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Abstract

Forecasting of wastewater treatment plant inflow dynamics constitutes an enabler tech-
nology for wastewater treatment process optimization using model predictive control.
However, accurate inflow prediction is still challenging, especially for strong rainfall events,
where complex system dynamics and missing information on future rainfall represent lim-
iting factors. We propose a seasonal probabilistic time series model for modelling the short-
term wastewater inflow accurately while providing quantification of forecast uncertainty.
To ensure suitability for practical implementation, the unconstrained parameters of the
predictive distribution are modelled as linear functions of the input variables in the frame-
work of Generalized Additive Models for Location Scale and Shape. Non-linear effects

are approximated by Rectified Linear Units, accounting for buffering within the sewer
network and flow-dependent catchment response time. In addition to water level mea-
surements from within the sewer network and rain rate measurements, rain forecasts are
incorporated as exogenous regressors, where historical rain forecasts are used for model
calibration. The model performance is evaluated on historical data from a German wastew-
ater treatment plant using deterministic and probabilistic scoring rules. We benchmark
against an autoregressive time series model and a long short-term memory artificial neu-
ral network. Our results show that the proposed model unites the benefits of high pre-
diction accuracy of the neural network and enhanced intelligibility of the autoregressive
model, but accurate real-time rain forecasts are mandatory for successful real-world im-
plementation.

Plain Language Summary

The wastewater treatment process accounts for a large proportion of a wastewa-
ter treatment plant’s energy consumption. Here, an accurate prediction of future wastew-
ater inflow is an important tool for the optimization of energy efficiency. The potential
for optimization is particularly large for rain events. However, especially in such situ-
ations, inflow prediction is most challenging. We developed a specialized computer al-
gorithm for inflow prediction that utilizes weather forecasts in order to produce reliable
inflow predictions in such situations. The developed algorithm is a machine learning model
that learns the knowledge needed to perform accurate predictions from historical data.
Although capable machine learning models are generally complex, we aimed to design
the algorithm in such a way that it is understandable and hence trustworthy for prac-
titioners so that it can easily be used in real-world application. We tested the algorithm
and our results show that it is possible to generate precise wastewater inflow predictions,
but very accurate and quickly available weather forecasts are mandatory, which is an in-
teresting objective for further research.

1 Introduction

Wastewater inflow rate and composition represent central quantities for the oper-
ative control of wastewater treatment plants (WTP) (Newhart et al., 2019; Robecke, 2015;
Leitao et al., 2006). In particular, the biological treatment process is sensitive to the in-
flow dynamics. The oxygen aeration rate in aerobic treatment constitutes a central con-
trol parameter that must be adjusted hours in advance of strong changes in inflow dy-
namics (Newhart et al., 2019; Makinia & Zaborowska, 2020). However, the aeration pro-
cess is the dominant energy consumer in a WTP (Drewnowski et al., 2019). Thus, op-
erating with safe margins to account for quick changes in inflow dynamics while ensur-
ing compliance with legal limits of WTP outflow pollutant concentration leads to non-
optimal energy efficiency (Bodik & Kubaska, 2013; Z. Li et al., 2019), particularly for
strong rain events that result in a vast increase in WTP inflow rate (inflow) with a lead-
ing spike of pollutant concentration (first-flux phenomena). Here, accurate predictions
of future inflow characteristics play a crucial role as input quantities for model predic-



tive control schemes and decision-making processes. Thus, these predictions contribute
to enhancing the efficiency of WTP operations and also support the enhancement of cli-
mate resilience with respect to the increased risk of heavy precipitation events associ-
ated with climate change (D. Zhang et al., 2018; Q. Zhang et al., 2019; Z. Li et al., 2019;
Stentoft et al., 2019; Nissen & Ulbrich, 2017). Furthermore, active sewer network con-
trol utilizing forecasted flow properties can be employed to optimize the usage of a net-
work’s buffering capacity to prevent overflows and WTP overloads and hence enhance
wastewater system resilience (D. Zhang et al., 2018; Seggelke et al., 2013; Garofalo et

al., 2017; Svensen et al., 2021).

