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Abstract

It is widely acknowledged that distributed water systems (DWSs), which integrate distributed water supply and treatment with

existing centralized infrastructure, can mitigate challenges to water security from extreme events, climate change, and aged

infrastructure. However, there is a knowledge gap in finding beneficial DWS configurations, i.e., where and at what scale to

implement distributed water supply. We develop a meso-scale representation model that approximates DWSs with reduced

backbone networks, which enable efficient system emulation while preserving key physical realism. Moreover, system emulation

allows us to build a multi-objective optimization model for computational policy search that addresses energy utilization and

economic impacts. We demonstrate our models on a hypothetical DWS with distributed direct potable reuse (DPR) based on

the City of Houston’s water and wastewater infrastructure. The backbone DWS with greater than 92% link and node reductions

achieves satisfactory approximation of global flows and water pressures, to enable configuration optimization analysis. Results

from the optimization model reveal case-specific as well as general opportunities, constraints, and their interactions for DPR

allocation. Implementing DPR can be beneficial in areas with high energy intensities of water distribution, considerable local

water demands, and commensurate wastewater reuse capacities. The meso-scale modeling approach and the multi-objective

optimization model developed in this study can serve as practical decision-support tools for stakeholders to search for alternative

DWS options in urban settings.
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Key Points:

• We develop a meso-scale representation model with reduced complexity
for distributed water systems to enable computational policy search.

• We build a multi-objective optimization model to find the optimal alloca-
tion of direct potable reuse for economic and energy efficiency.

• Our case study reveals that location and available reuse capacity determine
the benefits of distributed direct potable reuse.

Abstract

It is widely acknowledged that distributed water systems (DWSs), which inte-
grate distributed water supply and treatment with existing centralized infras-
tructure, can mitigate challenges to water security from extreme events, cli-
mate change, and aged infrastructure. However, there is a knowledge gap in
finding beneficial DWS configurations, i.e., where and at what scale to imple-
ment distributed water supply. We develop a meso-scale representation model
that approximates DWSs with reduced backbone networks, which enable effi-
cient system emulation while preserving key physical realism. Moreover, system
emulation allows us to build a multi-objective optimization model for computa-
tional policy search that addresses energy utilization and economic impacts. We
demonstrate our models on a hypothetical DWS with distributed direct potable
reuse (DPR) based on the City of Houston’s water and wastewater infrastruc-
ture. The backbone DWS with greater than 92% link and node reductions
achieves satisfactory approximation of global flows and water pressures, to en-
able configuration optimization analysis. Results from the optimization model
reveal case-specific as well as general opportunities, constraints, and their inter-
actions for DPR allocation. Implementing DPR can be beneficial in areas with
high energy intensities of water distribution, considerable local water demands,
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and commensurate wastewater reuse capacities. The meso-scale modeling ap-
proach and the multi-objective optimization model developed in this study can
serve as practical decision-support tools for stakeholders to search for alternative
DWS options in urban settings.

Plain Language Summary

Distributed water systems that integrate localized water supply with existing
centralized systems can improve the adaptability of urban water systems fac-
ing emerging challenges. Our study focuses on how to best allocate distributed
direct potable reuse of municipal wastewater to supplement conventional wa-
ter supply. We develop a system representation model that enables the policy
search by representing a water system with reduced modeling complexity while
retaining its key physical behaviors. We build a multi-objective optimization
model upon it to find where and what scale to implement direct potable reuse
to achieve system-wide energy and economic efficiency. We apply our models
to design a hypothetical distributed water system based on the real water distri-
bution and wastewater infrastructure data in the City of Houston, Texas. The
reduced representation model shows large variations of energy intensity across
the system, which informs the siting of distributed direct potable reuse. The pol-
icy search results show that distributed direct potable reuse can be competitive
in areas where distribution energy intensities are high, and the direct potable
reuse capacities are commensurate to local water demands. Methods developed
in this study will serve as decision-support tools for urban water utilities to
design distributed water systems that achieve system-wide goals.

1 Introduction

Urban water infrastructure systems face multiple acute and chronic stressors in-
cluding increasing extreme events (e.g., floods), climate change (e.g., extended
droughts), and aged infrastructure (Crosson et al., 2021; He et al., 2021; Flörke
et al. 2018; Porse et al., 2018; Larsen et al., 2016; Gray, 2019; Diffenbaugh et
al., 2015; Hering et al., 2013). Extreme events like floods can cause significant
damage to water infrastructure systems leading to disasters (van de Lindt et al.,
2020; Khan et al., 2015). Climate change threatens water quantity and quality
available, as it can diminish groundwater recharge due to reduced precipitation
and runoff (Alam et al., 2021; Gray, 2019). The majority of the water infras-
tructure in the U.S. was built 50 or more years ago, and these assets are now
reaching the end of their design lives (AWWA, 2011; Leigh & Lee, 2019). Fol-
lowing decades of under-investment, the cost of maintaining existing levels of
service may reach one trillion dollars, and the cost of adapting to stressors may
be higher still (ASCE, 2021).

These challenges present an opportunity to rethink the 20th century paradigm
of highly centralized water systems (Larsen et al., 2016; Sharma et al., 2010).
For example, distributed water systems (DWSs) that integrate water supply and
treatment with existing centralized systems, such as direct potable reuse (DPR)
located close to points of demand and resource availability, are a promising
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emerging alternative (Liu et al., 2020; Zodrow et al., 2017; NRC, 2011; Sharma
et al., 2010; Biggs et al., 2009). Figure 1 conceptually sketches a comparison
between centralized water systems and DWSs. These DWSs are a subset of
regional integrated water systems that manage various water infrastructure sec-
tors (i.e., water distribution, wastewater, and stormwater). In this paper, we
primarily focus on DWSs that integrate DPR, which reclaims potable water from
municipal wastewater and directly distributes the reclaimed water to existing
distribution infrastructure (Liu et al., 2020).

Figure 1. Conceptual comparison between centralized and distributed water
systems. At each distributed treatment site, local wastewater collected is treated
to potable standards and pumped to the existing water distribution system.
The arrows indicate directions of water or wastewater flows. The solid lines
represent that there are always water or wastewater flows, while the dashed
lines denote that there may be water and wastewater flows. The dashed lines
with double arrows indicate that water exchange among distributed treatment
sites is flexible.

Previous work suggested that DWSs can improve robustness of water supply ow-
ing to their distributed topological structure (Zodrow et al., 2017; Hering et al.,
2013; Makropoulos 2010; Biggs et al., 2009). In a DWS, local distributed supply
forms subsystems linked with the centralized network for service supplement or
back-up. In this way, the service loss from one subsystem or the centralized
system can be compensated by increased production at others. Moreover, the
distributed allocation enables flexible incremental investment and reconfigura-
tion to adapt to local demographic (e.g., new customers), regulatory, or envi-
ronmental conditions. In addition to benefits from robustness and flexibility,
DWSs have the potential to reduce the environmental footprint of water supply
and consumption. More localized supply takes advantage of local resources and
reduces the energy needed to transport resources over long distances, possible
waste (e.g., from leakage), and the load on physical components (Makropoulos
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2010; Biggs et al., 2009).

Although these potential benefits suggest transitioning to DWSs that integrate
substantial distributed components, there is limited knowledge about how to
integrate distributed subsystems into existing centralized infrastructure. A
particular challenge to overcoming this knowledge gap is modeling the hybrid
centralized-distributed water systems at scales that are meaningful to answer
policy questions. Policy search for DWSs usually requires system configuration
optimization, the computational complexity of which is sensitive to the com-
plexity of the system model. DWSs are complex socio-technical systems, and
they can be characterized at multiple scales, from micro, to meso, to macro
scales (Hoffmann et al., 2020; Diao, 2021). The system representation at mul-
tiple scales is concerned with system performance descriptions at individual
end users scale (micro), community users (meso), and municipal or city users
(macro). In a DWS, the integration of distributed subsystems occurs naturally
at the meso scale, where the key modeling interest is the complex performance
interaction between the distributed subsystems and the centralized system.

