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Abstract

The 2019 Museum Fire burned in a mountainous region near the city of Flagstaff, AZ, USA. Due to the high risk of post-

wildfire debris flows and flooding entering the city, we deployed a network of seismometers within the burn area and downstream

drainages to examine the efficacy of seismic monitoring for post-fire flows. Seismic instruments were deployed during the 2019,

2020, and 2021 monsoon seasons following the fire and recorded several debris flow and flood events, as well as signals associated

with rainfall, lighting and wind. Signal power, frequency content, and wave polarization were measured for multiple events and

compared to rain gauge records and images recorded by cameras installed in the study area. We use these data to demonstrate

the efficacy of seismic recordings to (1) detect and differentiate between different energy sources, (2) estimate the timing of

lightning strikes, (3) calculate rainfall intensities, and (4) determine debris flow timing, size, velocity, and location. This work

confirms the validity of theoretical models for interpreting seismic signals associated with debris flows and rainfall in post-wildfire

settings and demonstrates the efficacy of seismic data for identifying and characterizing debris flows.
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Key Points: 19 

● Seismic monitoring of debris flows is effective in post-wildfire environments 20 

● Rainfall, wind, and lightning can be detected and characterized with seismic data 21 

● Existing theoretical work provides important context for understanding debris flows in 22 
post-wildfire settings 23 

  24 



Abstract 25 

The 2019 Museum Fire burned in a mountainous region near the city of Flagstaff, AZ, 26 

USA. Due to the high risk of post-wildfire debris flows and flooding entering the city, we 27 

deployed a network of seismometers within the burn area and downstream drainages to examine 28 

the efficacy of seismic monitoring for post-fire flows. Seismic instruments were deployed during 29 

the 2019, 2020, and 2021 monsoon seasons following the fire and recorded several debris flow 30 

and flood events, as well as signals associated with rainfall, lighting and wind. Signal power, 31 

frequency content, and wave polarization were measured for multiple events and compared to 32 

rain gauge records and images recorded by cameras installed in the study area. We use these data 33 

to demonstrate the efficacy of seismic recordings to (1) detect and differentiate between different 34 

energy sources, (2) estimate the timing of lightning strikes, (3) calculate rainfall intensities, and 35 

(4) determine debris flow timing, size, velocity, and location. This work confirms the validity of 36 

theoretical models for interpreting seismic signals associated with debris flows and rainfall in 37 

post-wildfire settings and demonstrates the efficacy of seismic data for identifying and 38 

characterizing debris flows. 39 

Plain Language Summary 40 

Wildfires are a growing hazard as the size and frequency of high-severity fires are 41 

growing globally. Following containment, post-fire flooding and debris flows can put 42 

downstream communities at risk, particularly as communities expand within the wildland-urban 43 

interface and close to fire-prone mountains. In this work, we use seismic instruments to measure 44 

ground vibrations created by rainfall, lightning, debris flows and floods as they move 45 

downstream and compare these recordings to game camera photos and rainfall records. This 46 

dataset allows us to detect and better understand hazards in post-wildfire areas. Observations 47 



from these instruments show a high potential for detecting these events and the validity of using 48 

seismic data as a tool for understanding debris flow behavior. 49 

1 Introduction 50 

1.1 Wildfires are a growing risk globally as the size and frequency of high severity events 51 

are increasing due to climate change (Abatzoglou & Williams, 2016; Jolly et al., 2015; 52 

Westerling, 2016; Westerling et al., 2006). In the western US, wildfire risk is particularly acute 53 

as a century of excessive fire suppression resulted in high fuel loads in many forests, which, 54 

when combined with climate change effects, has led to several catastrophic fires in recent years 55 

(Parks et al., 2015; Steel et al., 2015). Further, wildfires are becoming an increasing threat to 56 

people, property, and infrastructure as communities expand into the wildland-urban interface 57 

(Radeloff et al., 2018). Beyond the threat of wildfires themselves, post-fire debris flows and 58 

floods present a risk to downstream communities that can persist for years following fire 59 

containment. In this work, we present an analysis of seismic data recorded during post-fire debris 60 

flow and flood events emanating from the 2019 Museum Fire scar. This fire and the landscape’s 61 

post-fire response are characteristic of what we may expect following future wildfires within the 62 

southwestern United States (Sankey et al., 2017). We use these data to demonstrate the efficacy 63 

of using seismic instruments and analysis techniques to detect and characterize post-fire debris 64 

flows and flooding. We compare our observations to debris-flow seismic models  in order to 65 

provide a framework for future work using seismic data in post-fire settings.  66 

1.2 The Museum Fire, located in the Dry Lake Hills and Mount Elden immediately north 67 

of Flagstaff, AZ (Figure 1) ignited July 21, 2019 during an abnormally dry monsoon season due 68 

to a rock strike by heavy equipment during forest thinning activities (Museum Fire BAER Team, 69 

2019). The fire occurred in ponderosa pine (Pinus ponderosa) and mixed conifer forest at 70 



elevations between ~2200 and ~2750 m. Full containment was achieved on August 12, 2019 71 

with an estimated burned area  of ~8 km2. Post-fire assessment of the burn area estimated that 72 

12% of the soil burn severity was very low, 48% was low, 28% was moderate, and 12% was 73 

high (Figure 2; Museum Fire BAER Team, 2019). Most of the burn area drains into the Spruce 74 

Wash Watershed (SWW), an ephemeral drainage that flows through communities in eastern 75 

Flagstaff. The watershed is located on mountainous terrain comprised of Pleistocene-age dacitic 76 

lava domes with steep flanks (Holm, 1988; Figure 1). It is susceptible to post-fire flooding due to 77 

its steep slopes, vegetation loss due to fire, and increased soil hydrophobicity. Alluvial C14 78 

chronology from the Schultz Creek Watershed, an adjacent watershed, show that sediment has 79 

been accumulating in the ephemeral channel for approximately 7,000 years without major fires 80 

or flooding (Stempniewicz, 2014). Regional channel geometry observations support this 81 

chronology, with the majority of bankfull channel area in forested watersheds being undersized 82 

for the area of the watershed indicating complacent rainfall-runoff conditions (Schenk et al., 83 

2021). A similar absence of recent fire and flooding is also expected for the SWW, leaving 84 

significant quantities of sediment available to mobilize during storms. 85 

 1.3 Northern Arizona’s climate makes it susceptible to post-fire debris flows and flash 86 

flooding. The climate is characterized by four distinct seasons, a cold snow-dominated winter, a 87 

dry and windy late-spring/early summer, a wet late summer, and a temperate fall. Most of the 88 

region’s precipitation occurs during the winter, in the form of snow, and in summer, when 89 

convective monsoonal storms occur (Jurwitz, 1953). Wildfire season typically extends from late 90 

May to early July, when conditions are commonly dry, hot, and windy. However, from July to 91 

September, precipitation from monsoonal storms raises the soil moisture and lowers the region’s 92 

fire risk (Nauslar et al., 2019). These summer convective storms are characterized by high 93 



intensity, short-duration rainfall events that are capable of producing flash-flooding even in 94 

unburned terrain (Adams & Comrie, 1997). When these storms occur over recently-burned, 95 

hydrophobic soils, the risk of post-fire runoff (i.e., debris flows and flooding) is greatly increased 96 

(DeBano, 2000). Climate change projections for the southwestern United States predict drier 97 

conditions, reduced snowpack, higher temperatures, and increased extreme weather events 98 

(Barnett et al., 2005, 2008; Brown et al., 2004; Cook et al., 2004). These changing conditions 99 

will likely lead to increased wildfire frequency and severity across the region, as well as, extreme 100 

weather events which together increase the likelihood of catastrophic mass-wasting events.  101 

 The occurrence of monsoonal storms immediately following wildfire season makes 102 

Arizona extremely susceptible to post-fire flooding (Staley et al., 2020). This risk is particularly 103 

acute when wildfires occur in regions of steep topography adjacent to population centers. For the 104 

Museum Fire, the high likelihood of flooding and debris flows from the burn area and the 105 

proximity to a population center led us to deploy a network of seismometers and other 106 

monitoring equipment to detect and characterize these events. The 2019 monsoon season was the 107 

driest on record at the time until it was surpassed by the 2020 season. Because the 2019 and 2020 108 

monsoon seasons were abnormally dry, only a few convective storms occurred which produced 109 

few debris flows and flood events. Damage from these events was limited to USDA Forest 110 

Service land. The 2021 monsoon season was substantially wetter than average and several major, 111 

high-intensity storms occurred during July and August (Table 1). These storms triggered 112 

multiple episodes of flooding and debris flows. The debris flows repeatedly caused significant 113 

damage to the main Forest Service road to the area, but were limited to Forest Service lands. 114 

However, flood flows continued downstream, impacting numerous properties and buildings 115 

within the City of Flagstaff including an elementary school. 116 



1.3 Post-fire debris flow detection and monitoring present observational challenges. It is 117 

difficult to predict when and where convective precipitation will occur within a large burned area 118 

and where slopes will destabilize. Currently, most monitoring of post-fire debris flows is done 119 

using cameras, rain gauges, and stream gauges (e.g., Kean et al., 2001; McGuire and Youberg, 120 

2020; Raymond et al., 2020). Seismic monitoring is a promising tool that can supplement these 121 

observations and allow us to better understand debris flow and flood initiation conditions and 122 

track propagation through a watershed. Seismic observations are ideal for this purpose as the 123 

instruments are designed to work in a range of extreme weather conditions, are unaffected by 124 

light levels, record debris flow energy from 10s to 100s of meters away in most cases, and do not 125 

have to be located within or aimed at a specific hillslope or segment of channel. Further, these 126 

instruments are frequently telemetered from remote locations with a latency of <1 minute 127 

between data collection and public availability (Benson et al., 2012; Trabant et al., 2008). The 128 

rapid availability of data from seismic monitoring systems, which are often designed for near 129 

real-time earthquake detection, location, and early warning, make seismic instruments an ideal 130 

candidate for debris flow and flash flood detection and early warning.  131 

1.4 The use of seismic monitoring for detecting and characterizing debris flows is part of 132 

a recent expansion in the use of seismic analyses for non-traditional applications. These 133 

applications include using seismic data to monitor surface processes including estimating bed 134 

load in rivers and characterizing mass wasting events (Bessason et al., 2017; A Burtin et al., 135 

2008, 2009, 2014; Arnaud Burtin et al., 2011, 2013; Cornet et al., 2005; Coviello et al., 2019; 136 

Ekstrom & Stark, 2013; Kean et al., 2015; Lai et al., 2018; Marineau et al. 2019; Roth et al., 137 

2014, 2016; Schmandt et al., 2013; Tsai et al., 2012; Walter et al., 2017). In this work we apply 138 

and build on previous theoretical and observational work applying seismic observations to better 139 



understanding debris flow properties (Allstadt, 2013; Bessason et al., 2017; Coviello et al., 2019; 140 

Farin et al., 2019; Kean et al., 2015; Lai et al., 2018; Zhang et al., 2021). 141 