However, it has been shown that predicting inflow dynamics is particularly chal-
lenging for strong rainfall events (Pedersen et al., 2016). Whereas inflow dynamics are
dominated by diurnal seasonality in case of dry weather (Leitao et al., 2006; Q. Zhang
et al., 2019), exogenous information on future rain is required for successful inflow pre-
diction for strong rain events with a sufficiently long forecast horizon (Pedersen et al.,
2016; Q. Zhang et al., 2019). Yet, utilizing exogenous information for inflow prediction
is challenging due to the complex hydrodynamical properties of wastewater sewer net-
works (Q. Zhang et al., 2019).

Regarding suitability for implementation into existing WTP control structures, in-
flow forecasting methodology is subject to further constraints in addition to the chal-
lenges posed by complex system dynamics: Low computational demand is necessary in
order to generate predictions quickly enough for real-time control. In addition, the abil-
ity to quantify forecast uncertainty represents an important aspect for sophisticated decision-
making (Stentoft et al., 2019; Svensen et al., 2021), rendering probabilistic forecast mod-
els favourable over deterministic methods. Furthermore, it has been suggested in per-
sonal communication with practitioners and in the literature (Vaughan & Wallach, 2020)
that black-box-models like artificial neural networks face a generally rejective attitude
from practitioners due to security concerns for critical infrastructure. Thus, interpretabil-
ity and intelligibility represent important aspects to foster trust in new methodology and
hence facilitate practical utilization. Finally, applicability to different wastewater sewer
networks without manual calibration and re-modelling to account for the specific net-
work structure is advantageous due to low cost and time consumption.

Hydrodynamic, machine learning and hybrid approaches for inflow rate and com-
position prediction exist in the literature. Machine learning models utilize algorithms
to automatically learn patterns and relationships in data, allowing for efficient and scal-
able modeling of complex dynamics without relying on explicit expert knowledge (Bishop,
2006) and are therefore a current topic of research for intraday inflow forecasting. Used
input variables vary throughout the literature with a focus on autoregressive properties
of inflow and rain measurements: Zhou et al. (2019) implemented a random forest model
for generating probabilistic forecasts of daily inflow using climate data as exogenous re-
gressors, where historical measurements were used as oracles substituting climate fore-
casts. D. Zhang et al. (2018) used a Long Short-Term Memory (LSTM) to predict fu-
ture inflow for load-balancing between multiple WTPs and improved buffering capac-
ity usage within the sewer network. Pedersen et al. (2016) demonstrated the utilization
of a simple rainfall-runoff model (lumped reservoir model) for predicting the WTP in-
flow rate’s response on rainfall events, proposing a Bayesian update of estimated model
parameters, but did not incorporate rain forecasts. Heinonen et al. (2013) utilized rain
radar forecasts as input for a hydraulic model to predict intraday WTP inflow. Wang
et al. (2019) combined Convolutional artificial neural networks (ANN) and LSTM ANN
in order to forecast WTP inflow chemical oxygen demand (COD) from temperature, pH,
NH3-N, inflow rate and COD data. El Ghazouli et al. (2021) predicted the inflow us-
ing an autoregressive ANN with real-time and predicted water consumption as well as
infiltration flows as exogenous variables. Langeveld et al. (2017) developed an empir-
ical model for inflow quality prediction, modelling different water quality processes for



individual inflow dynamics regimes. F. Li and Vanrolleghem (2022) utilized a multi-
objective genetic algorithm to train an LSTM network with respect to influent average
behaviour and variability.

