous boundary conditions (Figure 4b). We use the following two examples to demon-337

strate the second mixed flux scheme can greatly reduce the dependence of mesh qual-338

ity when modeling a dynamic rupture process.339

The first example is SCEC/USGS Spontaneous Rupture Code Verification TPV3,340

spontaneous rupture on a vertical right-lateral strike-slip fault in a homogeneous full space341
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(a)

(d) (e) (f)

(b) (c)

Figure 5. Comparison of results calculated by different numerical flux schemes and different

meshes. Top and bottom rows show snapshots of slip rate and shear stress, respectively, at 4

second. (a), (d): symmetric mesh + upwind flux; (b), (e): asymmetric mesh + upwind flux; (c),

(f): asymmetric mesh + mixed flux (Figure 4b).

(Harris et al., 2009). This benchmark problem has been used by many studies to ver-342

ify numerical results (Pelties et al., 2012; Tago et al., 2012; Z. Zhang et al., 2014). The343

fault surface is vertical and planar with a size of 30 km by 15 km. The initial stress is344

70 MPa in the strike direction, and 0 MPa in the down-dip direction. The central area345

is the nucleation zone with a size of 3 km by 3 km and initial stress of 81.6 MPa. The346

initial normal stress is 120 MPa on the entire fault surface. Linear slip weakening fric-347

tion law is used with the parameters µs = 0.677, µd = 0.525 and Dc = 0.4 m. The348

material is homogeneous: Vp = 6 km/s, Vs = 3.464 km/s, and ρ = 2.67 g/cm
3
. To349

illustrate the effect of mesh quality on the rupture process, two meshes are generated us-350

ing the Gmsh software (Geuzaine & Remacle, 2009). For the first mesh, we add two ex-351

tra layers, one on each side of the fault surface, to ensure that each pair of element ad-352

jacent to the fault are completely symmetric (Figure 3a). Therefore, the volume ratio353

rv is 1 on the entire fault surface. As a comparison group, the second mesh does not in-354

clude the extra layers on both sides of the fault surface (Figure 3b). Therefore, the vol-355

ume ratio rv of many pairs of elements immediately adjacent to the fault surface exceeds356

1.5. We use the “frontal-Delaunay” algorithm to generate the 2D surface mesh and the357

“Delaunay” algorithm to generate the 3D volumetric mesh. Both meshes use strong mesh358

coarsening. The edge length of the elements near the fault is 200 m, and is coarsened359

to 5 km at the domain boundary. We use the spatial order of O = 3 to perform the sim-360

ulations.361

We first calculate the results using upwind flux and a symmetric mesh, as shown362

in Figures 5a and 5d. The results show that both the slip rate and the shear stress are363

smooth, with no spatial oscillations, suggesting that upwind flux is a suitable choice when364

the mesh quality is good. By contrast, the application of upwind flux to an asymmet-365

ric mesh leads to severe spatial oscillations (Figure 5b, 5e). The spatial oscillation dis-366

appears with the mixed flux strategy despite the asymmetric mesh (Figure 5c, 5f), gen-367

erating slip rate and shear stress distributions very similar to those using the upwind flux368

with symmetric mesh (Figure 5a, 5d). This shows that our improved mixed flux can achieve369

satisfactory results even with asymmetric meshes, whereas the upwind flux cannot.370

We further compare the propagation of rupture fronts and shear stress time his-371

tory under the influence of different numerical fluxes and meshes in Figure 6. The re-372

sults in four cases are compared, namely: symmetric mesh & upwind flux, symmetric mesh373

& mixed flux, asymmetric mesh & upwind flux, and asymmetric mesh & mixed flux. The374

rupture fronts in Figure 6a almost overlap; a zoom-in as in Figure 6b shows the max-375
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Figure 6. (a) Comparison of rupture fronts calculated by different meshes (symmetric or

asymmetric) and different numerical fluxes (upwind or mixed); (b) Zoom-in plot of (a); (c) com-

parison of shear stress time series on the location (5.6, 2.3) km on the fault surface; (d) zoom-in

plot of (c).

imum spatial offset of the rupture fronts is only about 30 m. Even for the problematic376

scheme of asymmetric mesh & upwind flux, its rupture front is close to those of others,377

because the problem of spatial spikes only occurs after the stress is reduced to the dy-378

namic level, hence having little effect on the rupture front itself. We selected one sta-379

tion on the fault surface to compare the shear stress time series of the four methods. Clearly,380

the application of the mixed flux, even with the asymmetric mesh, successfully converges381

the stress time series as opposed to the upwind flux method (Figure 6c). Overall, the382

fault ruptures calculated by the mixed flux are slightly faster than those calculated by383

the upwind flux (Figure 6b, 6d). It may be related to the dissipation of the upwind flux,384

which numerically damps the propagation of the rupture. Nevertheless, the difference385

between them is insignificant (the maximum time shift in Figure 6d is about 0.02 s).386

