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Abstract

A supermodel connects different models interactively so that their systematic errors compensate and achieve a model with

superior performance. It differs from the standard non-interactive multi-model ensembles (NI), which combines model outputs

a-posteriori. We formulate the first supermodel framework for Earth System Models (ESMs) and use data assimilation to

synchronise models. The ocean of three ESMs is synchronised every month by assimilating pseudo sea surface temperature

(SST) observations generated from them. Discrepancies in grid and resolution are handled by constructing the synthetic pseudo-

observations on a common grid. We compare the performance of two supermodel approaches to that of the NI for 1980—2006.

In the first (EW), the models are connected to the equal-weight multi-model mean, while in the second (SINGLE), they are

connected to a single model. Both versions achieve synchronisation in locations where the ocean drives the climate variability.

The time variability of the supermodel multi-model mean SST is reduced compared to the observed variability; most where

synchronisation is not achieved and is bounded by NI. The damping is larger in EW than in SINGLE because EW yields

additional damping of the variability in the individual models. Hence, under partial synchronisation, the part of variability that

is not synchronised gets damped in the multi-model average pseudo-observations, causing a deflation during the assimilation.

The SST bias in individual models of EW is reduced compared to that of NI, and so is its multi-model mean in the synchronised

regions. The performance of a trained supermodel remains to be tested.
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• Data assimilation can be used to synchronise different Earth System models.10
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Abstract14

A supermodel connects different models interactively so that their systematic errors compensate15

and achieve a model with superior performance. It differs from the standard non-interactive multi-16

model ensembles (NI), which combines model outputs a-posteriori. We formulate the first su-17

permodel framework for Earth System Models (ESMs) and use data assimilation to synchronise18

models. The ocean of three ESMs is synchronised every month by assimilating pseudo sea sur-19

face temperature (SST) observations generated from them. Discrepancies in grid and resolution20

are handled by constructing the synthetic pseudo-observations on a common grid. We compare21

the performance of two supermodel approaches to that of the NI for 1980—2006. In the first (EW),22

the models are connected to the equal-weight multi-model mean, while in the second (SINGLE),23

they are connected to a single model. Both versions achieve synchronisation in locations where24

the ocean drives the climate variability. The time variability of the supermodel multi-model mean25

SST is reduced compared to the observed variability; most where synchronisation is not achieved26

and is bounded by NI. The damping is larger in EW than in SINGLE because EW yields addi-27

tional damping of the variability in the individual models. Hence, under partial synchronisation,28

the part of variability that is not synchronised gets damped in the multi-model average pseudo-29

observations, causing a deflation during the assimilation. The SST bias in individual models of30

EW is reduced compared to that of NI, and so is its multi-model mean in the synchronised re-31

gions. The performance of a trained supermodel remains to be tested.32

Plain Language Summary33

Supermodelling is a novel approach in which different models are run interactively and are34

connected to achieve a model with superior performance. The method exploits model diversity35

and reduces model error by training the connection terms using observations. Structural differ-36

ences between the models and the amount of data exchange among models caused technical chal-37

lenges and have limited the applicability of supermodelling to Earth system models. Here, we38

show that data assimilation can handle these discrepancies. A demonstration is done with three39

Earth system models having different resolution and structural differences and using a limited40

amount of data exchange (monthly ocean surface temperature). Synchronisation is achieved in41

several key regions. There, the ocean surface temperature error is smaller than by taking the a-42

posteriori average of the non-interactive multi-model ensemble, an approach commonly used for43

handling Coupled Model Intercomparison Project simulations. Connecting the model via their44

weighted mean (one of the two approaches tested) causes a spurious deflation of variability. This45

study opens the application and training of supermodelling to Earth system models.46

1 Introduction47

Climate models have been key tools for understanding fundamental questions about our48

climate systems. However, large uncertainties exist with many key processes being parameterised49

and biases in several of the Earth system components (e.g., ocean, atmosphere, sea ice and land)50

being larger than the projected changes in climate and larger than the variability being predicted51

(Palmer & Stevens, 2019). While models have improved through the successive generations of52

coordinate model intercomparison project (CMIP) — version 6 being the latest (Eyring et al., 2016)53

— many of the large biases persist (e.g., the double-Intertropical Convergence Zone (ITCZ) prob-54

lem (Tian & Dong, 2020); the tropical Atlantic bias (Richter et al., 2014) and the signal-to-noise55

paradox (Scaife & Smith, 2018). Although some simulations are being tested at a breakthrough56

resolution (Zhongming et al., 2020), we are still decades away from being able to perform op-57

erational climate simulations with models that can explicitly resolve the most important phys-58

ical processes. In the meantime, one can test alternate methods to understand and mitigate these59

biases using the current generation of models.60

The classical approach to mitigate model error is to take the multi-model average of inde-61

pendent model simulations (a-posteriori) so that errors in the different models cancel. This ap-62

proach is standard for climate projection but can also improve predictions (Branicki & Majda,63
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2015). One can refine the post-processing by taking a weighted mean of the different runs — an64