In this article, we propose an inflow forecasting model designed with the research
goal to develop a machine learning method for probabilistic intra-day inflow forecast-
ing with a forecast horizon of 2.5 hours and a focus on rain events . Here, measurement
data from within the sewer network alongside rain forecast data shall be utilized while
aiming to provide a balance of intelligibility and prediction accuracy suitable for prac-
tical implementation. Furthermore, the method should be desgined not to require de-
tailed knowledge of the particular sewer system to which it is applied or reliance on hy-
drodynamical simulations. Instead, it should generalize to allow coupling with physically-
based methods as model inputs, such as a hydraulic surface-runoff model. This flexibil-
ity is intended to enhance the model’s applicability across various scenarios while main-
taining its core data-driven characteristics. We state the following major contributions
of this research:

1. To our knowledge, it is the first work on a distributional machine learning inflow
forecasting model that is trained on historical rain forecasts to facilitate forecast-
ing of intraday flow dynamics after rain events.

2. Due to the probabilistic approach, the generated forecasts yield detailed informa-
tion on forecast uncertainty from the full predictive distribution.

3. We demonstrate that, by modelling the unconstrained distribution parameters as
linear functions of the input variables, the non-linear relationships in the data re-
sulting from the system dynamics after rain events can be approximated so well
that the inflow forecast uncertainty is dominated by the rain forecast uncertainty.

4. The proposed model exhibits good adaptability to different wastewater networks
without extensive expert knowledge because the central hyperparameters are tun-
able based on data statistics and automated parameter search. Furthermore, the
utilization of LASSO regularization improves robustness against model overspec-
ification.

The model was trained with and evaluated on data from a combined sewer network
located in the district Weiden of Cologne, Germany, covering a relatively small catch-
ment area of 1.01x107 m? with approximately 52300 residents and a population equiv-
alent (PE) of approximately 80000 PE. The network’s layout is depicted in Figure 1. The
remainder of the paper is organized as follows: Important system properties considered
for the model design and the developed forecasting model are described in Section 2. The
used dataset is described in Section 3. Experimental results are given in Section 4 and
a concluding discussion is provided in Section 5.

2 Materials and Methods

We propose a machine learning model for generating distributional inflow forecasts
from time series data. The model, which is described in Section 2.2, was designed to ap-
proximate non-linear relationships arising from the system’s physical properties that are
described in Section 2.1. Our procedure for generating forecasts using our model spec-
ification (equation 2) consisted of the following steps:

1. Model inputs were measured inflow, measured water levels, measured rain rates
and future rain rates (rain forecasts or, in part of our evaluation, historical rain
rates as oracles).

2. The model hyperparameters were tuned as described in Section 2.3.2 by iterative
re-calibration on the training data in order to adjust the model specification to
the data of the investigated sewer network. Optionally, knowledge of system prop-
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Figure 1. Layout of the analyzed sewer network, highlighting water level sensors (orange) and

the rain gauge (blue) employed as exogenous regressors in our model.

erties can be induced in this step by explicitly defining nodes of linear splines for
individual inputs where behavior changes are expected. We performed the tun-
ing on a point-forecast model for computional performance and used the best-fit
model specification and coefficients as initial values for the distributional forecast
model training the next step.

3. The model coefficients were estimated using the training data as described in Sec-
tion 2.3.1.

4. Predictions on the test dataset were generated using the calibrated distributional
forecast model.

The sewer network’s properties we considered relevant for the model design are described
in Section 2.1 and the model is specified in Section 2.2.

2.1 Properties of Considered Sewer Network

The proposed model was designed to address two dominant characteristics of sewer
networks that simple autoregressive models struggle to capture because of the emergence
of non-linear effects. These characteristics include the wastewater buffering capacity within
the sewer network and the relationship between flow velocity and flow rate.

Buffering by storage elements represents a common design principle of sewer net-
works in order to alleviate the sewer network’s limited hydraulic capacity in case of strong
rainfall events (Butler et al., 2018). Hence, a strong increase in network inflow does not
result in an equivalent increase in future WTP inflow. In the case of the studied sewer
network, the inflow rate is limited to approximately 7001/s after a rain event and remains
at this level until the buffering elements are depleted. A storage tank sewer (tank sewer)
(Butler et al., 2018) located upstream from the WTP was identified as an important el-
ement in the studied sewer network because its state of depletion was expected to pro-



vide valuable information on the expected time of inflow decrease after a rain event. In
the remainder of this paper, the three phases of rising inflow, near-constant inflow near
the hydraulic capacity limit and the following decline of inflow are referred as rise, high
and decline.