The geometry of the TPV3 model is relatively simple compared to natural faults387

with complex fault geometries. By adding two extruded layers, the pairs of elements ad-388

jacent to the fault surface are completely symmetric, and the use of the upwind flux is389

sufficient in this case to prohibit spatial oscillations. In our experience, even with slightly390

asymmetric meshes, maintaining rv < 1.5 can generally produce satisfactory results us-391

ing upwind flux. However, for more complex fault geometry it is more challenging to gen-392

erate nearly symmetric mesh with rv < 1.5. Therefore, the mixed flux method becomes393

crucial and necessary in scenarios of rv > 1.5, as illustrated in the example below.394

The second example is a thrust fault in half space modified from TPV3 by adding395

a free surface and the dipping geometry. The initial stress and frictional parameters are396

similar to TPV3. The fault plane is 30 km along-strike and 15 km along-dip with a dip-397

ping angle of 15◦. The initial stress is 70 MPa in the down-dip direction and 0 MPa in398

the strike direction. The nucleation zone is located in the center of the fault plane with399

an area of 3 km by 3 km and initial stress of 85 MPa. The initial normal stress is 120400

MPa on the entire fault. The friction parameters are µs = 0.7, µd = 0.5, Dc = 0.5 m.401

Because of the free surface and the low dip angle (15◦), it is impossible to generate a sym-402

metric mesh and challenging to generate a nearly symmetric mesh (rv < 1.5). We gen-403
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Figure 7. Comparison of TPV3 results using different types of numerical fluxes. Left column:

upwind flux; middle column: mixed flux 1 (Figure 4a); right column: mixed flux 2 (Figure 4b).

first row: slip rate snapshot at 5 s; second row: shear stress snapshot at 5 sec; third row: particle

velocity component Vz on the ground surface at 10 sec.
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erated the mesh using Gmsh (Geuzaine & Remacle, 2009). There are 18% elements with404

rv > 1.5 adjacent to the fault surface (11,624 fault faces in total) and the maximum405

rv is ∼12 due to the low dip angle (15◦). The edge length of the elements near the fault406

is 300 m, and is coarsened to 6 km at the domain boundary. We use the spatial order407

of O = 4 for the simulations.408

We first use the upwind flux to simulate the rupture process. As shown in Figure409

7a and 7d the “spatial spikes” occur in both the slip rate and shear stress snapshots. With410

the adoption of the mixed flux, the spatial spikes are completely removed. The snapshots411

on the fault surface calculated by the two mixed flux approaches (as introduced in Fig-412

ure 4) are almost identical, indicating that the difference between the two strategies is413

insignificant for the rupture process.414

However, as introduced in section 3.1, the upwind flux scheme is more advantageous415

than the central flux scheme in suppressing the artificial high-frequency oscillations. Us-416

ing the central flux for all the continuous boundaries (Figure 4a) removes the spatial spikes417

(compare Figure 7a and Figure 7b, or Figure 7d and Figure 7e), but the artificial high-418

frequency oscillations emerges in the far-field ground motion (compare Figure 7g and 7h).419

This is because the central flux is theoretically non-dissipative (Hesthaven & Warbur-420

ton, 2008). We found that the central flux at the fault-intersecting faces only is sufficient421

to suppress the spatial spikes, whereas upwind flux applied at the rest of the continu-422

ous boundaries is effective at suppressing the artificial spurious high-frequency oscilla-423

tions (Figure 4b). Therefore, we propose a more advantageous mixed flux approach (mixed424

flux 2, Figure 4b) which removes the “spatial spikes” while suppressing the spurious “high-425

frequency oscillations”. As shown in Figure 7i, the wave field calculated by the mixed426

flux 2 is also free of spurious high-frequency oscillations, similar to the result of upwind427

flux (Figure 7g). Therefore, the scheme of mixed flux 2 should be the best choice for mod-428

eling dynamic rupture process using DG method with an asymmetric mesh.429

4 Numerical Verification430

Our proposed mixed flux DG method can be applied to simulate dynamic rupture431

processes with complex fault geometries, heterogeneous materials, off-fault plasticity, rough-432

ness, thermal pressurization, and various versions of fault friction laws. In this section,433

we benchmark our simulation results with solutions from the SCEC/USGS Rupture Code434