The primary source of seismic energy during debris flows and floods is the collision of 142 

sediment particles with the channel bed (Kean et al., 2015; Lai et al., 2018; Tsai et al., 2012). 143 

Theoretical work shows that the amplitude and frequency content of a debris flow seismic signal 144 

is controlled by a combination of flow properties, the nature of the impacts, distance from the 145 

seismic instrument, channel properties, and subsurface properties. Debris flow properties include 146 

particle size and density, flow area (length and width), flow depth, velocity, and the ratio of 147 

solids to liquid within the flow (Farin et al., 2019; Lai et al., 2018; Roth et al., 2016; Tsai et al., 148 

2012). Of these many factors, debris flow velocity, magnitude, particle size, distance from the 149 

station, and channel and subsurface properties have the greatest impact on the observed signal 150 

(Farin et al., 2019). In the following sections we discuss how we can constrain these factors to 151 

better understand post-fire debris flows, floods, and other seismic signals in post-fire 152 

environments.  153 

 154 

2 Data and Methods 155 

2.1 Seismic instruments were deployed to detect and characterize debris flows for three 156 

summers following the Museum Fire (2019, 2020, and 2021). Stations consisted of either L-22 157 

short period instruments deployed using IRIS PASSCAL quick deployment boxes or 158 

Nanometrics Meridian Compact systems. In 2019 and 2020 15 and 12 instruments were 159 

deployed, respectively, in arrays designed to record events in as many drainages as possible. All 160 

seismic data are archived at the IRIS DMC and a summary of the data and its availability for the 161 

2019 and 2020 deployments is described in Porter et al. (2021). In 2021, efforts were scaled back 162 



with only four Nanometrics instruments deployed for the monitoring efforts. These four stations 163 

were installed along the main drainages within the burn area. We deployed two in the upper 164 

watershed, and two in the lower watershed along the main stem of the SWW (Figures 1 and 2). 165 

We focus analyses on our observations of multiple debris flows in the upper watershed from the 166 

2021 monsoon season. 167 

In addition to seismometers, a network of cameras and rain gauges were also installed 168 

within the burn area for debris flow and flood detection and early warning (Figures 1 and 2). The 169 

camera network consisted of four telemetered cameras and six non-telemetered cameras. These 170 

cameras were aimed at the drainages where flooding was considered likely and are used to 171 

corroborate our seismic observations. Three rain gauges were installed within the burn area as 172 

part of a broader telemetered rain and stream gauge network operated by the City of Flagstaff. 173 

One existing rain and stream gauge within the burn area was upgraded after the fire. This 174 

publicly-available rain gauge network consists of 37 gauges designed to identify flood risks 175 

during monsoonal storms in the Flagstaff vicinity (Schenk et al. 2021). 176 

2.2 We compare seismic data to rain gauge and radar observations to better constrain 177 

debris flow initiation and behavior. We identify major rain events using data from four rain 178 

gauges located within the burn area. Based on observations from the 2019 and 2020 monsoon 179 

season, debris flows were deemed likely to occur during events that had 15-minute intensities 180 

greater than 30 mm or 60-minute intensities greater than 15 mm. Table 1 lists every storm that 181 

met at least one of those criteria at a minimum of one rain gauge within the burn area. Storm start 182 

times and durations are based on the timing that these thresholds are first and last exceeded by 183 

any gauge within the array. Table 1 highlights the localized nature of these convective 184 

monsoonal storms as extreme variations in rain intensity and storm total are observed over scales 185 



of hundreds of meters to a few kilometers. For example, rain gauges Museum Fire North and 186 

Museum Fire East are located ~1 km apart and, in most storms, recorded significantly different 187 

peak intensities and total rainfall amounts.  188 

Data from the National Weather Service Doppler-radar station (NEXRAD, WSR-88D) 189 

KFSX, located ~75 km SSE of Flagstaff, were integrated with gauge data to more accurately 190 

estimate the spatial extent and quantity of rainfall derived from radar data. To accomplish this, 191 

level-3 NEXRAD base reflectivity data, collected at a 0.5-degree angle, were downloaded and 192 

compared to rain intensities recorded at the rain gauges. A non-linear least squares fit was used 193 

to calculate the power law relationship between radar reflectivity (Z in mm6 m-3) and rainfall 194 

intensity (R in mm hr-1) by solving for ar and br in the Z-R relationship equation (e.g., Marshall 195 

et al., 1947):  196 

 197 

𝑅 = #
1
𝑎!
&
(#/%!)

𝑍(#/%!)	198 

1 199 

for each storm. This was accomplished by calculating intensity at 5-minute increments at each 200 

rain gauge (R) and comparing these to radar power (Z) for the same time period and location. 201 

Using all Z and R data available, we determine ar and br values for each storm using a non-linear 202 

least squares fit for Z values less that 60 db. In this fit, data were weighted by the inverse of the 203 

distance from the center of the Museum Fire burn area to ensure that rainfall estimates were most 204 

consistent with rain gauge data in the study area. Using the calculated ar and br values for each 205 

storm, radar-derived intensities were summed to calculate rainfall totals. Rainfall amounts and 206 

intensities from radar were then compared to the timing of debris flow initiation determined from 207 

seismic data. 208 



 209 

2.4 Seismic data were processed to assess the efficacy of purpose-built arrays for 210 

detection and characterizing post-fire debris flows. Data were archived at the IRIS DMC and 211 

then downloaded for debris flows that occurred during the 2021 monsoon season. Raw data were 212 

tapered, detrended, demeaned, filtered between 1 and 99 Hz, and the instrument correction was 213 

applied to transfer the signal to ground velocity using the IRIS DMC data services. The data 214 

were then downloaded and resampled to 200 Hz. To better quantify the seismic signal associated 215 

with debris flows, we calculated signal power and short-time Fourier transforms of the processed 216 

data to generate spectrograms of the signals. Using these short-time Fourier transforms we 217 

estimate the peak frequency (fmax) and spectral centroid (fcent) over a moving window to assess 218 

how these observations and wave polarizations change based on the type of seismic source.  219 

Wave polarization characteristics were calculated using the following equations (Jones et 220 

al., 2016; Jurkevics, 1988; Vidale, 1986): 221 

 222 
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4 230 

Where P is planarity, I is incidence angle, q  is the azimuth, and li and vij are the 231 

eigenvalues and eigenvectors for a time window, respectively. The variables i and j can equal 1, 232 

2, or 3 and represent the different eigenvalues and the three components of the eigenvectors in 233 

the coordinate frame, respectively. Planarity values can range from 1 to 0, with 1 representing a 234 

wavefield polarized into a plane and 0 representing a wavefield with motion equally distributed 235 

in three directions. Incidence angle and azimuth range from -90° to 90° and 0° to 180°, 236 

respectively, and give insight into the orientation of the first eigenvector. This provides 237 

information into the orientation of ground motion, which is useful for discerning the source of 238 

the seismic signals. 239 

 240 

2.5 We calculate synthetic models of the seismic signal power and spectral content 241 

associated with noise, rainfall, and debris flows in order to better interpret our results. Though 242 

we do not attempt to match our observations exactly, these calculations are useful for providing 243 

context to our observations and for exploring the sensitivity of seismic data to variations in 244 

debris flow properties. 245 

Approximations of background noise, much of which was likely due to wind interacting 246 

with trees, were calculated by using recordings of the seismic signal in the hours preceding 247 

storms. We transformed these data to the frequency domain where we applied a spline 248 

interpolation to calculate frequency envelopes of these data. We then selected random 249 

amplitudes in the frequency domain between the frequency envelope minimum and maximum 250 

values. These values were then inverse Fourier transformed back to the time domain. This 251 

resulted in a pseudo-random signal with a frequency content and amplitude similar to the 252 



background noise observed at the seismic station. This signal was input as the background signal 253 

in our synthetic models to represent noise. 254 

 255 

2.6 To model rainfall, we follow a similar methodology to Bakker et al., (2022) where we 256 

assume consistent rainfall in all directions from the seismic instrument. For reasonable rain drop 257 

size of 0.1-8 mm, an impact should occur over less than 0.001 second and can be assumed as an 258 

infinite frequency source for seismic purposes. We calculate the signal power density (PSD) as a 259 

function of frequency (f) using the equation: 260 

 261 

𝑃𝑆𝐷(𝑓) = (2𝜋𝑓)(	; 2𝜋𝐽*𝐺(𝑓, 𝑟)(	𝑑𝑟
+

,
	262 

5 263 

 264 

Where r is the distance from the station, Jp is the impulse flux, and G(f,r) is the Green’s 265 

function.  266 

We calculate impulse flux by summing the impact forces for a distribution of raindrop 267 

sizes described by p(d) using the following equation: 268 

 269 

		𝐽* = #
4
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 272 



Where d is drop diameter, rw is the density of water, g describes the elasticity of the 273 

impact, and v(p(d)) is the velocity of drops as a function of diameter. We assume an inelastic 274 

impact with the ground which gives us a g value of 1. We estimate p(d) to calculate the impact 275 

rate per unit area following (Uijlenhoet & Stricker, 1999) where raindrop size distribution is a 276 

function of rain intensity. 277 

 278 

𝑝(𝑑) = 	
𝛬#/0
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1𝑒234 	279 

7 280 

 281 

Where L=4.1R-0.21, G is the gamma function, and b = 0.67 (Uijlenhoet & Stricker, 1999). 282 

 283 

Drop velocity is calculated as v(d) = adB (Atlas & Ulbrich, 1977) with constants a and B 284 

equal to 3.778 and 0.67, respectively (Uijlenhoet & Stricker, 1999). In this relationship, we set 285 

9.5 m/s as a maximum raindrop velocity (Bakker et al., 2022). This assumption has little effect 286 

on the results, as even at high intensities where large drops are expected, few rain drops are large 287 

enough to exceed this velocity. 288 

 289 

Surface waves are expected to dominate the observed environmental signals, so we use a 290 

near-field approximation of the Rayleigh wave Green’s function (Aki & Richards, 2002; Bakker 291 

et al., 2022; Gimbert et al., 2014) which is calculated as follows: 292 

 293 
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Where f is frequency, r0 is the density at the surface, vc is the phase velocity, vu is the 296 

group velocity, r is the source-receiver distance, Q is the quality factor, and Njz is a unitless value 297 

that described the relative amplitudes of the three components (the z subscript indicates the 298 

vertical component). At high frequencies, where rain is observed seismically, Njz is near unity 299 

(Tsai & Atiganyanun, 2014) so we assumed a value of 1 for rain. Phase (vc) and group velocities 300 

(vu) are calculated for Rayleigh waves following Tsai & Atiganyanun (2014) where: 301 

