Global Formaldehyde Products from the Ozone Mapping and Profiler Suite (OMPS) Nadir Mappers on Suomi NPP and NOAA-20

Caroline R. Nowlan¹, Gonzalo González Abad¹, Hyeong-Ahn Kwon², Zolal Ayazpour³, Christopher Chan Miller⁴, Kelly Chance¹, Heesung Chong¹, Xiong Liu¹, Ewan O'Sullivan¹, Huiqun Wang¹, Lei Zhu⁵, Isabelle De Smedt⁶, Glen Jaross⁷, Colin Seftor⁸, and Kang Sun³

¹Center for Astrophysics — Harvard & Smithsonian
²University of Suwon
³University at Buffalo
⁴Harvard University
⁵Southern University of Science and Technology
⁶Belgian Institute for Space Aeronomy (BIRA-IASB)
⁷NASA Goddard Space Flight Center
⁸Science Systems and Applications, Inc.

February 22, 2024

Abstract

We describe new publicly-available, multi-year formaldehyde (HCHO) data records from the Ozone Mapping and Profiler Suite (OMPS) nadir mapper (NM) instruments on the Suomi NPP and NOAA-20 satellites. The OMPS-NM instruments measure backscattered UV light over the globe once per day, with spatial resolutions close to nadir of $50 \times 50 \text{ km}^2$ (OMPS/Suomi-NPP) and $17 \times 17 \text{ km}^2$ or $12 \times 17 \text{ km}^2$ (OMPS/NOAA-20). After a preliminary instrument line shape and wavelength calibration using on-orbit observations, we use the backscatter measurements in a direct spectral fit of radiances, in combination with a nadir reference spectrum collected over a clean area, to determine slant columns of HCHO. The slant columns are converted to vertical columns using air mass factors derived through scene-by-scene radiative transfer calculations. Finally, a correction is applied to account for background HCHO in the reference spectrum, as well as any remaining high-latitude biases. We investigate the consistency of the OMPS products from Suomi NPP and NOAA-20 using long-term monthly means over 12 geographic regions, and also compare the products with publicly-available TROPOMI HCHO observations. OMPS/Suomi-NPP and OMPS/NOAA-20 monthly mean HCHO vertical columns are highly consistent (r = 0.98), with low proportional (2 %) and offset (2×10¹⁴ molecules cm-²) biases. OMPS HCHO monthly means are also well-correlated with those from TROPOMI (r = 0.92), although they are consistently 10 ± 16 % larger in polluted regions (columns >8×10¹⁵ molecules cm-²). These differences result primarily from differences in air mass factors.

Global Formaldehyde Products from the Ozone Mapping and Profiler Suite (OMPS) Nadir Mappers on Suomi NPP and NOAA-20

Caroline R. Nowlan¹, Gonzalo González Abad¹, Hyeong-Ahn Kwon^{1*}, Zolal 4 Ayazpour², Christopher Chan Miller^{1,3}, Kelly Chance¹, Heesung Chong¹, 5 Xiong Liu¹, Ewan O'Sullivan¹, Huiqun Wang¹, Lei Zhu⁴, Isabelle De Smedt⁵, 6 Glen Jaross⁶, Colin Seftor^{6,7}, Kang Sun² 7

8	$^{1}\mathrm{Center}$ for Astrophysics Harvard & Smithsonian, Cambridge, MA, USA
9	2 University at Buffalo, Buffalo, NY, USA
10	³ Harvard University, Cambridge, MA, USA
11	⁴ Southern University of Science and Technology, Shenzhen, China
12	$^5\mathrm{Royal}$ Belgian Institute for Space Aeronomy, Brussels, Belgium
13	$^6\mathrm{NASA}$ Goddard Space Flight Center, Greenbelt, MD, USA
14	$^7\mathrm{Science}$ Systems and Applications, Inc., Lanham, MD, USA

Key Points: 15

1

2

3

16	•	We describe new publicly-available formal dehyde products from the OMPS satel-
17		lite instruments.
18	•	OMPS HCHO data records retrieved from Suomi NPP and NOAA-20 are consis-
19		tent.
20	•	OMPS HCHO vertical column time series are compared with TROPOMI in 12
21		geographic regions.

^{*}Now at the University of Suwon, Gyeonggi-do, Republic of Korea.

Corresponding author: Caroline Nowlan, cnowlan@cfa.harvard.edu

22 Abstract

We describe new publicly-available, multi-year formaldehyde (HCHO) data records from 23 the Ozone Mapping and Profiler Suite (OMPS) nadir mapper (NM) instruments on the 24 Suomi NPP and NOAA-20 satellites. The OMPS-NM instruments measure backscat-25 tered UV light over the globe once per day, with spatial resolutions close to nadir of 50 26 \times 50 km² (OMPS/Suomi-NPP) and 17 \times 17 km² or 12 \times 17 km² (OMPS/NOAA-20). 27 After a preliminary instrument line shape and wavelength calibration using on-orbit ob-28 servations, we use the backscatter measurements in a direct spectral fit of radiances, in 29 combination with a nadir reference spectrum collected over a clean area, to determine 30 slant columns of HCHO. The slant columns are converted to vertical columns using air 31 mass factors derived through scene-by-scene radiative transfer calculations. Finally, a 32 correction is applied to account for background HCHO in the reference spectrum, as well 33 as any remaining high-latitude biases. We investigate the consistency of the OMPS prod-34 ucts from Suomi NPP and NOAA-20 using long-term monthly means over 12 geographic 35 regions, and also compare the products with publicly-available TROPOMI HCHO ob-36 servations. OMPS/Suomi-NPP and OMPS/NOAA-20 monthly mean HCHO vertical columns 37 are highly consistent (r = 0.98), with low proportional (2 %) and offset (2×10¹⁴ molecules 38 cm^{-2}) biases. OMPS HCHO monthly means are also well-correlated with those from TROPOMI 39 (r = 0.92), although they are consistently 10 ± 16 % larger in polluted regions (columns 40 $> 8 \times 10^{15}$ molecules cm⁻²). These differences result primarily from differences in air 41 mass factors. 42

43 1 Introduction

Formaldehyde (HCHO) is important in atmospheric chemistry and outdoor air qual-44 ity through its role in atmospheric oxidation and the production of ozone and secondary 45 organic aerosols. The oxidation of non-methane volatile organic compounds (NMVOCs) 46 from biomass burning, anthropogenic sources and biogenic emissions results in local and 47 regional HCHO enhancements, while methane oxidation is largely responsible for HCHO 48 in the global background atmosphere. A smaller amount of direct HCHO emission also 49 occurs through industrial activity and biomass burning. Spaceborne remote sensing in-50 struments can be used to map the global distribution of HCHO using characteristic ab-51 sorption features in the ultraviolet region of the electromagnetic spectrum. 52

53	The first HCHO observations from space were made by the Global Ozone Moni-
54	toring Experiment (GOME) (1995–2011) (Thomas et al., 1998; Chance et al., 2000). Multi-
55	year HCHO products have since been produced from GOME (De Smedt et al., 2008),
56	the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIA-
57	MACHY) (2002–2012) (De Smedt et al., 2012), GOME-2 (2006–2021/2012–present/2018–
58	present) (De Smedt et al., 2012), the Ozone Monitoring Instrument (OMI) (2004–present)
59	(De Smedt et al., 2015; González Abad et al., 2015), the Ozone Mapping and Profiler
60	Suite (OMPS) on Suomi NPP (2011–present) (C. Li et al., 2015; González Abad et al.,
61	2016; Su et al., 2019), the TROPOspheric Monitoring Instrument (Sentinel-5P/TROPOMI)
62	(2017–present) (De Smedt et al., 2018, 2021) and the Environmental Trace Gases Mon-
63	itoring Instrument (EMI) (2018–present) (Su et al., 2022). The next-generation geosta-
64	tionary air quality instruments Geostationary Environment Monitoring Spectrometer (GEMS;
65	East Asia; launch 2020) (Kwon et al., 2019; Kim et al., 2020), Tropospheric Emissions:
66	Monitoring of POllution (TEMPO; North America; 2023) (Zoogman et al., 2017) and
67	Sentinel-4 (Europe and North Africa; 2024) (Ingmann et al., 2012), and the future Sentinel-
68	5 low Earth orbit missions all include HCHO as a baseline data product.

Formaldehyde is removed relatively quickly from the atmosphere through photol-69 ysis and oxidation by the hydroxyl radical OH, with a resulting lifetime of a few hours. 70 This high reactivity allows satellite measurements of HCHO to be used in combination 71 with atmospheric chemistry models to provide top-down constraints on NMVOC emis-72 sions (e.g., Palmer et al., 2006; Barkley et al., 2008; Millet et al., 2008; Stavrakou et al., 73 2009; Marais et al., 2012; Bauwens et al., 2016; Kaiser et al., 2018). Satellite measure-74 ments of HCHO can also be used to examine secondary organic aerosol formation (Veefkind 75 et al., 2011; Marais et al., 2016), tropospheric ozone production (Jin et al., 2017), the 76 oxidative capacity of the atmosphere (Valin et al., 2016; Wolfe et al., 2019) and the health 77 impacts of ambient HCHO (Zhu et al., 2017; Su et al., 2019). 78

OMPS is a suite of three instruments that are included on the Joint Polar Satellite System (JPSS) (Goldberg et al., 2013). The primary goal of OMPS is to provide ozone observations for use in near real time applications and for continuity of the long-term data record of global ozone (Flynn et al., 2014; Sofieva et al., 2017). The full OMPS suite consists of three instruments: 1) the OMPS nadir mapper (OMPS-NM); 2) the OMPS profile mapper (OMPS-NP); and 3) the OMPS limb profiler (OMPS-LP). OMPS was launched on 28 October 2011 on the joint NASA/NOAA Suomi NPP (National Polar-

orbiting Partnership) satellite and on 18 November 2017 on the NOAA-20 (JPSS-1) satel-86 lite. OMPS on Suomi NPP consists of the full suite, while only the nadir package (OMPS-87 NM and OMPS-NP) flies on NOAA-20. Hereafter, we refer to the two OMPS-NM in-88 struments currently in orbit as OMPS/SNPP and OMPS/NOAA-20. The Suomi NPP 89 and NOAA-20 satellites are both in afternoon sun-synchronous orbits with daylight equa-90 torial crossing times of approximately 13:30 local time. NOAA-20's orbit is 50 minutes 91 behind that of Suomi NPP. Future JPSS satellites (JPSS-2, 2022; JPSS-3, 2028; JPSS-92 4, 2032) will each carry an OMPS. 93

In this paper, we describe new multi-year, publicly-available HCHO products de-94 veloped by the Smithsonian Astrophysical Observatory (SAO) for the OMPS/SNPP and 95 OMPS/NOAA-20 nadir mapper instruments (González Abad, 2022a, 2022b). Previous studies have demonstrated HCHO retrievals from OMPS (C. Li et al., 2015; González Abad 97 et al., 2016; Su et al., 2019), but these efforts have been limited to specific timeframes 98 and to the OMPS/SNPP instrument only. A limited data set for OMPS produced for 99 the Korea-United States Air Quality (KORUS-AQ) campaign timeframe (May–June 2016), 100 based on the retrieval described in González Abad et al. (2016), has also been used to 101 derive emissions in Asia during KORUS-AQ (Souri et al., 2020; Choi et al., 2022). 102

The new OMPS products extend and augment long-term global data records of HCHO. 103 After 2012, the OMPS/SNPP HCHO product provides global coverage that is missing 104 in the widely-used OMI HCHO product (González Abad et al., 2015) due to an instru-105 ment row anomaly (this is particularly important before the launch of Sentinel-5P/TROPOMI 106 in late 2017). Furthermore, with future Sentinel-5 instruments planned for morning or-107 bits, OMPS is currently the only planned UV hyperspectral instrument in afternoon or-108 bit post-TROPOMI, and hence, after TROPOMI decommissioning, the only instrument 109 capable of continuing the afternoon HCHO data record that began with OMI in 2004. 110

The paper is organized as follows. Section 2 describes the OMPS instruments in more detail and the data products used in the analysis. Section 3 describes the HCHO retrieval algorithm and associated uncertainties. Section 4 presents comparisons of HCHO columns between the two OMPS instruments and with TROPOMI, which is the stateof-the-art low Earth orbit instrument. Section 5 summarizes the retrieval framework and presents directions for future improvements. We validate the OMPS HCHO retrievals with ground-based measurements in a separate companion paper (Kwon et al., 2022).

-4-

118 2 Data products

¹¹⁹ 2.1 OMPS

120

2.1.1 The OMPS nadir mappers

The HCHO measurements in this study are derived from the OMPS nadir mapper (OMPS-NM). Detailed descriptions of OMPS and the on-orbit performance of OMPS/SNPP can be found in several previous papers (Flynn et al., 2014; Jaross et al., 2014; Seftor et al., 2014; Pan et al., 2017).

Table 1 summarizes several features of the OMPS nadir mappers relevant to HCHO 125 retrievals. The nadir mapper uses a grating spectrometer to observe backscattered ra-126 diation with a two-dimensional CCD-array detector with 340 detector pixels in the spec-127 tral dimension and 740 pixels in the across-track dimension. In the CCD's spectral di-128 mension, 196 of the 340 pixels are illuminated in OMPS/SNPP at wavelengths 300-380 129 nm. The wavelength range was extended for OMPS/NOAA-20, which has 294 pixels il-130 luminated from 298-420 nm. The spectra in both instruments are sampled every 0.42 131 nm at a spectral resolution of about 1 nm at full-width at half maximum. 132

The full across-track OMPS field-of-view is 110°, resulting in a swath of about 2800 133 km at the Earth's surface. Of the 740 pixels in the across-track dimension, 708 are il-134 luminated. Pixel measurements are binned together spatially and temporally by the in-135 strument before being sent to the ground to achieve a lower data rate. This results in 136 36 across-track and 400 along-track nominal ground pixels per orbit for OMPS/SNPP, 137 each with a spatial resolution at the ground of about $50 \times 50 \text{ km}^2$ close to nadir, with 138 larger ground pixels at the edge of the swath. The two center across-track positions are 139 rebinned differently and have spatial resolutions of $30 \times 50 \text{ km}^2$ and $20 \times 50 \text{ km}^2$. The 140 bin sizes were reduced on OMPS/NOAA-20 to achieve higher along-track and across-141 track resolution. Early in the mission, most OMPS/NOAA-20 observations were rebinned 142 to 104 pixels across-track and 1201 along-track for a spatial resolution of $17\,\times\,17~{\rm km^2}$ 143 at nadir. On 13 February 2019, the rebinning scheme was modified to produce 140 re-144 binned across-track ground pixels, with a corresponding spatial resolution of $12 \times 17 \text{ km}^2$ 145 at nadir. The OMPS/NOAA-20 rebinning scheme provides enhanced spatial resolution 146 over that of OMPS/SNPP, but also results in lower signal-to-noise in the rebinned spec-147 tra. 148

-5-

Characteristic	OMPS SNPP	OMPS NOAA-20
Launch	28 October 2011	18 November 2017
Spectral coverage	$300380~\mathrm{nm}$	298–420 nm
Spectral resolution	1 nm	1 nm
Spectral sampling	0.42 nm	0.42 nm
Spatial resolution at nadir	$50\times50~{\rm km^2}$	$17\times17~{\rm km^2}$ (launch–13/02/2019)
(across-track \times along-track)		$12\times17~{\rm km^2}~(13/02/2019{\rm -present})$
Nominal across-track ground pixels	36	104 (launch–13/02/2019)
		140 $(13/02/2019$ -present)
Nominal along-track ground pixels	400	1201

 Table 1.
 Characteristics of the OMPS Nadir Mapper Instruments on Suomi NPP and NOAA

 20.