The dependency of the flow velocity V' on the flow rate follows from the Manning
equation (Hager, 2010) that delivers a first-order approximation for the open surface flow
regime. In particular, the hydraulic radius contributes to V' and depends on the water
level and the pipe cross-section (Hager, 2010). Accordingly, the catchment response time
(Giani et al., 2021) and hence the temporal dependency structure between measurements
in the network and future inflow are not constant but depend on the system’s hydrody-
namic state.

2.2 Model

In this section, the time series data from one input data source (e.g. one water level
sensor location or rain station) is referred as measurement variable whereas derived quan-
tities from the input data are referred as features. The matrix X corresponds to the mea-
sured data, where the column vectors are the individual measurement variables’ time se-
ries. Hence, a measured value of measurement variable v at time ¢ is referred as X [v, t].

We propose a Generalized Additive Model for Location, Scale and Shape (GAMLSS)
(Stasinopoulos & Rigby, 2008) for probabilistic inflow prediction. Within the GAMLSS
framework, the response variable’s probability density function (PDF) f(Y|x,) is con-
ditioned on a vector x, € RY» of N, realized explanatory features. With a PDF with
Np parameters indexed by parameter index p € {1, ..., Np}, each PDF parameter O,
is a sum of J, non-parametric functions S, ; and a linear component with parameter vec-
tor Bp, mapped to the PDF’s domain using a monotonic link function g,:
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The proposed model only incorporates the linear component in favour of model inter-
pretability and computational efficiency. Hence .S, ; simply represent the identity and
are therefore omitted. Our formulation of x, incorporates features corresponding to the
autoregressive structure of the data generating process and seasonal effects. We designed
the autoregressive features to approximate the non-linear effects described in Section 2.1
and to model interactions between measurement variables. The resulting expression for
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Here, the first term corresponds to the autoregressive component and the second term
represents the seasonal component. The coefficients 877, , ~and 37°, ., ; were estimated
from the data in the model training process, as described in Section 2.3. V,Ly, and Tp,
are sets of measurement variables, lags and thresholds. S,, S,, and S; are seasonal in-
dices indicating the phase of annual, weekly and diurnal seasonality with correspond-
ing indicator functions 1,,(¢t) and 14(¢) to express seasonal dummies (Hylleberg et al.,
1993). ¢, (t) denotes B-Spline (Ziel et al., 2016) basis functions for modelling a smooth
change of diurnal and weekly patterns throughout the year. The individual components

of equation 2 are motivated and explained further in the following.
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Figure 2. Illustration of linear regression without (a) and with (b) approximation of non-
linear relationship by linear splines using five clipped versions of the explanatory variable with
evenly spaced thresholds as regressors. The shown data is the measured WTP inflow versus a
water level measurement from within the sewer network from 15 minutes in the past that is also

depicted in figure 5.

2.2.1 Autoregressive component

As described in Section 2.1, measurements of rain and water levels provide infor-
mation on the future inflow. The according temporal dependency structure was mod-
elled as an autoregressive process (Hamilton, 2020): g, (©,) at time ¢ was formulated
as linear combination of past realizations of the input variables with coefficients 3y, , ;:
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Here, L, , denotes sets of lags determining which past time steps of a each variable v
are used.