approach referred to as a super ensemble (Krishnamurti et al., 2016). However, this approach has65

limitations as most models share the same deficiencies (e.g., double ITCZ, warm bias in the trop-66

ical Atlantic) and because linear post-processing does not necessarily correct non-linear responses,67

such as climate sensitivity.68

Supermodel builds on the interactive ensemble (Kirtman & Shukla, 2002) where multiple69

realizations of the same atmospheric general circulation model are simultaneously coupled to a70

single ocean general circulation model through averaging their air-sea fluxes. Supermodels cou-71

ple simultaneously different models and take advantage of model diversity to compensate for their72

errors (Duane et al., 2018). Models are connected as they run via their state variables or their ten-73

dencies. Models can either be connected to each other (e.g. Mirchev et al., 2012; Smith, 2001)74

or towards their weighted mean (Wiegerinck et al., 2013; Schevenhoven & Carrassi, 2021). Dur-75

ing a training phase, the connection terms are optimised to formulate a new synchronised dynam-76

ical system that achieves enhanced performance. Supermodels rely on two important properties:77

first, it is possible to synchronise different models through a few variables — an approach referred78

to as chaos synchronisation of non-linear dynamical systems (Pecora et al., 1997; Duane & Trib-79

bia, 2001) — and second, model diversity can encompass the true behaviour of the dynamical80

system.81

Supermodels have been tested with various models and experimental designs of different82

complexity. Idealised framework experiments (or observing system simulation experiments, Halem83

& Dlouhy, 1984) are convenient because they allow controlling challenges faced with the real84

framework and because the truth (constructed from a model) is known. One can introduce model85

error (e.g., by perturbing parameter values or using a different model) and disclose only part of86

the true model state as observations (perfect or not). Supermodelling was successfully demon-87

strated for parametric model error forming a convex envelope around the truth and that with low88

dimensional dynamical systems (e.g., Lorenz 63, Lorentz 96, Rossler systems; see Mirchev et89

al., 2012; Van den Berge et al., 2011; Du & Smith, 2017), quasi-geostrophic atmospheric mod-90

els (Schevenhoven & Selten, 2017; Wiegerinck & Selten, 2017), and the global atmosphere–ocean–land91

model of intermediate complexity SPEEDO (Schevenhoven & Selten, 2017; Selten et al., 2017).92

However, when the model error does not cancel out (parameters do not form a convex envelop93

around the truth), one can use negative weights (Schevenhoven et al., 2019; Schevenhoven & Car-94

rassi, 2021), which raises new challenges. Furthermore, the supermodel can degrade performance95

at a different time scale than it was trained for when the imperfect models do not fully resolve96

the processes of the truth (e.g., in Wiegerinck & Selten, 2017, using models at a coarser resolu-97

tion). Nevertheless, the first demonstration of supermodelling with real data successfully mit-98

igated the double ITCZ bias and improved the representation of the dynamics in the equatorial99

Pacific (Shen et al., 2016, 2017). These results were achieved with two versions of the ECHAM5100

Atmospheric General Circulation Models (AGCM) — each of them using a different convection101

scheme — providing the weighted average fluxes to a single Oceanic General Circulation Model102

(OGCM), MPIOM (Shen et al., 2016). One may expect to enhance the performance of super-103

modelling by broadening model diversity that expands the convex envelop so that it may enclose104

the true Earth system – to the extent possible, recognising that the real climate system is far more105

complicated than any numerical model.106

Building a supermodel with fundamentally different ESMs raises new challenges. Mod-107

els do not share the same model-state space, nor do they have comparable resolution and repre-108

sentativity (Janjić et al., 2018). For this purpose, Du and Smith (2017) suggested formulating pseudo-109

observations of the different models and assimilating them back into the different models. The110

approach was demonstrated with low-dimensional systems and in an idealised framework. An-111

other challenge is practical limitations with feasible data volume exchanged among models and112

frequency of the synchronisation steps. Here, we aim to assess whether a supermodel can achieve113

synchronisation (a requirement of supermodelling) in a configuration where data exchange is sparse,114

synchronisation steps infrequent, and models have a radically different structure. We will apply115

part of the formalism proposed by Du and Smith (2017)— connecting models via assimilation116

–3–
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Figure 1. Schematics of the supermodel. The green arrows denote dynamical coupling in the individual

models, and the yellow band denotes synchronisation done in the different ocean models.

of synthetic pseudo-observations generated from the multi-model ensemble. We will examine117

the impact of generating the pseudo-observations from a single model or constructing it from an118

equal-weighted mean. In future work, we will implement training and analyse the resulting su-119

permodel’s performance.120

This paper is organised as follows. Section 2 presents the practical implementation of the121

supermodelling framework: the description of the individual ESMs, the synchronisation method-122

ology and the data assimilation method. Section 3 introduces the validation data sets and met-123

rics, and Section 4 presents the result of two prototype supermodelling approaches, first glob-124

ally with a focus on the damping of internal variability and impact on the SST bias and second125

with a focus on the ENSO region.126

2 Supermodelling framework127

This section describes the practical implementation of the supermodel framework for Earth128

system models using ocean connection. It combines the Norwegian Earth System Model (NorESM),129

the Community Earth System Model (CESM) and the Max Planck Institute Earth System Model130