There are some recent studies on searching for alternative urban water systems
based on system description at meso scales. Kavvada et al. (2018) developed a
heuristic approach to estimate the financial cost, energy use, and greenhouse gas
emissions associated with decentralized non-potable water reuse as a function
of scale of treatment and conveyance networks, to determine community-scale
optimal degree of decentralization. Jensen & Khalis (2020) developed a set
of meso-scale performance indicators for local water systems to measure their
water security levels and suggested their use to prioritize distributed water in-
tegration projects in areas with high water security risk, like Jakarta, Indone-
sia. Vitter et al. (2018) developed an optimal model for the sizing and hourly
dispatch of a community-scale direct potable water recycling facility to mini-
mize overall community costs under utility service balance constraints. Then,
Jones & Leibowicz (2021) extended their work and developed a model to co-
optimize community-scale distributed water reuse and energy operations. They
found that co-optimized community-scale distributed electricity and water can
achieve synergies that make it more attractive than the sum of household-level
implementations by taking advantage of economies of scale, spreading out up-
front costs over more households, and flexibly operating distributed water to
consume surplus distributed electricity.

The existing quantitative meso-scale system models primarily focus on localized
policy analysis, while do not account for the optimal coordination across the
distributed subsystems and existing centralized systems. This paper develops
a meso-scale representation model based on a flow hierarchy characterization
technique to approximate large water systems by their meso-scale backbone
networks, which allows for a computationally efficient representation while main-
taining key physical behaviors. As a result, this meso-scale representation facili-
tates the application of policy search algorithms to the generation of alternative
system configurations. We apply this method to a hypothetical DWS based
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on the City of Houston’s existing water and wastewater infrastructure. The
meso-scale DWS representation enables a multi-objective optimization analysis
to identify which existing wastewater treatment plants (WWTPS) to implement
DPR on, and what the appropriate treatment scales are, to optimize the over-
all system’s financial cost and energy consumption. The meso-scale modeling
method and the associated multi-objective optimization model developed in this
study show how to plan and design DWSs that exploit the performance interplay
between distributed subsystems and the global system.

We organize the rest of this paper as follows. Section 2 introduces the funda-
mental methods for our meso-scale system modeling and policy search. Then,
section 3 demonstrates a practical case application of our modeling approaches
and shows case-specific insights about modeling and system design. Finally, sec-
tion 4 concludes this study with key highlights, limitations, and future research
directions.

2 Methods

Our modeling framework includes two parts: the meso-scale modeling and the
policy search, as illustrated by Figure 2. The meso-scale model includes three
sub models: (1) the water network model, which represents a water distribution
system with a hydraulic-informed complex network; (2) the hierarchical char-
acterization model, which reveals the multi-scale structure of a water network
through complex network analysis and identifies critical components, high in
the hierarchy; and (3) the backbone network extraction model, which builds a
reduced network that contains components of high hierarchy levels, while ap-
proximating the hydraulic boundary conditions of the complete network through
an aggregation algorithm. The backbone network yields a reduced representa-
tion featuring key physical behaviors at the interface between the global and
local subsystems. In addition, this backbone makes many-query policy search
across design options tractable. The backbone is then fed to the multi-objective
optimization model to search for ideal locations and treatment scales of dis-
tributed DPR to optimize system-wide energy consumption and economic cost.
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Figure 2. Schematic of our modeling framework.

2.1. Meso-scale model

2.1.1. Water network model

The primary service of a water distribution system is to deliver water of adequate
quantity, pressure, and quality to consumers. We model a water distribution
system with a directed network 𝐺 = (𝑁, 𝐸), where 𝑁 is the set of nodes rep-
resenting water treatment plants (WTPs), storage tanks, demand nodes, and
non-demand pipe junctions, and 𝐸 is the set of directed edges denoting pipes,
pumps, and valves. A directed edge 𝑒𝑖,𝑗 is established if there is water flow from
node 𝑖 to its adjacent node 𝑗. Each node 𝑖 has its node properties such as node
demand 𝐷𝑖, and each edge 𝑒𝑖,𝑗 possesses edge properties like water flow 𝑄𝑖,𝑗.

There are two basic governing equations for a water distribution network 𝐺: the
mass balance equation at each node 𝑖 [Equation (1)], and the energy conservation
equation along each edge 𝑒𝑖,𝑗 [Equation (2)]. The mass balance equation governs
the water quantity allocation within 𝐺:

∑𝑚∈𝑁in(𝑖) 𝑄𝑚,𝑖 − ∑𝑗∈𝑁out(𝑖) 𝑄𝑖,𝑗 = 𝐷𝑖 (1)

where 𝑁in(𝑖) and 𝑁out(𝑖) denote the set of nodes from which incoming flows
to node 𝑖 come and the set of nodes to which outgoing flows from node 𝑖 go,
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respectively, 𝐷𝑖 is the demand value of node 𝑖. The energy conservation equation
relates the water flow quantity and water head change along edges. As for an
edge 𝑒𝑖,𝑗 that represents a dissipation element like a pipe or a valve, the water
head 𝐻𝑖 at the start node 𝑖 is always greater than that at the end node 𝑗 with
a positive �ℎ𝑖,𝑗. If an edge 𝑒𝑖,𝑗 corresponds to an element with energy-injection
like a pump, �ℎ𝑖,𝑗 is negative representing a head gain.

𝐻𝑖 − 𝐻𝑗 = �ℎ𝑖,𝑗 (2)

The head loss �ℎ𝑖,𝑗 is determined by 𝑄𝑖,𝑗 and the energy needed to overcome
gravity and friction, while the head gain �ℎ𝑖,𝑗 is determined by 𝑄𝑖,𝑗 and the
energy provided to uplift the flow.

For the computational implementation, we use a Python package WNTR (Klise
et al., 2017), which is based on hydraulic and water quality analysis algorithms
of the widely used EPANET software (EPA, 2020). We use it to perform steady-
state hydraulic simulations that produce hydraulic attributes essential for estab-
lishing hydraulic-informed complex networks, illustrated as step 2.1.1 in Figure
2.

2.1.2. Hierarchical structure characterization

The hierarchical structure in a complex network emerges from the different roles
of the nodes or edges (Pumain, 2005; Gómez et al., 2013; Ferrario et al., 2016).
A directed water network 𝐺 that represents a water distribution system usu-
ally has a flow hierarchy, where water flows from sources (i.e., WTPs) through
distribution mains to local storage tanks and then to downstream consumer
connections. Nodes 𝑁 can be layered in different hierarchical levels so that the
incoming and outgoing flows of nodes at upper levels determine the incoming
and outgoing flows of nodes at lower levels.

Our goal of hierarchical structure characterization is to identify a set of critical
nodes that retain the critical topological features and hydraulic behaviors of a
water network 𝐺. These nodes will be candidates for a backbone network that
approximates 𝐺 with reduced complexity. In a directed water network 𝐺, we
define the criticality level of a node 𝑖 as the degree to which it contributes to
routing the water flows. We introduce a metric named local reaching centrality
𝐶𝑅(𝑖) developed by Mones et al. (2012) to quantify the criticality level of a
node 𝑖 in 𝐺. The metric is developed to characterize the flow hierarchy in a
network, which is a key feature of large water systems. For an unweighted
directed network, 𝐶𝑅(𝑖) quantifies the proportion of all nodes in the graph that
can be reached from node 𝑖 via outgoing edges. In a weighted directed network,
𝐶𝑅(𝑖) is defined as:
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𝐶𝑅(𝑖) = 1
𝑛𝑁−1 ∑𝑗∶ 0<𝑑out(𝑖,𝑚)<∞

∑𝑑out(𝑖,𝑚)
𝑘=1 𝑤(𝑘)

𝑖,𝑚
𝑑out(𝑖,𝑚) (3)

where 𝑛𝑁 is the total number of nodes, 𝑑out(𝑖, 𝑚) is the length of the shortest
directed path that goes from 𝑖 to 𝑚 via out-going edges, and 𝑤(𝑘)

𝑖,𝑚 is the weight
of the 𝑘th edge along this path. Link weight is assumed to be proportional to
the connection strength. As for a water distribution network 𝐺, we interpret
the connection strength of an edge 𝑒𝑖,𝑗 as its capability to route water flows.
We define the hydraulic-informed weight 𝑤(𝑘)

𝑖,𝑚 of the 𝑘th edge as the product of
its water flow rate 𝑄(𝑘)

𝑖,𝑚 and its cross-section area 𝐴(𝑘)
𝑖,𝑚. The former represents

the current flow rate determined by both its flow velocity and its cross-section
area, while the latter considers its potential flow capacity in the future for a
given range of flow velocities. If node 𝑖 and 𝑗 are connected by more than one
directed shortest path, then the one with the maximum weight is used.