 302 
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 308 

Where x describes the velocity change with depth, f0 is a reference frequency set to 1 Hz 309 

and vc0 is a reference phase velocity. 310 

 311 

2.7 Debris flow signal power was calculated using an equation to estimate seismic energy 312 

for a thin flow (Farin et al., 2019): 313 

 314 
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 317 

Where f is frequency, r is distance from the station to points along the channel, W is 318 

channel width, and G is the Green’s function defined above. 𝑅>?*@7A  is the impact rate calculated 319 

as 𝑅>?*@7A =	
8$B*(C)
C%C"

  where ux is the velocity of the flow, ϕ is fraction of the flow volume that 320 

consists of solids, p(D) is the grain size distribution, Db is the bed bump-diameter, and D is grain 321 

size. The impulse 𝐼5 is defined as 𝐼5 = (1 + 𝑒%)𝑢D𝑚𝑓5, where eb is the basal coefficient of 322 

restitution, m if the particle mass, an fj is a unitless value related to speed change during particle 323 

impact. 324 

 325 

Assuming a linear channel oriented in the x direction located at a distance r0 from the 326 

station at its closest point and the same Green’s function as above. This equation becomes: 327 

 328 
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Where 𝑦 = 	 D
!&

 and x = 0 at the closest point in the channel to the station. 331 

 332 

We follow previous work and use a log-raised cosine grain size distribution (Farin et al., 333 

2019; Tsai et al., 2012) with a standard deviation of 0.5 to calculate the grain size distribution 334 

(p(D)) of the flow, which is input for D in Equation 11.  335 



 336 

Rather than assume a constant mean grain size (Dmean) for the snout and body of the 337 

debris flow, we calculate mean grain size as a function of x by combining a decay function with 338 

a decaying sine function: 339 

 340 
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 343 

This mean grain size equation was chosen to simulate short duration increased signal 344 

power due to pulses of coarse grain sediment moving down channel and the decay of the signal 345 

in the observed data.  346 

3 Results and Discussion 347 

3.1 Seismic records from our deployment affirm the efficacy of seismic monitoring in 348 

post-wildfire settings. These instruments can be installed rapidly following wildfires in locations 349 

that are safe from inundation (i.e., hillslopes or bedrock away from a channel). They produce 350 

clear recording of debris flows and related phenomena regardless of lighting or weather 351 

conditions. During monsoonal storms, we commonly observe signals associated with wind, 352 

lightning, storm precipitation, and storm-induced debris flows and flood flows. Each signal is 353 

associated with distinct signal powers, frequency content, and ground motion polarizations. We 354 

show ground velocity, signal power, and spectrograms for vertical component seismic data in 355 

both our synthetic and observed data, though the signals can also be observed in the horizontal 356 

components. In analyzing these seismic signals, we can differentiate between the different 357 



sources, estimate the timing of lightning strikes, rainfall intensity, rainfall kinetic energy, and 358 

debris flow timing, size, velocity, and location.  359 

3.2 The seismic signal from wind is frequently site specific and can vary over short 360 

spatial scales due to differences in aspect, vegetation, and infrastructure (Johnson et al., 2019). 361 

To explore the site-specific wind signal, we use seismic recordings of windy days in the early 362 

summer where no precipitation occurred. Figure 3 shows the seismic signal observed on June 27, 363 

2021 when wind speeds recorded at the Flagstaff airport between 10:00 and 18:00 h, local time, 364 

ranged between 10 and 13.2 m/s with a maximum gust of 23.2 m/s. (Visual Crossing, 2022). At 365 

site E19A, located in the upper watershed, we observe wind as a low frequency signal (fmax < 20 366 

Hz) on that day. The mean signal power during that recording period was ~142 dB, which is 367 

substantially lower than signal powers associated with lighting, precipitation, and debris flows. 368 

Energy polarization of wind recordings at E19A shows variable azimuthal directions, planarity 369 

values of ~0.65, and incidence angles near horizontal. 370 

3.3 Lightning is observed as impulsive, short duration (generally < 10 s) signals that 371 

excite a wide range of frequencies (Figure 4). These are most easily observed prior to debris flow 372 

and rainfall signals. We compare seismic recordings to records of lightning strikes from National 373 

Lightning Detection Network (NLDN; Cummins & Murphy, 2009; Murphy et al., 2021; Orville, 374 

2008). Seismic detection of lightning is likely impacted by topography and atmospheric 375 

conditions. Lightning tends to have high incidence angles and variable planarity and azimuth 376 

values associated with it (Figure 4). It is distinguishable from rain due by its short duration, 377 

frequency content, and high amplitudes. 378 

3.4 During storms, we commonly observe relatively high frequency (> 50 Hz) signals due 379 

to precipitation (Figure 4). The amplitudes of these signals correlate temporally with estimates of 380 



rainfall intensity observed at nearby rain gauges. However, given the highly localized nature of 381 

monsoonal storms in the southwestern US (Table 1), if the instruments are not co-located, there 382 

is often a lag between seismic and rain gauge observations associated with storms moving across 383 

the landscape. Theoretically the seismic signal of rain is controlled by the Green’s function, rain 384 

drop quantity, and drop size distribution (which also controls the distribution of drop velocities; 385 

Bakker et al., 2022). Peaks in seismic signal power correlate well with increases in rainfall 386 

intensity (R) at nearby rain gauges. For station E19A, polarization analysis shows that rainfall 387 

has high incidence angles, moderate (~0.5) planarity, and variable azimuths, which is consistent 388 

with measurements of rainfall recorded at other stations. The high frequency content of the 389 

signal is due to the proximity of rainfall to the station. Work by Bakker et al. (2022), shows that, 390 

due to signal attenuation, over half of the energy observed at a station due to rainfall come from 391 

raindrops within 10 m of the station and 90% from drops within 25 m. 392 

3.5. Debris flows are observed as high amplitude signals that may excite a range of 393 

frequencies (Figures 5 & 6). The signal power at a station increases rapidly as the debris flow 394 

approaches the station and then gradually decreases as the flow velocity and grain size decrease 395 

over time. Consistent with theoretical work, the frequency content of these flows appears to be 396 

controlled by the distance between the station and the debris flow and subsurface properties (i.e., 397 

the Green’s function; Farin et al., 2019; Lai et al., 2018). We observe a decrease in seismic 398 

frequency (fmax and fcent) as the snout of the flow first approaches the station followed by an 399 

increase, which is consistent with a signal frequency content dominated by attenuation (Farin et 400 

al., 2019; Lai et al., 2018; Tsai et al., 2012). The initial decrease in fmax and fcent is due to the 401 

increased contribution of the debris flow to the seismic signal relative to rain, wind, and other 402 

background noise. Once the debris flow is the dominant signal, the increase in frequency content 403 



is due to the debris flow snout approaching the station. Within individual debris flows, we 404 

observe multiple changes in frequency content and signal power over short periods of time. 405 

Values measured for fmax and fcent often produce a sawtooth pattern. These changes in amplitude 406 

and in frequency content are likely due to pulses of coarse-grained sediments moving through the 407 

system and approaching the seismometer. The peaks in amplitude and fmax occur when coarse 408 

sediment is in closest proximity to the station.  409 

In Figures 5 and 6 we show records of two storms and associated debris flows recorded at 410 

station E19A, located in the steeper upper watershed (Figure 1). This station was installed ~20 m 411 

due north of a drainage that was deemed likely to experience debris flows. As an example of the 412 

data recorded at this station, on July 16, 2021 we observed two separate debris flows in a short 413 

period between 13:00 and 14:00 h local time. Prior to the flows, we observe several lightning 414 

strikes (Figure 4) followed by a signal we associate with rainfall. Rainfall intensity at the 415 

Museum Fire north gauge peaked at ~13:14, which coincides temporally with a peak in high 416 

frequency seismic energy (> 50 Hz) at the station. At 13:16 a low frequency signal (< 20 Hz) is 417 

first recorded that is likely caused by flow in the channel. There is also a higher frequency signal 418 

(> 30 Hz) observed at this time from an ambiguous source. The energy that produced this signal 419 

may have been caused by sediment transport in the channel, however we would not expect a 420 

“gap” in energy at ~25 Hz or an fmax with a higher frequency than observed when the debris flow 421 

snout is in closest proximity to the station if that were the case. Alternately, this signal was 422 

possibly caused by sheet flow on the hillslope near the station, which would result in a higher 423 

frequency signal due to the proximity of the station to the flow.  424 

The low frequency signal, first observed at 13:16, begins increasing in amplitude and 425 

frequency at ~13:17 (Figure 4). This is likely due to the snout of the debris flow approaching the 426 



station. This signal peaks in amplitude just after 13:18, which is when the snout reaches its 427 

closest point in the channel to the station. Following the initial debris flow snout signal, we 428 

observe multiple high amplitude pulses between 13:18 and 13:24. These signals produce a 429 

sawtooth pattern in observed fmax and fcent values. These power and frequency patterns are likely 430 

due to multiple pulses of coarse sediment, separated by finer grained flow, traveling down the 431 

channel. After the initial high amplitude signal, the overall amplitude of the debris flow signal 432 

power decreases, which is likely due to decreases in discharge, velocity, and grain size. The 433 

debris flow produces the largest signal power at the station until ~13:27 when an increase in 434 

rainfall intensity occurs. This change in signal source is inferred based on a change in frequency 435 

content and energy polarization that occurred at that time. Rainfall is the highest amplitude 436 

signal until ~13:29 when a second debris flow is observed in the seismic data. The signal from 437 

this second flow is similar to the first. It exhibits increased signal power initially followed by 438 

multiple pulses of increased amplitudes and sawtooth changes in fmax and fcent. After peaking, this 439 

signal gradually decays back to baseline (pre-storm) values.  440 

On August 17, 2021, we observe a similar signal to the July 16th events (Figure 6) at 441 

station E19A, demonstrating the consistency of debris flow signal at the station. For this August 442 

debris flow, a remote game camera installed ~90 meters upstream recorded sediment transport 443 

(Figures 6b and 6c). Photos were taken at 5 minutes intervals with an uncertainty of ~1 minute 444 

on the timestamp. These images capture high intensity rainfall and sheet flow prior to the debris 445 

flow which is observed in the second image. Due to the uncertainty on the game photo timings 446 

and the difference in locations, we cannot precisely tie the photos directly to seismic 447 

observations. However, based on these timings, it seems probable we are observing sheet flow or 448 



similar in the initial higher frequency energy followed by sediment pulses (including downed 449 

trees) during the main flow. 450 

Based on an analysis of multiple events recorded at station E19A, debris flows at this 451 

station are characterized by a low incidence angle, a high planarity, and an azimuth measurement 452 

oriented roughly NS. This NS azimuth is the direction from the station to the nearest point in the 453 

channel. Polarization measurements at this station are more-consistent than those observed at 454 

other stations, but in general, we observe consistent azimuths, moderate planarities and low 455 

incidence angles in debris flow signals regardless of the station.  456 

3.6 Using the equations in section 2, we generate synthetic models of signal power and 457 

spectral content for sources that include background noise, rainfall, and debris flow signals. For 458 

the Green’s function, inputs were selected to match the frequency content of rain and the debris 459 

flows recorded at station E19A on July 16th (Figure 5). In our synthetic models (Figure 7) we 460 

reproduce the initial high frequency signal associated with rain using a rainfall intensity of 100 461 

mm/hr for the first 450 seconds of the signal. As the modeled debris flow approaches the station, 462 

we observe a decrease in fmax and fcent which occurs when the debris flow becomes the dominant 463 

signal. The subsequent increase in fmax and fcent and the sawtooth patterns observed in the data are 464 

modeled using a sine function (Equation 13) to represent pulses of increased sediment size 465 

moving down the channel. As this sine function decays, the fmax value becomes more stable and 466 

is consistent with the strongest seismic signal originating from the closest point in the channel to 467 

the seismometer. Finally, the decay in signal amplitude is produced by decreasing the mean grain 468 

size. In reality, this is a simplification of the process as the decay in amplitude observed in our 469 

recorded data is likely due to decreases in mean grain size, flow velocity, and flow volume.  470 