149

2.1.2 OMPS radiance products

Table 2 summarizes the OMPS data products used in the HCHO retrievals. We 150 produce OMPS/SNPP HCHO retrievals using the NASA OMPS Nadir Mapper Earth 151 View (NMEV) Version 2.0 Level 1B (calibrated and geolocated) radiances, available through 152 NASA's Goddard Earth Sciences Data and Information Services Center (GES DISC) (Jaross, 153 2017a). In addition to the radiances for one orbit, each Level 1B file contains static so-154 lar irradiance spectra, derived from direct measurements of the Sun through a diffuser 155 near the beginning of the mission. We produce OMPS/NOAA-20 products using Ver-156 sion 1.3 OMPS/NOAA-20 radiances, which are produced by the NASA OMPS team us-157 ing a similar algorithm with instrument-specific calibration. The OMPS/NOAA-20 prod-158 ucts are currently available through the OMPS website (https://ozoneaq.gsfc.nasa.gov/omps/). 159 In this paper, we present measurements from February 2012 for OMPS/SNPP and Febru-160 ary 2018 for OMPS/NOAA-20, when regular daily or near-daily global measurements 161 became available, through December 2020. 162

163

2.1.3 OMPS cloud products

Tropospheric trace gas retrievals require information on the cloud amount (cloud fraction) and height (optical centroid pressure) over each ground pixel. A publicly-available

-6-

	OMPS/SNPP		OMPS/NOAA-20	
Input Source	Product Name	Version	Product Name	Version
Level 1B radiances	OMPS_NPP_NMEV_L1B	v2.0	OMPS_N20_NMEV_L1B	v1.3
Total ozone	OMPS_NPP_NMTO3_L2	v2.1	OMPS_N20_NMTO3_L2	v1.3

cloud product (NMCLDRR) that provides cloud fractions and pressures determined from

166

 Table 2.
 OMPS data products used in HCHO retrieval.

rotational Raman scattering currently exists for OMPS/SNPP (Joiner, 2020; Vasilkov 167 et al., 2014), but not for OMPS/NOAA-20. As a result, for consistency between the two 168 instruments, we take cloud information from the total ozone products (NMTO3) which 169 are available for both OMPS/SNPP and OMPS/NOAA-20. For OMPS/SNPP, we use 170 the Version 2.1 total ozone product OMPS_NPP_NMTO3_L2 available from the NASA 171 GES DISC (Jaross, 2017b), and for OMPS/NOAA-20, the Version 1.3 product OMPS_N20_NMTO3_L2 172 available from the OMPS website. The OMPS total ozone product is processed using 173 the Total Ozone Mapping Spectrometer (TOMS) Version 8.5 algorithm, which is also 174 used to produce OMI (Bhartia & Wellemeyer, 2002) and TOMS total ozone. 175 The OMPS cloud fractions in the total ozone product are determined from Level 176 1B radiances at 331 nm using a Mixed Lambertian Reflectivity (MLER) model (Ahmad 177 et al., 2004), where the surface is assumed to have a constant global reflectivity of 0.15. 178 In contrast, the rotational Raman cloud fraction retrieval at 354.1 nm uses location-dependent 179 and much smaller reflectivities of approximately 0.02–0.08 (over snow-free and ice-free 180 surfaces), as do most recent trace gas retrievals in the ultraviolet. As a result, we find 181 the OMPS/SNPP total ozone cloud fraction systematically underestimates that of the 182 Raman cloud product by 0.05 to 0.12, depending on the season. 183 In order to determine a more accurate cloud fraction for OMPS that can be ap-184

plied to both OMPS/SNPP and OMPS/NOAA-20 in a consistent manner, we calculate an updated cloud fraction for the HCHO product. We find the OMPS/SNPP Raman cloud fraction has a nearly linear dependence on the observed reflectivity at 360 nm included in the total ozone product, although the fit coefficients vary across a year. We determine the relationship for each month of the year, and use this in combination with the NMTO3 reflectivity to produce a corrected cloud fraction for the HCHO product that agrees more closely with the Raman cloud fraction. This effectively assumes a constant
 global reflectivity, similarly to the NMTO3 cloud retrieval, but produces a cloud distri bution much closer to that of the Raman product. The estimated cloud fractions are not
 valid over ice and snow.

The OMPS HCHO retrievals use the total ozone cloud pressures directly from the total ozone product. These pressures are from a climatology of the cloud optical centroid pressure determined using rotational Raman Scattering with the Ozone Monitoring Instrument's OMCLDRR cloud retrieval (Joiner, 2006). The use of climatological pressures rather than observed pressures is a source of error in HCHO measurements, and associated uncertainties are discussed in Section 3.5.2.

201

2.2 TROPOMI

The Sentinel-5P/TROPOMI instrument is the state-of-the-art UV/visible hyperspectral remote sensing instrument in low Earth orbit, and is in an orbit 5 minutes behind Suomi NPP. TROPOMI was launched on 13 October 2017 and uses backscattered radiation in the UV, visible, and shortwave infrared to measure a suite of aerosols and trace gases, including HCHO. We compare OMPS HCHO observations with TROPOMI HCHO in Section 4.

TROPOMI HCHO data products are available from 14 May 2018. The retrievals have a spatial resolution of $3.5 \times 7 \text{ km}^2$ prior to 6 August 2019 and $3.5 \times 5.5 \text{ km}^2$ afterwards. We use the offline HCHO products processed with the S5P Version 1 processor (ESA & DLR, 2019a, 2019b) up to 13 July 2020 and the Version 2 processor (ESA & DLR, 2020) after that date.

The TROPOMI HCHO retrieval uses the wavelength region 328.5 – 359 nm to fit 213 the HCHO slant column density using differential optical absorption spectroscopy (DOAS). 214 The vertical column is determined using a pre-computed look-up table of vertically-resolved 215 air mass factors (AMF). The surface reflectance used in the AMF calculation is from $0.5^{\circ} \times$ 216 0.5° OMI Lambertian equivalent reflectance (LER) monthly surface reflectance clima-217 tologies (Kleipool et al., 2008). A priori HCHO profiles are from daily TM5-MP model 218 profiles at $1^{\circ} \times 1^{\circ}$ resolution (Williams et al., 2017). Cloud parameters are from a sep-219 arate TROPOMI cloud retrieval (Loyola et al., 2018). The cloud correction is applied 220 using the independent pixel approximation (Martin et al., 2002; Boersma et al., 2004) 221

for cloud fractions greater than 0.1. The vertical columns are reference-sector corrected using a background vertical column from the TM5 model and with a bias correction determined from the previous four days of data. Further details of the HCHO retrieval can be found in De Smedt et al. (2018) and De Smedt et al. (2021).

We filter the TROPOMI HCHO by only using observations with qa_value ≥ 0.5 . In the Version 1 processor, this removes retrievals with an error flag, SZA > 70°, AMF < 0.1, or cloud radiative fraction at 340 nm > 0.6. We additionally filter out data flagged as snow/ice or with albedo > 0.2 (flagged by default in the Version 2 qa_value), and exclude data where effective cloud fractions > 0.4 for consistency with our OMPS analysis.

Vigouroux et al. (2020) validated TROPOMI HCHO using a network of 25 Fourier-232 Transform Infrared Spectrometers (FTIR) (Vigouroux et al., 2018), and found TROPOMI 233 overestimated HCHO in clean background regions (HCHO columns $< 2.5 \times 10^{15}$ molecules 234 (cm^{-2}) by 26±5 % relative to the FTIRs and underestimated HCHO by 30.8±1.4 % at 235 more polluted sites $(> 8 \times 10^{15} \text{ molecules cm}^{-2})$. De Smedt et al. (2021) performed a 236 validation with 18 multi-axis DOAS (MAX-DOAS) instruments, and similarly found TROPOMI 237 HCHO to be 25 % lower than MAX-DOAS at very polluted sites, but in good agreement 238 in moderately polluted sites. 239

240

241

3 Formaldehyde retrieval algorithm

3.1 Overview

The OMPS retrieval algorithm uses a three-step approach to produce a Level 2 HCHO vertical column product. Figure 1 shows a flow chart that summarizes the algorithm components and major inputs that will be described in this section.

First, after a preliminary spectral calibration, a spectral fitting algorithm deter-245 mines the HCHO slant column density for each ground pixel by fitting a modeled spec-246 trum to the observed spectrum. This spectral fitting makes use of a spectrum determined 247 from measurements over the Pacific ocean as a clean reference (i.e., where only minimal 248 background HCHO is present). In the second step, a separate algorithm determines the 249 AMF that describes the light path through the atmosphere. Third, the retrieval calcu-250 lates the geometry-independent vertical column density using the retrieved slant column 251 density, the AMF, and a reference sector correction that corrects for background HCHO 252

Figure 1. Flow chart of the OMPS HCHO algorithm, showing input databases for the slant column fit (yellow cylinders) and AMF calculation (green cylinders), inputs from the OMPS radiance files and cloud information (pink parallelograms), algorithm outputs/inputs (blue parallelograms) and main processes (orange rectangles).

in the clean nadir reference and any remaining background biases in the retrieval. In ad-253

dition to these three major steps, we add quality flags to the final Level 2 file in a post-254 processing step. 255

In general terms, the vertical column density (VCD) of a trace gas is related to 256 the slant column density (SCD) seen by the remote sensing instrument through an AMF257 that describes the mean photon path through the gas by 258

$$VCD = \frac{SCD}{AMF}.$$
(1)

The HCHO SCD is determined using a reference spectrum collected over a rela-259 tively clean region. As a result, the SCD retrieved through spectral fitting is in fact a 260 differential SCD defined by 261

$$\Delta SCD = SCD - SCD_R,\tag{2}$$

where SCD is the slant column amount in the nadir observation of interest and SCD_R 262 is the background slant column in the reference spectrum. In the case of the OMPS re-263 trievals, SCD_R is determined using 264

$$SCD_R = VCD_R \cdot AMF_R,$$
 (3)

where VCD_R is the reference vertical column density estimated from a chemical trans-265 port model and AMF_R is the AMF at the reference spectrum location. 266

In addition, OMPS HCHO, like many satellite retrievals of HCHO and other weak 267 absorbers, shows latitude-dependent biases in the slant column, which are likely due to 268 interfering absorbers and insufficiently-corrected instrument calibration issues. These bi-269 ases are corrected using modeled columns of HCHO and accounted for using a slant col-270 umn bias correction term SCD_B . Following Equations 1 and 2, and considering the bias 271 correction, we determine the final vertical column density using 272

$$VCD = \frac{\Delta SCD + SCD_R + SCD_B}{AMF}.$$
(4)

273

Figure 2 shows the variables in Equation 4 determined for orbits on 28 July 2019, which passed over eastern Asia and regions of anthropogenic and wildfire emissions. The 274 remainder of Section 3 describes the detailed derivation of differential slant column den-275 sities, AMFs, and reference and bias corrections used in the calculation of the final ver-276 tical column densities. 277

Figure 2. Formaldehyde on 28 July 2019 for SZA $< 80^{\circ}$ and cloud fractions < 0.4 retrieved from OMPS/SNPP orbit 40149 and OMPS/NOAA-20 orbit 8752, showing (a, f) differential slant column densities (ΔSCD), (b, g) reference background corrections (SCD_R), (c, h) bias corrections ($-SCD_B$), (d, i) air mass factors (AMF), and (e, j) final vertical column densities (VCD). The negative of the bias correction is shown for a more direct comparison with the ΔSCD . These orbits pass over likely anthropogenic and biogenic HCHO sources in eastern China, and a large wildfire plume in Siberia. The orbits are offset in longitude due to the 50-minute orbital separation between Suomi NPP and NOAA-20.

3.2 Spectral fitting

279

3.2.1 On-orbit spectral calibration

OMPS/SNPP solar measurements are provided in the L1B data files and are based on four solar measurements taken in March/April 2012, while OMPS/NOAA-20 solar measurements are similarly derived from four measurements in March/April 2018. As a first step in the retrieval, we derive the OMPS slit function *s* and wavelength registration as a function of across-track position using a well-established calibration approach developed for SAO trace gas retrievals (e.g., Bak et al., 2017; Sun et al., 2017).

We model the slit with three super-Gaussian terms (Beirle et al., 2017): 1) the slit's half width at 1/e, w; 2) the shape parameter k; and 3) the asymmetry parameter a_w using

$$s(\Delta\lambda) = exp\left[-\left|\frac{\Delta\lambda}{w + \operatorname{sgn}(\Delta\lambda)a_w}\right|^k\right],\tag{5}$$

where $\Delta \lambda$ describes the wavelength distance from the center and sgn() is the sign function used to define the two sides of the slit function.

For each across-track position, the spectral fitting algorithm simultaneously deter-291 mines the slit parameters and a shift in the detector-pixel-to-wavelength registration in 292 the HCHO absorption region through a fit of a modeled solar spectrum based on a high 293 resolution reference solar spectrum (Chance & Kurucz, 2010) to the observed solar spec-294 trum. The slit parameters are then saved and the wavelength registration calibration is 295 performed again using the clean radiance reference spectrum at each across-track posi-296 tion (described in Section 3.2.2) to fine-tune the daily wavelength calibration. The re-297 trieved shape parameter k varies from 2.2 to 2.5 for OMPS/SNPP, depending on across-298 track position, and from 2.2 to 2.7 for OMPS/NOAA-20 (k = 2 for a standard Gaus-299 sian). The slit functions are mostly symmetric in the center of the swaths, with a_w rang-300 ing from -0.04 to 0.02 off-center, depending on across-track position. 301

Figure 3 shows the full width at half maxima (FWHM) retrieved from the on-orbit solar spectra as part of the HCHO retrieval, as well as those derived from on-orbit estimates by the NASA OMPS L1B calibration team. Pre-flight measurements (not shown) and on-orbit estimates of the instrument line shape indicate the FWHM in the HCHO fitting window varies only slightly as a function of wavelength (by 1–5%, with the largest deviations at the far off-nadir pixels). In our retrievals, we derive a single line shape for

-13-

Figure 3. (a) Full width at half maximum (FWHM) of on-orbit slit functions derived for OMPS/SNPP (36 across-track positions) and (b) OMPS/NOAA-20 (140 across-track positions) using OMPS solar measurements in the HCHO fitting wavelength region, as well as slit functions derived by NASA's OMPS calibration team.

308	the entire HCHO wavelength window for each across-track position. Retrieved slit widths
309	are similar to those provided in NASA calibration files, with OMPS/SNPP FWHM chang-
310	ing across the orbital swath from 0.9 – 1 nm, and OMPS/NOAA-20 showing a stable FWHM
211	of 0.92 nm through the central part of the orbit and increasing slightly further off-nadir

312

3.2.2 Reference spectrum

To minimize across-track striping in the HCHO retrievals, we use reference spectra derived from relatively clean observations at each across-track position in place of a direct solar irradiance measurement (e.g., González Abad et al., 2015, 2016). We determine the radiance reference spectrum at each across-track position by averaging all spectra collected at that position between latitudes 30°S and 30°N from the orbit closest in time and with an equatorial crossing closest to 160°W and within 140°W and 180°W (i.e., over the clean Pacific).