We calculate the local reaching centrality 𝐶𝑅(𝑖) of each node 𝑖 following Equa-
tion (3) and rank them accordingly. Clusters of nodes of high hierarchy levels
can be identified from the distribution of 𝐶𝑅(𝑖). Sometimes, distinct gaps exist
in the distribution plot for 𝐶𝑅(𝑖), indicating the presence of definite hierarchy
layers. In this case, we can select critical nodes considering the representation
level of interest and the hierarchy clustering pattern. Otherwise, we need to se-
lect critical nodes by specifying a practical threshold (e.g., 80th percentile of the
local reaching centrality values) determined from the reduction level of interest.

2.1.3. Backbone network extraction

A backbone water network 𝐺𝐵 is a subnetwork that preserves the critical topo-
logical and hydraulic behaviors of the complete water distribution network 𝐺
with reduced size and complexity. The concept of backbone extraction has been
studied in the fields of physics (Gemmetto et al., 2017), sociology (Neal, 2014),
biology (Darabos et al., 2014), computer science (Foti et al., 2011), and infras-
tructure networks (Dai et al., 2018; Ducruet, 2017). In the field of infrastructure
networks, backbone extraction for transportation networks receives great inter-
est in tracing dynamics and uncovering their underlying mechanisms (Dai et al.,
2018).

Generally, backbone extraction techniques for infrastructure networks are edge-
removing techniques that focus on finding the most critical nodes and edges and
subsequently eliminating the least significant ones (Dai et al., 2018). Different
backbone extraction techniques use different criteria for identifying node/edge
importance to the network. As for a water distribution network 𝐺, the most
relevant features are the hydraulic attributes at service nodes. Therefore, we
adopt a node-dominated backbone extraction approach and build the backbone
network from nodes of functional criticality.

The nodes of functional criticality are identified from the hierarchical struc-
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ture characterization of the hydraulic-informed network. Given critical nodes
to preserve for the network approximation, we build a backbone network 𝐺𝐵
following two steps: (1) find the largest network component 𝐺𝐶 that connects
critical nodes with all the sources through hydraulic-informed shortest paths;
(2) establish hydraulic boundary conditions for 𝐺𝐶 by aggregating demands of
all the removed nodes to their upstream, retained nodes.

Our aggregation algorithm builds upon the flow backtracking algorithm in Liu &
Mauter (2021), which backtracks water delivered to each consumer to its sources
and the energy consumption along the flow paths, and the onion decomposition
algorithm (Hébert-Dufresne et al., 2016). The core part of the backtracking
algorithm is to calculate the fraction of water received by consumer 𝑗 that
comes from injection point 𝑖 at time 𝑡, 𝑟𝑖,𝑗(𝑡), assuming each node in the water
network is a perfect mixer of the upstream water it receives. As illustrated by
Equations (4) and (5), 𝑟𝑖,𝑗(𝑡) is calculated recursively from 𝑟𝑖,𝑢(𝑡), where 𝑈 is
the set of the immediate upstream nodes of 𝑗, and 𝑄𝑢,𝑗(𝑡) is the water flow rate
from node 𝑢 to node 𝑗.

𝑟𝑖,𝑗(𝑡) = ∑𝑢∈𝑈 𝑟𝑖,𝑢(𝑡)𝑟𝑢,𝑗(𝑡) (4)

𝑟𝑢,𝑗(𝑡) = 𝑄𝑢,𝑗(𝑡)
∑𝑢∈𝑈 𝑄𝑢,𝑗(𝑡) (5)

The flow backtracking algorithm is a disaggregation algorithm that starts from
the sources and disaggregates flow and energy to downstream nodes recursively.
Our aggregation algorithm goes instead from downstream to upstream leverag-
ing Equation (5) and the onion decomposition algorithm to aggregate demands
of downstream nodes to their nearest upstream nodes in backbone network 𝐺𝐵.
The onion decomposition algorithm prioritizes removal of nodes from a network
according to their connectivity degrees. The reader can refer to Text S1 in the
Supporting Information for a detailed description of the aggregation algorithm.

Note that although the concept of skeletonization is relevant, it is different from
our backbone representation. Skeletonization, which usually includes branch
trimming, node aggregation, merging of series or parallel pipes, and removal
of nonessential components (Walski et al., 2003), has been widely used to sim-
plify the modeling of a water distribution system for practical application. The
primary difference between backbone extraction and skeletonization is that the
former is based on global behavior characterization while the latter depends on
local equivalence. Skeletonization can only achieve a limited degree of reduction
due to its underlying logic of local approximation, while the backbone extraction
is more compressed while preserving a multi-scale critical structure.

2.2. Multi-objective optimization

There are multiple critical criteria such as economic cost, energy usage, environ-
mental footprint, and system resilience to consider when exploring alternative
water management strategies (Englehardt et al., 2016; Crosson et al., 2021).
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Our multi-objective optimization model addresses a subset of these metrics, the
economic cost and energy usage, which are immediate to utilities. The system-
wide economic cost and energy use of a DWS with distributed DPR depend on
the DPR technology, the scale of DPR plants (Sim & Mauter, 2021), and their
integration locations. These factors determine local- and global-level economic
costs and energy consumption as well as their interactions.

At the local level, the financial investment and energy consumption increase with
the scale of a DPR facility with specific economies of scale depending on the
treatment technology adopted. Advanced water treatment facilities are needed
to treat reclaimed water to potable standards, which is usually of superior qual-
ity. The current advanced treatment facilities tend to be more energy and cost
expensive than the conventional surface WTPs (Englehardt et al., 2016; Sim &
Mauter, 2021).

At the global level, distributed DPR reduces the energy required for conveyance,
especially for those service areas far from the surface WTPs. Also, distributed
water supply can reduce economic investment needed for upgrading or expand-
ing centralized infrastructure. In addition, implementing distributed DPR re-
duces freshwater withdrawal or import, and discharge of wastewater into natural
aquatic environment yielding system-wide economic and environmental benefits.

We formulate a multi-objective optimization model to exploit the complex inter-
action between the performance of local DPR plants and the overall system-wide
performance of the DWS. Performance objectives include economic cost and en-
ergy consumption related to infrastructure investment, water treatment, and
water distribution. The benefits relevant to improved water quality, improved
system supply resilience, reduced freshwater withdrawal and wastewater dis-
charge are not reflected in our cost analysis yet due to limited study on their
estimation. The decision variables are locations and treatment scales of DPR
facilities. The constraints are local and global demand satisfaction, the avail-
able sites for DPR plants, which are assumed to be on the sites of existing
WWTPs, the capacities of DPR plants, which are determined by capacities of
their corresponding WWTPs, as well as hydraulic and operational requirements.

We model the DPR allocation within a reduced backbone network 𝐺𝐵 as a
multi-objective nonlinear programming problem with two objectives and five
constraints. The objectives are minimizing the total economic cost, 𝑓1 in Equa-
tion (6), and energy consumption, 𝑓2 in Equation (7). We formulate the problem
as follows:

min (𝑓1) = ∑𝑐 𝐶𝑐 (𝑆𝑐) + ∑𝑐 𝑂𝑐 (𝑆𝑐) + ∑𝑝 𝐶𝑝 (𝑆𝑝) + ∑𝑝 𝑂𝑝 (𝑂𝑝) (6)

min (𝑓2) = ∑𝑐 𝑒𝑐𝑆𝑐 + ∑𝑝 𝑒𝑝𝑆𝑝 + 𝑔(𝑆𝑐, 𝑆𝑝) (7)
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Subject to:

Equation (1), (2)

𝑆 = ∑𝑐 𝑆𝑐 + ∑𝑝 𝑆𝑝 (8)

𝑆𝑝 ≤ 𝑈𝑝 (9)

𝑐 ∈ {conventional WTPs} , 𝑝 ∈ {DPR plants}

where 𝑆𝑐 and 𝑆𝑝 are the supply amounts at conventional WTPs and DPR plants,
respectively. Regarding 𝑓1, we denote 𝐶𝑐 (𝑆𝑐) as the capital cost to build new
or to expand conventional WTPs and other water supply infrastructure, and
𝑂𝑐 (𝑆𝑐) as the operation and maintenance (O&M) cost to run the infrastructure.
The capital investment usually includes costs for land use, treatment equipment,
and infrastructure (e.g., pipes and pump stations), while the O&M cost covers
electricity, chemicals, materials, and labor. Terms 𝐶𝑝(𝑆𝑝) and 𝑂𝑝(𝑆𝑝) represent
the capital cost to establish DPR plants and the O&M cost to run them, re-
spectively. As for 𝑓2, we have 𝑒𝑐 and 𝑒𝑝 as energy intensities of conventional
and DPR treatment, respectively. The term 𝑔(𝑆𝑐, 𝑆𝑝) is the energy function
for distribution for a given DPR allocation configuration–usually a nonlinear
function of supply amount 𝑆𝑐 and 𝑆𝑝 reflecting local-global interaction of water
distribution.