 Results from this work confirm the validity of theoretical models for understanding post-471 

wildfire debris flow behavior. Observed and model results are consistent with signal power 472 

correlating with the velocity and the grain size of a flow (Dmean). The highest amplitude observed 473 

in most flows corresponds to the snout passing by the station. Additional high-amplitude peaks 474 

likely are indicative of sediment pulses within the flow passing by the station. The peak in signal 475 

power within these pulses occurs when the coarse sediment is in closest proximity to the station. 476 

The frequency content of debris flow is primarily controlled by the distance of the flow from the 477 

station. However, this frequency content can also provide insight into the behavior of a flow. The 478 

sawtooth pattern in frequency content (fmax and fcent ) observed during debris flow events is likely 479 

due to coarse sediment pulses moving down the channel. Pulses with large grain sizes produce 480 

higher amplitude seismic signals, so even when they are farther from the station than smaller-481 

grain sized flows, they still may produce a large enough signal to lower the fmax and fcent 482 

measurements. For a long flow with consistent grain size distribution and velocity, we would 483 

expect a signal with consistent frequency content. This is often observed later in flows when the 484 

fmax measurements become fairly consistent, likely indicating that the debris flow is no longer 485 

moving downslope in pulses or has evolved into a finer-grained flow. The fcent measurement 486 

continues to change later in flows as the grain size decreases and there are less contributions 487 

from sediment transport further away in the channel to the recorded signal.  488 

 3.7 Debris flow velocity can be estimated by examining the frequency content of the 489 

seismic signal or the cross-correlation of signals between stations based on equation 11. At 490 

station E19A, we estimate velocities of the debris flow’s snout following Lai et al. (2018) who 491 

show that debris flow frequency content is controlled by the Green’s function and source-flow 492 

distance. To accomplish this, we calculate dP/df = 0 for Equation 11 and solve for r using fmax as 493 



the input frequency. We then use the Pythagorean theorem to calculate the along-channel x 494 

location of the front of the flow, with r as the hypotenuse and r0 and x as the legs. In this 495 

calculation, x = 0 at the point in the channel closest to the station. To calculate smoothed fmax 496 

values from our data, we use least squares fit to the observed fmax values as the flow approaches 497 

the station. The linear fit is used for simplicity in both estimating fmax and velocity. Using this 498 

approach, we estimate a velocity of ~6 m/s for the first debris flow that occurred on July 16th 499 

(Figure 8). While we apply this technique to calculate the velocity of the initial debris flow 500 

snout, this also can be applied to calculate the velocity of individual sediment pulses which can 501 

be used to estimate changes in flow velocity over time. 502 

The four stations used during the 2021 deployment did not allow us to measure debris 503 

flow velocities using cross correlation as we did not have multiple stations within any drainage 504 

in the upper watershed. However, we show an example from lower in the watershed downstream 505 

of where a majority of the coarse material was deposited (Figure 9). We normalize and then 506 

cross correlate the signal between stations COCB and CFSG, which were located ~1.2 km from 507 

each other along the channel (Figure 9). The lag time of the cross correlations for an event on 508 

July 13, 2021 was 360 seconds yielding an estimated velocity of 3.3 m/s for the flood in that 509 

reach of the channel. Applying this to multiple events over the summer led to velocity estimates 510 

between 2.6 m/s and 4.1 m/s for the reach. 511 

 3.8 Constraining the Green’s function at a station can present a challenge, especially in 512 

post-wildfire settings where stations are frequently deployed on steep unstable slopes and access 513 

may be limited due to hazards to personnel. However, if the rainfall rate is well-constrained by 514 

rain gauge data and the drop size distribution can be estimated, the frequency content and power 515 

of the rainfall seismic signal could provide a mechanism for calculating local high-frequency 516 



Green’s functions. Future work will explore methodologies for better calculating these Green’s 517 

functions using rainfall data. Given that debris flows can alter the subsurface through scouring 518 

and deposition, an analysis of the rainfall may provide a mechanism for assessing these changes. 519 

Additionally, examining the frequency content of a debris flow signal can provide insight into 520 

the Green’s function. The highest frequency fmax value associated with the debris flow will be 521 

observed when the debris flow is at the point in the channel that is in closest proximity to the 522 

station. If the distance between the station and the channel is known, this value can then be used 523 

as a constraint on the Green’s function values. Though we do not attempt to replicate this 524 

exactly, the input values for our forward model were selected to roughly match the signals 525 

produced by rainfall and debris flow at station E19A.  526 

 3.9 Initial results indicate that wave polarization may be a good differentiator between 527 

seismic sources in post-fire settings. At station E19A, the signal azimuth, calculated using 528 

equation 4, is oriented towards the closest point in the channel to the station during debris flows. 529 

The signal associated with debris flows exhibits a higher planarity than other environmental 530 

events (i.e., wind, rain, lightning, etc.). The incidence angle is high during rain and low during 531 

debris flows, which may be related to the frequency content of the two signals. Work by Tsai & 532 

Atiganyanun (2014) shows that Njz approaches unity at high frequencies while the amplitudes of 533 

horizontal components are diminished. Lower frequency surface waves have more energy on the 534 

horizontal components and less on the vertical. This is consistent with what we observe with rain 535 

(f > 50 Hz) and debris flows (f > 5 Hz). 536 

 3.10 Comparison to earthquakes and other energy sources affirms that debris flows 537 

produce a signal that is easily distinguishable from other sources of seismic energy even in sites 538 

hastily installed in suboptimal condition (steep slopes, shallow burial etc.). Over the course of 539 



our monitoring, debris flows produce the highest amplitude signal observed in the 1-50 Hz 540 

frequency range. Additionally, the signal is much more emergent and longer duration than a 541 

typical earthquake signal. Simply measuring the short-term average to long-term energy averages 542 

works well for detecting events with the thresholds set depending on the size of the drainage and 543 

the flood/debris flow risk to downstream communities. If installed and telemetered, these 544 

instruments would complement existing monitoring which is frequently done with rain and 545 

stream gauges, cameras, and non-vented pressure transducers that, incidentally, are often lost or 546 

destroyed when a debris flow passes. 547 

4 Conclusions 548 

In this study we show data and interpretations for storms and debris flows recorded by 549 

seismic equipment in a post-fire setting. Results from this work affirm the validity of theoretical 550 

models of debris flow seismic energy generation and their applicability to quantifying debris 551 

flow characteristics in post-fire environments. Further, this work demonstrates the applicability 552 

of seismic monitoring for debris flow detection in this setting. Using seismic data, we are able to 553 

detect and distinguish seismic energy due to wind, lightning, rainfall, and debris flows/floods, 554 

demonstrating the efficacy of seismic data for event characterization and flood detection and 555 

early warning in these settings. Future work will build on this effort and better constrain and 556 

characterize post-wildfire debris flow behavior using seismic data. 557 
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Figure 1. Location map of the study area showing the burn area (shaded gray), seismic station 579 

locations, rain gauges, camera locations, drainages, and watershed boundaries. Colors indicate 580 

slopes.  581 

Figure 2. Burn severity map for the Museum Fire (Museum Fire BAER Team, 2019; Figure 1). 582 

Shaded area denotes areas with moderate to high severity burn designations and slopes greater 583 

than 22° where debris flows are most likely. 584 

Figure 3. Seismic recording of wind at station E19A. Panel a) shows ground velocity, storm 585 

rainfall total and 15-minute rainfall intensity (no rain occurred during this time period). Panel b) 586 

shows decibel signal power. Panel c) is a spectrogram of the seismic velocity, black diamonds 587 

indicate the frequency with the maximum energy (fmax). Panel d) shows the spectral centroid 588 

(fcent), color indicates the total signal power. Panel e) show the planarity, the absolute value of 589 

the cosine of incidence angle (0 is horizontal and 1 is vertical), and the normalized azimuth of 590 

the signal between 0 to 180°m where 0 is equal to 0° (due North) and 1 is equal to 180° (due 591 

south). 592 

Figure 4. Seismic recording of lightning at station E19A. Panels are the same as Figure 3, except 593 

the amplitude scale in panel a) vertical black lines in panels b) and the timing of lightning strikes 594 

from the National Lightning Detection Network (NLDN) occurring within 12 km of the station 595 



in panel c). Timings are adjusted from the NLDN timing to the estimated arrival time of thunder 596 

at the station using a velocity of 330 m/s. 597 

Figure 5. Seismic recording of debris flows at station E19A on July 16, 2021. Panels are the 598 

same as Figure 3, except for amplitude scale in panel a). 599 

Figure 6. Seismic recording of debris flow at station E19A on August 21, 2021. Top panels are 600 

the same as Figure 3, except panel a) amplitude scale. Panels f) and g) show game camera 601 

images of the channel before and during a debris flow. Images were taken at 12:14 and 12:19 602 

local time, respectively. 603 

Figure 7. Spectrogram for synthetic debris flow model. Blue circle are spectral centroid (fcent), 604 

black diamonds and the frequency with the maximum energy (fmax). 605 

Figure 8. Panel a) shows changes in fmax over time beginning at 13:17:48 on July 16, 2022 at 606 

station E19A. Red line is least-squares fit to the data. Panel b) shows along channel distance of 607 

the debris flow snout calculated from fmax least squares fit in panel a). Red line is fit to the data, 608 

slope of the red line is the velocity of the debris flow snout ~5.96 m/s. 609 

Figure 9. Normalized signal power recorded at stations COCB and CFSG for an event on July 610 

13, 2021. Cross correlating the signals results in a lag of 360 seconds between the two stations. 611 

Table 1. Timing, Estimated Flow, Total Rain, Peak Intensity, Storm Direction and location, Peak 612 

Flow at lower drainage for storms from 2019 to 2021. 613 

Supplementary Table 1. List of symbols used in equations. 614 
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Key Points: 19 

● Seismic monitoring of debris flows is effective in post-wildfire environments 20 

● Rainfall, wind, and lightning can be detected and characterized with seismic data 21 

● Existing theoretical work provides important context for understanding debris flows in 22 
post-wildfire settings 23 

  24 



Abstract 25 

The 2019 Museum Fire burned in a mountainous region near the city of Flagstaff, AZ, 26 