Verification project (Harris et al., 2009, 2018). In the following, we present the bench-435

mark results for two selected problems, and refer the readers to the Supporting Infor-436

mation for additional cases (Text S5 and Figures S2-S8 in S1).437

4.1 TPV24: Branching Fault438

The first benchmark problem is the SCEC/USGS dynamic rupture model TPV24,439

which is a branching fault in half space (Harris et al., 2018). The TPV24 model has a440

vertical planar main fault of 40 km × 20 km and a vertical planar branching fault (12441

km × 20 km) that intersects with the main fault at an angel of 30◦ (Figure 8). A cir-442

cle nucleation patch (with a radius of 1.5 km) is located at −8 km and 10 km, respec-443

tively, in the along-strike and along-dip directions of the main fault. The material is ho-444

mogeneous with Vp = 6 km/s, Vs = 3.464 km/s, and ρ = 2.67 g/cm
3
. The stress com-445

ponent of the fault surface varies with depth. The static friction coefficient is 0.18, the446

dynamic friction coefficient is 0.12, and the characteristic slip distance is 0.3 m. The grid447

size near the fault is 300 m (O = 4), which gradually increases to 5 km at the bound-448

ary of the model domain (Figure 8a).449

Figure 8b shows that rupture nucleates on the main fault and propagation contin-450

ues on both the main and branch faults. The rupture propagates faster on the branch451

fault than on the main fault, because the traction forces projected onto the branch fault452
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(a) (b)

Figure 8. (a) Close-up and cutaway views of the unstructured tetrahedral mesh of the branch

fault model (TPV24). The red plane is the (vertical) main fault, 28 km along strike and 15 km

along dip; the cyan plane is the (vertical) branch fault, with a length of about 12 km and a depth

of about 15 km; the angle between the two fault planes is 30◦. The element on the fault plane

have a side length of 300 m, and away from the fault, the element side length is coarsened to 5

km at the domain boundary. The mesh contains a total of 845,369 tetrahedron. (b) Snapshots of

simulated slip rates.

are larger given the fault geometry and background stress orientations. Supershear rup-453

ture front is clearly shown along the branch fault at t = 4 s in Figure 8b and Figure 9b.454

We benchmark our numerical results with those using the modal DG method (ADER-455

DG) (Pelties et al., 2012), by comparing rupture front contours and synthetic seismo-456

grams on the fault, shown in Figure 9a-b and Figure 9c, respectively. Our results are clearly457

in good agreement with those calculated by the ADER-DG, and the differences between458

the two methods are within acceptable tolerances of numerical errors (within 1% of rel-459

ative error of rupture time). This comparison demonstrates that our method can prop-460

erly simulate dynamic rupture along branching faults.461

4.2 Rate-State Friction Law with Thermal Pressurization462

Our second benchmark example is the SCEC/USGS TPV105-3D, which assumes463

fault friction follows the strong velocity-weakening rate-state friction law and includes464

thermal pressurization (TP) as an additional weakening mechanism (Harris et al., 2018).465

We adopt the “pseudo-spectral” method introduced by Noda and Lapusta (2010) to im-466

plement the governing equations of temperature and pore pressure changes. The same467

method is implemented in SeisSol.468

The TPV105-3D model consists of a vertical strike-slip fault of a size of 44 km by469

22 km embedded in a homogeneous half space (Figure 10a). The fault is governed by the470

rate and state friction law with flash heating (Di Toro et al., 2004) and is further weak-471

ened by the reduction of effective normal stress due to the pore pressure increase from472

shear heating (Andrews, 2002; Noda & Lapusta, 2010). The velocity weakening/strengthening473

region is set by the spatial heterogeneous friction parameters. The rupture is initiated474

by a circular region with a radius of 1.5 km where the shear stress exceeds the shear strength.475
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Figure 9. (a) Comparison of rupture fronts (every 0.5 s) for the main fault and (b) the

branch fault calculated by our method (solid black line) and the ADER-DG method (Pelties

et al., 2012) (dashed red line). (c) Comparison of the slip rate time series at different locations of

the main fault plane (left column) and the branch fault plane (right column) for the branch fault

model (TPV24).