(MPI-ESM) (see Figure 1). The three ESMs are connected via their SST every month. We im-131

plement an individual assimilation system based on the Ensemble Optimal Interpolation. The data132

assimilation method updates the whole water column based on the synthetic SST pseudo-observations133

constructed from the multi-model ensemble mean or from a single model.134

2.1 CESM135

The Community Earth System Model is a global, fully coupled model for climate simu-136

lations. We used the CESM Large Ensemble Project (LENS) version based on CESM1.1.2 (Kay137

et al., 2015), with all components at approximately 1◦ horizontal resolution. External forcing com-138

plies with CMIP5’s historical experiment. The atmospheric component is the Community At-139

mosphere Model version 5, (CAM5, Hurrell et al., 2013) with 30 vertical levels and a finite-volume140

grid (f09, i.e., approximately 1◦). The Community Land Model, version 4 (CLM4), is on the same141

grid as the atmosphere. The Parallel Ocean Program, version 2 (POP), is run with 60 vertical lev-142

els. The horizontal resolution of the ocean is approximately 1◦, but it is enhanced in the merid-143

ional direction around the equator and both in zonal and meridional directions at high latitudes144

(g16 grid). The sea ice [Los Alamos Sea Ice Model (CICE)version 4] component model is on145

the same grid as the ocean model. We use historical forcing from 1920 to 2005 (Lamarque et al.,146

2010) and retrieve the initial conditions from NCAR repository (b.e11.B20TRC5CNBDRD.f09 g16.001)147

in 1950. As POP2 only allows modification for one time level of the leapfrog scheme, we fol-148

low the approach of DART (Anderson et al., 2009). It uses a forward Euler scheme for the first149
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time step but reverts to the leapfrog scheme afterwards. The barotropic velocities and surface pres-150

sure gradients are adjusted to preserve the ocean volume. The flag POPDART can activate this151

option in POP2.152

2.2 NorESM153

We use the medium-resolution NorESM1-ME (Tjiputra et al., 2013) that contributed to the154

Coupled Model Intercomparison Project Phase 5 (CMIP5). It is based on the Community Earth155

System Model version 1.0.3 (CESM1, Vertenstein et al., 2012). However, the atmospheric com-156

ponent (CAM4-OSLO) features an advanced aerosol chemistry scheme (Kirkevåg et al., 2013),157

and the ocean is an updated version of the isopycnal coordinates ocean model MICOM (Bentsen158

et al., 2012). The atmosphere and land components are configured on a finite-volume grid with159

a latitude and longitude resolution of 1.9 × 2.5◦. The atmosphere component uses 26 hybrid sigma-160

pressure levels with a model top at approximately three hPa. The horizontal resolution of the ocean161

and sea-ice model is approximately 1◦. The ocean uses 51 isopycnal layers and two layers rep-162

resenting the bulk mixed layer with time-evolving thicknesses and densities. The initial condi-163

tion is taken from a historical simulation in 1980 that started from a stable pre-industrial simu-164

lation in 1850.165

2.3 MPI-ESM166

We use the MPI-ESM1-LR (Block & Mauritsen, 2013; Dunstone et al., 2018; Giorgetta167

et al., 2013) model that contributed to the CMIP5. The AGCM of MPI-ESM1-LR is the 6𝑡ℎ gen-168

eration European Centre Hamburg general circulation model (ECHAM6 Stevens et al., 2013),169

and the OGCM is the Max Planck Institute Ocean Model (MPIOM) (Marsland et al., 2003; Jung-170

claus et al., 2013). The land model (JSBACH, Reick et al., 2013; Schneck et al., 2013), which171

includes vegetation, and the marine biogeochemistry model (HAMOCC5, Ilyina et al., 2013) are172

considered as subsystems of ECHAM6 and MPIOM, respectively. ECHAM6 employs T63 spec-173

tral resolution (approximately 1.9◦ horizontal resolution) and 47 vertical levels, and MPIOM em-174

ploys a rotated curvilinear grid with an approximate 1.5◦ horizontal resolution and 40 z-levels.175

The poles of MPIOM are moved to Greenland and the Weddell Sea.176

Table 1. We summarise the key characteristics of the different ESMs used. The first column details the

model versions. The second column reports the name of the ocean models, their resolution and coordinate

system in the vertical — i.e., isopycnal (𝜎-coordinate) or geopotential depth (𝑧-coordinate). The third column

is the name of the atmospheric models and their discretisation scheme. The last column provides a reference

to the model version.