2.2.2 Non-linear effects

Non-linear effects of individual lagged variables were modelled by piecewise linear
approximation using Rectified Linear Units (ReLU) (Ziel et al., 2016; Nair & Hinton,
2010). A set of thresholds T}, , was defined for each PDF parameter and variable, divid-
ing the variable’s domain into intervals contributing with individual slopes. The accord-
ing features were constructed as clipped values, max (X [v,t — ], T), for each threshold
7 € T . In order to include completely linear behaviour, the threshold 7 = —oo was
included. The choice of appropriate thresholds was part of the hyperparameter tuning
procedure described in Section 2.3. The resulting auto-regressive term from equation 3
with linear approximation for each considered lag of each measurement variable is:

9 (0p) =D > > Bpuwarmin(X[o,t—1],7), (4)
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The approximation method is illustrated in Figure 2 for the rain event data from Fig-

ure 5. By modelling the non-linear effects of each lag, changes of the autoregressive de-
pendency structure throughout different regimes of the network state, in particular the
buffering and the flow-dependent dwell-time (see Section 2.1), can be approximated. As

a simplified example, consider a level measurement, where a higher level will cause a more
immediate effect on inflow than a lower level due to the shorter catchment response time.
In this case, the coefficient 3, . - would be estimated significantly differently from zero



for accordingly large 7 at short lags, whereas a value near zero would be found for the
same 7 at long lags. However, it is important to note that the actual relations between
coefficients in the trained model are more complex in general, for example encoding deriva-
tives through finite differences.

2.2.3 Seasonal effects

As described in Section 3.1, the inflow exhibited diurnal patterns varying through-
out the week and the year. The diurnal and weekly patterns were modelled using sea-
sonal dummies as artificial features with value 1 for each time ¢ corresponding to the rep-
resented daytime and weekday and 0 else. As components of the feature vector, these
seasonal dummies represent a time-dependent intercept by multiplication with their cor-
responding model coefficients. With the data frequency of 15 min yielding 96 phases a
day and three modelled diurnal patterns (working day, Saturday, Sunday), 96«3 = 288
seasonal dummies were incorporated for one annual season.

As described in Section 3.1, the diurnal patterns varied throughout the year. The
according annual seasonality was modelled using separate diurnal and weekly seasonal
dummies for a set S, of four annual seasons. By weighting the resulting 96 - 3 - 4 sea-
sonal dummies with quadratic B-Spline (Ziel et al., 2016) basis functions ¢, (¢) for each
annual season a € S,, a smooth periodic transition between the annual seasons’ pat-
terns is realized. The resulting seasonal component of transformed PDF parameter g, (0,)
is:

=3 3 Y Buwade () Lu(®)La(t) (5)
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Here, the seasonal dummies are expressed through a product of indicator functions 1,,(t)14(t),
which is one if ¢ corresponds to the diurnal phase d and the weekly phase w.

2.2.4 Rain cumulation and interaction

Due to the system’s hydrodynamic properties, we expected the short-term accu-
mulated rain rate values to influence inflow dynamics. Hence, for the measured and fore-
casted rain rate, the sum of the NV previous values was incorporated as artificial mea-
surement variable, where N = 6 was found to provide the best fit with respect to the
Bayesian information criterion (BIC), which is described in Section 2.3.

The effect of rain was expected to depend on the current inflow situation due to
the system’s limited hydraulic capacity. In particular, the effect of rain was expected to
decrease for high inflow rates. This was modelled as a two-way interaction term of in-
flow at ¢t — 1 and rain rate by using the product of the two variables as artificial mea-
surement variable. In experiments where rain forecasts were used instead of rain oracles,
addition of two-way interaction of all rain forecast steps further improved the forecast.
The piecewise linear approximation described in Section 2.2.2 enabled handling non-linear
effects of the interaction.

2.2.5 Choice of PDF and link functions

As PDF, Johnson’s SU (JSU) (Johnson, 1949) distribution was chosen due to its
versatility for modeling non-normally distributed data, while still providing an intuitive
parameterization:
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The JSU represents a transformation of a normal distribution with standard deviation
A > 0 and mean £. It provides parameters v and § > 0 to control the skewness and
kurtosis.