–16–



manuscript submitted to JGR: Solid Earth

Distance along-strike (km)
10

10

-10-20 0

0

20

20 9 9.5

7.8

7.6

7.4

7.2

8.5

D
e

p
th

 d
o

w
n

-d
ip

 (
k
m

)

R1
R2

(a)

(c)

(b)

0 5 10 15
0

1

2

R
a
te

 (
m

/s
)

R1: (0, 7.5) km

This work

This work

ADER-DG

ADER-DG

CG-FDM

CG-FDM

0 5 10 15
0

2

4

6
R2: (9, 7.5) km

R2

0 5 10 15
0

20

40

S
tr

e
s
s
 (

M
P

a
)

0 5 10 15
0

20

40

0 5 10 15
400

600

800

1000

T
e
m

p
 (

K
)

0 5 10 15
400

600

800

1000

0 5 10 15

Time (sec)

80

90

100

P
re

s
s
u
re

 (
M

P
a
)

0 5 10 15

Time (sec)

80

90

100

Figure 10. (a) Comparison of rupture fronts (every 0.5 s) for the TPV105-3D model calcu-

lated by our method, ADER-DG (Pelties et al., 2012) and the GPU-based CG-FDM (W. Zhang

et al., 2020) (dashed red line); (b) zoomed rupture front contours in (a) near the station R2; (c)

Comparison of the time series of the slip rate, shear stress, temperature and pore pressure of the

two stations (R1,R2) on the fault surface.
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Figure 11. Comparison of snapshots of slip rates for the TPV105-3D model at different times

with (a) and without (b) thermal pressurization (TP).

The full description of TPV105-3D can be found in the SCEC/USGS dynamic rupture476

benchmark verification website (Harris et al., 2009, 2018). We use a large computational477

domain with a size of 200 km by 200 km by 100 km to avoid artificial reflections from478

domain boundaries. The typical grid size is 200 m near the fault surface, and is grad-479

ually increased to 20 km at the domain boundary. We perform the numerical simulation480

using a spatial scheme of fourth-order-accuracy (O = 4).481

We compare the rupture front contours and synthetic seismograms on the fault with482

those from the modal ADER-DG method (Pelties et al., 2012) and a finite difference method483

CG-FDM (W. Zhang et al., 2020); both solutions are available from the SCEC bench-484

mark project website (https://strike.scec.org/cvws/, last accessed 2022.10.02). The485

typical grid size of the fault in ADER-DG is 250 m and the O = 5 is used. The grid size486

of fault in CG-FDM is 50 m and the spatial order is 4 in the bulk domain and reduced487

to 2 on the fault. Figure 10 shows that the rupture fronts calculated by the three meth-488

ods nearly coincide, and the synthetic seismograms are also in good agreement.489

To illustrate the effect of thermal pressurization, we also simulate a case identical490

to TPV105-3D, but without thermal pressurization. As shown in Figure 11, the intro-491

duction of thermal pressurization as an additional weakening mechanism can promote492

a self-arresting rupture (Figure 11a) into a runaway rupture with free-surface induced493

supershear rupture (Figure 11b). This suggests that thermal pressurization is an impor-494

tant factor for ground shaking and seismic hazard assessment.495

5 2008 Wenchuan Earthquake Rupture Simulation496

In this section, we demonstrate that the mixed-flux DG method can be applied to497

model earthquake ruptures on natural faults of complex geometry using the 2008 Mw498
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Figure 12. (a) The surface trace of the Wenchuan earthquake fault rupture. The ruptured

faults include the Beichuan fault (BCF), the Pengguan fault (PGF) and the Xiaoyudong fault

(XYDF). The y-axis (dashed black line) of the computational coordinate system is approximately

NE 45◦. The triaxial stress is assumed to be uniform in the horizontal direction. The black thick

arrows indicate the direction and relative magnitude of the maximum/minimum horizontal prin-

cipal stress (σH and σh). (b) Close-up and cross-sectional views of the unstructured tetrahedral

mesh of the Wenchuan earthquake model. The colorbar indicates surface topography. The edge

length of the elements near the fault is 2 km. Away from the fault, the cell edge lengths are

coarsened to about 10 km at the domain boundary. The mesh contains a total of 1,079,239 tetra-

hedrons.