Constraints in Equations (1) and (2) are hydraulic laws for mass balance and
energy conservation within the backbone network 𝐺𝐵 of the DWS. Equation
(8) ensures that water supply from all plants meets the total system demand
𝑆, guaranteeing customer satisfaction. Equation (9) is the capacity constraint
indicating the maximum DPR supply 𝑈𝑝 available at each DPR site considering
the reclaim rate and the capacity of its corresponding WWTP.

As for multi-objective optimization problems without a prior preference infor-
mation (e.g., weights of the objectives), we cannot directly compare the values
of one objective function with those of another objective function. An effective
way to deal with this situation is to use dominance to determine the goodness
of a solution. Solution 1 dominates solution 2 if solution 1 is no worse than
solution 2 in all objectives, and solution 1 is strictly better than solution 2 in
at least one objective. Then, the ultimate goal of solving a multi-objective op-
timization problem becomes finding the non-dominated solution set, also called
the Pareto-optimal set, where none of the objectives can be improved without
deteriorating one of the others. Because analytical solutions to this nonlinear
problem are not available, we use a widely applied heuristic algorithm, the
Non-dominated Sorting Genetic Algorithm-II (Deb et al., 2002), to solve this
multi-objective optimization problem. We validate computation by examining
an empirical convergence indicator, the hypervolume, over the solving proce-
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dure. The principal workflow of the solving algorithm is demonstrated in Text
S2 in the Supporting Information.

3 Case study and results

3.1. City of Houston application

We demonstrate the meso-scale modeling approach and the multi-objective op-
timization model developed in this paper on a hypothetical yet realistic DWS.
The system includes the real water distribution system of the City of Hous-
ton (denoted as Houston in the following), Texas, and hypothetical DPR sites
located at 15 of the existing 39 WWTPs in Houston. It will be referred as Hous-
ton DWS in the following. We selected 15 WWTPs because they have publicly
available influent flow data. Their capacities are greater than 1.6 million gallons
per day (MGD) (6.056×106𝑚3/𝑑). Houston’s water distribution system is com-
plex (see Figure 3) with thousands of interconnected components, serving an
average of 460 MGD (2.091 × 106𝑚3/𝑑) of water through approximately 7000
miles (1.126×104km ) of pipes [Houston Public Works, 2021 (a)]. Houston oper-
ates three surface WTPs, the East, Southeast, and Northeast Water Purification
Plants, all of which are located on the east side of the city. The current capacities
of the East, Southeast, and Northeast Water Purification Plants are 300 MGD
(1.364×106𝑚3/𝑑), 200 MGD (9.092×105𝑚3/𝑑), and 65 MGD (2.955×105𝑚3/𝑑),
respectively [Houston Public Works, 2021 (b)]. The surface water comes from
lakes and reservoirs in northeast Houston, which provides around 88% of its
460 MGD daily demand, with the East, Southeast, and Northeast Water Purifi-
cation Plants providing an average of 243 MGD (9.215 × 105𝑚3/𝑑), 116 MGD
(4.393 × 105𝑚3/𝑑), and 48 MGD (1.820 × 105𝑚3/𝑑), respectively. The rest of
the water supply is provided by groundwater treatment plants (GWTPs), most
of which are located on the west side of the city. The system’s 24-hour demand
profile is shown in Figure S2 in the Supporting Information. The green stars in
Figure 3 represent the 15 large WWTPs in Houston that we use as potential
DPR sites.
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Figure 3. Schematic representation of Houston’s water distribution system and
15 WWTPs for DPR. Gray lines indicate the distribution pipes, pumps, and
valves. A large demand node refers to a node whose daily demand is equal to
or greater than the 99th percentile of demands of all nodes (2.259 × 103𝑚3/𝑑).

Houston is an interesting testbed to explore integrating distributed DPR with
existing water infrastructure to supplement conventional surface water and
groundwater supply. In particular, there is a geographic mismatch between
surface water supply and growth in municipal water demand as the largest por-
tion of the population and the fastest population growth are on its west side
opposite to locations of WTPs (Liu et al., 2020). Additionally, Houston expe-
riences land subsidence and seawater intrusion due to groundwater withdrawal
(Herrera-García et al., 2021; Jasechko et al., 2020). The Harris-Galveston Sub-
sidence District expects to reduce reliance on groundwater to mitigate ground
subsidence (Harris Galveston Subsidence District, 2019). Moreover, Houston
is a flatland with slight elevation variation, thus, a large amount of treated
water needs to be pumped miles westward from the WTPs on the east. The
long-distance water conveyance poses a significant load burden on the water
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infrastructure and increases the system’s vulnerability to disruptions.

3.2. The meso-scale backbone network

We implement our modeling framework illustrated by Figure 1 on Houston DWS
to obtain its meso-scale representation as follows. First, we perform steady-
state hydraulic simulation at hourly resolution and build the hydraulic-informed
water network 𝐺∗ that represents the water flows at a peak hour, 7:00 a.m. (see
Text S3 in the Supporting Information for the reason to adopt the peak-hour
as the representative state). Second, we evaluate the local reaching centrality
𝐶𝑅(𝑖) for each node 𝑖 in 𝐺∗ using Equation (3) in section 2.1.2 and identify
critical nodes at high hierarchy levels. The distribution of normalized 𝐶𝑅(𝑖) is
shown in Figure S3, while the critical nodes identified are shown in Figure S4,
both in the Supporting Information. Then, applying the backbone extraction
approach described in 2.1.3, we extract the backbone water network 𝐺∗

𝐵, as
shown by Figure 4. The backbone water network 𝐺∗

𝐵 preserves 290 edges, a 95%
reduction from the existing network, and 269 nodes, a 93% reduction. Note that
optimization analysis of complex networks is usually combinatorial such that
the computational complexity scales at least the polynomial of the network size.
The backbone network makes computational policy search feasible by greatly
reducing the computational load of optimization analysis.
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Figure 4. The meso-scale backbone network with 290 edges (95% reduction)
and 269 nodes (93% reduction) laying over the existing water distribution sys-
tem.

To demonstrate that the backbone water network 𝐺∗
𝐵 preserves key macro- and

meso-scale behaviors of the full water network 𝐺∗, we compare their basic hy-
draulic measures, water flows, and pressures. We keep all the operational set-
tings of the remaining pumps and valves in the backbone network the same
as those of the full network. As for the water flows, we examine macro flow
measures in 𝐺∗ and 𝐺∗

𝐵, i.e., outflows from WTPs, as shown in Table 1. The
outflows at WTPs vary along with changes of hydraulic boundary conditions.
We achieve a relatively good approximation of water flows at the macro scale
with the total relative difference being −1.44%.

Table 1. Outflow values at the surface WTPs [𝑚3/𝑠].

WTPs Outflow (𝐺∗) Outflow (𝐺∗
𝐵) Relative difference

East Water Purification Plant 11.121 11.402 1.12%
Southeast Water Purification Plant 5.372 4.804 −9.56%

15



Northeast Water Purification Plant 2.140 2.158 0.75%
Total 18.633 18.364 −1.44%

Regarding pressures, Figure 5 (a) shows their distribution for the backbone
water network 𝐺∗

𝐵, while Figure 5 (b) gives the relative differences between
𝐺∗

𝐵 and 𝐺∗. The distribution of the relative difference is given in Figure S5 in
the Supporting Information. The relative difference at the majority (81%) of
nodes is within the range [−10%, 10%]. We also examine the daily pressure
variations in 𝐺∗, the maximum relative difference to the mean pressure, 67% of
the nodes have daily pressure variations within the range [−10%, 10%], as given
in Figure S6 in the Supporting Information. The relative difference is within
the reasonable variation bounds for regular operation.

1. (b)

Figure 5. (a) Node pressure in the backbone water network 𝐺∗
𝐵. (b) Relative

difference of node pressures in 𝐺∗
𝐵 to those in the full water network 𝐺∗.