320 3.2.3 Spectral fitting details

We derive the differential HCHO slant column density ΔSCD for each nadir observation using a direct fit of the radiance. The direct spectral fitting approach applied in the SAO trace gas retrievals is described elsewhere in detail (e.g., Chan Miller et al., 2014; Nowlan et al., 2018). Briefly, we fit a modeled radiance to the observed radiance using non-linear least squares Levenberg-Marquart minimization by adjusting a state vector **x**. The radiance is modeled at each wavelength, with pre-defined model parameters **b** as

$$F(\lambda) = [x_a I_0(\lambda) + b_u(\lambda)x_u + b_r(\lambda)x_r]e^{-\sum_i b_i(\lambda)x_i} \sum_j (\lambda - \bar{\lambda})^j x_j^{SC} + \sum_k (\lambda - \bar{\lambda})^k x_k^{BL}.$$
 (6)

In this equation, I_0 is the reference spectrum described in Section 3.2.2, scaled by a retrieved intensity parameter x_a (which mostly describes reflectivity from the surface or clouds). The term x_u represents scaling for a wavelength-dependent correction $b_u(\lambda)$ that describes spectral undersampling (Chance et al., 2005). The term x_r represents the strength of rotational Raman (Ring) scattering described in a pre-computed Ring spectrum $b_r(\lambda)$ (Chance & Spurr, 1997).

The wavelength-dependent trace gas absorption cross sections are represented by 334 $b_i(\lambda)$ and their differential slant column densities (ΔSCD) by x_i . Table 3 lists the trace 335 gases modeled in the spectral fit, which include HCHO, NO₂, O₃, BrO and O₂-O₂, and 336 their reference cross sections. The low frequency effects of aerosol and molecular scat-337 tering, wavelength-dependent surface reflectance, and instrument artifacts are consid-338 ered by scaling (x^{SC}) and baseline (x^{BL}) polynomial terms of orders j and k. In addi-339 tion, we simultaneously retrieve a wavelength shift that represents the difference in the 340 nadir radiance fitting window wavelengths to those of the reference spectrum. This shift 341 in wavelength calibration is typically due to thermal changes in the instrument over the 342 course of an orbit and inhomogeneous scene illumination (Voors et al., 2006; Noël et al., 343 2012). 344

The wavelength region used in the fitting is 328.5-356.5 nm. This region includes major HCHO spectral features but attempts to minimize effects from strong ozone absorption at shorter wavelengths and correlations with BrO and O₂-O₂. This is the wavelength window previously used in OMI HCHO retrievals (González Abad et al., 2015).

Parameter	Details		
НСНО	Chance and Orphal (2011), 300 K		
NO_2	Vandaele et al. (1998), 220 K		
O_3	Serdyuchenko et al. (2014), 223 and 243 ${\rm K}$		
BrO	Wilmouth et al. (1999), 228 K $$		
O ₂ -O ₂	Finkenzeller and Volkamer (2022), 293 ${\rm K}$		
Undersampling	Chance et al. (2005)		
Ring spectrum	Chance and Spurr (1997)		
Scaling polynomial	3rd order		
Baseline polynomial	3rd order		
Wavelength shift			

Table 3. Parameters fit in OMPS HCHO retrieval.

Figure 4 shows the differential slant column densities derived for OMPS/SNPP and OMPS/NOAA-20 measurements over eastern Asia on 28 July 2019. Figure 5 shows modeled and observed optical depth spectra for sample individual spectra collected over background HCHO, moderate (anthropogenic) and highly polluted (wildfire) from the same orbit. Both these figures show the larger noise in OMPS/NOAA-20 observations relative to those from OMPS/SNPP, resulting from the higher spatial resolution of OMPS/NOAA-20 which was achieved at a cost of decreased signal-to-noise.

Typical fitting uncertainties are on the order of $3.5 \pm 0.8 \times 10^{15}$ molecules cm⁻² 356 for OMPS/SNPP at SZA < 45° with cloud fractions < 0.4. With its finer spatial res-357 olution of 12×17 km², OMPS/NOAA-20 fitting uncertainties are on the order of $1.1 \pm$ 358 0.2×10^{16} molecules cm⁻². The corresponding relative root mean square (RMS) of the 359 fit is on average 2.9×10^{-4} for OMPS/SNPP and 8.9×10^{-4} for OMPS/NOAA-20. As shown 360 in Figure 4, when the retrieved slant columns from OMPS/NOAA-20 Level 1B radiances 361 are averaged at the OMPS/SNPP spatial resolution, the resulting uncertainties are sim-362 ilar in magnitude to those of OMPS/SNPP. 363

In Figure 4, fitting uncertainties increase at southern high latitudes due to lower signal-to-noise from large solar zenith angles. In addition, larger systematic fitting residuals in OMPS/SNPP fitting at low total radiance (SZA > $\sim 65^{\circ}$) result in larger cal-

-16-

culated fitting uncertainties. These fitting residuals are possibly due to calibration is-

sues in OMPS/SNPP that are not as significant for OMPS/NOAA-20 in the HCHO wave-

³⁶⁹ length fitting window.

370 **3.3** Air mass factor calculation

The AMF describes the mean photon path through the trace gas of interest. For the OMPS HCHO product, we calculate the AMF for each ground pixel using the formulation of Palmer et al. (2001) and Martin et al. (2002) for an assumed optically thin atmosphere. This formulation describes the AMF as a function of altitude-dependent scattering weights W(z) and profile shape factors S(z), and is defined as

$$AMF = \int_{z} W(z)S(z)\mathrm{d}z.$$
 (7)

The scattering weights are determined using a radiative transfer model. The shape fac-

tor is the normalized profile shape, and is determined from the partial columns of the

trace gas at each layer, n(z), using

$$S(z) = \frac{n(z)}{\sum_{z} n(z) \mathrm{d}z}.$$
(8)

380

The AMF for a partly cloudy scene is determined by

$$AMF = (1 - w) \cdot AMF_{clear} + w \cdot AMF_{cloudy} \tag{9}$$

where AMF_{clear} is the AMF calculated for a completely clear scene and AMF_{cloudy} is the AMF calculated for a completely cloudy scene. The cloud radiance fraction w is defined as

$$w = \frac{fI_{cloud}}{(1-f)I_{clear} + fI_{cloud}}$$
(10)

where I_{clear} and I_{cloud} are the radiance intensities for a completely clear and a completely cloudy scene, respectively. These are taken from the radiative transfer calculation. The scene's cloud fraction ($0 \le f \le 1$) is the OMPS cloud fraction discussed in Section 2.1.3.

Table 4 summarizes the major inputs to the air mass factor calculations, including radiative transfer calculation inputs and atmospheric profiles from a global chemical transport model.

Figure 4. Formaldehyde differential slant column densities on 28 July 2019 for SZA < 80° retrieved from (a) OMPS/SNPP orbit 40149 and (d) OMPS/NOAA-20 orbit 8752. The corresponding fitting uncertainties (panels b and e) and cloud fractions (c and f) are also shown. Panel (g) shows slant column densities and panel (h) shows their corresponding fitting uncertainties along one across-track position that passes through the wildfire for OMPS/NPP (across-track position 30), OMPS/NOAA-20 (position 57) and OMPS/NOAA-20 averaged to OMPS/SNPP spatial resolution (from positions 55–58). Only the ascending part of the orbit is shown. The missing retrievals in OMPS/NOAA-20 near 10°N are due to the exclusion of spectra flagged as saturated in the Level 1B data.

Figure 5. Modeled and observed optical depth spectra from OMPS/SNPP orbit 40149 and OMPS/NOAA-20 orbit 8752 on 28 July 2019, showing sample simulated (red) and observed (blue) HCHO optical depths from (a, b) a large Siberian wildfire, (c, d) moderate pollution over China and (e, f) a clean background. Each panel shows the differential retrieved slant column density ΔSCD between an observed spectrum and a radiance reference spectrum, and its associated fitting uncertainty.

Parameter	Details	
Radiative transfer model	VLIDORT V2.8 (Spurr, 2008)	
Wavelength for calculation	340 nm	
Trace gas profiles	GEOS-Chem 2018 monthly climatology	
Temperature profile	GEOS-Chem 2018 monthly climatology	
Digital elevation model	GLOBE (Hastings & Dunbar, 1999)	
Surface pressure	MERRA-2 (GMAO, 2015)	
Number of vertical layers in RTM	47 (reduced GEOS-5 grid)	
Surface reflectance (land)	MODIS BRDF product MCD43C1 (Schaaf & Wang, 2015)	
	extended to UV using SCIAMACHY	
Surface reflectance (water)	Cox-Munk slope distribution (Cox & Munk, 1954)	
Wind speed and direction	MERRA-2 (GMAO, 2015)	
Ocean salinity	World Ocean Atlas 2009 (Antonov et al., 2010)	
Cloud fraction	Derived from OMPS total ozone product reflectivity (Jaross, 2017b)	
Cloud pressure	OMPS total ozone product (Jaross, 2017b)	
Aerosols	not included explicitly	

 Table 4.
 Baseline inputs to air mass factor calculations.

3.3.2 Radiative transfer calculation

We determine scattering weights W(z) using the Vector LInearized Discrete Or-392 dinate Radiative Transfer (VLIDORT) radiative transfer model Version 2.8 (Spurr, 2006, 393 2008). The scattering weights describe the sensitivity of the measurement to different 394 altitude layers and are a function of the instrument viewing geometry, the ozone profile 395 (which influences the penetration altitude of photons in the UV), aerosol and molecu-396 lar scattering, and surface reflectance. For the HCHO retrievals, we calculate the scat-397 tering weights at 340 nm, and assume the wavelength dependency of the photon path 398 to be constant within the narrow HCHO wavelength fitting window. Before the AMF 399 calculation is run, we create a file for each orbit that includes trace gas profiles, surface 400 reflectance parameters, and relevant meteorological variables such as temperature pro-401 files, surface pressure and surface winds (see Figure 1). This file is then used as input 402 to the radiative transfer code. 403

The radiative transfer calculation is performed on 47 layers from the surface to 0.01 hPa, defined by the reduced GEOS-5 vertical grid commonly used for GEOS-Chem simulations (http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_vertical _grids#47-layer_reduced_vertical_grid). This vertical grid maintains the GEOS-5 vertical layers in the troposphere, but reduces the stratosphere to 11 layers.

409

391

3.3.3 Surface reflectance

The surface reflectance for the AMF uses the MODIS observation-geometry depen-410 dent bidirectional reflectance distribution function (BRDF) product MCD43C1 (Schaaf 411 & Wang, 2015). As the shortest wavelength band available from MODIS is at 469 nm, 412 we have developed an approach to predict UV BRDFs from the first four MODIS bands 413 (469 – 859 nm) by fitting a principal component analysis (PCA) decomposition model 414 derived from surface spectral libraries (Zoogman et al., 2016). Since the original model 415 only extended the BRDFs down to 400 nm, we have recently extended it to the UV by 416 merging the original spectral databases with observations from the SCIAMACHY sur-417 face albedo database (Tilstra et al., 2017). For the OMPS HCHO retrievals, we calcu-418 late the surface reflectance at 340 nm. 419

We use VLIDORT to determine the surface reflectance over water using the Cox-Munk slope distribution (Cox & Munk, 1954) to represent sea surface roughness. The

surface wind speed and direction at each pixel is determined from the hourly Modern-422 Era Retrospective analysis for Research and Applications Version 2 (MERRA-2) prod-423 uct, which has a $0.5^{\circ} \times 0.625^{\circ}$ spatial resolution (Gelaro et al., 2017; GMAO, 2015). Ocean 424 salinity is taken from the World Ocean Atlas 2009 (Antonov et al., 2010) at 1° resolu-425 tion. The MODIS BRDF product is not available over open ocean, and its use over coastal 426 and inland turbid waters to model surface reflectance is unreliable (Fasnacht et al., 2019). 427 As a result, we use the Cox-Munk approach over all water bodies, recognizing there are 428 likely large uncertainties in the surface reflectance in turbid and shallow waters. 429

The radiative effects of snow and ice cover are included implicitly through the use 430 of MODIS BRDF data. However, we additionally include snow and ice cover fraction in 431 the Level 2 data product for diagnostic reasons, even though these are not currently used 432 in the AMF calculation. The northern hemisphere snow and sea ice fraction for each ground 433 pixel is derived from the 4-km Interactive Multisensor Snow and Ice Mapping System 434 (IMS) product (US National Ice Center, 2008). The southern hemisphere snow fraction 435 is from the ancillary percent snow cover product included in the MODIS MCD43C1 prod-436 uct. Southern hemisphere sea ice fraction is estimated from the daily $25 \times 25 \text{ km}^2$ Sea 437 Ice Index product (Fetterer et al., 2017). 438

439

3.3.4 Atmospheric profiles

A priori atmospheric HCHO profiles are a key requirement of the retrieval as they 440 are needed for determining the profile shape factor. The OMPS HCHO AMF calcula-441 tion differs from that used in most previous retrievals of HCHO (i.e., González Abad et 442 al., 2015, 2016; De Smedt et al., 2018) as it uses an online radiative transfer calculation 443 that requires ozone and temperature profiles rather than using look-up tables built us-444 ing standard profiles. We expect the influence of new profiles on the AMF to be min-445 imal for temperature (<1 %), but somewhat larger in the case of potentially more ac-446 curate ozone profiles used in place of standard profiles (10 % in the most extreme cases). 447

We construct monthly climatologies of hourly HCHO, ozone and temperature profiles using output from a 2018 GEOS-Chem high-performance (GCHP) simulation (Eastham et al., 2018; Bindle et al., 2021) at $0.5^{\circ} \times 0.5^{\circ}$ spatial resolution on 72 vertical layers with a 1-year spin-up. GEOS-Chem is a global chemical transport model with detailed HO_x-NO_x-VOC-aerosol-halogen tropospheric chemistry (Bey et al., 2001). In this simulation,

-22-

the model is driven by meteorological fields from MERRA-2 (Gelaro et al., 2017). Global
anthropogenic emissions are from the Community Emissions Data System (CEDS) (Hoesly
et al., 2018), with Asian emissions replaced with the MIX inventory (M. Li et al., 2017).
Biogenic emissions are determined online using the Model of Emissions of Gases and Aerosols
from Nature (MEGAN) (Guenther et al., 2012). Biomass burning emissions use the fourthgeneration Global Fire Emissions Database (GFED4) (Giglio et al., 2013).

We replace the monthly climatological surface pressure at each model grid box us-459 ing regridded hourly surface pressures from MERRA-2 for the specific date and time of 460 the satellite overpass. To account for differences between model resolution and satellite 461 ground pixel resolution which may affect surface pressures in regions with changing ter-462 rain height, we additionally adjust the surface pressure of a satellite ground pixel by ap-463 plying a terrain height correction using the 1-km Global Land One-kilometer Base El-464 evation (GLOBE) digital elevation model (Hastings & Dunbar, 1999) following the ap-465 proach described by Zhou et al. (2009) and Boersma et al. (2011). Mixing ratio profiles 466 are conserved but partial columns used in the shape factor are updated to reflect the new 467 surface pressure on the satellite pixel footprint. 468

469

3.3.5 Clouds and aerosols

We apply the independent pixel approximation (Martin et al., 2002) to determine the effective AMF using Equation 9 with the cloud fractions described in Section 2.1.3, and cloud pressures from the OMPS total ozone product. Clouds are modeled in the radiative transfer simulation as Lambertian surfaces with albedo 0.8. As the radiative effects of aerosols are implicitly considered in the existing cloud retrievals, we do not currently model these in the AMF calculation but rather consider aerosols as a source of uncertainty in the final product (Jung et al., 2019).

477

3.4 Reference sector correction

The reference sector correction procedure consists of two steps. First, we add a background HCHO column which accounts for HCHO in the reference spectrum. Second, we apply a correction for the background bias that may be present in the retrievals due to unresolved instrument calibration or spectral fitting issues.