7.9 Wenchuan earthquake as an example. Our purpose here is to illustrate our newly de-499

veloped method can properly simulate the dynamic rupture process given the fault ge-500

ometry and material properties constrained by previous studies; we do not intend in this501

work to use the simulate results to interpret specific Wenchuan earthquake rupture mech-502

anisms. Therefore here we do not make quantitative comparisons between our simula-503

tion results and observations. Rather, we will focus on the qualitative comparison and504

highlight the first-order importance of fault geometry.505

The Wenchuan earthquake occurred in the Longmenshan thrust belt on the east-506

ern margin of the Tibetan Plateau. Field surveys, GPS and InSAR measurements, and507

kinematic inversions of the rupture process show that the slip distribution of the Wenchuan508

earthquake is highly heterogeneous (Xu et al., 2009; Shen et al., 2009; Wan et al., 2016).509

For example, the southwestern part of the Beichuan fault presents thrust and right-lateral510

strike-slip, while its northeastern part is dominated by strike-slip. Numerical simulations511

have been conducted (Duan, 2010; Z. Zhang et al., 2019) to explain the observations and512

understand the underlying physics of the rupture process. However, the fault geometry513

is usually simplified due to the numerical difficulty of incorporating multiple fault seg-514

ments. For example, the multi-fault system has been to the first order approximated as515

a planar dipping fault, and the non-uniform slip distribution explained by varying the516

background stress tensor along the fault strike (Duan, 2010). Alternatively, Z. Zhang et517

al. (2019) showed that the non-uniform slip distribution can also be reproduced with non-518

planar fault geometry under uniform background stress. A recent study by Tang et al.519

(2021) incorporated multi-fault segments and can produce simulation results (e.g., final520

coseismic slip distribution, surface displacement) in good agreement with GPS and In-521

SAR measurements. However, due to the limited meshing and modeling flexibility of their522

numerical method (redevelopment based on the commercial software ABAQUS/Explicit),523

Tang et al. (2021) excluded the Xiaoyudong fault segment, which is estimated to have524
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experienced up to about 3 m of coseismic slip (Tan et al., 2012). Chen et al. (2013) sug-525

gests that the Xiaoyudong rupture is not a passive tear fault but an active participator526

of slip partitioning on multiple faults within the Longmenshan thrust system. Therefore,527

we include the Xiaoyudong fault in the model (Figure 12a).528

The 3D fault geometry is constructed based on observations from previous stud-529

ies (Shen et al., 2009; Wan et al., 2016; Hubbard et al., 2010), including the Beichuan530

fault, the Pengguan fault, and the Xiaoyudong fault segments. We also include the sur-531

face topography effect during the simulation to account for the large differences in ter-532

rain heights (∼4 km) in this region (Figure 12). As shown in Figure 12b, we utilize an533

external mesh generation software CUBIT (http://cubit.sandia.gov/) to automat-534

ically generate tetrahedral meshes that include both topography and multi-fault geom-535

etry, and label the free surfaces and fault surfaces as boundary conditions. The rest of536

the boundaries are treated as interior or absorbing boundaries and are handled automat-537

ically by our program (Section 2.2). To focus on the fault geometry effect, we set a ho-538

mogeneous medium (Table S1 in the Supporting Information). A linear slip-weakening539

friction law is adopted in the dynamic rupture simulation. The background stress field540

is horizontally uniform and varies only with depth. The friction and stress parameters541

are basically adopted from previous modeling works (Z. Zhang et al., 2019; Tang et al.,542

2021). We set the initial stress to be 5% above the peak stress at a circular patch of ra-543

dius 8 km at depth 19 km to nucleate the rupture from the southwest end of the Beichuan544

fault. Detailed model parameters are listed in Table S1 in the Supporting Information.545

We used 256 CPU processors in Compute Canada (Beluga) for parallel computing and546

the total computing time is about 90 minutes.547

Figure 13 shows the snapshots of simulated fault slip rate (left) and cumulative slip548

(right). Between 0 and 10 s, the rupture nucleated at the southwest end of the Beichuan549

fault and propagated toward the northeast. By the time of about 20 s, the southwest550

segment of the Beichuan fault accumulated up to 8 m of slip and remained the segment551

of the highest coseismic slip. At same time, rupture jumped across to the Xiaoyudong552

fault and the Pengguan fault resulting in ∼3 m of coseismic slip, while continuing to prop-553

agate along the deep part of Beichuan fault with slightly less amount of coseismic slip554

(Figure 13a, 20-30 s). At about 40 s, the rupture ran to the northeast end of the Peng-555

guan fault, where it re-converged with the rupture on the Beichuan fault and continued556

to rupture further to the northeast. The final coseismic slip is highly heterogeneous, with557

the maximum slip accumulated near the nucleation section at the southwest segment of558

the Beichuan fault, which is consistent with the results of kinematic inversion (Shen et559

al., 2009; Wan et al., 2016). Because we did not rotate the direction of the principal stress560

field along strike (as was done in Duan (2010)) and assumed a homogeneous medium in561

our simulation, the non-uniform coseismic slip distribution is attributed to the complex562

fault geometry, highlighting its first order importance.563

6 Discussions564

To deal with the complex fault geometry of many natural earthquakes (e.g., the565