In addition, with the meso-scale backbone network 𝐺∗
𝐵, we are able to examine

performance measures that are critical for DWS configuration design but not
tractable with the full water network 𝐺∗. Figure 6 (a) shows the meso-scale
spatial distribution of water demands in 𝐺∗

𝐵. The full water network 𝐺∗ with
redundant intricacy and a large number of connections clouds the spatial dis-
tribution of water demands in the system (see Figure S7). In addition, Figure
6 (b) shows the marginal energy intensities for distribution as in Liu & Mauter
(2021). We see energy intensity increasing from the east to the west side of the
system. This energy intensity estimation, which informs DWS configuration
design, is also only tractable with the reduced backbone network 𝐺∗

𝐵.
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Also, our meso-scale performance characterization enables preliminary system
design of DWSs. Considering the spatial distribution of water demands and
marginal energy intensities obtained, we further narrow down to 10 of the 15
WWTPs (as indicated in Figure 6) as alternative DPR plants that can provide
potential benefits through replacing local groundwater or surface water supply.
The 5 WWTPs we drop are ones that cannot beat the surface WTPs in terms
of energy efficiency in the near future. They are located in areas where the
distribution energy intensities are lower than 0.4𝑘𝑊ℎ/𝑚3, while the current
treatment energy intensities for DPR are likely to be higher than this level (Sim
& Mauter, 2021).

1. (b)

Figure 6. (a) Daily node demand in the backbone water network 𝐺∗
𝐵. There is

a significant variation of node demands, hence, the range of the colormap is less
than the demand range, with the nodes of the darkest color all having demands
larger than 20000 m3. (b) Energy intensities for distribution in the backbone
water network 𝐺∗

𝐵.

Our final meso-scale Houston DWS model includes the backbone water network
𝐺∗

𝐵 , 10 alternative DPR plants, and 15 GWTPs. Each DPR plant has an
upper bound of daily capacity determined by the daily flow capacity of its cor-
responding WWTP and its reclamation rate, which is assumed to be 80% (Liu
et al., 2020). The backbone water network 𝐺∗

𝐵 takes hourly water allocation,
and we assume that the daily DPR capacity is allocated following the same
hourly demand pattern of the water distribution system. We use this propor-
tional approximation scheme to calculate the energy and the economic impacts
of Houston DWS. We model the distributed DPR plants by adding extra source
elements that can replace the groundwater supply nearby it or supplement the
demands of their nearest nodes in the backbone water network. The nearby
threshold is set as 3000𝑚 considering the empirical service coverage area of the
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GWTPs.

3.3. Pareto-optimal DPR allocation configurations

We implement our multi-objective optimization model on the meso-scale Hous-
ton DWS model to find Pareto-optimal DPR allocation configurations. We con-
sider the status quo development scenario, in which there is no increased water
demand to be met by extra infrastructure, and the DPR replaces part of existing
groundwater or surface water supply. To evaluate Houston DWS’s energy and
economic impacts, we feed practical data (see Table 2) into Equations (6) and
(7). The constraints with respect to DPR capacity and water supply balance
are always guaranteed by specifying a satisfying search space. The hydraulic
consistency constraints are satisfied by integrating hydraulic simulation with
the NSGA-II solver. We use the python package Pymoo (Blank & Deb, 2020)
to solve our optimization problem with its embedded NSGA-II solver. An em-
pirical performance indicator, hypervolume, is used to examine the convergence
of the solving procedure (see Text S4 in the Supporting Information).

Table 2. Key input data for the multi-objective optimization analysis.

Data Value
Energy intensity of groundwater
withdrawal

1.0 𝑘𝑊ℎ/𝑚3

Energy intensity of surface water
treatment

0.11 𝑘𝑊ℎ/𝑚3

Energy intensity of advanced
treatment for DPR

0.8, 0.4 𝑘𝑊ℎ/𝑚3

Annual O&M cost rate of surface
water treatment plant

$ 167.30 𝑚−3𝑑−1

Annual O&M cost rate of DPR plant,
𝑦 = 𝐴𝑥𝑏,
unit of 𝑦 ∶ $𝑚−3𝑑−1, unit of capacity
𝑥 ∶ 𝑚3𝑑−1

𝐴 = 386.9, 𝑏 = −0.095

Capital cost rate of DPR plant
(25-year lifetime), 𝑦 = 𝐴𝑥𝑏,
unit of 𝑦 ∶ $𝑚−3𝑑−1, unit of capacity
𝑥 ∶ 𝑚3𝑑−1

𝐴 = 18740, 𝑏 = −0.21

Regarding energy impacts, we use the energy intensities of surface water treat-
ment and groundwater withdrawal in Liu et al. (2020), which are derived from
the city’s actual operation data and other field estimates (Twomey & Webber,
2011; Zhang et al., 2016). Energy intensities for advanced treatment processes
vary greatly. Sim & Mauter (2021) aggregated a total of 70 operating, demon-
stration, pilot, and unbuilt potable water reuse systems in the U.S. and reported
the cost and energy intensity reference for advanced treatment processes. The
full range of energy intensity for advanced treatment is [0.23, 2.5 𝑘𝑊ℎ/𝑚3],
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while the 25th and the 75th percentiles of the energy intensities of advanced
treatment taking secondary effluent are 0.8 𝑘𝑊ℎ/𝑚3 and 1.8 𝑘𝑊ℎ/𝑚3, respec-
tively. We take two representative energy intensities for DPR: 0.8 𝑘𝑊ℎ/𝑚3 and
0.4 𝑘𝑊ℎ/𝑚3, which are assumed to be the energy intensity of advanced treat-
ment, which treats secondary effluents discharged from the WWTPs to DPR
standards. For the current Houston DWS, if the energy intensity of DPR is
higher than 0.8 𝑘𝑊ℎ/𝑚3, its potential benefits of energy efficiency will be lim-
ited. These choices represent optimistic expectations about the energy impact
of advanced treatment technologies.

As for the economic cost estimation, implementing DPR introduces extra eco-
nomic investment in the status quo planning setting. We only consider the an-
nual O&M costs for the conventional WTPs and GWTPs, which are estimated
from the utility’s historical operational data (Houston Public Works, 2019). We
adopt the regressed normalized cost curves developed by Sim & Mauter (2021)
to estimate the annual capital and O&M costs for DPR. The capital cost does
not include that of the extra distribution infrastructure (e.g., pipes and pump
stations), which accounts for less than 2% of total capital cost according to Liu
et al. (2020). The total capital cost is amortized to annual loan payments (see
Text S5 in the Supporting Information).

Figure 7 shows the Pareto fronts obtained for two parameter settings revealing
the trade-offs between economic cost and energy consumption. Our Pareto front
has turning points corresponding to the launch of a new DPR plant, while each
slightly curved line between turning points shows some nonlinear economic and
energy impacts. The upper right Pareto fronts consists of almost vertical lines
with vertically jumping solution points, indicating that adding DPR cannot
provide any more energy benefits.
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(a) 𝑒𝑑 = 0.8 kWℎ ⋅ 𝑚−3 (b) 𝑒𝑑 = 0.4 kWℎ ⋅ 𝑚−3

Figure 7. Pareto fronts for the annual extra economic cost and daily energy
savings between Houston DWS and the existing system. Each part is for a
specific energy intensity of DPR treatment, 𝑒𝑑.

We zoom into three representative configurations (see Figure 8), which are turn-
ing points of the Pareto fronts. Configuration A1, A2, and A3 have the same
y-axis values with configuration B1, B2, and B3, respectively. Configuration
A1 identifies plants 2 and 5 for DPR implementation to replace groundwater
supply (same identification for B1—not shown). Plants 2 and 5 are located in
areas requiring a great amount of groundwater supply, which is more energy
intensive than DPR. Configuration A3 is a critical bound, beyond which adding
DPR allocation is not beneficial anymore as the economic cost soars vertically.
Configuration B3 makes very similar choices to A3 (not shown). They repre-
sent the “upper bound” of beneficial DPR integration for the current spatial
distributions of energy intensities, water demands, and DPR capacities.