Model version Ocean atmosphere reference

NorESM1-ME MICOM(𝜎; 1◦) CAM4 (finite-volume, 2◦) Tjiputra et al. (2013)
CESM1.1.2 POP2 (z, 1◦) CAM5 (finite-volume, 1◦) Kay et al. (2015)

MPI-ESM1-LR MPIOM (z,1.5◦) ECHAM6 (spectral, 2◦) Block and Mauritsen (2013)

2.4 Synchronisation methodology177

The three ESMs use different models, grids, coordinates, and resolutions (Table 1). NorESM178

and CESM may be more similar, but they use a fundamentally different ocean model (in geopo-179

tential depth for CESM and isopycnal coordinates for NorESM), and the atmospheric model in180

CESM is a more advanced version (CAM5 vs CAM4) and has a higher resolution (1◦ vs 2◦). Con-181

sequently, one cannot simply use state replacement or nudging, as they will generate imbalances182

and may lead the models to crash. Data assimilation (DA) can estimate the best possible (most183
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likely) state based on observations, a dynamical model, and their uncertainties. It is designed to184

preserve the dynamical consistency of the individual models and optimally handle observation185

uncertainty (Carrassi et al., 2018).186

A limitation of DA methods for this application is that they are (with few exceptions, e.g.,187

S. Zhang et al., 2007; Nerger et al., 2020) working offline - meaning that the model is stopped,188

the state written on disk, data assimilation applied on the files and the model restarted. With such189

large systems as the ESMs, the time required for initialising the model and writing the input/output190

is burdensome (see, e.g., Karspeck et al., 2018), limiting the feasible frequency of the synchro-191

nisation. Similarly, one needs to limit the number of variables that will be synchronised to keep192

the cost of the DA-step low.193

As a first attempt before developing a more advanced connected supermodel of ESMs, we194

try to synchronise the three models through their SST at a monthly frequency. SST is sufficient195

to constrain the variability in many regions of the earth system, particularly in the tropics (Shukla,196

1998; Zhu et al., 2017; Wang et al., 2019). It is observed over a long period with a good level of197

accuracy, enabling the possibility to effectively train our supermodel and validate it for an inde-198

pendent period. With monthly synchronisation, the additional computational cost of the monthly199

assimilation remains small.200

We test two supermodelling approaches that differ in their formulation of the pseudo-observations.201

The first scheme belongs to the category of state-constrained weighted supermodel (Schevenhoven202

& Carrassi, 2021). The three models are integrated forward for one month, and their SSTs are203

interpolated to a common 1◦ grid. The pseudo-observations are the equal-weighted mean of these204

outputs (referred to as EW in the following). Weights should be trained using observations to op-205

timise model performance, but this optimisation is out of the scope of the paper. The pseudo-observations206

are then assimilated into the individual models using the EnOI method (see Section 2.5), and the207

models are then restarted for the next cycle. The first synchronisation step in the two supermodel208

framework started on the first of February 1980 for practical reasons. We do not synchronise mod-209

els under a the union of all three models sea ice mask.210

In the second scheme, the workflow is similar, but the pseudo-observations are formulated211

from a single model (hereafter referred to as SINGLE). This approach is, for instance, used in212

the cross-pollination in time method (Smith, 2001; Du & Smith, 2017). Another objective of this213

experiment is that it should not be affected by variability damping and can serve as a benchmark214

for the EW. It can serve to assess the potential synchronisation that can be achieved with SST and215

monthly synchronisation steps. We have selected arguably CESM that has higher resolution and216

provides overall the best performance. We interpolate the CESM pseudo-observations onto the217

common grid to have a comparable interpolation error between the two schemes. Formulating218

the pseudo-observations in the native CESM grid enhances the performance slightly but does not219

change any conclusion unless reported.220

The performances of the two supermodel approaches are compared to a non-interactive multi-221

model ensemble (hereafter referred to as NI) which start from the same initial condition than the222

two supermodels, but do not stop for the synchronisation steps. All models start from a histor-223

ical simulation in 1980 using CMIP5 historical forcing, and RCP8.5 is used for 2006 (Taylor et224

al., 2012).225

The system runs on 11 nodes (1408 CPU) on the Norwegian high performance computer226

Betzy (a BullSequana XH2000) and can achieve about 10 model-year per day. CESM runs on227

eight nodes and runs one month in approximately seven minutes, NorESM runs on two nodes228

and performs the 1-month simulation in approximately seven minutes, MPI-ESM uses one node229

and performs a 1-month simulation in approximately four and half minutes. The model integra-230

tion accounts for approximately seven minutes, while the DA step accounts for approximately231

two minutes. The assimilation is currently performed sequentially for each model, and this step232

could have been reduced to 40 seconds if parallelised.233
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Figure 2. Pseudo-observation error standard deviation (in ◦C) used for assimilation.