2008 Mw 7.9 Wenchuan earthquake), we developed a nodal discontinuous Galerkin method566

for 3D dynamic rupture modeling. Much effort has been made in this work to make the567

method reliable and efficient: the modification of the upwind flux scheme (mixed flux)568

for reliability, parallel computing and mesh coarsening technique for computational ef-569

ficiency. The mixed flux scheme is important to achieve a stable simulation when asym-570

metric mesh near the fault is generated. We start to discuss the underlying reasons why571

mixed flux is suitable to dynamic rupture problems and their possible implications.572
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Figure 13. Snapshots of (a) slip rates and (b) cumulative slip for the dynamic rupture pro-

cess of the 2018 Mw 7.9 Wenchuan earthquake.
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6.1 Implications of the Mixed Flux Scheme573

The choice of the numerical flux is essential to the numerical algorithms implemented574

with the discontinuous Galerkin method. For example, the upwind flux is universally used575

to deal with all boundary conditions for the wave propagation in isotropic, anisotropic,576

poroelastic and acoustic-elastic media (Wilcox et al., 2010; Zhan et al., 2020). While a577

universal adoption of a single kind of numerical flux is typically sufficient for most DG-578

based models with multiple types of boundary conditions, there do exist some, albeit few,579

studies using more than one type of numerical flux for various purposes. For example,580

He, Yang, Ma, and Qiu (2020) use the linear combination of Godunov flux and central581

flux (called “modified flux”) to improve the performance of elastic wave modeling in isotropic582

and anisotropic media. The numerical dispersion errors are reduced thereby increasing583

accuracy after using the modified flux. In our work for the dynamic rupture model, the584

use of mixed flux is crucial as the instability problem (spatial spikes) occurs with asym-585

metric mesh when only the upwind flux is applied. The choice of a numerical flux suit-586

able for specific model problems and meshes is paramount to the numerical stability of587

the simulation.588

As discussed in Section 3, the instability of upwind flux with asymmetric mesh in589

the dynamic rupture model is due to the inherent numerical dissipation. Previous stud-590

ies (He et al., 2019; He, Yang, & Qiu, 2020) have shown that both the mesh size and mesh591

shape affect the numerical dispersion and dissipation of the upwind flux. Therefore, if592

the mesh near the fault is highly asymmetric (e.g., rv > 3), the numerical dissipation593

of the upwind flux will be very different on the two sides of the fault. The unbalanced594

dissipation error on the continuous-discontinuous fault boundaries is likely the culprit595

of the spatial spikes. The mixed flux scheme is numerically shown to have balanced the596

dissipation errors on both sides of the fault and remove the instability of spatial spikes.597

Our proposed mixed flux scheme may also be useful for other types of physical problems598

with similar mixed continuous-discontinuous boundaries, which deserve further inves-599

tigation.600

6.2 Parallelization and Scalability601

The discontinuous Galerkin method has clearly more degrees of freedom than the602

traditional finite element method for the same mesh (see Figure 1b and Figure 1c). There-603

fore on a single process the DG method is less computational efficient than the tradi-604

tional FEM. However, the DG method is much more adaptive to parallel multi-thread605

computation than the traditional FEMs, because the linear system of equations are solved606

locally (element by element) instead of globally for the traditional FEM. The solution607

vectors q (Equation 1) and wave impedance (Zp and Zs) of neighboring elements are only608

needed when solving for the numerical flux. Moreover, the nodal DG method only re-609

quires the solution on the element interface (rather than the whole element) to be com-610

municated between different computing processors, therefore significantly reducing the611

message passing time. Our program is parallelized with Message Passing Interface (MPI)612

and use the METIS software (Karypis & Kumar, 1998) for the mesh partition. We test613

our program in the high-performance computing cluster ”Narval” of Compute Canada,614

which consists of AMD EPYC processors (e.g., AMD Rome 7532, 7502) and high-performance615

interconnect of InfiniBand Mellanox HDR network (https://docs.alliancecan.ca/616

wiki/Narval/en).617

We use the SCEC/USGS dynamic rupture benchmark problem TPV5 (Harris et618

al., 2009) as an example for the scaling test. A total of 3,093,014 tetrahedral elements619