Configuration A2 has a different DPR allocation arrangement relative to con-
figuration B2, as shown in Figures 8 (c), (d). However, if given the same DPR
energy intensity, their daily energy savings are the same. The difference comes
from performing global searches over the decision space, particularly when dif-
ferent decision variables share the same objective function values. While both
configurations open plant 8 to replace groundwater compared to A1 (B1), con-
figuration A2 chooses plant 4 to supplement surface water supply, while B2
launches plant 6 and 7 to replace groundwater. The two small plants 6 and
7 together have similar economic impact with that of the larger plant 4 due
to the economies of scale. However, energy benefits of these small plants are
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higher as they replace groundwater supply. The DPR volume of configuration
A2 and B2 account for 7.0% and 6.4% of total supply, respectively. If we con-
sider a third dimension, freshwater withdrawal, we will pick configuration A2
over configuration B2.

(a) Configuration A1 (b) Configuration A3

(c) Configuration A2 (d) Configuration B2

Figure 8. DPR allocation configurations for representative configurations in
Figure 7.

Overall, the priority to implement DPR at potential plants depends on the
location of the plant as well as its capacity given the complex local-global per-
formance interaction. Location determines whether there is an opportunity (or
not) to supplement groundwater or surface water of high distribution energy in-
tensities to achieve energy savings. In our testbed, with no available DPR plant
near the northwest of the system, the highest energy intensities for distribution
remain an issue. As for the capacity of a plant, it determines whether it is eco-
nomically efficient to implement DRP given a certain economic impact function.
The appropriate places to implement DPR are western areas where the energy
intensities of conventional supply are high, the water demands are considerable
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and locally concentrated, and there are wastewater reuse capacities that match
the magnitudes of water demands. The multi-objective optimization via the
backbone network together unravels practical case-specific as well as general
opportunities, constraints, and their interactions for DPR allocation.

4 Conclusion and discussion

This paper develops a meso-scale system representation model to approximate
large water systems with reduced backbone networks. The meso-scale repre-
sentation has reduced model complexity, retains key physical behaviors, and
enables computational policy search for DWSs. The meso-scale modeling ap-
proach is extendable to more general integrated water systems to understand
the complex interaction dynamics between subsystems and global systems.

We also formulate a multi-objective optimization model on reduced backbone
networks to search for optimal DWSs with distributed DPR. We consider two
performance objectives, economic cost, and energy consumption relevant to
infrastructure investment, water treatment, and water distribution. We also
manage two configuration decision variables, locations, and treatment scales of
DPR facilities, under constraints of local and global demand satisfaction, pre-
determined available sites and capacities of DPR plants, and hydraulic and
operational requirements.

We demonstrate our methods on a hypothetical DWS from the real water and
wastewater infrastructure data of the City of Houston. Our meso-scale repre-
sentation reduces 95% of edges and 93% of nodes, while achieving good approx-
imations of macro-scale flows with relative difference of outflows from the three
centralized WWTPs–of up to 1.44%. It makes optimization analysis computa-
tionally feasible by reducing the complexity of the system model. Also, we get
satisfactory approximation of meso-scale node pressures with relative difference
in 81% of nodes being within [−10%, 10%]. In addition to these basic system
responses, the meso-scale backbone network model allows estimation of perfor-
mance measures that are not tractable with the full water network model, in-
cluding the spatial distribution of water demands and energy intensities. These
meso-scale performance measures lay the foundation for computational policy
search of DWSs.

The multi-objective optimization analysis of the Houston DWS reveals context-
specific as well as general opportunities, constraints, and their interactions for
allocating distributed DPR. Location is the most critical factor for implement-
ing DPR because of the large variation of energy intensities within the Houston
DWS. In part of the western areas, high energy intensities are due to long con-
veyance distance from the centralized WTPs, while in other areas, high energy
consumption comes from energy-intensive groundwater supply. In such areas,
if there are considerable water demands, and the available wastewater reuse
capacities can match the magnitudes of the water demands, implementing dis-
tributed DPR can achieve system-wide benefits. Moreover, there are trade-offs
between energy consumption and economic cost with different DPR allocation

22



configurations.

In addition to energy consumption and economic cost, there are other important
criteria driving the design and implementation of DWSs such as water supply
resiliency, water resource sustainability, and water quality. As conventional
water systems rely on surface water and groundwater supply, they are becoming
more vulnerable to climate change impacts that threaten water supply reliability,
water availability, and surface water quality (van de Lindt et al., 2020; Alam et
al., 2021; Khan et al., 2015; Tampa Bay Water, 2018; Nielsen-Gammon, 2012).
Further research on policy search of DWSs considering these multiple criteria is
needed to facilitate implementation of DWSs.

The DWSs considered in this study are simplified. We constrained the locations
of DPR plants to the existing sites of WWTPs and we do not model individual
distributed subsystems. In practice, there can be advanced treatment trains
constructed as separate facilities (Sim & Mauter, 2021), and new WWTPs with
advanced treatment. Fortunately, meso-scale modeling of the fully integrated
water and wastewater system still facilitates policy search across a much larger
design space. Also, directly connecting a DPR plant with the existing central-
ized systems is a desirable first step towards DWS. Here, collective function-
ality assures redundancy, while independence maintains modularity. We need
more comprehensive complex network analyses (e.g., Romero, 2021) to guide the
topology design for DWSs that are robust under both normal and contingency
conditions.
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github.com/Zhouxiaomu33/Code-for-mesoscale-modeling-and-multiobjective-
optimization-.

References

Alam, S., Gebremichael, M., Ban, Z., Scanlon, B. R., Senay, G., & Lettenmaier,
D. P. (2021). Post‐drought groundwater storage recovery in California’s Central
Valley. Water Resources Research, 57(10). https://doi.org/10.1029/2021wr03
0352

ASCE. (2021). Failure to Act: Economic Impacts of Status Quo Investment

23

https://wntr.readthedocs.io/en/latest/installation.html
https://wntr.readthedocs.io/en/latest/installation.html
https://pymoo.org/installation.html
https://github.com/Zhouxiaomu33/Code-for-mesoscale-modeling-and-multiobjective-optimization-
https://github.com/Zhouxiaomu33/Code-for-mesoscale-modeling-and-multiobjective-optimization-
https://github.com/Zhouxiaomu33/Code-for-mesoscale-modeling-and-multiobjective-optimization-
https://doi.org/10.1029/2021wr030352
https://doi.org/10.1029/2021wr030352


Across Infrastructure Systems.

AWWA. (2011). Buried no longer challenge: confronting America’s water in-
frastructure. Technical report, American Water Works Association, Denver, CO,
USA.

Biggs, C., Ryan, C., Wiseman, J., and Larsen, K. (2009). Distributed water
systems: A networked and localized approach for sustainable water services.
Technical report, VEIL.

Blank, J., & Deb, K. (2020). Pymoo: Multi-Objective Optimization in Python.
IEEE Access: Practical Innovations, Open Solutions, 8, 89497–89509. https:
//doi.org/10.1109/access.2020.2990567

Crosson, C., Achilli, A., Zuniga-Teran, A. A., Mack, E. A., Albrecht, T.,
Shrestha, P., Boccelli, D. L., Cath, T. Y., Daigger, G. T., Duan, J., Lansey,
K. E., Meixner, T., Pincetl, S., & Scott, C. A. (2021). Net zero urban water
from concept to applications: Integrating natural, built, and social systems
for responsive and adaptive solutions. ACS ES&T Water, 1(3), 518–529.
https://doi.org/10.1021/acsestwater.0c00180

Dai, L., Derudder, B., & Liu, X. (2018). Transport network backbone extraction:
A comparison of techniques. Journal of Transport Geography, 69, 271–281. ht
tps://doi.org/10.1016/j.jtrangeo.2018.05.012

Darabos, C., White, M. J., Graham, B. E., Leung, D. N., Williams, S. M., &
Moore, J. H. (2014). The multiscale backbone of the human phenotype network
based on biological pathways. BioData Mining, 7(1), 1. https://doi.org/10.118
6/1756-0381-7-1

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation : A Publication of the IEEE Neural Networks Council, 6(2), 182–
197. https://doi.org/10.1109/4235.996017

Diao, K. (2021). Towards resilient water supply in centralized control and decen-
tralized execution mode. Journal of Water Supply Research and Technology—
AQUA, 70(4), 449–466. https://doi.org/10.2166/aqua.2021.162

Diffenbaugh, N. S., Swain, D. L., & Touma, D. (2015). Anthropogenic warming
has increased drought risk in California. Proceedings of the National Academy
of Sciences of the United States of America, 112(13), 3931–3936. https://doi.or
g/10.1073/pnas.1422385112

Ducruet, C. (2017). Multilayer dynamics of complex spatial networks: The
case of global maritime flows (1977–2008). Journal of Transport Geography, 60,
47–58. https://doi.org/10.1016/j.jtrangeo.2017.02.007

Englehardt, J. D., Wu, T., Bloetscher, F., Deng, Y., du Pisani, P., Eilert, S.,
Elmir, S., Guo, T., Jacangelo, J., LeChevallier, M., Leverenz, H., Mancha, E.,
Plater-Zyberk, E., Sheikh, B., Steinle-Darling, E., & Tchobanoglous, G. (2016).