2.5 Ensemble Optimal Interpolation234

The Ensemble Optimal Interpolation (EnOI, Oke et al., 2002; Evensen, 2003) is a com-235

putationally cheap sequential data assimilation method derived from the Ensemble Kalman Fil-236

ter (EnKF, Evensen, 2003).237

The EnOI provides multivariate updates based on the model’s historical covariance. For-
mulating the covariance from the same model ensures the preservation of linear quantities (such
as geostrophic balance) and limits initialisation shock (Counillon & Bertino, 2009). The covari-
ance matrix is constructed based on an ensemble of N model snapshots (each of dimension n, where
n is the state dimension):

X𝑠 = [x1, ...,x𝑁 ] ∈ R𝑛×𝑁 . (1)

The static ensemble anomaly A𝑠 is calculated so that A𝑠 =X𝑠−X𝑠
1

T, with X𝑠 being the static238

ensemble mean and 1𝑚 = [1,1, ...,1] ∈ R1×𝑁 .239

To correct a forecast x 𝑓 , using the observation vector d, one can estimate a new analysis
state x𝑎 as follows:

x𝑎 = x 𝑓 +K(y−Hx 𝑓 ). (2)

where H is the observation operator that relates the prognostic model state variables to the mea-
surements. The Kalman Gain K, is computed as follows:

K = A𝑠A𝑠THT
(
HA𝑠A𝑠THT +R

)−1
. (3)

For each model, the static ensemble is composed of the monthly snapshot outputs from a240

stable pre-industrial control run. Sampling the model states from a pre-industrial condition was241

preferred over sampling it from a historical run because composing the static ensemble from a242

model with transient forcing can introduce spurious correlation. The monthly static ensemble com-243

prises 72 members for MPI-ESM, 80 for NorESM, and 80 for CESM. We use a local framework244

analysis (Evensen, 2003) with a radius of 235 km without tapering — this radius ensures at least245

one observation per grid cell. We limit the local observations to one (retaining only the nearest).246

We update all prognostic state variables in the vertical. The update is done in the model’s native247

coordinates — i.e., in geopotential depth for MPI-ESM and CESM and isopycnal coordinates248

for NorESM. We use the k-factor formulation (Sakov et al., 2012) which artificially inflates the249

observation error if the assimilation pushes the update beyond twice the ensemble spread. We250

set the pseudo-observation error for both supermodel approaches as the pointwise de-seasoned251

(with the mean seasonal cycle removed) time standard deviation of the three models divided by252

30 (see Figure 2). We have played with the scaling factor (from 3 to 100), but the results were253

not very sensitive to this choice (not shown) due to the k-factor formulation.254
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3 Validation data sets and metrics255

For validating the simulations, we focus on SST and use the NOAA OI-SST V2 (Reynolds256

et al., 2002) analysis data set. We use the monthly averaged product available on a 1◦ grid, which257

extends back to 1982. We assess performance by comparing the climatological difference between258

the models and the observation and calculating grid cell area-weighted root mean square error259

(RMSE).260

Internal variability can be suppressed when combining models, as for example through the
averaging of multi-instance fluxes in the interactive ensemble framework (Kirtman & Shukla,
2002; Kirtman et al., 2004; W. Zhang & Kirtman, 2019). Hence, we introduce two metrics to in-
vestigate how internal variability is affected by the connection. The parameter 𝛿 is the ratio be-
tween the de-seasoned time standard deviation of the multi-model mean and the time average of
the inter-model standard deviation. This metric is computed for every grid cell (see Equation 4).
It can be demonstrated that this quantity should be equal to

√︃
1

𝑁𝑠−1 . With three models, this is
about 0.7. If 𝛿 is larger than 0.7, some synchronisation is achieved. For example, a value of three
indicates that the time standard deviation of the multi-model mean is three times larger than the
inter-model standard deviation. Values lower than 0.7 can occur when the bias of the individual
models is larger than the time variability of the multi-model mean (i.e., models are strongly at-
tracted to their bias and have little variability).

𝛿 =

√︃
1
𝑁𝑡

∑𝑁𝑡

𝑖=1 (x𝑖
𝑠 −x𝑠

𝑡
)2

1
𝑁𝑡

∑𝑁𝑡

𝑖=1

√︃
1
𝑁𝑠

∑𝑁𝑠

𝑗=1 (x
𝑗

𝑖
−x𝑖 𝑠)2

(4)

With x being the model SST. The superscript j refers to the model indices (N𝑠=3; between 1–3),261

the superscript i is the time indices (N𝑡=312; i.e., 26*12). The overbar with superscript “s” de-262

notes the multi-model mean, and the overbar with superscript “t” denotes the time average.263

A second metric, called 𝜆, quantifies the ratio between the multi-model mean time vari-
ability (denominator) and the mean of the variability in the unconnected individual models (nu-
merator; Eq. 5). In a perfect synchronisation regime, there is no damping (Duane & Tribbia, 2001).
Assuming that the variability among the individual models is comparable, an equal-weight multi-
model mean would have comparable variability to the mean variability of the individual mod-
els (𝜆 should be one). If only partial synchronisation is achieved, the value gets larger than one.
For example, 𝜆 equal to 2 means that the standard deviation of the multi-model mean is half that
of the unconnected model.