are generated for the parallelization test. We evaluated the per-step running time (wall-620

clock time) of the program (averaged over 1000 steps) as a function of the number of pro-621

cessors used for the cases of spatial order of accuracy O = 2, 4, and 6, respectively. As622

shown in Figure 14b, the measured (as opposed to idealized) per-step run-time scales with623
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Figure 14. Parallel computation scaling test with MPI, using the TPV5 benchmark prob-

lem (Harris et al., 2009). The black dotted line is the ideal scaling, the blue, orange, and yellow

curves represent the measured parallel scaling at the spatial order of accuracy O = 2, 4, 6, re-

spectively.

the number of processors at nearly the ideal scaling from 32 to 256 processors. The scal-624

ing slightly deviates from the ideal scaling at 512 processors, mostly due to the increase625

in message passing time for the large number of processors. At 512 processors, the high-626

est order (O = 6) simulation performs the best in scalability, because the matrix mul-627

tiplication in Equation S19 (Text S2 in Supporting Information S1) is more time-consuming628

than the calculation of the numerical flux, resulting in a smaller percentage of time for629

message passing. We expect the good parallel scaling to extend to even larger number630

of processors at relatively high order of simulations.631

6.3 Effects of Mesh Coarsening632

One of the most important advantages of tetrahedral mesh is its flexibility to al-633

low a great degree of mesh coarsening, which significantly reduces the number of mesh634

elements thereby the computation time. Here we provide a quantitative discussion of the635

effects of mesh coarsening for the information of future users of our method. We use the636

SCEC/USGS dynamic rupture benchmark problem TPV5 (Harris et al., 2009) as an ex-637

ample for testing the effects of mesh coarsening. The mesh size on the fault surface is638

fixed as lf = 200 m to well resolve the rupture process. The whole computational do-639

main is sufficiently large (100 km by 100 km by 50 km) to avoid spurious reflected waves.640

The maximum mesh size lM is on the domain boundary. When the domain size is fixed,641

the mesh will be gradually coarsened (e.g., in linear or quadratic increment) from lf on642

the fault to lM on the domain boundary. As shown in Figure 15a, we define another pa-643

rameter l (e.g., l = 5lf ) to keep the uniform element size of lf near the fault surface644

within a finite thickness zone of 2l. l is a useful parameter to control the mesh coarsen-645

ing, especially when a very large computational domain is required. As discussed in Barall646

(2009), in which a hexahedral mesh is adopted, at least a four times of cell size distance647

(i.e., l = 4lf ) is required to ensure accuracy. In general, lM and l control the gradient648

of mesh coarsening. We use O = 3 to perform the modeling.649

We use the combinations of the parameters l = lf , 5lf and lM = 2 km, 10 km,650

yielding four cases: C1-C4, as shown in Figure 15. C1 has the strongest coarsening while651

C4 has the weakest coarsening. We first compare the slip rate time histories on the fault652

at a station 7.5 km away from the nucleation patch. As shown in Figure 15b, C2-C4 co-653

incide with each other, even on the sub-second time scale. While C1 is slightly faster (∼0.05654
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Figure 15. (a) Mesh coarsening near the fault. Mesh size is equivalent to lf within the dis-

tance l = 5lf on each side of the fault, and increases with distance from the fault toward the

domain boundary with the maximum size lM . (b) Comparison of fault slip rate time history on

the fault at (strike, dip) = (7.5, 7.5) km. C1-C4 indicates four cases: C1) l = lf , lM = 10 km,

with 264,698 tetrahedrons; C2) l = 5lf , lM = 10 km, with 712,463 tetrahedrons; C3) l = lf , lM

= 2 km, with 1,536,655 tetrahedrons; C4) l = 5lf , lM = 2 km, with 2,120,224 tetrahedrons. (c)

comparison of the seismograms of the Vy component (parallel to fault strike). The station is on

the free surface, the location is (3, 7.5) km on the fault normal and the strike direction. (d) same

with (c) but with a different location of (15, 7.5) km.

s or 1%) than C2-C4. The peak value difference between C1 and C2-C4 is ∼0.1 m/s (7%).655

The comparison suggests while a direct coarsening from lf to a very large mesh size at656

the domain boundary (e.g., lM = 50lf = 10 km) is not sufficient for the high-accuracy657

requirement, using several elements with uniform size near the fault (e.g., l = 5lf ) will658

greatly improve the accuracy. Nevertheless, the difference between C1 and C2-C4 is still659

minor, indicating the mesh coarsening has little effect on modeling results here. The dif-660

ference will be further reduced as the order-of-accuracy increases (e.g., O = 4).661