24

https://doi.org/10.1109/access.2020.2990567
https://doi.org/10.1109/access.2020.2990567
https://doi.org/10.1021/acsestwater.0c00180
https://doi.org/10.1016/j.jtrangeo.2018.05.012
https://doi.org/10.1016/j.jtrangeo.2018.05.012
https://doi.org/10.1186/1756-0381-7-1
https://doi.org/10.1186/1756-0381-7-1
https://doi.org/10.1109/4235.996017
https://doi.org/10.2166/aqua.2021.162
https://doi.org/10.1073/pnas.1422385112
https://doi.org/10.1073/pnas.1422385112
https://doi.org/10.1016/j.jtrangeo.2017.02.007


Net-zero water management: achieving energy-positive municipal water supply.
Environmental Science: Water Research & Technology, 2(2), 250–260. https:
//doi.org/10.1016/j.jtrangeo.2017.02.007

EPA, U. S. (2020). EPANET. Retrieved from https://www.epa.gov/water-
research/epanet

Ferrario, E., Pedroni, N., & Zio, E. (2016). Evaluation of the robustness of
critical infrastructures by Hierarchical Graph representation, clustering and
Monte Carlo simulation. Reliability Engineering & System Safety, 155, 78–96.
https://doi.org/10.1016/j.ress.2016.06.007

Flörke, M., Schneider, C., & McDonald, R. I. (2018). Water competition be-
tween cities and agriculture driven by climate change and urban growth. Nature
Sustainability, 1(1), 51–58. https://doi.org/10.1038/s41893-017-0006-8

Foti, N. J., Hughes, J. M., & Rockmore, D. N. (2011). Nonparametric spar-
sification of complex multiscale networks. PloS One, 6(2), e16431. https:
//doi.org/10.1371/journal.pone.0016431

Gemmetto, V., Cardillo, A., & Garlaschelli, D. (2017). Irreducible network back-
bones: unbiased graph filtering via maximum entropy. In arXiv [physics.soc-ph].
http://arxiv.org/abs/1706.00230

Gómez, C., Sanchez-Silva, M., Dueñas-Osorio, L., & Rosowsky, D. (2013). Hier-
archical infrastructure network representation methods for risk-based decision-
making. Structure and Infrastructure Engineering: Maintenance, Management,
Life-Cycle Design and Performance, 9(3), 260–274. https://doi.org/10.1080/15
732479.2010.546415

Gray, E., NASA’s Earth Science News Team, Merzdorf, J., & NASA’s Goddard
Space Flight Center. (2019, June 13). Earth’s freshwater future: Extremes of
flood and drought. Retrieved June 1, 2021, from Climate Change: Vital Signs
of the Planet website: https://climate.nasa.gov/news/2881/earths-freshwater-
future-extremes-of-flood-and-drought/

He, C., Liu, Z., Wu, J., Pan, X., Fang, Z., Li, J., & Bryan, B. A. (2021). Future
global urban water scarcity and potential solutions. Nature Communications,
12(1), 4667. https://doi.org/10.1038/s41467-021-25026-3

Hébert-Dufresne, L., Grochow, J. A., & Allard, A. (2016). Multi-scale struc-
ture and topological anomaly detection via a new network statistic: The onion
decomposition. Scientific Reports, 6(1). https://doi.org/10.1038/srep31708

Hering, J. G., Waite, T. D., Luthy, R. G., Drewes, J. E., & Sedlak, D. L.
(2013). A changing framework for urban water systems. Environmental Science
& Technology, 47(19), 10721–10726. https://doi.org/10.1021/es4007096

Herrera-García, G., Ezquerro, P., Tomás, R., Béjar-Pizarro, M., López-Vinielles,
J., Rossi, M., Mateos, R. M., Carreón-Freyre, D., Lambert, J., Teatini, P.,
Cabral-Cano, E., Erkens, G., Galloway, D., Hung, W.-C., Kakar, N., Sneed,

25

https://doi.org/10.1016/j.jtrangeo.2017.02.007
https://doi.org/10.1016/j.jtrangeo.2017.02.007
https://www.epa.gov/water-research/epanet
https://www.epa.gov/water-research/epanet
https://doi.org/10.1016/j.ress.2016.06.007
https://doi.org/10.1038/s41893-017-0006-8
https://doi.org/10.1371/journal.pone.0016431
https://doi.org/10.1371/journal.pone.0016431
http://arxiv.org/abs/1706.00230
https://doi.org/10.1080/15732479.2010.546415
https://doi.org/10.1080/15732479.2010.546415
https://climate.nasa.gov/news/2881/earths-freshwater-future-extremes-of-flood-and-drought/
https://climate.nasa.gov/news/2881/earths-freshwater-future-extremes-of-flood-and-drought/
https://doi.org/10.1038/s41467-021-25026-3
https://doi.org/10.1038/srep31708
https://doi.org/10.1021/es4007096


M., Tosi, L., Wang, H., & Ye, S. (2021). Mapping the global threat of land
subsidence. Science (New York, N.Y.), 371(6524), 34–36. https://doi.org/10.1
126/science.abb8549

Hoffmann, S., Feldmann, U., Bach, P. M., Binz, C., Farrelly, M., Frantzeskaki,
N., Hiessl, H., Inauen, J., Larsen, T. A., Lienert, J., Londong, J., Lüthi, C.,
Maurer, M., Mitchell, C., Morgenroth, E., Nelson, K. L., Scholten, L., Truf-
fer, B., & Udert, K. M. (2020). A research agenda for the future of urban
water management: Exploring the potential of nongrid, small-grid, and hy-
brid solutions. Environmental Science & Technology, 54(9), 5312–5322. https:
//doi.org/10.1021/acs.est.9b05222

Houston Public Works (a). Drinking Water Operations. Retrieved July 8, 2021,
from Houstontx.gov website: https://www.publicworks.houstontx.gov/pud/dr
inkingwater.html

Houston Public Works (b). Daily Water Supply Monitor. Retrieved July 12,
2021, from https://www.publicworks.houstontx.gov/pud/dwsm.html

Houston Public Works. (2019). Water conservation plan.

Harris Galveston Subsidence District. (2019, September 16). Retrieved Septem-
ber 29, 2021, from Hgsubsidence.org website: https://hgsubsidence.org/

Jasechko, S., Perrone, D., Seybold, H., Fan, Y., & Kirchner, J. W. (2020).
Groundwater level observations in 250,000 coastal US wells reveal scope of
potential seawater intrusion. Nature Communications, 11(1), 3229. https:
//doi.org/10.1038/s41467-020-17038-2

Jensen, O., & Khalis, A. (2020). Urban water systems: Development of micro-
level indicators to support integrated policy. PloS One, 15(2), e0228295. https:
//doi.org/10.1371/journal.pone.0228295

Jones, E. C., & Leibowicz, B. D. (2021). Co-optimization and community: Maxi-
mizing the benefits of distributed electricity and water technologies. Sustainable
Cities and Society, 64(102515), 102515. https://doi.org/10.1016/j.scs.2020.102
515

Kavvada, O., Nelson, K. L., & Horvath, A. (2018). Spatial optimization for
decentralized non-potable water reuse. Environmental Research Letters, 13(6),
064001. https://doi.org/10.1088/1748-9326/aabef0

Khan, S. J., Deere, D., Leusch, F. D. L., Humpage, A., Jenkins, M., & Cunliffe,
D. (2015). Extreme weather events: Should drinking water quality management
systems adapt to changing risk profiles? Water Research, 85, 124–136. https:
//doi.org/10.1016/j.watres.2015.08.018

Klise, K. A., Bynum, M., Moriarty, D., & Murray, R. (2017). A software frame-
work for assessing the resilience of drinking water systems to disasters with an
example earthquake case study. Environmental Modelling & Software: With