3.4.1 Correction for background HCHO in reference spectrum

We determine the background column SCD_R in Equation 4 by calculating the mean 483 HCHO slant column density of the ground pixels used in the calculation of the reference 484 spectrum. Each pixel's SCD_R is determined using Equation 3 with a VCD_R determined 485 from the GEOS-Chem model climatology and the associated AMF_R from the reference 486 orbit. The final SCD_R used in the Equation 4 correction is the mean of these individ-487 ual pixel columns. As each across-track position uses a different reference spectrum, this 488 results in a different SCD_R being applied for each across-track position in the orbit of 489 interest. After this reference sector background column is determined for each across-490 track position, it is smoothed by fitting a third-order polynomial to the column as a func-491 tion of across-track position. The reference sector background correction is typically on 492 the order of $3.5-4.5 \times 10^{15}$ molecules cm⁻². 493

494

482

3.4.2 Bias correction

To account for unexplained background patterns in the HCHO retrievals which may be due to instrument or retrieval issues, we finally apply a latitude and solar zenith angle dependent bias correction.

First, we gather retrieved slant columns from the 30 Pacific reference orbits clos-498 est in time to the orbit of interest (typically covering a window of 30 days). While smaller 499 temporal windows of ten days or less also work under clean conditions, the 30-day win-500 dow helps to minimize the impact of large Arctic wildfires on the bias correction. Sec-501 ond, we calculate the difference between these retrieved columns and the theoretical mod-502 eled slant columns from the climatological profiles for each orbit using Equation 4. Third, 503 we determine the mean difference (bias) between the modeled and retrieved columns for 504 1° latitude bins and 2° solar zenith angle bins. This binning ensures that the bias cor-505 rection can be applied to occasional orbits that do not have the nominal number of OMPS 506 observations. (Nominal observations are 36×400 for SNPP, and 104×1201 or 140×1201 507 for NOAA-20. However, on occasion orbits may have fewer along-track observations.) 508 In this bias correction step, data are excluded that fall more than 3σ outside the median 509 value in a window defined by across-track and along-track dimensions of 15×3 (SNPP), 510 45×9 (NOAA-20, 17×17 km²), or 60×9 (NOAA-20, 12×17 km²). Finally, the median 511 value of each bin is saved as the bias. Then, for each pixel in the orbit of interest, the 512

-24-

bias SCD_B is determined for the pixel's latitude and solar zenith angle. The final bias correction is further smoothed using wavelet denoising.

Figure 2c and 2h show the bias correction determined for a sample orbit. We find across-track, latitude and SZA variability in the OMPS/NOAA-20 bias to be minimal for this wavelength fitting window. On the other hand, OMPS/SNPP biases are more significant at high latitudes, and largely increase as the measured radiance decreases with larger solar zenith angles. As these biases are not consistent between the two instruments, this likely points to unresolved calibration uncertainties or instrument differences rather than spectral fitting or radiative transfer issues at high latitudes.

522 3.4.3 Quality flags

We apply quality flags in post-processing. Pixels are flagged as 0) good, 1) suspect 523 or 2) bad. We assign a bad flag to any observation with $|VCD| > 2 \times 10^{17}$ molecules 524 cm^{-2} , $VCD + 3\sigma_{VCD} < 0$, AMF < 0.1 or geometric AMF > 5. Although AMFs out-525 side this range can be valid, they are likely highly uncertain. We flag pixels as suspect 526 if $VCD+2\sigma_{VCD} < 0$ or geometric AMF > 4, or if they are snow or ice-covered (where 527 the cloud retrieval is currently inaccurate). Furthermore, in general, we do not recom-528 mend the HCHO product be used in the case of high cloud fraction (> 0.4) due to large 529 potential biases, or where $SZA > 70^{\circ}$, when signal-to-noise is low and retrievals often 530 show larger biases. 531

532

3.5 Uncertainties

Random and systematic uncertainties in the OMPS HCHO vertical column are in-533 troduced by uncertainties in the retrieved slant column density, the AMF and the ref-534 erence sector corrections. Estimated uncertainties are summarized in Table 5 and dis-535 cussed below. It should be noted that due to noise in the measurements, science appli-536 cations of HCHO products frequently use temporal and/or spatial averaging. As a re-537 sult, although we provide random and systematic uncertainty estimates, random uncer-538 tainties often become close to negligible in averaged columns, while systematic uncer-539 tainties remain. 540

3.5.1 Slant column density uncertainties

The random slant column density uncertainty in individual measurements is typically dominated by the random fitting uncertainty introduced by instrument noise. For OMPS/SNPP measurements with SZA < 45° and cloud fractions < 0.4 these uncertainties are on the order of 3.5×10^{15} molecules cm⁻². OMPS/NOAA-20 SCD fitting uncertainties are on the order of 9.5×10^{15} molecules cm⁻² (17×17 km²) and $1.1 \times$ 10^{16} molecules cm⁻² (12×17 km²).

Systematic errors in the slant column result from model parameter errors in the
cross sections and instrument line shapes, and calibration uncertainties, as well as model
errors that include the choice of polynomial fitting order and wavelength fitting window.
De Smedt et al. (2018) provide a detailed error budget for HCHO slant column fitting
uncertainties, and estimate a total systematic uncertainty from model parameters in HCHO
background-corrected slant columns of 20%.

554

541

3.5.2 AMF uncertainties

Uncertainties in the AMF can result from uncertainties in inputs to the AMF cal-555 culation (model parameter errors), and from approximations in the calculation itself (for-556 ward model errors). Using different ancillary AMF inputs from different retrieval groups, 557 Lorente et al. (2017) showed that structural uncertainties in the NO₂ AMF are on av-558 erage 31 % in clean and 42 % in polluted regions. AMF errors are typically dominated 559 by uncertainties in the assumed surface reflectance, aerosols, profile shape and cloud pa-560 rameters. This section describes uncertainties introduced by those parameters into the 561 OMPS retrieval. 562

Estimated surface reflectance uncertainties from MODIS BRDF vary by surface 563 type, but generally have an RMSE < 0.0318 and bias within 0.0076 over land (Wang et 564 al., 2018). Over open ocean, we estimate uncertainties of 0.018 (RMSE) and 0.015 (bias) 565 in the surface reflectance, based on Fasnacht et al. (2019). These result in random un-566 certainties in the AMF on the order of 10 % (land) and 5 % (water) and AMF system-567 atic uncertainties on the order of 3% (land) and 5% (water). As we also apply the open 568 ocean approximation over coastal and turbid waters, the uncertainties in these regions 569 are likely much higher but have not been quantified. 570

Aerosols are not explicitly considered in the AMF calculation, which, depending 571 on the type and aerosol altitude, can lead to large errors when aerosol loading is high. 572 Aerosols can either enhance or decrease sensitivity to HCHO, depending on the height 573 of aerosols relative to HCHO and the aerosol optical properties. The cloud fraction re-574 trieval is not able to differentiate between the effects of aerosols and clouds, and as a re-575 sult implicitly considers aerosols to some extent (Boersma et al., 2004, 2011). Jung et 576 al. (2019) used independent OMI aerosol measurements to explicitly consider the effect 577 of aerosols on HCHO retrievals in clear-sky pixels. They found global mean biases in HCHO 578 VCDs are largest in the presence of smoke aerosols $(27\pm11\%)$, with smaller differences 579 from dust $(6\pm6\%)$ and sulfate $(0.3\pm4\%)$, while regional mean biases in VCDs ranged from 580 -3 to 35 %. Uncertainties in individual measurements with the highest aerosol loading 581 can be significantly larger (>100 %). As a result it is difficult to generalize random un-582 certainties due to aerosols. Caution is advised when using HCHO retrievals in regions 583 of high aerosol loading. 584

Profile shape uncertainties due to the use of a climatology can contribute to the 585 AMF uncertainty, although these can be mitigated by users through the re-calculation 586 of the AMF by applying the included scattering weights to model profiles with higher 587 spatial and temporal resolution (Laughner et al., 2019; Qin et al., 2020). To estimate 588 the random uncertainties introduced by the use of a climatology, we examine the vari-589 ability of the model's daily profiles. While there is little variability in the free troposphere, 590 in the boundary layer the daily profile variability is on the order of ± 30 % in polluted 591 regions, relative to the climatological profiles. The resultant uncertainty in the clima-592 tological profile shape can result in AMF uncertainties of ~ 30 % in those regions. Pro-593 file shape variability in clean regions is smaller, and results in AMF uncertainties closer 594 to 10 %. 595

⁵⁹⁶ Zhu et al. (2020) found that over land, GEOS-Chem simulations show HCHO bi-⁵⁹⁷ ased low near the surface as compared with in situ aircraft observations during multi-⁵⁹⁸ ple field campaigns, possibly due to inaccuracies in mixing depths and VOC emissions. ⁵⁹⁹ When AMFs were recalculated using observed profile shapes, the seven most polluted ⁶⁰⁰ regions saw HCHO VCD increase by 10 ± 6 %. Remote ocean VCDs were less affected ⁶⁰¹ (changes of 0 and 5 % in two campaigns). Consequently, we estimate potential system-⁶⁰² atic biases of 5 % in clean regions and 10 % in polluted regions due to profile shape. Pro-

-27-

file shape uncertainties in fires are likely to be much larger, due to the inability of climatological profiles to accurately represent intermittent fire plumes.

⁶⁰⁵ Uncertainties in cloud fraction and cloud pressure can propagate significant uncer-⁶⁰⁶ tainties to the AMF. Through comparisons of our derived cloud fractions with those from ⁶⁰⁷ the OMPS/SNPP Raman cloud product, we estimate potential overall systematic biases ⁶⁰⁸ in the cloud fractions to be <0.005, which results in small systematic uncertainties on ⁶⁰⁹ the order of ~1 %. Random uncertainty is ~0.02 for individual measurements, which ⁶¹⁰ translates to AMF random uncertainty of ~2 % in low-HCHO observations, and ~6 % ⁶¹¹ in polluted ground pixels.

Uncertainties in the cloud pressures are expected to be one of the largest contrib-612 utors to uncertainties in the OMPS HCHO products due to the use of climatological pres-613 sures. Figure 6 shows a histogram of global cloud pressure differences for a typical day 614 in July between cloud pressures used in the HCHO AMF calculation (taken from the cloud 615 climatologies), and those from the OMPS/SNPP Raman cloud product, as well as cor-616 responding HCHO AMF differences. The very large pressure differences in clear and nearly-617 clear skies $(0 \leq f < 0.1)$ are expected as here the cloud pressure retrieval struggles 618 to retrieve the correct cloud pressure (in fact, for $0 \le f \le 0.05$, the Raman cloud prod-619 uct reports the surface scene pressure as the cloud pressure). More significantly, the cloud 620 pressures of partly cloudy pixels $(0.1 \le f < 0.4)$ appear to be at least 150 hPa larger 621 in the Raman cloud product. This results in large potential biases of 25 % in the AMF 622 (Figure 6b). (Potential biases are smaller at other times of year, with January cloud pres-623 sure differences resulting in AMF biases on the order of 6 - 10 %.) Previous work has 624 also shown OMPS Raman cloud pressures to be larger than those derived from OMI at 625 higher cloud fractions (>0.3) at some latitudes (Vasilkov et al., 2014). As it is not clear 626 that the OMPS Raman cloud pressures are "truth", we estimate potential biases in the 627 climatology of 50 hPa, which is more in line with previous assessments of OMI Raman 628 clouds (Joiner et al., 2012); this results in an AMF systematic uncertainties of 5 – 15 %629 in partly cloudy pixels. We estimate random uncertainties in individual OMPS HCHO 630 AMFs due to the use of climatological pressures of $\sim 8 - 15$ %, depending on cloud frac-631 tion amount. 632

Figure 6. (a) Differences in cloud pressures and (b) air mass factors between the OMPS HCHO product (NMHCHO) and those calculated using cloud inputs from the NMCLDRR OMPS cloud product for all OMPS/SNPP orbits on 15 July 2019. The NMHCHO product uses a corrected cloud fraction based on NMCLDRR and the climatological cloud pressures from the NMTO3 product. The NMCLDRR cloud product retrieves cloud fraction and cloud pressure from rotational Raman scattering.

3.5.3 Reference sector correction uncertainties

633

The reference sector uncertainties result from uncertainties in the reference back-634 ground correction and the bias correction. In situ airborne observations of HCHO in the 635 remote Pacific during the Atmospheric Tomography Mission (ATom)-1 and ATom-2 cam-636 paigns show a HCHO background column of 3.0×10^{15} molecules cm⁻² (Zhu et al., 2020) 637 in the OMI reference region, close to the estimated modeled background VCD of $\sim 3.2 \times$ 638 10^{15} molecules cm⁻² used in the OMPS reference correction during those times. The ran-639 dom uncertainty in reference VCDs is small, and further minimized by averaging. As-640 suming a reference AMF uncertainty of 15 %, both the random and systematic uncer-641 tainties in the reference slant column are dominated by the reference AMF uncertain-642 ties, and are on the order of 6×10^{14} molecules cm⁻². 643

Though the bias correction is calculated using data from multiple reference orbits and smoothed, in the current implementation we do find it increases the random error on individual corrected slant columns by $\sim 1 \times 10^{15}$ molecules cm⁻². Systematic uncertainty introduced by the bias correction is difficult to quantify, as its purpose is to remove unexplained systematic biases present in the differential slant columns. As a result, we estimate the overall systematic uncertainties in corrected slant column densities, including reference background and bias correction, to be on the order of 20 % after De Smedt et al. (2018).