USA. Due to the high risk of post-wildfire debris flows and flooding entering the city, we 27 

deployed a network of seismometers within the burn area and downstream drainages to examine 28 

the efficacy of seismic monitoring for post-fire flows. Seismic instruments were deployed during 29 

the 2019, 2020, and 2021 monsoon seasons following the fire and recorded several debris flow 30 

and flood events, as well as signals associated with rainfall, lighting and wind. Signal power, 31 

frequency content, and wave polarization were measured for multiple events and compared to 32 

rain gauge records and images recorded by cameras installed in the study area. We use these data 33 

to demonstrate the efficacy of seismic recordings to (1) detect and differentiate between different 34 

energy sources, and (2) estimate the timing of lightning strikes, rainfall intensity, and debris flow 35 

timing, size, velocity, and location. This work confirms the validity of theoretical models for 36 

interpreting seismic signals associated with debris flows and rainfall in post-wildfire settings and 37 

demonstrates the efficacy of seismic data for identifying and characterizing debris flows. 38 

Plain Language Summary 39 

Wildfires are a growing hazard as the size and frequency of high-severity fires are 40 

growing globally. Following containment, post-fire flooding and debris flows can put 41 

downstream communities at risk, particularly as communities expand within the wildland-urban 42 

interface and close to fire-prone mountains. In this work, we use seismic instruments to measure 43 

ground vibrations created by rainfall, lightning, debris flows and floods as they move 44 

downstream and compare these recordings to game camera photos and rainfall records. This 45 

dataset allows us to detect and better understand hazards in post-wildfire areas. Observations 46 



from these instruments show a high potential for detecting these events and the validity of using 47 

seismic data as a tool for understanding debris flow behavior. 48 

1 Introduction 49 

1.1 Wildfires are a growing risk globally as the size, and frequency of high severity 50 

events are increasing due to climate change (Abatzoglou & Williams, 2016; Jolly et al., 2015; 51 

Westerling, 2016; Westerling et al., 2006). In the western US, wildfire risk is particularly acute 52 

as a century of excessive fire suppression has resulted in high fuel loads in many forests, which, 53 

when combined with climate change effects, has led to several catastrophic fires in recent years 54 

(Parks et al., 2015; Steel et al., 2015). Further, wildfires are becoming an increasing threat to 55 

people, property, and infrastructure as communities expand into the wildland-urban interface 56 

(Radeloff et al., 2018). Beyond the threat of wildfires themselves, post-fire debris flows and 57 

floods present a risk to downstream communities that can persist for years following fire 58 

containment. In this work, we present an analysis of seismic data recorded during post-fire debris 59 

flow and flood events emanating from the 2019 Museum Fire scar. This fire and the landscape’s 60 

post-fire response are characteristic of what we may expect following future wildfires within the 61 

southwestern United States (Sankey et al., 2017). We use these data to demonstrate the efficacy 62 

of using seismic instruments and analysis techniques to detect and characterize post-fire debris 63 

flows and flooding. We compare our observations to debris-flow seismic models  in order to 64 

provide a framework for future work using seismic data in post-fire settings.  65 

1.2 The Museum Fire, located in the Dry Lake Hills and Mount Elden immediately north 66 

of Flagstaff, AZ (Figure 1) ignited July 21, 2019 during an abnormally dry monsoon season due 67 

to a rock strike by heavy equipment during forest thinning activities (Museum Fire BAER Team, 68 

2019). The fire occurred in ponderosa pine (Pinus ponderosa) and mixed conifer forest at 69 



elevations between ~2200 and ~2750 m. Full containment was achieved on August 12, 2019 70 

with an estimated burned area  of ~8 km2. Post-fire assessment of the burn area estimated that 71 

12% of the soil burn severity was very low, 48% was low, 28% was moderate, and 12% was 72 

high (Figure 2; Museum Fire BAER Team, 2019). Most of the burn area drains into the Spruce 73 

Wash Watershed (SWW), an ephemeral drainage that flows through communities in eastern 74 

Flagstaff. The watershed is located on mountainous terrain comprised of Pleistocene-age dacitic 75 

lava domes with steep flanks (Holm, 1988; Figure 1). The watershed is susceptible to post-fire 76 

flooding due to its steep slopes, vegetation loss due to fire, and increased soil hydrophobicity. 77 

Alluvial C14 chronology from the Schultz Creek Watershed, an adjacent watershed, show that 78 

sediment has been accumulating in the ephemeral channel for approximately 7,000 years without 79 

major fires or flooding (Stempniewicz, 2014). Regional channel geometry observations support 80 

this chronology, with the majority of bankfull channel area in forested watersheds being 81 

undersized for the area of the watershed indicating complacent rainfall-runoff conditions 82 

(Schenk et al. 2021). A similar absence of recent fire and flooding is also expected for the SWW, 83 

leaving significant quantities of sediment available to mobilize during storms. 84 

 1.3 Northern Arizona’s climate makes it susceptible to post-fire debris flows and flash 85 

flooding. The climate is characterized by four distinct seasons, a cold snow-dominated winter, a 86 

dry and windy late-spring/early summer, a wet late summer, and a temperate fall. Most of the 87 

region’s precipitation occurs during the winter, in the form of snow, and in summer, when 88 

convective monsoonal storms occur (Jurwitz, 1953). Wildfire season typically extends from late 89 

May to early July, when conditions are commonly dry, hot, and windy. However, from July to 90 

September, precipitation from monsoonal storms raises the soil moisture and lowers the region’s 91 

fire risk (Nauslar et al., 2019). These summer convective storms are characterized by high 92 



intensity, short-duration rainfall events that are capable of producing flash-flooding even in 93 

unburned terrain (Adams & Comrie, 1997). When these storms occur over recently-burned, 94 

hydrophobic soils, the risk of post-fire runoff (i.e debris flows and flooding) is greatly increased 95 

(DeBano, 2000). Climate change projections for the southwestern United States predict drier 96 

conditions, reduced snowpack, higher temperatures, and increased extreme weather events 97 

(Barnett et al., 2005, 2008; Brown et al., 2004; Cook et al., 2004). These changing conditions 98 

will likely lead to increased wildfire frequency and severity across the region, as well as, extreme 99 

weather events which together increase the likelihood of catastrophic mass-wasting events.  100 

 The combination of the monsoon directly following wildfire season makes Arizona 101 

extremely susceptible to post-fire flooding (Staley et al., 2020). This risk is particularly acute 102 

when wildfires occur in regions of steep topography adjacent to population centers. For the 103 

Museum Fire, the high likelihood of flooding and debris flows from the burn area and the 104 

proximity to a population center led us to deploy a network of seismometers and other 105 

monitoring equipment to detect and characterize these events. The 2019 monsoon season was the 106 

driest on record at the time, until it was surpassed by the 2020 season. Because the 2019 and 107 

2020 monsoon seasons were abnormally dry, only a few convective storms occurred which 108 

produced few debris flows and flood events. Damage from these events was limited to USDA 109 

Forest Service land. The 2021 monsoon season was substantially wetter than average and several 110 

major, high-intensity storms occurred during July and August (Table 1). These storms triggered 111 

multiple episodes of flooding and debris flows. The debris flows repeatedly caused significant 112 

damage to the main Forest Service road to the area, but were limited to Forest Service lands. 113 

However, flood flows continued downstream, impacting numerous properties and buildings 114 

within the City of Flagstaff including an elementary school. 115 



1.3 Post-fire debris flow detection and monitoring present observational challenges. It is 116 

difficult to predict when and where convective precipitation will occur within a large burned area 117 

and where slopes will destabilize. Currently, most monitoring of post-fire debris flows is done 118 

using cameras, rain gauges, and stream gauges (e.g., Kean et al., 2001; McGuire and Youberg, 119 

2020; Raymond et al., 2020).. Seismic monitoring is a promising tool that can supplement these 120 

observations and allow us to better understand debris flow and flood initiation conditions and 121 

track propagation through a watershed. Seismic observations are ideal for this purpose as the 122 

instruments are designed to work in a range of extreme weather conditions, are unaffected by 123 

light levels, record debris flow energy from 10s to 100s of meters away in most cases, and do not 124 

have to be located within or aimed at a specific hillslope or segment of channel. Further, these 125 

instruments are frequently telemetered from remote locations with a latency of <1 minute 126 

between data collection and public availability (Benson et al., 2012; Trabant et al., 2008). The 127 

rapid availability of data from seismic monitoring systems, which are often designed for near 128 

real-time earthquake detection, location, and early warning, make seismic instruments an ideal 129 

candidate for debris flow and flash flood detection and early warning.  130 

1.4 The use of seismic monitoring for detecting and characterizing debris flows is part of 131 

a recent expansion in the use of seismic analyses for non-traditional applications. These 132 

applications include using seismic data to monitor surface processes including estimating bed 133 

load in rivers and characterizing mass wasting events (Bessason et al., 2017; A Burtin et al., 134 

2008, 2009, 2014; Arnaud Burtin et al., 2011, 2013; Cornet et al., 2005; Coviello et al., 2019; 135 

Ekstrom & Stark, 2013; Kean et al., 2015; Lai et al., 2018; Marineau et al. 2019; Roth et al., 136 

2014, 2016; Schmandt et al., 2013; Tsai et al., 2012; Walter et al., 2017). In this work we apply 137 

and build on previous theoretical and observational work applying seismic observations to better 138 



understanding debris flow properties (Allstadt, 2013; Bessason et al., 2017; Coviello et al., 2019; 139 

Farin et al., 2019; Kean et al., 2015; Lai et al., 2018; Zhang et al., 2021). 140 

The primary source of seismic energy during debris flows and floods is the collision of 141 

sediment particles with the channel bed (Kean et al., 2015; Lai et al., 2018; Tsai et al., 2012). 142 

Theoretical work shows that the amplitude and frequency content of a debris flow seismic signal 143 

is controlled by a combination of flow properties, the nature of the impacts, distance from the 144 

seismic instrument, channel properties, and subsurface properties. Debris flow properties include 145 

particle size and density, flow area (length and width), flow depth, velocity, and the ratio of 146 

solids to liquid within the flow (Farin et al., 2019; Lai et al., 2018; Roth et al., 2016; Tsai et al., 147 

2012). Of these many factors, debris flow velocity, magnitude, particle size, distance from the 148 

station, and channel and subsurface properties have the greatest impact on the observed signal 149 

(Farin et al., 2019). In the following sections we discuss how we can constrain these factors to 150 

better understand post-fire debris flows, floods, and other seismic signals in post-fire 151 

environments.  152 

 153 

2 Data and Methods 154 

2.1 Seismic instruments were deployed to detect and characterize debris flows for three 155 

summers following the Museum Fire (2019, 2020, and 2021). Stations consisted of either L-22 156 

short period instruments deployed using IRIS PASSCAL quick deployment boxes or 157 

Nanometrics Meridian Compact systems. In 2019, and 2020 15 and 12 instruments were 158 

deployed, respectively, in arrays designed to record events in as many drainages as possible. All 159 

seismic data are archived at the IRIS DMC and a summary of the data and its availability for the 160 