The following link functions were found to provide favourable results in our exper-

iments:
gl () = 3(1—0-5) (7)
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Here, Equations 7 and 9 represent shifted and scaled sigmoid functions (Han & Moraga,
1995) and equation 10 corresponds to the Softplus as implemented in the PyTorch frame-
work (Paszke et al., 2019).

2.3 Calibration and Hyperparameter Tuning

Training the model given in equation 2 involved the estimation of the coefficients

se ar I 3
aw.ds Bpw.1, - from training data and the choice of hyperparameters.

2.3.1 Estimation of Model Coefficients

The coefficient estimation process involved two consecutive steps to facilitate reg-
ularization while limiting computational demands during the iterative hyperparameter
tuning process. First, a point forecast model was fitted using LASSO regularization (Tibshirani,
1996) to prevent overfitting and perform feature selection. The estimated coefficients were
then used as starting values for the coefficients of the location PDF parameter £ in the
probabilistic model’s optimization process minimizing a penalized-likelihood (Wasserman,
2004) loss function.

With LASSO, the estimate ,3 of a parameter vector 3 is obtained by minimizing
the mean squared error penalized by the parameter vector’s 11-norm. With the realized
response variable y and the design matrix X for N samples, the LASSO estimator is:

. 1
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An important property of the LASSO estimator is the ability to perform feature selec-
tion by setting individual parameters to zero. By construction, LASSO selects randomly
among sets of highly correlated features (Xiao & Sun, 2019). Thus, regarding the model
interpretation, an excluded parameter does not necessarily correspond to low explana-
tory value of the corresponding feature without considering the data’s correlation struc-
ture.

The selected features were used for training the probabilistic model, under the as-
sumption that the features selected for the point forecast model were also a viable se-
lection for the probabilistic model. The coefficients for the PDF parameter £ were ini-
tialized with the LASSO estimate. The coeflicients for v, A were initialized as zero, as
this resulted in higher consistency of parameter estimation than random initialization
in our experiments and £ corresponds to the JSU distribution’s mean at those starting
conditions. The PDF parameter § was set as a trainable constant, and hence not con-
ditioned on the model inputs, because instabilities were observed in learning and fore-
casting otherwise. As § has strong influence on the JSU distribution’s higher moments
that give high weight to extreme values, its estimation is sensitive to outliers (Barnett
et al., 1994).



Parameter estimation for the probabilistic model was performed using ADAM gra-
dient descent (Kingma & Ba, 2014), minimizing a penalized-likelihood (Wasserman, 2004)
loss function

L:_log(£(5’775§7557ﬂ)\|‘)€))+aMSE (12)

In equation 12, the likelihood L is penalized with the mean square error MSE, weighted
with a constant @ = 10, as our experiments showed that the penalty term improved
prediction accuracy with respect to the MSE without reducing probabilistic accuracy,
as evaluated using the energy score (see Section 2.4). The parameter vectors for the in-
dividual PDF parameters were optimized independently in a cyclic scheme with inde-
pendent instantiations of the ADAM optimizer, which improved the convergence rate
compared to simultaneous optimization.

2.3.2 Hyperparameter Tuning

Hyperparameters for our model include the choice of thresholds T;, ,, for the lin-
ear splines, lags L, , and the regularization parameter Ajasso. Alasso Was tuned by an ex-
ponential grid search with respect to the Bayesian information criterion (BIC) (Stoica
& Selen, 2004) for each model configuration. The BIC provides a measure for the bal-
ance between model complexity and in-sample prediction accuracy and can be used for
optimizing the out-of-sample prediction performance based on tuning with in-sample data.
It penalizes the negative in-sample likelihood £ with the parameter count k£ and the num-
ber of observations n:

BIC = klog (n) — 2log (L) (13)

The utilization of feature selection with LASSO facilitated the definition of the thresh-
olds and lags as densely populated sequences without incorporation of extensive expert
knowledge for exact definition of each threshold and lag for each variable. The thresh-
olds for each variable were defined as equidistant sequences with variable-specific num-
ber of steps, and with minimum and maximum values determined as follows: For rain
measurement variables, the smallest measured rain rate from any rain event was chosen
as minimum and the 0.95-quantile was defined as maximum. For other measurement vari-
ables, the smallest measured value and the 0.99-quantile were chosen as minimum and
maximum values respectively. Results for different numbers of thresholds are provided
in Section 4. The lags were chosen as the past six timesteps, L, , = {1,2,3,4,5,6}, be-
cause using more lags did not yield an improvement with regard to the BIC.