𝜆 =

√︃
1
𝑁𝑡

∑𝑁𝑡

𝑖=1 (x
𝑗

𝑖
−x𝑖 𝑡 )2

𝑆

√︃
1
𝑁𝑡

∑𝑁𝑡

𝑖=1 (x𝑖
𝑠 −x𝑠

𝑡
)2

(5)

4 Supermodel results264

We compare the performance of EW, SINGLE and NI (see Section 2.4) over the period 1982–265

2006. In Figure 3, we show the de-seasoned time standard deviation of the multi-model mean266

of NI, EW and SINGLE and the OISST observations. The time variability in the NI multi-model267

mean is substantially lower than in the observations. In EW, it is also reduced—albeit less than268

in the NI—, while SINGLE has nearly comparable amplitude to the observations.269

In Figure 4, we are analysing the properties of each system in achieving synchronisation270

and causing damping. We present individual 2-dimensional maps of 𝛿 and 𝜆 (metrics introduced271

in Section 3) and the 2-dimensional probability density function (PDF) of 𝛿 versus 𝜆. An ideal272

supermodel will have the highest probability centred on the brown line and on the right-hand side273

of the red line (i.e., 𝛿 > .7).274

We can see that 𝛿 for NI is lower or equal to 0.7 in most places, and values of 𝜆 are above275

one and mostly close to two. There is barely any synchronisation, and taking the multi-model276
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Figure 3. De-seasoned time standard deviation of SST in the NOAA OISST2 observations (upper left

panel), the multi-model average of NI (upper right), EW (lower left) and SINGLE (lower right).
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Figure 4. The first line is the synchronisation metric 𝛿 with NI mean, EW and SINGLE. The second line is

the same for the synchronisation metric 𝜆, and the last line is the 2-dimensional PDF of 𝛿 vs 𝜆 in the different

systems. The red and brown lines highlight the threshold of 1.
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mean causes damping nearly identical to a random process (i.e.,
√

3 with three models). Hence,277

in NI, models are only connected via their historical CMIP5 forcing, while the internal variabil-278

ity overpowers the de-seasoned time variability compared to the climate change signal from 1980–279

2005.280

In the EW supermodel, there is some synchronisation (𝛿 > 0.7) and the damping 𝜆 is mostly281

between [1.1 1.5]. The synchronisation and the damping are improved compared to NI, and the282

maximum likelihood moves towards the optimal. Synchronisation is maximum in the equato-283

rial Pacific, reaching a value of 3.5 and is above 1 in the tropical Pacific, part of the North Pa-284

cific and part of the North Atlantic (entrance of the Nordic Seas). In those regions, 𝜆 lowers to-285

wards 1 (albeit remaining above). However, 𝛿 remains below or close to 0.7 in several regions:286

e.g., in the equatorial Atlantic and the eastern boundary upwelling system and most of the South-287

ern oceans. No synchronisation is achieved there, and internal variability of the multi-model mean288

is damped and of comparable amplitude to NI. The shape of 𝛿 in the equatorial Pacific shows max-289

ima on either side of the equator but achieves only moderate synchronisation at the equator. Hence,290

the fast Kelvin waves are driven by wind bursts in the equatorial Pacific, while atmospheric vari-291

ability is poorly constrained in our ocean-constrained system. Slower Rossby waves control the292

thermocline variability off the equator, and the effect of winds is weaker and slower. Ocean data293

assimilation with monthly synchronisation steps can control such a process better.294

The pattern of the value of 𝛿 with SINGLE resembles that of EW, but the values are con-295

siderably larger. Synchronisation 𝛿 is greater than 1.5, and the damping 𝜆 is reduced (approach-296

ing one and rarely exceeding 1.5). Actually, the CESM model (to which all models are connected)297

has a lower time standard deviation than MPI-ESM and NorESM, while the denominator in 𝜆298

is the average of the time standard deviation of the three models. It partly explains the slight damp-299

ing in 𝜆. Synchronisation is now achieved in most parts of the southern oceans, the Atlantic Ocean,300

and the Indian Ocean. In the equatorial Atlantic and the eastern boundary upwelling system, syn-301

chronisation is still not achieved, and the damping is substantial. This region is notorious for be-302

ing very challenging for models (Richter et al., 2014) and a considerable fraction of the bias re-303

lates to atmospheric origin (e.g., wind bias Koseki et al., 2018).304

The above analysis focused on the time standard deviation of the multi-model mean. We305

analyse now the de-seasoned time standard deviation of the individual models. In Figure 5 we306

show the quantile-quantile plot of CESM-NI versus CESM-EW and CESM-SINGLE. Focusing307

on CESM allows us discarding discrepancies of variability between models, e.g., CESM has weaker308

temporal variability than the two other models. In EW, the time variability of CESM is reduced.309