2019 and 2020 deployments is described in (Porter et al., 2021). In 2021, efforts were scaled 161 



back with only four Nanometrics instruments deployed for the monitoring efforts. These four 162 

stations were installed along the main drainages within the burn area. We deployed two in the 163 

upper watershed, and two in the lower watershed along the main stem of the SWW (Figures 1 164 

and 2). We focus analyses on our observations of multiple debris flows in the upper watershed 165 

from the 2021 monsoon season. 166 

In addition to seismometers, a network of cameras and rain gauges were also installed 167 

within the burn area for debris flow and flood detection and early warning (Figures 1 and 2). The 168 

camera network consisted of four telemetered cameras and six non-telemetered cameras. These 169 

cameras were aimed at the drainages where flooding was considered likely and are used to 170 

corroborate our seismic observations. Three rain gauges were installed within the burn area as 171 

part of a broader telemetered rain and stream gauge network operated by the City of Flagstaff. 172 

One existing rain and stream gauge within the burn area was upgraded after the fire. This 173 

publicly-available rain gauge network consists of 37 gauges designed to identify flood risks 174 

during monsoonal storms in the Flagstaff vicinity (Schenk et al. 2021). 175 

2.2 We compare seismic data to rain gauge and radar observations oo better constrain 176 

debris flow initiation and behavior. We identify major rain events using data from four rain 177 

gauges located within the burn area. Based on observations from the 2019 and 2020 monsoon 178 

season, debris flows were deemed likely to occur during events that had 15-minute intensities 179 

greater than 30 mm or 60-minute intensities greater than 15 mm. Table 1 lists every storm that 180 

met at least one of those criteria at a minimum of one rain gauge within the burn area. Storm start 181 

times and durations are based on the timing that these thresholds are first and last exceeded by 182 

any gauge within the array. Table 1 highlights the localized nature of these convective 183 

monsoonal storms as extreme variations in rain intensity and storm total are observed over scales 184 



of hundreds of meters to a few kilometers. For example, rain gauges Museum Fire North and 185 

Museum Fire East are located ~1 km apart and, in most storms, recorded significantly different 186 

peak intensities and total rainfall amounts.  187 

Data from the National Weather Service Doppler-radar station (NEXRAD, WSR-88D) 188 

KFSX, located ~75 km SSE of Flagstaff, were integrated with gauge data to more accurately 189 

estimate the spatial extent and quantity of rainfall derived from radar data. To accomplish this, 190 

level-3 NEXRAD base reflectivity data collected at a 0.5-degree angle were downloaded and 191 

compared to rain intensities recorded at the rain gauges for each storm in 5 minute increments. A 192 

non-linear least squares fit was used to calculate the power law relationship between radar 193 

reflectivity (Z in mm6 m-3) and rainfall intensity (R in mm hr-1) by solving for ar and br in the Z-194 

R relationship equation (e.g., Marshall et al., 1947):  195 

 196 

𝑅 = #
1
𝑎!
&
(#/%!)

𝑍(#/%!)	197 

1 198 

for each storm. This was accomplished by calculating intensity at 5-minute increments at each 199 

rain gauge (R) and comparing these to radar power (Z) for the same time period and location. All 200 

variables are listed in the Supplementary Data. Using all Z and R data available, we determine ar 201 

and br values for each storm using a non-linear least squares fit for Z values less that 60 db. In 202 

this fit, data were weighted by the inverse of the distance from the center of the Museum Fire 203 

burn area to ensure that rainfall estimates were most consistent with rain gauge data in the study 204 

area. Using the calculated ar and br values for each storm, radar-derived intensities were summed 205 

to calculate rainfall totals. Rainfall amounts and intensities from radar were then compared to the 206 

timing of debris flow initiation determined from seismic data. 207 



 208 

2.4 Seismic data were processed to assess the efficacy of purpose-built arrays for 209 

detection and characterizing post-fire debris flows. Data were archived at the IRIS DMC and 210 

then downloaded for debris flows that occurred during the 2021 monsoon season. Raw data were 211 

tapered, detrended, demeaned, filtered between 1 and 99 Hz, and the instrument correction was 212 

applied to transfer the signal to ground velocity using the IRIS DMC data services. The data 213 

were then downloaded and resampled to 200 Hz. To better quantify the seismic signal associated 214 

with debris flows, we calculated signal power and short-time Fourier transforms of the processed 215 

data to generate spectrograms of the signals. Using these short-time Fourier transforms we 216 

estimate the peak frequency (fmax) and spectral centroid (fcent) over a moving window to assess 217 

how these observations and wave polarizations change based on the type of seismic source.  218 

Wave polarization characteristics were calculated using the following equations (Jones et 219 

al., 2016; Jurkevics, 1988; Vidale, 1986): 220 
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Where P is planarity, I is incidence angle, è  is the azimuth, and ëi and vij are the 230 

eigenvalues and eigenvectors for a time window, respectively. The variables i and j can equal 1, 231 

2, or 3 and represent the different eigenvalues and the three components of the eigenvectors in 232 

the coordinate frame, respectively. Planarity values can range from 1 to 0, with 1 representing a 233 

wavefield polarized into a plane and 0 representing a wavefield with motion equally distributed 234 

in three directions. Incidence angle and azimuth range from -90° to 90° and 0° to 180°, 235 

respectively, and give insight into the orientation of the first eigenvector. This provides 236 

information into the orientation of ground motion, which is useful for discerning the source of 237 

the seismic signals. 238 

 239 

2.5 We calculate synthetic models of the seismic signal power and spectral content 240 

associated with noise, rainfall, and debris flows in order to better interpret our results,. Though 241 

we do not attempt to match our observations exactly, these calculations are useful for providing 242 

context to our observations and for exploring the sensitivity of seismic data to variations in 243 

debris flow properties. 244 

Approximations of background noise, much of which was likely due to wind interacting 245 

with trees, were calculated by using recordings of the seismic signal in the hours preceding 246 

storms. We transformed these data to the frequency domain where we applied a spline 247 

interpolation to calculate frequency envelopes of these data. We then selected random 248 

amplitudes in the frequency domain between the frequency envelope minimum and maximum 249 

values. These values were then inverse Fourier transformed back to the time domain. This 250 

resulted in a pseudo-random signal with a frequency content and amplitude similar to the 251 



background noise observed at the seismic station. This signal was input as the background signal 252 

in our synthetic models to represent noise. 253 

 254 

2.6 To model rainfall, we follow a similar methodology to Bakker et al., (2022) where we 255 

assume consistent rainfall in all directions from the seismic instrument. For reasonable rain drop 256 

size of 0.1-8 mm, an impact should occur over less than 0.001 second and can be assumed as an 257 

infinite frequency source for seismic purposes. We calculate the signal power density (PSD) as a 258 

function of frequency (f) using the equation: 259 

 260 
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+

,
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 263 

Where r is the distance from the station, Jp is the impulse flux, and G(f,r) is the Green’s 264 

function.  265 

We calculate impulse flux by summing the impact forces for a distribution of raindrop 266 

sizes described by p(d) using the following equation: 267 

 268 

		𝐽* = #
4
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 271 



Where d is drop diameter, ñw is the density of water, ã described the elasticity of the 272 

impact, and v(p(d)) is the velocity of drops as a function of diameter. We assume an inelastic 273 

impact with the ground which gives us a ã value of 1. We estimated p(d) to calculate the impact 274 

rate per unit area following (Uijlenhoet & Stricker, 1999) where raindrop size distribution is a 275 

function of rain intensity. 276 

 277 
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 280 

Where Ë=4.1R-0.21, Ã is the gamma function, and â = 0.67 (Uijlenhoet & Stricker, 281 

1999). 282 

 283 

Drop velocity is calculated as v(d) = adB (Atlas & Ulbrich, 1977) with constants a and B 284 

equal to 3.778 and 0.67, respectively (Uijlenhoet & Stricker, 1999). In this relationship, we set 285 

9.5 m/s as a maximum raindrop velocity (Bakker et al., 2022). This assumption has little effect 286 

on the results, as even at high intensities where large drops are expected, few rain drops are large 287 

enough to exceed this velocity. 288 

 289 

Surface waves are expected to dominate the observed environmental signals, so we use a 290 

near-field approximation of the Rayleigh wave Green’s function (Aki & Richards, 2002; Bakker 291 

et al., 2022; Gimbert et al., 2014) which is calculated as follows: 292 

 293 
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Where f is frequency, ñ0 is the density at the surface, vc is the phase velocity, vu is the 296 

group velocity, r is the source-receiver distance, Q is the quality factor, and Njz is a unitless value 297 

that described the relative amplitudes of the three components (the z subscript indicates the 298 

vertical component). At high frequencies, where rain is observed seismically, Njz is near unity 299 

(Tsai & Atiganyanun, 2014) so we assumed a value of 1 for rain. Phase (vc) and group velocities 300 

(vu) are calculated for Rayleigh waves following (Tsai & Atiganyanun, 2014) where: 301 

 302 
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Where î describes the velocity change with depth, f0 is a reference frequency set to 1 Hz 309 

and vc0 is a reference phase velocity. 310 

 311 

2.7 Debris flow signal power was calculated using an equation to estimate seismic energy 312 

for a thin flow (Farin et al., 2019): 313 

 314 
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 317 

Where f is frequency, r is distance from the station to points along the channel, W is 318 

channel width, and G is the Green’s function defined above. 𝑅>?*@7A  is the impact rate calculated 319 

as 𝑅>?*@7A =	
8$B*(C)
C%C"

  where ux is the velocity of the flow, ϕ is fraction of the flow volume that 320 

consists of solids, p(D) is the grain size distribution, Db is the bed bump-diameter, and D is grain 321 

size. The impulse 𝐼5 is defined as 𝐼5 = (1 + 𝑒%)𝑢D𝑚𝑓5, where eb is the basal coefficient of 322 

restitution, m if the particle mass, an fj is a unitless value related to speed change during particle 323 

impact. 324 

 325 

Assuming a linear channel oriented in the x direction located at a distance r0 from the 326 

station at its closest point and the same Green’s function as above. This equation becomes: 327 

 328 
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Where 𝑦 = 	 D
!&

 and x = 0 at the closest point in the channel to the station. 331 

 332 

We follow previous work and use a log-raised cosine grain size distribution (Farin et al., 333 

2019; Tsai et al., 2012) with a standard deviation of 0.5 to calculate the grain size distribution 334 