652

3.6 Global products

Figure 7 shows seasonal HCHO means from the two OMPS instruments for 2019 653 (December is from 2018), regridded to $0.1^{\circ} \times 0.1^{\circ}$ using physical oversampling (Sun et 654 al., 2018). HCHO vertical columns from the two OMPS instruments are very similar, 655 showing nearly identical spatial distribution and columns very similar in magnitude (this 656 will be assessed quantitatively in Section 4). The figure clearly shows regional HCHO 657 source variability throughout the year, including increases in HCHO from isoprene emis-658 sions in the northern hemisphere summer (particularly large in the southeastern US), 659 seasonal variation in biomass burning in South America, Africa and Southeast Asia, and 660 regions with significant anthropogenic HCHO production (often mixed with biogenic sources), 661 such as northern India and East China. 662

G63 4 Satellite intercomparisons

In this section, we intercompare HCHO derived from the two OMPS instruments, 664 and cross-validate with the Sentinel-5P/TROPOMI HCHO product. We do not perform 665 comparisons with OMI HCHO in this paper as SAO OMI products are being transitioned 666 to Collection 4 Level 1B spectra and an updated OMI HCHO product is forthcoming. 667 Direct orbit-to-orbit comparisons of OMPS/SNPP and OMPS/NOAA-20 are complicated 668 by the 50-minute orbital offset, which causes the instruments to view the same location 669 at different times with different geometries, and when atmospheric conditions and cloud 670 cover may have changed. In lieu of direct comparisons, we examine OMPS/SNPP and 671 OMPS/NOAA-20 long-term monthly averages to explore the consistency and stability 672 of the two instruments. In the following comparisons, we filter data using the OMPS and 673 TROPOMI main quality flags, and exclude data with SZA $> 70^{\circ}$ and cloud fractions >674 0.4.675

Source	Uncertainty	Notes	
Slant column den	sity (random)		
Measurement noise	$3.5 \times 10^{15} \text{ (SNPP)}$	Units are molecules $\rm cm^{-2}$	
	$9.5\times10^{15}~(\mathrm{NOAA20:}~17{\times}17~\mathrm{km^2})$	SZA $<45^\circ,$ cloud fraction <0.4	
	$1.1\times10^{16}~(\mathrm{NOAA\text{-}20:}~12{\times}17~\mathrm{km^2})$		
Bias correction	1×10^{15}	Units are molecules $\rm cm^{-2}$	
		$SZA < 45^{\circ}$	
Slant column den	sity (systematic)		
Systematic errors	20~%	Uncertainty in corrected SCD,	
		based on De Smedt et al. $\left(2018\right)$	
Air mass factor ((random)		
Surface reflectance	$10\ \%,\ 5\ \%$	Land, water	
Aerosols	0 - > 100 %	Depends on aerosol loading and type	
Profile shape	$10\ \%,\ 30\ \%$	low HCHO, high HCHO	
Cloud fraction	2 %, 6 %	low HCHO, high HCHO	
Cloud pressure	8-15~%		
Air mass factor ((systematic)		
Surface reflectance	$3\ \%,\ 5\ \%$	Land, water	
Aerosols	-3 $-$ 35 $\%$	Jung et al. (2019) regional biases,	
		depends on aerosol loading and type	
Profile shape	$5\ \%,\ 10\ \%$	low HCHO, high HCHO	
Cloud fraction	1 %		
Cloud pressure	5-15~%		

 ${\bf Table \ 5.} \quad {\rm Sources \ of \ uncertainty \ in \ individual \ OMPS \ HCHO \ retrievals.}$

Figure 7. Seasonal 2019 mean HCHO vertical column densities at $0.1^{\circ} \times 0.1^{\circ}$ resolution from OMPS/SNPP and OMPS/NOAA-20 (calculated for SZA < 70°, cloud fractions < 0.4, excluding snow and ice) for (a,b) December (2018)/January/February (DJF), (c,d) March/April/May (MAM), (e,f) June/July/August (JJA) and (g,h) September/October/November (SON).

Figure 8 shows mean August 2019 HCHO vertical columns and AMFs from both 676 OMPS instruments and TROPOMI. For these plots, OMPS is regridded to $0.1^{\circ} \times 0.1^{\circ}$, 677 with TROPOMI regridded to 0.05°×0.05°. Overall, OMPS/SNPP and OMPS/NOAA-678 20 monthly averages are highly consistent in magnitude and spatial distribution. In some 679 regions, OMPS HCHO during this month shows large spatial deviations with TROPOMI 680 HCHO. These differences primarily result from differences in the AMFs, which use dif-681 ferent ancillary inputs for surface reflectance, profile shape and clouds. Notable exam-682 ples include the northern part of South America, where AMFs are much larger in TROPOMI 683 data; northern India, where OMPS a priori profile shapes have much larger surface con-684 centrations; and Siberian wildfires that are visible in OMPS data but missing from TROPOMI 685 data due to those pixels being removed by the quality flag. In general, OMPS AMFs are 686 smaller than those of TROPOMI over land, and show sharper land-water differences that 687 result from different surface reflectance assumptions over land and water. 688

The black boxes in Figure 8 show the geographic regions that we use for an exam-689 ination of long-term monthly averages. The boundaries of these regions are defined in 690 Table 6. These regions are chosen based on those used in the original OMPS satellite 691 intercomparisons by González Abad et al. (2016). We additionally add the Middle East, 692 India and Southeast Asia regions to this comparison. Figure 9 shows a time series of monthly 693 mean HCHO vertical columns from OMPS/SNPP, OMPS/NOAA-20 and TROPOMI 694 in those regions. Figure 10 shows the corresponding slant columns, corrected for refer-695 ence background and biases (before application of the AMF). Figure 11 presents the HCHO 696 monthly mean vertical columns from Figure 9 as correlation plots. 697

As noted in Figure 11, OMPS/SNPP and OMPS/NOAA-20 HCHO monthly means 698 are highly correlated (r = 0.98), and show overall negligible biases in magnitude, with 699 a proportional bias of 2 % and an offset bias of 2×10^{14} molecules cm⁻². While the over-700 all agreement between OMPS/SNPP and OMPS/NOAA-20 monthly means is excellent, 701 there are some differences visible in the regional time series data of vertical column den-702 sities (Figure 9). The largest differences occur in the Southeast US and East China win-703 ters, where OMPS/SNPP tends to underestimate HCHO relative to OMPS/NOAA-20 704 by as much as 30%. However, in general, deviations between OMPS/SNPP and OMPS/NOAA-705 20 monthly means rarely exceed 1×10^{15} molecules cm⁻². 706

-33-

Figure 8. August 2019 mean HCHO vertical column densities and air mass factors for OMPS/SNPP, OMPS/NOAA-20 and TROPOMI. The black boxes in the left column HCHO maps show the geographic regions examined in Figures 9 and 10 described in Table 6.

707	OMPS/SNPP and $OMPS/NOAA-20$ monthly means are also highly correlated with
708	TROPOMI ($r = 0.92$), but comparisons show a slope of ~1.18 relative to TROPOMI.
709	For context, these differences are well within the potential biases in HCHO retrievals dis-
710	cussed in Section 3.5. At higher levels of HCHO (> 8×10^{15} molecules cm ⁻²), OMPS
711	HCHO vertical columns are consistently higher than HCHO derived from TROPOMI
712	by 10 \pm 16%. Less polluted regions and times show better agreement between OMPS and
713	TROPOMI, although there are also differences in cleaner regions such as the European
714	and Southern African winters, where TROPOMI HCHO is much higher than OMPS HCHO.

The OMPS HCHO products are validated using ground-based FTIR measurements 715 in a separate companion paper (Kwon et al., 2022). Similar to the TROPOMI valida-716 tions (Vigouroux et al., 2020; De Smedt et al., 2021) which found TROPOMI HCHO to 717 be larger than HCHO measured by ground-based measurements at clean sites, this study 718 finds OMPS HCHO VCDs are larger than FTIR columns at clean sites (by 20 % and 719 32 % for SNPP and NOAA-20, respectively). Polluted sites $(> 4 \times 10^{15} \text{ molecules cm}^{-2})$ 720 show closer agreement with the FTIR columns with biases of -15 % (OMPS/SNPP) and 721 +0.5 % (OMPS/NOAA-20). As previously mentioned in Section 2.2, TROPOMI HCHO 722 at polluted sites has previously been found to be 25 - 31 % lower than coincident HCHO 723 measured from FTIR and MAX-DOAS networks (Vigouroux et al., 2020; De Smedt et 724 al., 2021). 725

Most of the differences between OMPS and TROPOMI can be attributed to dif-726 ferences in the AMF. As shown in Figure 10, the corrected slant columns show minimal 727 bias between the three instruments in most regions, implying differences in AMFs drive 728 the VCD differences. OMPS/SNPP and OMPS/NOAA-20 monthly mean corrected slant 729 columns show excellent correlation with each other (r = 0.97, slope = 0.97, intercept 730 $= 3 \times 10^{14}$ molecules cm⁻²), as do those of TROPOMI with OMPS/SNPP (r = 0.96, 731 slope = 0.92, intercept = -1×10^{14} molecules cm⁻²) and OMPS/NOAA-20 (r = 0.96, 732 slope = 0.91, intercept = -2×10^{13} molecules cm⁻²). Biases between TROPOMI and 733 OMPS corrected slant columns of approximately 40 % during winter in the highest lat-734 itude regions (Europe and Southern Africa) may explain the associated biases seen in 735 those regions in the VCD, and may be due to differences in the reference sector correc-736 tions. 737

Figure 9. Time series of monthly average HCHO vertical column densities from OMPS/SNPP, OMPS/NOAA-20 and TROPOMI for the regions illustrated in Figure 8.

Region	Latitude Limits	Longitude Limits	
Pacific Ocean	$30^\circ\mathrm{S}-30^\circ\mathrm{N}$	$175^{\circ}W - 165^{\circ}W$	
Southeast US	$30^{\circ}N - 41^{\circ}N$	$95^{\circ}W - 77^{\circ}W$	
Amazon Basin	$15^{\circ}\mathrm{S}-0^{\circ}$	$70^{\circ}W - 50^{\circ}W$	
Europe	$40^\circ N - 52^\circ N$	$0^{\circ} - 25^{\circ}\mathrm{E}$	
Middle East	$13^{\circ}N - 38^{\circ}N$	$33^{\circ}\mathrm{E} - 58^{\circ}\mathrm{E}$	
India	$8^{\circ}N - 35^{\circ}N$	$68^{\circ}\mathrm{E} - 88^{\circ}\mathrm{E}$	
West-Central Africa	$1.5^{\circ}S - 11^{\circ}N$	$8^{\circ}W - 30^{\circ}E$	
Central Africa	$17^{\circ}\mathrm{S} - 4^{\circ}\mathrm{N}$	$11^{\circ}\mathrm{E} - 32^{\circ}\mathrm{E}$	
Southern Africa	$25^{\circ}S - 10^{\circ}S$	$17^{\circ}\mathrm{E} - 33^{\circ}\mathrm{E}$	
East China	$28^{\circ}N - 39^{\circ}N$	$111^\circ E - 120^\circ E$	
Southeast Asia	$8^{\circ}N - 28^{\circ}N$	$91^{\circ}\mathrm{E} - 110^{\circ}\mathrm{E}$	
Equatorial Asia	$5^{\circ}\mathrm{S}-5^{\circ}\mathrm{N}$	$95^\circ\mathrm{E}-120^\circ\mathrm{E}$	

 Table 6. Geographic limits of regions used in Figures 11 and 10 times series.

Figure 10. Same as Figure 9 but for corrected slant column densities.

Figure 11. Correlation plot of monthly average HCHO vertical column densities for geographic regions shown in Figure 9 for (a) OMPS/SNPP vs. OMPS/NOAA-20, (b) TROPOMI vs. OMPS/SNPP and (c) TROPOMI vs. OMPS/NOAA-20.

⁷³⁸ 5 Summary and future work

The OMPS instruments on Suomi NPP and NOAA-20 have been used to produce publicly-available, multi-year data records of HCHO. These data are retrieved using a three-step procedure: 1) spectral fitting of slant column density, following an on-orbit instrument line shape and wavelength calibration; 2) a scene-by-scene AMF calculation; and 3) a reference sector correction that applies a background HCHO column and a bias correction.

Monthly mean formaldehyde derived from the two OMPS instruments shows excellent agreement over 12 geographic regions. Overall, these comparisons of OMPS/SNPP versus OMPS/NOAA-20 show excellent correlation (r = 0.98) with a slope of 0.98 and intercept of 2×10^{14} molecules cm⁻². The correlation with TROPOMI is also very good (r = 0.92 for both OMPS instruments), but OMPS HCHO is higher overall (slope = 1.18, intercept = -6×10^{14} molecules cm⁻²).

Future OMPS HCHO work will include assessing OMPS HCHO with other HCHO products derived from satellite instruments as part of the long-term Making Earth System Data Records for Use in Research Environment (MEaSUREs) program at the SAO, comparisons with the forthcoming OMI Collection 4 HCHO operational product, and comparisons with the long-term data records from the European Quality Assurance for Essential Climate Variables (QA4ECV) project (De Smedt et al., 2018).

While beyond the scope of this paper, investigations that fully explore ancillary in-757 puts to the OMPS and TROPOMI AMF calculations would help in the interpretation 758 of HCHO measurements and their validation, and could lead to improvements in both 759 products. In future, OMPS HCHO could also benefit from independent, validated cloud 760 products derived from both OMPS/SNPP and OMPS/NOAA-20, and independently de-761 rived cloud fractions at 340 nm that use the same inputs as the HCHO AMF calcula-762 tion. Improved cloud products could also improve the reliability of the HCHO retrievals 763 over snow and ice. 764

OMPS HCHO products extend and compliment the global HCHO afternoon data records that began with OMI in 2004. The retrieval described in this paper has the potential to be applied to the OMPS instruments on future JPSS satellites, which would ensure a consistent long-term stable data record of global afternoon HCHO into the 2030's.

-39-

769	6 Open research
770	6.1 Data availability statement
771	The OMPS HCHO products described in this paper are available from the NASA
772	GES DISC for OMPS/Suomi-NPP (https://doi.org/10.5067/IIM1GHT07QA8) and OMPS/NOAA-
773	20 (https://doi.org/10.5067/CIYXT9A4I2F4).
774	The OMPS/Suomi-NPP datasets used to generate the HCHO products are avail-
775	able from the NASA GES DISC for the Level 1B radiances (https://doi.org/10.5067/DL081SQY7C89),
776	total ozone (https://doi.org/10.5067/0WF4HAAZ0VHK), and rotational Raman cloud
777	products (https://doi.org/10.5067/CJAALTQUCLO2). The OMPS/NOAA-20 radiances
778	and total ozone products are available from the OMPS project website at https://ozoneaq.gsfc.nasa.gov/omps/.
779	MODIS BRDF data used in the AMF calculation are available from the NASA Land
780	Processes Distributed Active Archive Center at
781	https://doi.org/10.5067/MODIS/MCD43C1.006.
782	MERRA-2 data use for meteorological variables are available from the NASA GES
783	DISC at https://doi.org/10.5067/VJAFPLI1CSIV.
784	Sentinel-5P/TROPOMI HCHO data are available from https://doi.org/10.5270/S5P-
785	vg1i7t0.
705	Acknowledgments
180	Acknowledgments

- This study was supported by the NOAA Climate Program Office's Atmospheric Chem-
- istry, Carbon Cycle, and Climate program (NA18OAR4310108), NASA's The Science
- ⁷⁸⁹ of Terra, Aqua and SuomiNPP (80NSSC18K0691), and NASA's Making Earth System
- ⁷⁹⁰ Data Records for Use in Research Environments (80NSSC18M0091). Computations in
- ⁷⁹¹ this paper were conducted on the Smithsonian High Performance Cluster (SI/HPC), Smith-
- ⁷⁹² sonian Institution (https://doi.org/10.25572/SIHPC). We thank Jinkyul Choi at the Uni-
- versity of Colorado Boulder and Amir Souri at the SAO for feedback on the data, and
- ⁷⁹⁴ Lawrence Flynn at NOAA for helpful discussions.