Next, we compare the synthetic seismograms at surface stations near and far from662

the fault. For the station at 3 km fault-normal distance, the difference between the four663

cases is insignificant (Figure 15c). However, for the station at 15 km fault-normal dis-664

tance, there are visible differences in the four cases (Figure 15d). C1 is similar to C2 and665

C3 almost coincides with C4. The result shows that the parameter lM has a great ef-666

fect on the far-field seismogram. A larger element has more numerical dissipation, which667

will have a filtering effect on the seismogram, therefore less high-frequency information668

of the C1 and C2 seismograms than those of C3 and C4. Despite the difference in the669

high-frequency information, the general shape of the seismograms of C1-C4 remains sim-670

ilar. Our comparison suggests that even a very strong mesh coarsening will not greatly671

affect the results, although we need to take a cautionary note in high-frequency wave-672

form interpretations.673
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6.4 Limitations and Future Works674

Absorbing boundary treatment is very important for volumetric numerical meth-675

ods such as FDM, FVM and FEM. In all the benchmark problems and the Wenchuan676

earthquake simulation case discussed above, we adopted the first-order absorbing bound-677

ary condition based on the numerical flux (Equation 6). More advanced absorbing bound-678

ary treatment such as the perfectly matched layer (PML) (Berenger, 1994), can be im-679

plemented in the current framework. However, thanks to the strong coarsening ability680

of the tetrahedral mesh, the use of PML became less urgent as we can accommodate a681

larger computational area without significantly increasing the number of mesh elements.682

By comparing the results with those of other methods, it can be shown that the fault683

rupture process we calculated is basically not affected by the spurious reflected waves.684

However, for some special cases, for example, when the aspect ratio of the computational685

domain is very large, the near-grazing incident waves (W. Zhang & Shen, 2010) are dif-686

ficult to absorb with the first-order absorbing boundary condition. In this case, it is nec-687

essary to use the PML technique to deal with spurious reflected waves.688

The method is currently limited to the first-order mesh, i.e., the straight edge mesh.689

The curved fault surface is represented by the piecewise linear segments. Using straight-690

edged elements will inevitably result in a kink-like geometry of adjacent elements. This691

kink-like geometry creates stress concentrations that cause the stress snapshot to appear692

as a small amplitude spatial oscillation. Refining the grid can make this kink smaller at693

the expense of increased computational load. One of the natural adjustments is to use694

a curved mesh DG method. However, the computational and memory costs will increase695

due to integration on curvilinear elements in tetrahedral mesh, especially when the bound-696

ary geometry is represented by very high order polynomials in high dimensions. Future697

work needs to devote to the efficient implementation of the DG method based on curved698

meshes.699

7 Conclusion700

We developed a new nodal discontinuous Galerkin method to model 3D dynamic701

rupture problems with a fully unstructured tetrahedral mesh. A heterogeneous upwind702

flux scheme for the fault discontinuity boundary condition is derived based on the velocity-703

strain elastodynamic equation. We found that in cases of fault-bounding asymmetric mesh704

the universal adoption of upwind flux for all boundary conditions will lead to spatial os-705

cillations especially in the stress components. To circumvent this problem, we proposed706

a new mixed flux scheme, which applies central flux only to the surfaces immediately ad-707

jacent to the fault and uses upwind flux for all other surfaces. The mixed flux scheme708

subtly removes the instability of spatial spikes without losing accuracy or increasing com-709

putational burden. The use of numerical fluxes in the DG scheme enables an explicit time710

integration scheme, making massive parallel computation easy to implement. We have711

successfully extended the program using MPI, and showed that the program has satis-712

fied parallel efficiency up to ∼500 CPU processors. Our program still has the potential713

to be optimized and scaled on a larger scale on supercomputers.714

We demonstrated the applicability and robustness of this new method using sev-715

eral SCEC/USGS dynamic rupture benchmark problems, including bimaterial faults, off-716

fault plasticity, thermal pressurization and complex fault geometries and various forms717

of friction laws. Preliminary results of the dynamic rupture process of the 2008 Wenchuan718

earthquake show that our method is suitable for modeling realistic earthquake ruptures719

considering both complex topography and multi-fault geometry. Our work provides a720

reliable and flexible tool to model dynamic rupture processes for complex fault geome-721

tries and heterogeneous material properties.722
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