(p(D)) of the flow, which is input for D in Equation 11.  335 



 336 

Rather than assume a constant mean grain size (Dmean) for the snout and body of the 337 

debris flow, we calculate mean grain size as a function of x by combining a decay function with 338 

a decaying sine function: 339 

 340 

𝐷?E@F = 0.05 + 0.1	𝑒2,.,#H
𝑥𝑚𝑎𝑥
𝑟0

−𝑦I + 0.2	𝑒2,.#H
𝑥𝑚𝑎𝑥
𝑟0

−𝑦I /
2𝜋𝑟0
𝑥
#
𝑥𝑚𝑎𝑥
𝑟0

− 𝑦&5	 341 

13 342 

 343 

This mean grain size equation was chosen to simulate short duration increased signal 344 

power due to pulses of coarse grain sediment moving down channel and the decay of the signal 345 

in the observed data.  346 

3 Results and Discussion 347 

3.1 Seismic records from our deployment affirm the efficacy of seismic monitoring in 348 

post-wildfire settings. These instruments can be installed rapidly following wildfires in locations 349 

that are safe from inundation (i.e. hillslopes or bedrock away from a  channel). They produce 350 

clear recording of debris flows and related phenomena regardless of lighting or weather 351 

conditions. During monsoonal storms, we commonly observe signals associated with wind, 352 

lightning, storm precipitation, and storm-induced debris flows and flood flows. Each signal is 353 

associated with distinct signal powers, frequency content, and ground motion polarizations. We 354 

show ground velocity, signal power, and spectrograms for vertical component seismic data in 355 

both our synthetic and observed data, though the signals can also be observed in the horizontal 356 

components. In analyzing these seismic signals, we can differentiate between the different 357 



sources, estimate the timing of lightning strikes, rainfall intensity, rainfall kinetic energy, and 358 

debris flow timing, size, velocity, and location.  359 

3.2 The seismic signal from wind is frequently site specific and can vary over short 360 

spatial scales due to differences in aspect, vegetation, and infrastructure (Johnson et al., 2019). 361 

To explore the site-specific wind signal, we use seismic recordings of windy days in the early 362 

summer where no precipitation occurred. Figure 3 shows the seismic signal observed on June 27, 363 

2021 when wind speeds recorded at the Flagstaff airport between 10:00 and 18:00 h, local time, 364 

ranged between 10 and 13.2 m/s with a maximum gust of 23.2 m/s. (Visual Crossing, 2022). At 365 

site E19A, located in the upper watershed, we observe wind as a low frequency signal (fmax < 20 366 

Hz) on that day. The mean signal power during that recording period was ~142 dB, which is 367 

substantially lower than signal powers associated with lighting, precipitation, and debris flows. 368 

Energy polarization of wind recordings at E19A shows variable azimuthal directions, planarity 369 

values of ~0.65, and incidence angles near horizontal. 370 

3.3 Lightning is observed as impulsive, short duration (generally < 10 s) signals that 371 

excite a wide range of frequencies (Figure 4). These are most easily observed prior to debris flow 372 

and rainfall signals. We compare seismic recordings to records of lightning strikes from National 373 

Lightning Detection Network (NLDN; Cummins & Murphy, 2009; Murphy et al., 2021; Orville, 374 

2008). Seismic detection of lightning is likely impacted by topography and atmospheric 375 

conditions. Lightning tends to have high incidence angles and variable planarity and azimuth 376 

values associated with it (Figure 4). It is distinguishable from rain due by its short duration, 377 

frequency content, and high amplitudes. 378 

3.4 During storms, we commonly observe relatively high frequency (> 50 Hz) signals due 379 

to precipitation (Figure 4). The amplitudes of these signals correlate temporally with estimates of 380 



rainfall intensity observed at nearby rain gauges. However, given the highly localized nature of 381 

monsoonal storms in the southwestern US (Table 1), if the instruments are not co-located, there 382 

is often a lag between seismic and rain gauge observations associated with storms moving across 383 

the landscape. Theoretically  the seismic signal of rain is controlled by the Green’s function, rain 384 

drop quantity, and drop size distribution (which also controls the distribution of drop velocities; 385 

Bakker et al., 2022). Peaks in seismic signal power correlate well with increases in rainfall 386 

intensity (R) at nearby rain gauges. For station E19A, polarization analysis shows that rainfall 387 

has high incidence angles, moderate (~0.5) planarity, and variable azimuths, which is consistent 388 

with measurements of rainfall recorded at other stations. The high frequency content of the 389 

signal is due to the proximity of rainfall to the station. Work by Bakker et al. (2022), shows that, 390 

due to signal attenuation, over half of the energy observed at a station due to rainfall come from 391 

raindrops within 10 m of the station and 90% from drops within 25 m. 392 

3.5. Debris flows are observed as high amplitude signals that may excite a range of 393 

frequencies (Figures 5 & 6). The signal power at a station increases rapidly as the debris flow 394 

approaches the station and then gradually decreases as the flow velocity and grain size decrease 395 

over time. Consistent with theoretical work, the frequency content of these flows appears to be 396 

controlled by the distance between the station and the debris flow and subsurface properties (i.e., 397 

the Green’s function; Farin et al., 2019; Lai et al., 2018). We observe a decrease in seismic 398 

frequency (fmax and fcent) as the snout of the flow first approaches the station followed by an 399 

increase, which is consistent with a signal frequency content dominated by attenuation (Farin et 400 

al., 2019; Lai et al., 2018; Tsai et al., 2012). The initial decrease in fmax and fcent is due to the 401 

increased contribution of the debris flow to the seismic signal relative to rain, wind, and other 402 

background noise. Once the debris flow is the dominant signal, the increase in frequency content 403 



is due to the debris flow snout approaching the station. Within individual debris flows, we 404 

observe multiple changes in frequency content and signal power over short periods of time. 405 

Values measured for fmax and fcent often produce a sawtooth pattern. These changes in amplitude 406 

and in frequency content are likely due to pulses of coarse-grained sediments moving through the 407 

system and approaching the seismometer. The peaks in amplitude and fmax occur when coarse 408 

sediment is in closest proximity to the station.  409 

In Figures 5 and 6 we show records of two storms and associated debris flows recorded at 410 

station E19A, located in the steeper upper watershed (Figure 1). This station was installed ~20 m 411 

due north of a drainage that was deemed likely to experience debris flows. As an example of the 412 

data recorded at this station, on July 16, 2021 we observed two separate debris flows in a short 413 

period between 13:00 and 14:00 h local time. Prior to the flows, we observe several lightning 414 

strikes (Figure 4) followed by a signal we associate with rainfall. Rainfall intensity at the 415 

Museum Fire north gauge peaked at ~13:14, which coincides temporally with a peak in high 416 

frequency seismic energy (> 50 Hz) at the station. At 13:16 a low frequency signal (< 20 Hz) is 417 

first recorded that is likely caused by flow in the channel. There is also a higher frequency signal 418 

(> 30 Hz) observed at this time from an ambiguous source. The energy that produced this signal 419 

may have been caused by sediment transport in the channel, however we would not expect a 420 

“gap” in energy at ~25 Hz or an fmax with a higher frequency than observed when the debris flow 421 

snout is in closest proximity to the station if that were the case. Alternately, this signal was 422 

possibly caused by sheet flow on the hillslope near the station, which would result in a higher 423 

frequency signal due to the proximity of the station to the flow.  424 

The low frequency signal, first observed at 13:16, begins increasing in amplitude and 425 

frequency at ~13:17 (Figure 4). This is likely due to the snout of the debris flow approaching the 426 



station. This signal peaks in amplitude just after 13:18, which is when the snout reaches its 427 

closest point in the channel to the station. Following the initial debris flow snout signal, we 428 

observe multiple high amplitude pulses between 13:18 and 13:24. These signals produce a 429 

sawtooth pattern in observed fmax and fcent values. These power and frequency patterns are likely 430 

due to multiple pulses of coarse sediment, separated by finer grained flow, traveling down the 431 

channel. After the initial high amplitude signal, the overall amplitude of the debris flow signal 432 

power decreases, which is likely due to decreases in discharge, velocity, and grain size. The 433 

debris flow produces the largest signal power at the station until ~13:27 when an increase in 434 

rainfall intensity occurs. This change in signal source is inferred based on a change in frequency 435 

content and energy polarization that occurred at that time. Rainfall is the highest amplitude 436 

signal until ~13:29 when a second debris flow is observed in the seismic data. The signal from 437 

this second flow is similar to the first. It exhibits increased signal power initially followed by 438 

multiple pulses of increased amplitudes and sawtooth changes in fmax and fcent. After peaking, this 439 

signal gradually decays back to baseline (pre-storm) values.  440 

On August 17, 2021, we observe a similar signal to the July 16th events (Figure 6) at 441 

station E19A, demonstrating the consistency of debris flow signal at the station. For this August 442 

debris flow, a remote game camera installed ~90 meters upstream recorded sediment transport 443 

(Figures 6b and 6c). Photos were taken at 5 minutes intervals with an uncertainty of ~1 minute 444 

on the timestamp. These images capture high intensity rainfall and sheet flow prior to the debris 445 

flow which is observed in the second image. Due to the uncertainty on the game photo timings 446 

and the difference in locations, we cannot precisely tie the photos directly to seismic 447 

observations. However, based on these timings, it seems probable we are observing sheet flow or 448 



similar in the initial higher frequency energy followed by sediment pulses (including downed 449 

trees) during the main flow. 450 

Based on an analysis of multiple events recorded at station E19A, debris flows at this 451 

station are characterized by a low incidence angle, a high planarity, and an azimuth measurement 452 

oriented roughly NS. This NS azimuth is the direction from the station to the nearest point in the 453 

channel. Polarization measurements at this station are more-consistent than those observed at 454 

other stations, but in general, we observe consistent azimuths, moderate planarities and low 455 

incidence angles in debris flow signals regardless of the station.  456 

3.6 Using the equations in section 2, we generate synthetic models of signal power and 457 

spectral content for sources that include background noise, rainfall, and debris flow signals. For 458 

the Green’s function, inputs were selected to match the frequency content of rain and the debris 459 

flows recorded at station E19A on July 16th (Figure 5). In our synthetic models (Figure 7) we 460 

reproduce the initial high frequency signal associated with rain using a rainfall intensity of 100 461 

mm/hr for the first 450 seconds of the signal. As the modeled debris flow approaches the station, 462 

we observe a decrease in fmax and fcent which occurs when the debris flow becomes the dominant 463 

signal. The subsequent increase in fmax and fcent and the sawtooth patterns observed in the data are 464 

modeled using a sine function (Equation 13) to represent pulses of increased sediment size 465 

moving down the channel. As this sine function decays, the fmax value becomes more stable and 466 

is consistent with the strongest seismic signal originating from the closest point in the channel to 467 

the seismometer. Finally, the decay in signal amplitude is produced by decreasing the mean grain 468 

size. In reality, this is a simplification of the process as the decay in amplitude observed in our 469 

recorded data is likely due to decreases in mean grain size, flow velocity, and flow volume.  470 



 Results from this work confirm the validity of theoretical models for understanding post-471 

wildfire debris flow behavior. Observed and model results are consistent with signal power 472 

correlating with the velocity and the grain size of a flow (Dmean). The highest amplitude observed 473 

in most flows corresponds to the snout passing by the station. Additional high-amplitude peaks 474 

likely are indicative of sediment pulses within the flow passing by the station. The peak in signal 475 

power within these pulses occurs when the coarse sediment is in closest proximity to the station. 476 