795 **References**

Ahmad, Z., Bhartia, P. K., & Krotkov, N. (2004). Spectral properties of backscat tered UV radiation in cloudy atmospheres. Journal of Geophysical Research:

798	Atmospheres, 109(D1). doi: 10.1029/2003JD003395
799	Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A. V., Garcia,
800	H. E., Johnson, D. R. (2010). World ocean atlas 2009, volume 2: Salin-
801	ity (Vol. NOAA Atlas NESDIS 69; S. Levitus, Ed.). Washington, D.C.: U.S.
802	Government Printing Office.
803	Bak, J., Liu, X., Kim, JH., Haffner, D. P., Chance, K., Yang, K., & Sun, K. (2017).
804	Characterization and correction of OMPS nadir mapper measurements for
805	ozone profile retrievals. Atmospheric Measurement Techniques, $10(11)$, 4373–
806	4388. doi: 10.5194/amt-10-4373-2017
807	Barkley, M. P., Palmer, P. I., Kuhn, U., Kesselmeier, J., Chance, K., Kurosu, T. P.,
808	\dots Guenther, A. (2008). Net ecosystem fluxes of isoprene over tropical South
809	America inferred from Global Ozone Monitoring Experiment (GOME) obser-
810	vations of HCHO columns. Journal of Geophysical Research: Atmospheres,
811	113(D20). doi: 10.1029/2008JD009863
812	Bauwens, M., Stavrakou, T., Müller, JF., De Smedt, I., Van Roozendael, M.,
813	van der Werf, G. R., Guenther, A. (2016). Nine years of global hy-
814	drocarbon emissions based on source inversion of OMI formal dehyde obser-
815	vations. Atmospheric Chemistry and Physics, 16(15), 10133–10158. doi:
816	10.5194/acp-16-10133-2016
817	Beirle, S., Lampel, J., Lerot, C., Sihler, H., & Wagner, T. (2017). Parameteriz-
818	ing the instrumental spectral response function and its changes by a super-
819	Gaussian and its derivatives. Atmospheric Measurement Techniques, $10(2)$,
820	581–598. doi: $10.5194/amt-10-581-2017$
821	Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M.,
822	Schultz, M. G. (2001). Global modeling of tropospheric chemistry with assim-
823	ilated meteorology: Model description and evaluation. Journal of Geophysical
824	Research: Atmospheres, 106(D19), 23073-23095. doi: 10.1029/2001JD000807
825	Bhartia, P. K., & Wellemeyer, C. W. (2002). TOMS-V8 Total O_3 Algorithm. In
826	P. K. Bhartia (Ed.), OMI Algorithm Theoretical Basis Document, Volume II:
827	OMI Ozone Products (chap. 2). NASA Goddard Space Flight Center. (ATBD-
828	OMI-02, Version 2.0)
829	Bindle, L., Martin, R. V., Cooper, M. J., Lundgren, E. W., Eastham, S. D., Auer,
830	B. M., Jacob, D. J. (2021). Grid-stretching capability for the GEOS-Chem

831	13.0.0 atmospheric chemistry model. Geoscientific Model Development, $14(10)$,
832	5977–5997.
833	Boersma, K. F., Eskes, H. J., & Brinksma, E. J. (2004). Error analysis for tro-
834	pospheric NO ₂ retrieval from space. Journal of Geophysical Research: Atmo-
835	spheres, 109(D4). doi: 10.1029/2003JD003962
836	Boersma, K. F., Eskes, H. J., Dirksen, R. J., van der A, R. J., Veefkind, J. P.,
837	Stammes, P., Brunner, D. (2011). An improved tropospheric NO_2 col-
838	umn retrieval algorithm for the Ozone Monitoring Instrument. $Atmospheric$
839	Measurement Techniques, $4(9)$, 1905–1928. doi: 10.5194/amt-4-1905-2011
840	Chance, K., Kurosu, T. P., & Sioris, C. E. (2005). Undersampling correction for ar-
841	ray detector-based satellite spectrometers. Applied Optics, 44(7), 1296–1304.
842	doi: 10.1364/AO.44.001296
843	Chance, K., & Kurucz, R. L. (2010). An improved high-resolution solar reference
844	spectrum for Earth's atmosphere measurements in the ultraviolet, visible, and
845	near infrared. Journal of Quantitative Spectroscopy and Radiative Transfer,
846	111(9), 1289-1295.doi: 10.1016/j.jqsrt.2010.01.036
847	Chance, K., & Orphal, J. (2011). Revised ultraviolet absorption cross sections of
848	H_2CO for the HITRAN database. Journal of Quantitative Spectroscopy and
849	$Radiative \ Transfer, \ 112 (9), \ 1509-1510. \ doi: \ 10.1016/j.jqsrt.2011.02.002$
850	Chance, K., Palmer, P. I., Spurr, R. J., Martin, R. V., Kurosu, T. P., & Jacob,
851	D. J. (2000). Satellite observations of formaldehyde over North Amer-
852	ica from GOME. Geophysical Research Letters, 27(21), 3461–3464. doi:
853	10.1029/2000GL011857
854	Chance, K., & Spurr, R. J. D. (1997). Ring effect studies: Rayleigh scat-
855	tering, including molecular parameters for rotational raman scattering,
856	and the Fraunhofer spectrum. Applied Optics, $36(21)$, $5224-5230$. doi:
857	10.1364/AO.36.005224
858	Chan Miller, C., Gonzalez Abad, G., Wang, H., Liu, X., Kurosu, T., Jacob, D. J.,
859	& Chance, K. (2014). Glyoxal retrieval from the Ozone Monitoring In-
860	strument. Atmospheric Measurement Techniques, $7(11)$, 3891 – 3907 . doi:
861	10.5194/amt-7-3891-2014
862	Choi, J., Henze, D. K., Cao, H., Nowlan, C. R., González Abad, G., Kwon, HA.,
863	Weinheimer, A. J. (2022). An inversion framework for optimizing non-

-42-

864	methane VOC emissions using remote sensing and airborne observations in
865	northeast Asia during the KORUS-AQ field campaign. Journal of Geophysical
866	Research: Atmospheres, $127(7)$, e2021JD035844. doi: $10.1029/2021$ JD035844
867	Cox, C., & Munk, W. (1954). Measurement of the roughness of the sea surface
868	from photographs of the Sun's glitter. Journal of the Optical Society of Amer-
869	ica, 44 (11), 838–850. doi: 10.1364/JOSA.44.000838
870	De Smedt, I., Müller, JF., Stavrakou, T., Van Der A, R., Eskes, H., & Van Roozen-
871	dael, M. (2008) . Twelve years of global observations of formal dehyde in the
872	troposphere using GOME and SCIAMACHY sensors. Atmospheric Chemistry
873	and Physics, $8(16)$. doi: 10.5194/acp-8-4947-2008
874	De Smedt, I., Pinardi, G., Vigouroux, C., Compernolle, S., Bais, A., Benavent, N.,
875	\ldots Van Roozendael, M. (2021). Comparative assessment of TROPOMI and
876	OMI formaldehyde observations and validation against MAX-DOAS network
877	column measurements. Atmospheric Chemistry and Physics, 21(16), 12561–
878	12593. doi: $10.5194/acp-21-12561-2021$
879	De Smedt, I., Stavrakou, T., Hendrick, F., Danckaert, T., Vlemmix, T., Pinardi, G.,
880	\dots Van Roozendael, M. (2015). Diurnal, seasonal and long-term variations
881	of global formal dehyde columns inferred from combined OMI and GOME-2
882	observations. Atmospheric Chemistry and Physics, 15(21), 12519–12545. doi:
883	10.5194/acp-15-12519-2015
884	De Smedt, I., Theys, N., Yu, H., Danckaert, T., Lerot, C., Compernolle, S.,
885	Veefkind, P. (2018). Algorithm theoretical baseline for formaldehyde retrievals
886	from S5P TROPOMI and from the QA4ECV project. Atmospheric Measure-
887	ment Techniques, $11(4)$, 2395–2426. doi: 10.5194/amt-11-2395-2018
888	De Smedt, I., Van Roozendael, M., Stavrakou, T., Müller, JF., Lerot, C., Theys,
889	N., van der A, R. (2012). Improved retrieval of global tropospheric
890	formal dehyde columns from GOME-2/MetOp-A addressing noise reduction
891	and instrumental degradation issues. Atmospheric Measurement Techniques,
892	5(11), 2933–2949. doi: 10.5194/amt-5-2933-2012
893	Eastham, S. D., Long, M. S., Keller, C. A., Lundgren, E., Yantosca, R. M., Zhuang,
894	J., Jacob, D. J. (2018). GEOS-Chem High Performance (GCHP v11-
895	$02\mathrm{c}):$ a next-generation implementation of the GEOS-Chem chemical transport
896	model for massively parallel applications. Geoscientific Model Development,

897	11(7), 2941–2953. doi: 10.5194/gmd-11-2941-2018
898	ESA, & DLR. (2019a). Sentinel-5P TROPOMI Tropospheric Formaldehyde HCHO
899	1-Orbit L2 5.5km x 3.5km [datset]. Greenbelt, MD, USA: Goddard Earth
900	Sciences Data and Information Services Center (GES DISC). (Copernicus
901	Sentinel data processed by ESA, German Aerospace Center (DLR)) doi:
902	10.5270/S5P-vg1i7t0
903	ESA, & DLR. (2019b). Sentinel-5P TROPOMI Tropospheric Formaldehyde HCHO
904	1-Orbit L2 7km x 3.5km [dataset]. Greenbelt, MD, USA: Goddard Earth
905	Sciences Data and Information Services Center (GES DISC). (Copernicus
906	Sentinel data processed by ESA, German Aerospace Center (DLR)) doi:
907	10.5270/S5P-vg1i7t0
908	ESA, & DLR. (2020). Sentinel-5P TROPOMI Tropospheric Formaldehyde HCHO
909	1-Orbit L2 5.5km x 3.5km [dataset]. Greenbelt, MD, USA: Goddard Earth
910	Sciences Data and Information Services Center (GES DISC). (Copernicus
911	Sentinel data processed by ESA, German Aerospace Center (DLR)) doi:
912	10.5270/S5P-vg1i7t0
913	Fasnacht, Z., Vasilkov, A., Haffner, D., Qin, W., Joiner, J., Krotkov, N.,
914	Spurr, R. (2019). A geometry-dependent surface Lambertian-equivalent
915	reflectivity product for UV–Vis retrievals – part 2: Evaluation over open
916	ocean. Atmospheric Measurement Techniques, $12(12)$, $6749-6769$. doi:
917	10.5194/amt-12-6749-2019
918	Fetterer, F., Knowles, K., Meier, W. N., Savoie, M., & Windnagel, A. K. (2017). Sea
919	ice index, version 3. Boulder, Colorado USA: NSIDC: National Snow and Ice
920	Data Center. (updated daily) doi: $10.7265/N5K072F8$
921	Finkenzeller, H., & Volkamer, R. (2022). O_2-O_2 CIA in the gas phase: Cross-
922	section of weak bands, and continuum absorption between 297–500 nm. $\ Jour-$
923	nal of Quantitative Spectroscopy and Radiative Transfer, 279, 108063. doi:
924	10.1016/j.jqsrt.2021.108063
925	Flynn, L., Long, C., Wu, X., Evans, R., Beck, C. T., Petropavlovskikh, I., Seftor,
926	C. (2014). Performance of the Ozone Mapping and Profiler Suite (OMPS)
927	products. Journal of Geophysical Research: Atmospheres, 119(10), 6181–6195.
928	(2013JD020467) doi: 10.1002/2013JD020467
929	Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,

-44-

930	Zhao, B. (2017, jul). The Modern-Era Retrospective Analysis for Research and
931	Applications, Version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454.
932	doi: 10.1175/JCLI-D-16-0758.1
933	Giglio, L., Randerson, J. T., & van der Werf, G. R. (2013). Analysis of daily,
934	monthly, and annual burned area using the fourth-generation global fire emis-
935	sions database (GFED4). Journal of Geophysical Research: Biogeosciences,
936	118(1), 317-328. doi: 10.1002/jgrg.20042
937	$\label{eq:GMAO.} GMAO. (2015). \qquad MERRA-2\ tavg1_2d_slv_Nx:\ 2d, 1-Hourly, Time-Averaged, Single-Name and the start of $
938	Level, Assimilation, Single-Level Diagnostics V5.12.4 [dataset]. Greenbelt, MD,
939	USA: Goddard Earth Sciences Data and Information Services Center (GES
940	DISC). doi: 10.5067/VJAFPLI1CSIV
941	Goldberg, M. D., Kilcoyne, H., Cikanek, H., & Mehta, A. (2013). Joint Polar
942	Satellite System: The United States next generation civilian polar-orbiting
943	$environmental \ satellite \ system. \ Journal \ of \ Geophysical \ Research: \ Atmospheres,$
944	118(24), 13,463-13,475. doi: $10.1002/2013$ JD020389
945	González Abad, G. (2022a). OMPS-N20 L2 NM Formaldehyde (HCHO)
946	Total Column swath orbital [dataset]. Greenbelt, MD, USA: Goddard
947	Earth Sciences Data and Information Services Center (GES DISC). doi:
948	10.5067/CIYXT9A4I2F4
949	González Abad, G. (2022b). OMPS-NPP L2 NM Formaldehyde (HCHO)
950	Total Column swath orbital [dataset]. Greenbelt, MD, USA: Goddard
951	Earth Sciences Data and Information Services Center (GES DISC). doi:
952	10.5067/IIM1GHT07QA8
953	González Abad, G., Liu, X., Chance, K., Wang, H., Kurosu, T. P., & Suleiman, R.
954	(2015). Updated Smithsonian Astrophysical Observatory Ozone Monitoring
955	Instrument (SAO OMI) formaldehyde retrieval. Atmospheric Measurement
956	Techniques, $\mathcal{S}(1)$, 19–32. doi: 10.5194/amt-8-19-2015
957	González Abad, G., Vasilkov, A., Seftor, C., Liu, X., & Chance, K. (2016). Smith-
958	sonian Astrophysical Observatory Ozone Mapping and Profiler Suite (SAO
959	OMPS) formaldehyde retrieval. Atmospheric Measurement Techniques, $9(7)$,
960	2797–2812. doi: 10.5194/amt-9-2797-2016
961	Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Em-
962	mons, L. K., & Wang, X. (2012). The Model of Emissions of Gases and

963	Aerosols from Nature version 2.1 (MEGAN 2.1): an extended and updated
964	framework for modeling biogenic emissions. Geoscientific Model Development,
965	5(6), 1471–1492. doi: 10.5194/gmd-5-1471-2012
966	Hastings, D. A., & Dunbar, P. K. (1999). Global Land One-kilometer Base Eleva-
967	tion (GLOBE) Digital Elevation Model, Documentation, Volume 1.0 (Tech.
968	Rep.). Boulder, Colorado USA: National Oceanic and Atmospheric Admin-
969	istration, National Geophysical Data Center. (Key to Geophysical Records
970	Documentation (KGRD) 34)
971	Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitka-
972	nen, T., Zhang, Q. (2018). Historical (1750–2014) anthropogenic emis-
973	sions of reactive gases and aerosols from the Community Emissions Data
974	System (CEDS). Geoscientific Model Development, 11(1), 369–408. doi:
975	10.5194/gmd-11-369-2018
976	Ingmann, P., Veihelmann, B., Langen, J., Lamarre, D., Stark, H., & Courrèges-
977	Lacoste, G. B. (2012). Requirements for the GMES Atmosphere Service and
978	ESA's implementation concept: Sentinels-4/-5 and-5p. Remote Sensing of
979	Environment, 120, 58–69. doi: 10.1016/j.rse.2012.01.023
980	Jaross, G. (2017a). OMPS/NPP L1B NM Radiance EV Calibrated Geolocated Swath
981	$Orbital\ V2$ [dataset]. Greenbelt, MD, USA: Goddard Earth Sciences Data and
982	Information Services Center (GES DISC). doi: $10.5067/DL081SQY7C89$
983	Jaross, G. (2017b). OMPS-NPP L2 NM Ozone (O3) Total Column swath orbital V2
984	[dataset]. Greenbelt, MD, USA: Goddard Earth Sciences Data and Information
985	Services Center (GES DISC). doi: 10.5067/0WF4HAAZ0VHK
986	Jaross, G., Bhartia, P. K., Chen, G., Kowitt, M., Haken, M., Chen, Z., Kelly,
987	T. (2014). OMPS Limb Profiler instrument performance assessment.
988	Journal of Geophysical Research: Atmospheres, 119(7), 4399-4412. doi:
989	10.1002/2013JD020482
990	Jin, X., Fiore, A. M., Murray, L. T., Valin, L. C., Lamsal, L. N., Duncan, B.,
991	Tonnesen, G. S. (2017). Evaluating a space-based indicator of surface
992	ozone-NO _x -VOC sensitivity over midlatitude source regions and application
993	to decadal trends. Journal of Geophysical Research: Atmospheres, 122(19),
994	10,439-10,461. doi: 10.1002/2017JD026720
995	Joiner, J. (2006). OMI/Aura Cloud Pressure and Fraction (Raman Scattering)