26

https://doi.org/10.1126/science.abb8549
https://doi.org/10.1126/science.abb8549
https://doi.org/10.1021/acs.est.9b05222
https://doi.org/10.1021/acs.est.9b05222
https://www.publicworks.houstontx.gov/pud/drinkingwater.html
https://www.publicworks.houstontx.gov/pud/drinkingwater.html
https://www.publicworks.houstontx.gov/pud/dwsm.html
https://hgsubsidence.org/
https://doi.org/10.1038/s41467-020-17038-2
https://doi.org/10.1038/s41467-020-17038-2
https://doi.org/10.1371/journal.pone.0228295
https://doi.org/10.1371/journal.pone.0228295
https://doi.org/10.1016/j.scs.2020.102515
https://doi.org/10.1016/j.scs.2020.102515
https://doi.org/10.1088/1748-9326/aabef0
https://doi.org/10.1016/j.watres.2015.08.018
https://doi.org/10.1016/j.watres.2015.08.018


Environment Data News, 95, 420–431. https://doi.org/10.1016/j.envsoft.2017
.06.022

Larsen, T. A., Hoffmann, S., Lüthi, C., Truffer, B., & Maurer, M. (2016). Emerg-
ing solutions to the water challenges of an urbanizing world. Science (New York,
N.Y.), 352(6288), 928–933. https://doi.org/10.1126/science.aad8641

Leigh, N., & Lee, H. (2019). Sustainable and resilient urban water systems:
The role of decentralization and planning. Sustainability, 11(3), 918. https:
//doi.org/10.3390/su11030918

Liu, L., Lopez, E., Dueñas-Osorio, L., Stadler, L., Xie, Y., Alvarez, P. J. J., &
Li, Q. (2020). The importance of system configuration for distributed direct
potable water reuse. Nature Sustainability, 3(7), 548–555. https://doi.org/10.1
038/s41893-020-0518-5

Liu, Y., & Mauter, M. S. (2021). Marginal energy intensity of water supply.
Energy & Environmental Science, 14(8), 4533–4540. https://doi.org/10.1039/
d1ee00925g

Makropoulos, C. K., & Butler, D. (2010). Distributed water infrastructure
for sustainable communities. Water Resources Management, 24(11), 2795–2816.
https://doi.org/10.1007/s11269-010-9580-5

Mones, E., Vicsek, L., & Vicsek, T. (2012). Hierarchy measure for complex
networks. PloS One, 7(3), e33799. https://doi.org/10.1371/journal.pone.00337
99

National Research Council, 2011. Water Reuse: Potential for Expanding the
Nation’s Water Supply through Reuse of Municipal Wastewater. The National
Academies Press, Washington, DC, USA.

Neal, Z. (2014). The backbone of bipartite projections: Inferring relationships
from co-authorship, co-sponsorship, co-attendance and other co-behaviors. So-
cial Networks, 39, 84–97. https://doi.org/10.1016/j.socnet.2014.06.001

Nielsen-Gammon, J. W. (2012). The 2011 Texas drought. Texas Water Journal,
3(1), 59-95.

Porse, E., Mika, K. B., Litvak, E., Manago, K. F., Hogue, T. S., Gold, M.,
Pataki, D. E., & Pincetl, S. (2018). The economic value of local water supplies
in Los Angeles. Nature Sustainability, 1(6), 289–297. https://doi.org/10.1038/
s41893-018-0068-2

Pumain, D. (Ed.). (2005). Hierarchy in Natural and Social Sciences (2006th
ed.). New York, NY: Springer.

Romero, P. (2021). Uniformly optimally reliable graphs: A survey. Networks
(New York, NY). https://doi.org/10.1002/net.22085

Scott Vitter, J., Jr, Berhanu, B., Deetjen, T. A., Leibowicz, B. D., & Webber,
M. E. (2018). Optimal sizing and dispatch for a community-scale potable water

27

https://doi.org/10.1016/j.envsoft.2017.06.022
https://doi.org/10.1016/j.envsoft.2017.06.022
https://doi.org/10.1126/science.aad8641
https://doi.org/10.3390/su11030918
https://doi.org/10.3390/su11030918
https://doi.org/10.1038/s41893-020-0518-5
https://doi.org/10.1038/s41893-020-0518-5
https://doi.org/10.1039/d1ee00925g
https://doi.org/10.1039/d1ee00925g
https://doi.org/10.1007/s11269-010-9580-5
https://doi.org/10.1371/journal.pone.0033799
https://doi.org/10.1371/journal.pone.0033799
https://doi.org/10.1016/j.socnet.2014.06.001
https://doi.org/10.1038/s41893-018-0068-2
https://doi.org/10.1038/s41893-018-0068-2
https://doi.org/10.1002/net.22085


recycling facility. Sustainable Cities and Society, 39, 225–240. https://doi.org/
10.1016/j.scs.2018.02.023

Sharma, A., Burn, S., Gardner, T., & Gregory, A. (2010). Role of decentralised
systems in the transition of urban water systems. Water Science & Technology:
Water Supply, 10(4), 577–583. https://doi.org/10.2166/ws.2010.187

Sim, A., & Mauter, M. S. (2021). Cost and energy intensity of U.S. potable
water reuse systems. Environmental Science: Water Research & Technology,
7(4), 748–761. https://doi.org/10.1039/d1ew00017a

Tampa Bay Water. (2018). Long-term Master Water Plan.

Twomey, K. M., & Webber, M. E. (2011). Evaluating the energy intensity of the
US public water system. ASME 2011 5th International Conference on Energy
Sustainability, Parts A, B, and C. ASMEDC.

van de Lindt, J. W., Peacock, W. G., Mitrani-Reiser, J., Rosenheim, N., Deniz,
D., Dillard, M., Tomiczek, T., Koliou, M., Graettinger, A., Crawford, P. S., Har-
rison, K., Barbosa, A., Tobin, J., Helgeson, J., Peek, L., Memari, M., Sutley,
E. J., Hamideh, S., Gu, D., … Fung, J. (2020). Community resilience-focused
technical investigation of the 2016 Lumberton, North Carolina, flood: An in-
terdisciplinary approach. Natural Hazards Review, 21(3), 04020029. https:
//doi.org/10.1061/(asce)nh.1527-6996.0000387

Walski, T.M., Chase, D.V., Savic, D.A., Grayman, W., Beckwith, S. Advanced
water distribution modeling and management. (2003). Haestead Press, Water-
bury, CT, 693p.

Zhang, Q. H., Yang, W. N., Ngo, H. H., Guo, W. S., Jin, P. K., Dzakpasu,
M., Yang, S. J., Wang, Q., Wang, X. C., & Ao, D. (2016). Current status of
urban wastewater treatment plants in China. Environment International, 92–93,
11–22. https://doi.org/10.1016/j.envint.2016.03.024

Zodrow, K. R., Li, Q., Buono, R. M., Chen, W., Daigger, G., Dueñas-Osorio,
L., Elimelech, M., Huang, X., Jiang, G., Kim, J.-H., Logan, B. E., Sedlak, D.
L., Westerhoff, P., & Alvarez, P. J. J. (2017). Advanced materials, technologies,
and complex systems analyses: Emerging opportunities to enhance urban water
security. Environmental Science & Technology, 51(18), 10274–10281. https:
//doi.org/10.1021/acs.est.7b01679

References From the Supporting Information

Emmerich, M. T. M., & Deutz, A. H. (2018). A tutorial on multiobjective
optimization: fundamentals and evolutionary methods. Natural Computing,
17(3), 585–609. https://doi.org/10.1007/s11047-018-9685-y

Bertazzi, L., & Wang, X. (2022). Matheuristics with performance guarantee
for the unsplit and split delivery capacitated vehicle routing problem. Networks
(New York, NY). https://doi.org/10.1002/net.22115

28

https://doi.org/10.1016/j.scs.2018.02.023
https://doi.org/10.1016/j.scs.2018.02.023
https://doi.org/10.2166/ws.2010.187
https://doi.org/10.1039/d1ew00017a
https://doi.org/10.1061/(asce)nh.1527-6996.0000387
https://doi.org/10.1061/(asce)nh.1527-6996.0000387
https://doi.org/10.1016/j.envint.2016.03.024
https://doi.org/10.1021/acs.est.7b01679
https://doi.org/10.1021/acs.est.7b01679
https://doi.org/10.1007/s11047-018-9685-y
https://doi.org/10.1002/net.22115