The other models show comparable damping (not shown). Contrarily, SINGLE does not cause310

deflation, and the regression line yields a slight overestimation. It may relate to the fact that as-311

similating pseudo-observations in a common grid adds energy to the system (because of the im-312

balance). A perfect fit is obtained if pseudo-observations are formulated in the CESM native grid313

(not shown).314

In Figure 6, we analyse the SST bias of the individual models compared to OISSTV2 ob-315

servations. In NI, CESM has a lower bias than MPI-ESM and NorESM. NorESM has a pronounced316

cold bias. In the EW supermodel, the bias of all models is reduced compared to that of NI (al-317

beit identical in MPI-ESM). Achieving such a result is highly promising, considering that weights318

have not been trained. In SINGLE, the bias structure in all models resembles that of CESM in319

NI. It yields a bias reduction for MPI-ESM and NorESM but increases the bias in CESM com-320

pared to NI. The interpolation to the common grid causes the degradation (not shown).321

The bias of the multi-model mean of EW and NI (see Figure 7) are comparable in pattern322

and amplitude (NI has a slightly lower area-weighted RMSE). Still, some discrepancies exist.323

Figure 8 shows the absolute difference between the two. The bias of EW reduces in the tropics,324

except in the equatorial Atlantic and the eastern boundary upwelling system. Improvement tend325

to coincides with regions where synchronisations is achieved (i.e., 𝛿 > 1 and 𝜆 < 1.5, see Fig-326

ure 4). In the equatorial Pacific (5◦S–5◦N and 150◦W–90◦W), the error reduces from 0.91 to 0.67◦.327

A bias reduction compared to the a-posteriori average results from the non-linear response of the328
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Figure 5. Quantile-quantile plot of the pointwise de-seasoned time standard deviation of CESM in NI ver-

sus that of EW (red) and SINGLE (blue). The dashed colour line show the regression line and the solid black

line shows the perfect regression line.

climate system to model bias. Contrarily, performance degrades where synchronisation is poor329

(Antarctic Circumpolar current, Equatorial Atlantic and eastern boundary upwelling system). There,330

ocean synchronisation is quickly lost, and noise adds energy to the system. In the north Pacific,331

synchronisation is achieved, but the bias is degraded. The reason is unclear, but we propose sev-332

eral hypotheses. First, variability there during winter is driven by storm systems mixing the ocean.333

The EW experiment without atmospheric synchronisation effectively damps the impact of fluxes334

in the ocean, which can cause a bias. Second, the Pacific Decadal Oscillation (PDO) over 1982-335

2006 is almost solely positive, while the interannual variability of our models is not synchronised336

with the observations. The bias may relate to a modulation of the PDO. Third, we did not apply337

synchronisation under sea ice, which may cause some artefacts near the ice edge.338

The bias in the SINGLE multi-model mean has a comparable spatial pattern than in the CESM339

model of NI, but is larger because of the interpolation error in the pseudo-observation grid. It does340

not outperform the multi-model mean of NI.341

We further analyse the results in the ENSO region, which stands out as one of the regions342

where our ocean-connected supermodel reaches good synchronisation and reduced bias. The time343

series of the Niño 3.4 index (SST anomaly in the region, 5◦S–5◦N and 120◦W–170◦W) is pre-344

sented in Figure 9. In the unconnected model (Figure 9), the individual models produce large ENSO345

variability that is not synchronised. The ensemble mean shows one prominent peak when a strong346

El Niño event occurs (by chance) in phase in 2003 in all models. The probability of such a co-347

incidental occurrence scale with the power of the number of models. In our example (with three348

models and El Niño occurring typically every four years), such an event will happen every 64349

years. Consequently, the NI methods will underestimate extreme events, particularly with more350

models (as in CMIP). Contrarily, in EW and SINGLE, all models are evolving in phases.351

To analyse the representation of extreme events of ENSO, we compare the PDF of the Niño352

3.4 index for 1982-2006 in Figure 10. The tropical Pacific variability is notoriously asymmet-353

ric, with the magnitude of SST anomalies over the eastern equatorial Pacific being more promi-354

nent during the warm phase than during the cold phase (e.g., T. Zhang et al., 2017). By taking355

the mean of unconnected and independent models, one expects the PDF to show less variabil-356
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Figure 6. SST climatological bias computed over 1982-2006 for MPI-ESM, CESM and NorESM with the

NI ensemble (first row) in the EW (second row) and the SINGLE (last row). The quantity in red reports the

global spatial RMSE normalised by grid cell area.

Figure 7. Climatological SST bias computed over 1982–2006 for the multi-model mean of NI ensemble

(left), EW (middle) and SINGLE (right). The quantity in red reports the global spatial RMSE normalised by

grid cell area.

Figure 8. Difference of the absolute (EW-NI) of the climatological SST bias error of the multi-model mean

over 1982–2006. Negative values indicate that the error in EW is smaller than in NI.
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Figure 9. Niño 3.4 time series of the three models in the NI ensemble (left), the EW (middle) and the

SINGLE (right). The black line shows the multi-model ensemble mean.