-46-

996	1-Orbit L2 Swath 13x24 km V003 [dataset]. Greenbelt, MD, USA: Goddard
997	Earth Sciences Data and Information Services Center (GES DISC). doi:
998	10.5067/Aura/OMI/DATA2010
999	Joiner, J. (2020). OMPS-NPP L2 NM Cloud Pressure and Fraction swath orbital V2
1000	[dataset]. Greenbelt, MD, USA: Goddard Earth Sciences Data and Information
1001	Services Center (GES DISC). doi: 10.5067/CJAALTQUCLO2
1002	Joiner, J., Vasilkov, A. P., Gupta, P., Bhartia, P. K., Veefkind, P., Sneep, M.,
1003	Spurr, R. (2012). Fast simulators for satellite cloud optical centroid pres-
1004	sure retrievals; evaluation of OMI cloud retrievals. Atmospheric Measurement
1005	Techniques, 5(3), 529–545. doi: 10.5194/amt-5-529-2012
1006	Jung, Y., González Abad, G., Nowlan, C. R., Chance, K., Liu, X., Torres, O., &
1007	Ahn, C. (2019). Explicit aerosol correction of OMI formaldehyde retrievals.
1008	Earth and Space Science, 6(11), 2087-2105. doi: 10.1029/2019EA000702
1009	Kaiser, J., Jacob, D. J., Zhu, L., Travis, K. R., Fisher, J. A., González Abad, G.,
1010	Wisthaler, A. (2018). High-resolution inversion of OMI formaldehyde columns
1011	to quantify isoprene emission on ecosystem-relevant scales: application to the
1012	southeast US. Atmospheric Chemistry and Physics, 18(8), 5483–5497. doi:
1013	10.5194/acp-18-5483-2018
1014	Kim, J., Jeong, U., Ahn, MH., Kim, J. H., Park, R. J., Lee, H., Choi, Y.
1015	(2020). New Era of Air Quality Monitoring from Space: Geostationary En-
1016	vironment Monitoring Spectrometer (GEMS). Bulletin of the American Meteo-
1017	rological Society, 101(1), E1-E22. doi: 10.1175/BAMS-D-18-0013.1
1018	Kleipool, Q. L., Dobber, M. R., de Haan, J. F., & Levelt, P. F. (2008). Earth sur-
1019	face reflectance climatology from 3 years of OMI data. Journal of Geophysical
1020	Research: Atmospheres, $113(D18)$. (D18308) doi: $10.1029/2008JD010290$
1021	Kwon, HA., González Abad, G., Nowlan, C. R., Chong, H., Souri, A. H.,
1022	Vigouroux, C., Smale, D. (2022). Validation of OMPS Suomi NPP and
1023	OMPS NOAA-20 formaldehyde vertical columns with Fourier-transform in-
1024	frared observations.
1025	(To be submitted to Journal of Geophysical Research: Atmospheres)
1026	Kwon, HA., Park, R. J., González Abad, G., Chance, K., Kurosu, T. P., Kim,
1027	J., Burrows, J. (2019). Description of a formaldehyde retrieval al-
1028	gorithm for the Geostationary Environment Monitoring Spectrometer

-47-

1029	(GEMS). Atmospheric Measurement Techniques, 12(7), 3551–3571. doi:
1030	10.5194/amt-12-3551-2019
1031	Laughner, J. L., Zhu, Q., & Cohen, R. C. (2019). Evaluation of version 3.0B of the
1032	BEHR OMI NO ₂ product. Atmospheric Measurement Techniques, $12(1)$, $129-$
1033	146. doi: $10.5194/amt-12-129-2019$
1034	Li, C., Joiner, J., Krotkov, N. A., & Dunlap, L. (2015). A new method for global
1035	retrievals of HCHO total columns from the Suomi National Polar-orbiting
1036	Partnership Ozone Mapping and Profiler Suite. Geophysical Research Letters,
1037	42(7), 2515-2522. doi: 10.1002/2015GL063204
1038	Li, M., Zhang, Q., Kurokawa, JI., Woo, JH., He, K., Lu, Z., Zheng, B. (2017).
1039	MIX: a mosaic Asian anthropogenic emission inventory under the international
1040	collaboration framework of the MICS-Asia and HTAP. Atmospheric Chemistry
1041	and Physics, $17(2)$, 935–963. doi: 10.5194/acp-17-935-2017
1042	Lorente, A., Folkert Boersma, K., Yu, H., Dörner, S., Hilboll, A., Richter, A.,
1043	Krol, M. (2017). Structural uncertainty in air mass factor calculation for NO_2
1044	and HCHO satellite retrievals. Atmospheric Measurement Techniques, $10(3)$,
1045	759–782. doi: 10.5194/amt-10-759-2017
1046	Loyola, D. G., Gimeno García, S., Lutz, R., Argyrouli, A., Romahn, F., Spurr,
1047	R. J. D., Schüssler, O. (2018). The operational cloud retrieval algorithms
1048	from TROPOMI on board Sentinel-5 Precursor. Atmospheric Measurement
1049	Techniques, 11(1), 409–427. doi: 10.5194/amt-11-409-2018
1050	Marais, E. A., Jacob, D. J., Jimenez, J. L., Campuzano-Jost, P., Day, D. A., Hu,
1051	W., McNeill, V. F. (2016). A queous-phase mechanism for secondary or-
1052	ganic aerosol formation from isoprene: application to the southeast United
1053	States and co-benefit of SO_2 emission controls. Atmospheric Chemistry and
1054	<i>Physics</i> , $16(3)$, 1603–1618. doi: 10.5194/acp-16-1603-2016
1055	Marais, E. A., Jacob, D. J., Kurosu, T. P., Chance, K., Murphy, J. G., Reeves, C.,
1056	\ldots Mao, J. (2012). Isoprene emissions in Africa inferred from OMI observa-
1057	tions of formaldehyde columns. Atmospheric Chemistry and Physics, $12(14)$,
1058	6219–6235. doi: 10.5194/acp-12-6219-2012
1059	Martin, R. V., Chance, K., Jacob, D. J., Kurosu, T. P., Spurr, R. J. D., Bucsela,
1060	E., Koelemeijer, R. B. A. (2002). An improved retrieval of tropospheric
1061	nitrogen dioxide from GOME. Journal of Geophysical Research: Atmospheres,

-48-

1062	$107({\rm D20}),$ ACH 9-1-ACH 9-21. doi: 10.1029/2001JD001027
1063	Millet, D. B., Jacob, D. J., Boersma, K. F., Fu, TM., Kurosu, T. P., Chance, K.,
1064	\dots Guenther, A. (2008). Spatial distribution of isoprene emissions from North
1065	America derived from formal dehyde column measurements by the OMI satel-
1066	lite sensor. Journal of Geophysical Research: Atmospheres, $113(D2)$. doi:
1067	10.1029/2007 JD008950
1068	Noël, S., Bramstedt, K., Bovensmann, H., Gerilowski, K., Burrows, J. P., Standfuss,
1069	C., Veihelmann, B. (2012). Quantification and mitigation of the impact
1070	of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals. $Atmospheric$
1071	$Measurement \ Techniques, \ 5(6), \ 1319-1331. \ \text{doi:} \ 10.5194/\text{amt-}5-1319-2012$
1072	Nowlan, C. R., & González Abad, G. (2022). README Document for
1073	$OMPS_NPP_NMHCHO_L2 ~ and ~ OMPS_N20_NMHCHO_L2. ~~ {\rm Greenbelt, ~MD},$
1074	USA: Goddard Earth Sciences Data and Information Services Center (GES
1075	DISC).
1076	Nowlan, C. R., Liu, X., Janz, S. J., Kowalewski, M. G., Chance, K., Follette-Cook,
1077	M. B., Weinheimer, A. J. (2018). Nitrogen dioxide and formaldehyde mea-
1078	surements from the GEOstationary Coastal and Air Pollution Events (GEO-
1079	CAPE) Airborne Simulator over Houston, Texas. Atmospheric Measurement
1080	Techniques, 11(11), 5941–5964. doi: 10.5194/amt-11-5941-2018
1081	Palmer, P. I., Abbot, D. S., Fu, TM., Jacob, D. J., Chance, K., Kurosu, T. P.,
1082	Sumner, A. L. (2006). Quantifying the seasonal and interannual variability of
1083	North American isoprene emissions using satellite observations of the formal de-
1084	hyde column. Journal of Geophysical Research: Atmospheres, $111(D12)$. doi:
1085	10.1029/2005JD006689
1086	Palmer, P. I., Jacob, D. J., Chance, K., Martin, R. V., Spurr, R. J., Kurosu, T. P.,
1087	\dots Li, Q. (2001). Air mass factor formulation for spectroscopic measure-
1088	ments from satellites: Application to formal dehyde retrievals from the Global
1089	Ozone Monitoring Experiment. Journal of Geophysical Research: Atmospheres,
1090	106(D13), 14539-14550.doi: 10.1029/2000JD900772
1091	Pan, C., Weng, F., & Flynn, L. (2017). Spectral performance and calibration of the
1092	Suomi NPP OMPS nadir profiler sensor. Earth and Space Science, $4(12)$, 737-
1093	745. doi: 10.1002/2017EA000336

-49-

1094	Qin, K., Han, X., Li, D., Xu, J., Loyola, D., Xue, Y., Yuan, L. (2020). Satellite-
1095	based estimation of surface NO_2 concentrations over east-central China: A
1096	comparison of POMINO and OMNO2d data. Atmospheric Environment, 224,
1097	117322. doi: 10.1016/j.atmosenv.2020.117322
1098	Schaaf, C., & Wang, Z. (2015). MCD43C1 MODIS/Terra+Aqua BRDF/AlbedoModel
1099	Parameters Daily L3 Global 0.05Deg CMG V006 [dataset]. NASA EOSDIS
1100	Land Processes DAAC. doi: 10.5067/MODIS/MCD43C1.006
1101	Seftor, C. J., Jaross, G., Kowitt, M., Haken, M., Li, J., & Flynn, L. E. (2014). Post-
1102	launch performance of the Suomi National Polar-orbiting Partnership Ozone
1103	Mapping and Profiler Suite (OMPS) nadir sensors. Journal of Geophysical
1104	Research: Atmospheres, 119(7), 4413-4428. doi: 10.1002/2013JD020472
1105	Serdyuchenko, A., Gorshelev, V., Weber, M., Chehade, W., & Burrows, J. P. (2014).
1106	High spectral resolution ozone absorption cross-sections – part 2: Tempera-
1107	ture dependence. Atmospheric Measurement Techniques, $7(2)$, $625-636$. doi:
1108	10.5194/amt-7-625-2014
1109	Sofieva, V. F., Kyrölä, E., Laine, M., Tamminen, J., Degenstein, D., Bourassa,
1110	A., Bhartia, P. K. (2017). Merged SAGE II, Ozone_cci and OMPS
1111	ozone profile dataset and evaluation of ozone trends in the stratosphere.
1112	Atmospheric Chemistry and Physics, 17(20), 12533–12552. doi: 10.5194/
1113	acp-17-12533-2017
1114	Souri, A. H., Nowlan, C. R., González Abad, G., Zhu, L., Blake, D. R., Fried, A.,
1115	Chance, K. (2020). An inversion of NO_x and non-methane volatile organic
1116	compound NMVOC emissions using satellite observations during the KORUS-
1117	AQ campaign and implications for surface ozone over East Asia. $Atmospheric$
1118	Chemistry and Physics, 20(16), 9837–9854. doi: 10.5194/acp-20-9837-2020
1119	Spurr, R. (2006). VLIDORT: A linearized pseudo-spherical vector discrete ordinate
1120	radiative transfer code for forward model and retrieval studies in multilayer
1121	multiple scattering media. Journal of Quantitative Spectroscopy and Radiative
1122	Transfer, 102(2), 316–342. doi: 10.1016/j.jqsrt.2006.05.005
1123	Spurr, R. (2008). LIDORT and VLIDORT: Linearized pseudo-spherical scalar and
1124	vector discrete ordinate radiative transfer models for use in remote sensing
1125	retrieval problems. In Light Scattering Reviews 3: Light Scattering and Re-
1126	flection (pp. 229–275). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:

-50-

1127	$10.1007/978$ -3-540-48546-9_7
1128	Stavrakou, T., Müller, JF., De Smedt, I., Van Roozendael, M., van der Werf,
1129	G. R., Giglio, L., & Guenther, A. (2009). Global emissions of non-methane
1130	hydrocarbons deduced from SCIAMACHY formaldehyde columns through
1131	2003–2006. Atmospheric Chemistry and Physics, $9(11)$, 3663–3679. doi:
1132	10.5194/acp-9-3663-2009
1133	Su, W., Liu, C., Hu, Q., Zhang, C., Liu, H., Xia, C., \dots Chen, Y. (2022). First
1134	global observation of tropospheric formal dehyde from Chinese GaoFen-5 satel-
1135	lite: Locating source of volatile organic compounds. Environmental Pollution,
1136	297, 118691. doi: 10.1016/j.envpol.2021.118691
1137	Su, W., Liu, C., Hu, Q., Zhao, S., Sun, Y., Wang, W., Kim, J. (2019) .
1138	Primary and secondary sources of ambient formaldehyde in the Yangtze
1139	River Delta based on Ozone Mapping and Profiler Suite (OMPS) obser-
1140	vations. Atmospheric Chemistry and Physics, 19(10), 6717–6736. doi:
1141	10.5194/acp-19-6717-2019
1142	Sun, K., Liu, X., Huang, G., González Abad, G., Cai, Z., Chance, K., & Yang, K.
1143	(2017). Deriving the slit functions from OMI solar observations and its im-
1144	plications for ozone-profile retrieval. Atmospheric Measurement Techniques,
1145	10(10), 3677-3695. doi: 10.5194/amt-10-3677-2017
1146	Sun, K., Zhu, L., Cady-Pereira, K., Chan Miller, C., Chance, K., Clarisse, L.,
1147	Zondlo, M. (2018). A physics-based approach to oversample multi-satellite,
1148	multispecies observations to a common grid. Atmospheric Measurement Tech-
1149	niques, $11(12)$, 6679–6701. doi: 10.5194/amt-11-6679-2018
1150	Thomas, W., Hegels, E., Slijkhuis, S., Spurr, R., & Chance, K. (1998). Detection
1151	of biomass burning combustion products in Southeast Asia from backscatter
1152	data taken by the GOME spectrometer. $Geophysical Research Letters, 25(9),$
1153	1317-1320. doi: 10.1029/98GL01087
1154	Tilstra, L. G., Tuinder, O. N. E., Wang, P., & Stammes, P. (2017). Surface reflec-
1155	tivity climatologies from UV to NIR determined from Earth observations by
1156	GOME-2 and SCIAMACHY. Journal of Geophysical Research: Atmospheres,
1157	122(7), 4084-4111.doi: $10.1002/2016$ JD025940
1158	US National Ice Center. (2008). IMS Daily Northern Hemisphere Snow and Ice
1159	Analysis at 1 km, 4 km, and 24 km Resolutions [dataset]. Boulder, Colorado