The frequency content of debris flow is primarily controlled by the distance of the flow from the 477 

station. However, this frequency content can also provide insight into the behavior of a flow. The 478 

sawtooth pattern in frequency content (fmax and fcent ) observed during debris flow events is likely 479 

due to coarse sediment pulses moving down the channel. Pulses with large grain sizes produce 480 

higher amplitude seismic signals, so even when they are farther from the station than smaller-481 

grain sized flows, they still may produce a large enough signal to lower the fmax and fcent 482 

measurements. For a long flow with consistent grain size distribution and velocity, we would 483 

expect a signal with consistent frequency content. This is often observed later in flows when the 484 

fmax measurements become fairly consistent, likely indicating that the debris flow is no longer 485 

moving downslope in pulses or has evolved into a finer-grained flow. The fcent measurement 486 

continues to change later in flows as the grain size decreases and there are less contributions 487 

from sediment transport further away in the channel to the recorded signal.  488 

 3.7 Debris flow velocity can be estimated by examining the frequency content of the 489 

seismic signal or the cross-correlation of signals between stations based on equation 11. At 490 

station E19A, we estimate velocities of the debris flow’s snout following Lai et al. (2018) who 491 

show that debris flow frequency content is controlled by the Green’s function and source-flow 492 

distance. To accomplish this, we calculate dP/df = 0 for Equation 11 and solve for r using fmax as 493 



the input frequency. We then use the Pythagorean theorem to calculate the along-channel x 494 

location of the front of the flow, with r as the hypotenuse and r0 and x as the legs. In this 495 

calculation, x = 0 at the point in the channel closest to the station. To calculate smoothed fmax 496 

values from our data, we use least squares fit to the observed fmax values as the flow approaches 497 

the station. The linear fit is used for simplicity in both estimating fmax and velocity. Using this 498 

approach, we estimate a velocity of ~6 m/s for the first debris flow that occurred on July 16th 499 

(Figure 8). While we apply this technique to calculate the velocity of the initial debris flow 500 

snout, this also can be applied to calculate the velocity of individual sediment pulses which can 501 

be used to estimate changes in flow velocity over time. 502 

The four stations used during the 2021 deployment did not allow us to measure debris 503 

flow velocities using cross correlation as we did not have multiple stations within any drainage 504 

in the upper watershed. However, we show an example from lower in the watershed downstream 505 

of where a majority of the coarse material was deposited (Figure 9). We normalize and then 506 

cross correlate the signal between stations COCB and CFSG, which were located ~1.2 km from 507 

each other along the channel (Figure 9). The lag time of the cross correlations for an event on 508 

July 13, 2021 was 360 seconds yielding an estimated velocity of 3.3 m/s for the flood in that 509 

reach of the channel. Applying this to multiple events over the summer led to velocity estimates 510 

between 2.6 m/s and 4.1 m/s for the reach. 511 

 3.8 Constraining the Green’s function at a station can present a challenge, especially in 512 

post-wildfire settings where stations are frequently deployed on steep unstable slopes and access 513 

may be limited due to hazards to personnel. However, if the rainfall rate is well-constrained by 514 

rain gauge data and the drop size distribution can be estimated, the frequency content and power 515 

of the rainfall seismic signal could provide a mechanism for calculating local high-frequency 516 



Green’s functions. Future work will explore methodologies for better calculating these Green’s 517 

functions using rainfall data. Given that debris flows can alter the subsurface through scouring 518 

and deposition, an analysis of the rainfall may provide a mechanism for assessing these changes. 519 

Additionally, examining the frequency content of a debris flow signal can provide insight into 520 

the Green’s function. The highest frequency fmax value associated with the debris flow will be 521 

observed when the debris flow is at the point in the channel that is in closest proximity to the 522 

station. If the distance between the station and the channel is known, this value can then be used 523 

as a constraint on the Green’s function values. Though we do not attempt to replicate this 524 

exactly, the input values for our forward model were selected to roughly match the signals 525 

produced by rainfall and debris flow at station E19A.  526 

 3.9 Initial results indicate that wave polarization may be a good differentiator between 527 

seismic sources in post-fire settings. At station E19A, the signal azimuth, calculated using 528 

equation 4, is oriented towards the closest point in the channel to the station during debris flows. 529 

The signal associated with debris flows exhibits a higher planarity than other environmental 530 

events (i.e. wind, rain, lightning, etc.). The incidence angle is high during rain and low during 531 

debris flows, which may be related to the frequency content of the two signals. Work by (Tsai & 532 

Atiganyanun, 2014) shows that Njz approaches unity at high frequencies while the amplitudes of 533 

horizontal components are diminished. Lower frequency surface waves have more energy on the 534 

horizontal components and less on the vertical. This is consistent with what we observe with rain 535 

(f > 50 Hz) and debris flows (f > 5 Hz). 536 

 3.10 Comparison to earthquakes and other energy sources affirms that debris flows 537 

produce a signal that is easily distinguishable from other sources of seismic energy even in sites 538 

hastily installed in suboptimal condition (steep slopes, shallow burial etc.). Over the course of 539 



our monitoring, debris flows produce the highest amplitude signal observed in the 1-50 Hz 540 

frequency range. Additionally, the signal is much more emergent and longer duration than a 541 

typical earthquake signal. Simply measuring the short-term average to long-term energy averages 542 

works well for detecting events with the thresholds set depending on the size of the drainage and 543 

the flood/debris flow risk to downstream communities. If installed and telemetered, these 544 

instruments would complement existing monitoring which is frequently done with rain and 545 

stream gauges, cameras, and non-vented pressure transducers that, incidentally, are often lost or 546 

destroyed when a debris flow passes. 547 

4 Conclusions 548 

In this study we show data and interpretations for storms and debris flows recorded by 549 

seismic equipment in a post-fire setting. Results from this work affirm the validity of theoretical 550 

models of debris flow seismic energy generation and their applicability to quantifying debris 551 

flow characteristics in post-fire environments. Further, this work demonstrates the applicability 552 

of seismic monitoring for debris flow detection in this setting. Using seismic data, we are able to 553 

detect and distinguish seismic energy due to wind, lightning, rainfall, and debris flows/floods, 554 

demonstrating the efficacy of seismic data for event characterization and flood detection and 555 

early warning in these settings. Future work will build on this effort and better constrain and 556 

characterize post-wildfire debris flow behavior using seismic data. 557 
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Figure 1. Location map of the study area showing the burn area (shaded gray), seismic station 578 

locations, rain gauges, camera locations, drainages, and watershed boundaries. Colors indicate 579 

slopes.  580 

Figure 2. Burn severity map for the Museum Fire (Museum Fire BAER Team, 2019; Figure 1). 581 

Shaded area denotes areas with moderate to high severity burn designations and slopes greater 582 

than 22° where debris flows are most likely. 583 

Figure 3. Seismic recording of wind at station E19A. Panel a) shows ground velocity, storm 584 

rainfall total and 15-minute rainfall intensity (no rain accord during this time period). Panel b) 585 

shows decibel signal power. Panel c) is a spectrogram of the seismic velocity, black diamonds 586 

indicate the frequency with the maximum energy (fmax). Panel d) shows the spectral centroid 587 

(fcent), color indicates the total signal power. Panel e) show the planarity, the absolute value of 588 

the cosine of incidence angle (0 is horizontal and 1 is vertical), and the normalized azimuth of 589 

the signal between 0 to 180°m where 0 is equal to 0° (due North) and 1 is equal to 180° (due 590 

south). 591 

Figure 4. Seismic recording of lightning at station E19A. Panels are the same as Figure 3, except 592 

the amplitude scale in panel a) vertical black lines in panels b) and the timing of lightning strikes 593 

from the National Lightning Detection Network (NLDN) occurring within 12 km of the station 594 



in panel c). Timings are adjusted from the NLDN timing to the estimated arrival time of thunder 595 

at the station using a velocity of 330 m/s. 596 

Figure 5. Seismic recording of debris flows at station E19A on July 16, 2021. Panels are the 597 

same as Figure 3, except for amplitude scale in panel a). 598 

Figure 6. Seismic recording of debris flow at station E19A on August 21, 2021. Top panels are 599 

the same as Figure 3, except panel a) amplitude scale. Panels f) and g) show game camera 600 

images of the channel before and during a debris flow. Images were taken at 12:14 and 12:19 601 

local time, respectively. 602 

Figure 7. Spectrogram for synthetic debris flow model. Blue circle are spectral centroid (fcent), 603 

black diamonds and the frequency with the maximum energy (fmax). 604 

Figure 8. Panel a) changes in fmax over time beginning at 13:17:48 on July 16, 2022 at station 605 

E19A. Red line is least-squares fit to the data. Panel b) along channel distance of the debris flow 606 

snout calculated from fmax least squares fit in panel a). Red line is fit to the data, slope of the red 607 

line is the velocity of the debris flow snout ~5.96 m/s. 608 

Figure 9. Normalized signal power recorded at stations COCB and CFSG for an event on July 609 

13, 2021. Cross correlating the signals results in a lag of 360 seconds between the two stations. 610 

Table 1. Timing, Estimated Flow, Total Rain, Peak Intensity, Storm Direction and location, Peak 611 

Flow at lower drainage for storms from 2019 to 2021. 612 

Supplementary Table 1. List of symbols used in equations. 613 
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   23-Jul-2019 15:50:00    00:15:03 N/A N/A N/A N/A N/A N/A N/A N/A N/A 45.45 13.66 11.68
   28-Aug-2019 13:26:00    01:10:30 17.12 5.14 5.15 12.20 5.85 5.88 27.96 22.33 24.82 36.11 20.11 20.20
   24-Jul-2020 14:36:00    00:59:29 18.07 9.25 9.25 49.19 17.85 17.85 24.09 12.01 12.00 29.02 10.99 10.99
   30-Jun-2021 14:36:00    00:14:13 6.57 4.83 1.55 13.28 6.86 3.32 24.45 12.20 6.11 36.78 13.97 9.19
   13-Jul-2021 14:16:00    01:06:46 81.28 39.12 39.13 105.06 44.46 45.26 63.80 24.85 25.05 29.72 20.51 21.03
   14-Jul-2021 13:19:00    01:30:42 33.80 12.82 13.14 37.74 15.41 15.99 39.75 16.16 16.25 72.86 25.80 26.15
   16-Jul-2021 12:32:00    01:21:59 50.48 18.17 18.17 63.33 35.08 35.09 40.71 19.85 20.54 38.40 16.24 16.30
   21-Jul-2021 12:16:00    00:59:05 62.31 31.01 31.01 1.39 1.02 0.38 0.00 0.00 0.00 23.93 11.08 11.08
   25-Jul-2021 16:00:00    00:21:22 35.36 9.34 9.22 25.24 7.16 6.43 16.64 4.98 4.32 55.90 13.97 13.97
   17-Aug-2021 12:04:00    01:20:15 116.68 60.92 61.10 28.88 18.77 20.75 120.83 41.34 44.96 113.79 77.39 81.22
*Storm totals in mm; Intensities in mm/hr
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