Figure 10. Histogram of Niño 3.4 over 1982–2006. The blue bars are for OISSTV2; the green bars are

for the multi-model mean of NI (left), the red for EW (middle) and the yellow for SINGLE. The standard

deviation and skewness of the distribution are reported in parenthesis for observations and the multi-model

mean.

ity (being steeper around 0) and becoming more Gaussian (getting less skewed). The latter is be-357

cause the average of skewed distributions will converge towards a Gaussian distribution (central358

limit theorem). As expected, there is damping of variability in the NI model mean, while in EW359

and SINGLE, the standard deviation reasonably matches the observed PDF. All multi-model means360

show a more skewed PDF than in the observations. However, the period 1982-2006 was quite361

anomalous in the observations, as no significant ENSO events occurred beyond 1998. In com-362

parison, the standard deviation and skewness computed for 1950-2005 were respectively 0.87,363

and 0.89 (T. Zhang et al., 2017). We do not see the reduction of skewness expected in NI, but we364

think it is artificially high here because of the coincidental El Niño event referred to above. Ob-365

taining more statistically robust results requires much longer runs and thus we limit our analy-366

sis to these basic metrics (Wittenberg, 2009).367

5 Conclusions and future perspectives368

This paper investigates critical characteristics for developing the first supermodel of ESMs369

with ocean synchronisation. Synchronisation with models having different grids and structures370

is handled by assimilating synthetic pseudo-observations of SST constructed from the multi-model371

every month. We show that such a framework can achieve partial synchronisation in distinct re-372

gions where the ocean drives the climate variability — where the impact of atmospheric fluxes373

is limited in relation to the oceanic timescales.374

We compared two methodologies for constructing the pseudo-observations, either from a375

single model or an equal-weight mean. The latter tends to reduce model bias in the synchronised376

region compared to the unconnected version. The variability of the multi-model mean in the two377

connected models is smaller than in the observations. This damping is reduced in synchronised378

regions and converges to the non-interactive multi-model mean in the unsynchronised regions.379

The damping is more pronounced in the equal-weight version than in the version connected to380

a single model, as in the former, the variability of the individual models is also reduced. The multi-381

model averaging reduces the unsynchronised variability (e.g., driven by chaotic atmospheric vari-382
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ability) in the assimilated pseudo-observations causing a deflation when updating the model snap-383

shots.384

We will investigate in a future study how model error can reduce with the training of the385

weights. A first supermodel with monthly ocean connection via SST and with trained weights386

(varying spatially and monthly) will be presented in Schevenhoven et al. (in prep). The system387

constrains the SST bias and the double ITCZ problem in the equatorial Pacific. However, the sys-388

tem faces similar challenges regarding variability damping to those presented in this paper.389

The system presented only uses a minimal amount of data exchange (monthly SST). In-390

creasing the frequency of the synchronisation steps and assimilating more pseudo-observations391

will enhance synchronisation and may help to reduce the damping in the weighted mean super-392

model framework. Ongoing works include a complete ocean pseudo-observations network (sea393

surface elevation, 3D hydrography), increasing the frequency of the ocean connection (to weekly394

synchronisation step) and complementing the system with synchronisation of other components395

of the Earth System Model. A supermodel with complementary synchronisation of the atmospheric396

component is also in development.397

It is indeed unclear to speculate which of the two framework presented here will, at term,398

achieve the best performance. Weighted-mean supermodels have drawbacks in a partial synchro-399

nisation regime (variability damping) not faced with a connection to a single model. However,400

a weighted supermodel can provide locally a more accurate fit to the observation than a version401

where models are connected to a single model because — in the latter, skill is bounded by the402

best model. However, the single model to which we connect can vary spatially and for different403

variables (Smith, 2001; Du & Smith, 2017; Schevenhoven & Carrassi, 2021). Furthermore, if one404

can afford an ensemble of supermodels (with several members for each model), models could405

be synchronised from a randomly drawn single member/model every time, so that the frequency406

of the optimal weight is satisfied. Such a scheme resembles the cross-pollination in time, envi-407

sioned in Du and Smith (2017).408

We will explore other alternatives to reduce the spurious damping in the weighted mean409

supermodel version by 1) adding back the reduced atmospheric driven variability term in the pseudo-410

observations or 2) isolating the part of variability that can be synchronised from the model snap-411

shots (observation operator). In particular, machine learning techniques have emerged as pow-412

erful tools to carry process-identification (e.g., Sonnewald et al., 2019).413

6 Open Research414

Data presented in this article has been organised and made available. It contains a sepa-415

rate for each of the experiments presented (SINGLE, EW and NI). Each folder contains the multi-416

model mean and the individual SST outputs from the individual models provided on a common417

grid and in netcdf format. The full simulations will be made available on https://archive.sigma2.no418

with a specific doi upon acceptance of the manuscript. To retrieve the simulations, one can use419

the following link (457 MB):420

wget -c http://ns9039k.web.sigma2.no/Synchronisation supermodel.tar.gz421
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