1160	USA. (Version 1, updated daily) doi: $10.7265/N52R3PMC$
1161	Valin, L. C., Fiore, A. M., Chance, K., & González Abad, G. (2016). The role of OH
1162	production in interpreting the variability of CH_2O columns in the southeast
1163	U.S. Journal of Geophysical Research: Atmospheres, 121(1), 478-493. doi:
1164	10.1002/2015 JD024012
1165	Vandaele, A. C., Hermans, C., Simon, P. C., Carleer, M., Colin, R., Fally, S.,
1166	Coquart, B. (1998) . Measurements of the NO ₂ absorption cross-section
1167	from 42,000 cm ⁻¹ to 10,000 cm ⁻¹ (238-1000 nm) at 220 K and 294 K. Jour-
1168	nal of Quantitative Spectroscopy and Radiative Transfer, 59, 171-184. doi:
1169	10.1016/S0022-4073(97)00168-4
1170	Vasilkov, A., Joiner, J., & Seftor, C. (2014). First results from a rotational
1171	Raman scattering cloud algorithm applied to the Suomi National Polar-
1172	orbiting Partnership (NPP) Ozone Mapping and Profiler Suite (OMPS)
1173	Nadir Mapper. Atmospheric Measurement Techniques, 7(9), 2897–2906.
1174	doi: 10.5194/amt-7-2897-2014
1175	Veefkind, J. P., Boersma, K. F., Wang, J., Kurosu, T. P., Krotkov, N., Chance,
1176	K., & Levelt, P. F. (2011). Global satellite analysis of the relation between
1177	aerosols and short-lived trace gases. Atmospheric Chemistry and Physics,
1178	11(3), 1255-1267. doi: 10.5194/acp-11-1255-2011
1179	Vigouroux, C., Bauer Aquino, C. A., Bauwens, M., Becker, C., Blumenstock, T.,
1180	De Mazière, M., Toon, G. (2018). NDACC harmonized formaldehyde
1181	time series from 21 FTIR stations covering a wide range of column abun-
1182	dances. Atmospheric Measurement Techniques, 11(9), 5049–5073. doi:
1183	10.5194/amt-11-5049-2018
1184	Vigouroux, C., Langerock, B., Bauer Aquino, C. A., Blumenstock, T., Cheng, Z.,
1185	De Mazière, M., Winkler, H. (2020). TROPOMI–Sentinel-5 Precursor
1186	formaldehyde validation using an extensive network of ground-based Fourier-
1187	transform infrared stations. $Atmospheric Measurement Techniques, 13(7),$
1188	3751–3767. doi: 10.5194/amt-13-3751-2020
1189	Voors, R., Dobber, M., Dirksen, R., & Levelt, P. (2006). Method of calibra-
1190	tion to correct for cloud-induced wavelength shifts in the Aura satellite's
1191	Ozone Monitoring Instrument. Applied Optics, $45(15)$, $3652-3658$. doi:
1192	10.1364/AO.45.003652

-52-

1193	Wang, Z., Schaaf, C. B., Sun, Q., Shuai, Y., & Román, M. O. (2018). Cap-
1194	turing rapid land surface dynamics with Collection V006 MODIS
1195	BRDF/NBAR/Albedo (MCD43) products. Remote Sensing of Environment,
1196	207, 50-64. doi: 10.1016/j.rse.2018.02.001
1197	Williams, J. E., Boersma, K. F., Le Sager, P., & Verstraeten, W. W. (2017). The
1198	high-resolution version of TM5-MP for optimized satellite retrievals: descrip-
1199	tion and validation. Geoscientific Model Development, $10(2)$, 721–750. doi:
1200	10.5194/gmd-10-721-2017
1201	Wilmouth, D. M., Hanisco, T. F., Donahue, N. M., & Anderson, J. G. (1999).
1202	Fourier transform ultraviolet spectroscopy of the $A^2\Pi_{3/2}$ \leftarrow $X^2\Pi_{3/2}$ transi-
1203	tion of BrO. The Journal of Physical Chemistry A, 103(45), 8935-8945. doi:
1204	10.1021/jp991651o
1205	Wolfe, G. M., Nicely, J. M., St. Clair, J. M., Hanisco, T. F., Liao, J., Oman, L. D.,
1206	Dean-Day, J. (2019). Mapping hydroxyl variability throughout the global
1207	remote troposphere via synthesis of airborne and satellite formaldehyde ob-
1208	servations. Proceedings of the National Academy of Sciences, $116(23)$, $11171-$
1209	11180. doi: $10.1073/\text{pnas.}1821661116$
1210	Zhou, Y., Brunner, D., Boersma, K. F., Dirksen, R., & Wang, P. (2009). An im-
1211	proved tropospheric NO_2 retrieval for OMI observations in the vicinity of
1212	mountainous terrain. Atmospheric Measurement Techniques, 2(2), 401–416.
1213	doi: 10.5194/amt-2-401-2009
1214	Zhu, L., González Abad, G., Nowlan, C. R., Chan Miller, C., Chance, K., Apel,
1215	E. C., Wolfe, G. M. (2020). Validation of satellite formaldehyde (HCHO)
1216	retrievals using observations from 12 aircraft campaigns. Atmospheric Chem-
1217	is try and Physics, 20(20), 12329–12345. doi: 10.5194/acp-20-12329-2020
1218	Zhu, L., Jacob, D. J., Keutsch, F. N., Mickley, L. J., Scheffe, R., Strum, M.,
1219	Shah, V. (2017). Formaldehyde (HCHO) as a hazardous air pollutant: map-
1220	ping surface air concentrations from satellite and inferring cancer risks in the
1221	United States. Environmental Science & Technology, 51(10), 5650-5657. doi:
1222	10.1021/acs.est.7b01356
1223	Zoogman, P., Liu, X., Chance, K., Sun, Q., Schaaf, C., Mahr, T., & Wagner,
1224	T. (2016). A climatology of visible surface reflectance spectra. Jour-
1225	nal of Quantitative Spectroscopy and Radiative Transfer, 180, 39-46. doi:

1226 10.1016/j.jqsrt.2016.04.003
1227 Zoogman, P., Liu, X., Suleiman, R., Pennington, W., Flittner, D., Al-Saadi, J.,
1228 ... Chance, K. (2017). Tropospheric emissions: Monitoring of pollution
1229 (TEMPO). Journal of Quantitative Spectroscopy and Radiative Transfer, 186,
1230 17-39. doi: 10.1016/j.jqsrt.2016.05.008

Earth and Space Science

Supporting Information for

Global Formaldehyde Products from the Ozone Mapping and Profiler Suite (OMPS) Nadir Mappers on Suomi NPP and NOAA-20

Caroline R. Nowlan¹, Gonzalo González Abad¹, Hyeong-Ahn Kwon, Zolal Ayazpour², Christopher Chan Miller^{1,3}, Kelly Chance¹, Heesung Chong¹, Xiong Liu¹, Ewan O'Sullivan¹, Huiqun Wang¹, Lei Zhu⁴, Isabelle De Smedt⁵, Glen Jaross⁶, Colin Seftor^{6,7}, Kang Sun²

¹Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA

²University at Buffalo, Buffalo, NY, USA

³Harvard University, Cambridge, MA, USA

⁴Southern University of Science and Technology, Shenzhen, China

⁵Royal Belgian Institute for Space Aeronomy, Brussels, Belgium

⁶NASA Goddard Space Flight Center, Greenbelt, MD, USA

⁷Science Systems and Applications, Inc., Lanham, MD, USA

Contents of this file

Tables S1 to S6

Introduction

This document contains supporting information for the article ``Global Formaldehyde Products from the Ozone Mapping and Profiler Suite (OMPS) Instruments on Suomi NPP and NOAA-20", which describes the formaldehyde retrieval algorithm and publicly-available data products for the OMPS nadir mapper instruments on the Suomi-NPP and NOAA-20 satellites.

The Level 2 OMPS HCHO (OMPS_NPP_NMHCHO_L2 and OMPS_N20_NMHCHO_L2) files consist of orbital swath total vertical column densities of formaldehyde from the OMPS nadir mappers. The vertical columns are accompanied by support data consisting of uncertainty estimates, geolocation, quality flags and statistics, vertically resolved scattering weights, a priori formaldehyde profiles and ancillary data. Each file contains Level 2 swath data for a single orbit. There are typically 14 to 15 orbits per day. The OMPS_NPP_NMHCHO_L2 and OMPS_N20_NMHCHO_L2 files are in netCDF (version 4) format. The file information is divided into five main groups:

- 1. key_science_data: the HCHO column, uncertainty and main data quality flag
- 2. **geolocation**: information on observation time, latitude, longitude, viewing and solar angles, and terrain height at observation surface location
- 3. **qa_statistics**: fit convergence statistics and flags, RMS fitting residuals
- 4. **support_data**: support data used in the VCD calculation, including fitted slant column, air mass factor, cloud and surface information. This group also contains the vertically-resolved scattering weights.
- 5. **uncertainty_budget**: uncertainty estimates in key parameters

Orbital metadata are included as global keyword:value pairs.

Table S1 summarizes the main possible dimensions of data fields. Tables S2 – S6 list the data fields included in the OMPS Level 2 HCHO files by group. Each variables also includes attributes such as units and flag meanings. The data field support_data/surface_pressure
includes the Eta coordinates for calculating vertical pressure grids. See the OMPS HCHO
README document (Nowlan and González Abad, 2022) for further details on the file format.

Name	Description	Nominal Dimensions
along_track	Number of ground pixels along the satellite	400 (SNPP)
	track	1201 (NOAA-20)
cross_track	Number of ground pixels across the satellite	36 (SNPP)
	track	104 (NOAA-20, Orbits 1 – 6418)
		140 (NOAA-20, Orbits 6419 – present)
corner	Number of corners in latitude and longitude	4
	bounds	
vertical_layer	Number of layers in data fields with vertical	47
	information	

Table S1. Main data field dimensions. Not all data fields have all dimensions.

Table S2. Data fields in key	science	data group.
------------------------------	---------	-------------

Data Field Name	Description	Туре	Dimensions	Units
column_amount	HCHO column amount	64-bit	along_track,	molecules/cm ²
		floating-	cross_track	
		point		
column_uncertainty	HCHO column amount	64-bit	along_track,	molecules/cm ²
	uncertainty. This is derived	floating-	cross_track	
	from the random	point		
	uncertainty in the slant			
	column spectral fit.			
<pre>main_data_quality_flag</pre>	main data quality flag	16-bit	along_track,	none
		integer	cross_track	

Table S3. Data fields in geolocation group.

Data Field Name	Description	Туре	Dimensions	Units
latitude	Latitude at pixel center	32-bit floating-	along_track,	degrees
		point	CIOSS_CIACK	north
latitude_bounds	Latitude at pixel corners	32-bit floating-	along_track,	degrees
		point	cross_track,	north
			corner	
longitude	Longitude at pixel center	32-bit floating-	along_track,	degrees
		point	cross_track	east
longitude_bounds	Longitude at pixel corners	32-bit floating-	along_track,	degrees
_		point	cross_track,	east
			corner	
solar_zenith_angle	Solar zenith angle at pixel	32-bit floating-	along_track,	degrees
	center	point	cross_track	U
solar_azimuth_angle	Solar azimuth angle at pixel	32-bit floating-	along_track,	degrees
	center	point	cross_track	U
relative_azimuth_angle	Relative azimuth angle at	32-bit floating-	along_track,	degrees
	pixel center	point	cross_track	_
			_	
terrain height	Terrain height	16-bit integer	along track,	m
_	5	0	cross_track	
time	Exposure start time in	64-bit floating-	along_track	seconds
	seconds since 1993-01-	point		
	01T00:00:00Z			
viewing_zenith_angle	Viewing zenith angle at pixel	32-bit floating-	along_track,	degrees
	center	point	cross_track	-
viewing_azimuth_angle	Viewing azimuth angle at pixel	32-bit floating-	along_track,	degrees
	center	point	cross_track	-

Table S4. Data fields in qa_statistics group.

Data Field Name	Description	Туре	Dimensions	Units
fit_convergence_flag	Slant column fit convergence flag	16-bit integer	along_track, cross_track	none
fit_rms_residual	Normalized radiance fit RMS residual	64-bit floating-point	along_track, cross_track	none
num_good_input	Number of pixels for which slant column fitting is attempted	32-bit integer	1	none
percent_bad_output	Percent of num_good_input flagged as "bad" in main quality flag	32-bit floating-point	1	%
percent_good_output	Percent of num_good_input flagged as "good" in main quality flag	32-bit floating-point	1	%
percent_suspect_output	Percent of num_good_input flagged as "suspect" in main quality flag	32-bit floating-point	1	%

Data Field Name	Description	Туре	Dimensions	Units
albedo	Geometry-dependent surface Lambertian- Equivalent Reflectivity. This is not used in the AMF calculation but is given to help user estimate effective surface reflectivity.	32-bit floating-point	along_track, cross_track	none
amf	Calculated air mass factor	32-bit floating-point	along_track, cross_track	none
bias_correction	Bias correction	32-bit floating-point	along_track, cross_track	molecules/cm ²
brdf_geo	Amplitude of Li-Sparse BRDF kernel	32-bit floating-point	along_track, cross_track	none
brdf_iso	Amplitude of isotropic BRDF kernel	32-bit floating-point	along_track, cross_track	none
brdf_vol	Amplitude of Ross-Thick BRDF kernel	32-bit floating-point	along_track, cross_track	none
cloud_fraction	Effective cloud fraction used in AMF computation	32-bit floating-point	along_track, cross_track	none
cloud_pressure	Cloud pressure used in AMF computation	32-bit floating-point	along_track, cross_track	hPa
fitted_slant_col umn_amount	Fitted slant column density	64-bit floating-point	along_track, cross_track	molecules/cm ²
fitted_slant_col umn_uncertainty	Fitted slant column density uncertainty	64-bit floating-point	along_track, cross_track	molecules/cm ²
gas_profile	A priori gas mixing ratio profile used in AMF calculation	32-bit floating-point	<pre>vertical_layer, along_track, cross_track</pre>	none
glint_flag	Flag for possible glint	byte	along_track, cross_track	none
ice_fraction	Sea ice fraction	32-bit floating-point	along_track, cross_track	none
land_fraction	Land fraction	32-bit floating-point	along_track, cross_track	none
meridional_wind	Meridional wind	32-bit floating-point	along_track, cross_track	m/s
ocean_salinity	Ocean salinity in Practical Salinity Units (PSU)	32-bit floating-point	along_track, cross_track	g/kg (1e-3)
<pre>ref_sector_corre ction</pre>	Reference sector background correction	32-bit floating-point	along_track, cross_track	molecules/cm ²
<pre>scattering_weigh ts</pre>	Scattering weights	32-bit floating-point	<pre>vertical_layer, along_track, cross_track</pre>	none
snow_fraction	Snow fraction	32-bit floating-point	along_track, cross_track	none
surface_pressure	Surface pressure	32-bit floating-point	along_track, cross_track	hPa
<pre>temperature_prof ile</pre>	Temperature profile	32-bit floating-point	<pre>vertical_layer, along_track, cross_track</pre>	к
zonal_wind	Zonal wind	32-bit floating-point	along_track, cross_track	m/s

Table S5. Data fields in ${\tt support_data}$ group.

Data Field Name	Description	Туре	Dimensions	Units
amf_total_uncert	Total AMF uncertainty	32-bit	along_track,	%
		floating-point	cross_track	
bias_uncertainty	Estimated uncertainty in	32-bit	along_track,	molecules/cm ²
	bias correction	floating-point	cross_track	
ref_sector_uncertainty	Estimated uncertainty in	32-bit	along_track,	molecules/cm ²
	reference background	floating-point	cross_track	
	correction			

Table S6. Data fields in uncertainty_budget group.