2.4 Forecast study design

The proposed model’s forecasting performance was evaluated on in-sample and out-
of-sample data. In-sample evaluation indicates how well the model learns from the train-
ing data, while out-of-sample evaluation gauges its generalization to new data. The dataset
covering three years was split into an in-sample dataset comprising two consecutive years
and an out-of-sample dataset for the subsequent year. This division ensured the max-
imum utilization of training data while still encompassing all annual seasons in the out-
of-sample data.

In order to analyse the effects of water level, realized and future rain rate as well
as of the individual model components described in Section 2.2, different model config-
urations were implemented and calibrated with the procedure described in Section 2.3.
In addition to the model’s overall prediction performance over the complete dataset, an
analysis for different inflow situations was of interest with regard to the practical use cases
described in Section 1. Hence, individual analysis was performed for subsets of the data
representing dry weather periods and the rise, high and decline phases after rain events.

—10—



2.4.1 Scoring Rules

An appropriate choice of scoring rules with respect to the studied forecasting prob-
lem is important to quantify the prediction performance with respect to the realized (truth)
values (Ziel & Berk, 2019). The probabilistic forecasts generated by the proposed model
can be reduced to point forecasts by calculating the mean 1, € R¥ for all steps of the
forecast horizon H, with ¢ denoting the time of the first forecast horizon step, so that
the commonly used (Bjerregard et al., 2021) scoring rules root-mean-square error (RMSE)

RMSE = Z \/ o ||yt ytHQ (14)

and mean absolute error (MAE)

N
1 N

can be utilized with respect to the truth y; € R¥ . Here, N is the number of evalu-
ated datapoints.

However, while those point forecast scores provide good interpretability, the infor-
mation on the predictive distribution is discarded. Here, probabilistic scoring rules are
available in order to quantify the predicted distribution’s correspondence to the unknown
distribution of the underlying data generating process. We used the energy score (Gneiting
& Raftery, 2007) as a probabilistic scoring rule. The energy score is a strictly proper scor-
ing rule that can be estimated from M independently sampled trajectories g ,, of the
inflow over the forecast horizon with:

ZHyt Gemlly — QMQZZIIMZ G155 (16)
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where 8 =1 is chosen in accordance to common literature (Ziel & Berk, 2019).

2.4.2 Statistical Significance Test

We employed the Diebold-Mariano (DM) test (Mariano, 2002) to assess the sta-
tistical significance of a forecast A exhibiting better accuracy than forecast B. The DM
test is applicable to the present multivariate setting with possible dependency structure
between the individual forecast steps (Ziel & Berk, 2019). The DM test resembles an asymp-
totic test against the null-hypothesis that the mean score difference A A,B 1s zero with
test statistic

Aap
o (Aa.5)
with the estimated standard deviation 6. The results from the forecast study were tested
with a significance level of 5%.

tpm = (17)

2.4.3 Sampling

The probabilistic predictions were generated by sampling M = 80 trajectories for
each time t representing the last measurement time before the respective forecast hori-
zon. Each trajectory was constructed using Monte Carlo (Wasserman, 2004) simulation
by sampling each step h of the forecast horizon consecutively. For each forecast step, the
sampled values of the trajectory’s previous steps were used as inflow measurement vari-
ables for lags I < h referring to future and hence unobserved values. As a result, the
constructed samples represented the inflow’s autoregressive dependency structure through-
out the forecast horizon.

—11—



2.4.4 Benchmarks

In order to benchmark the proposed model’s performance, two benchmark mod-
els were implemented: First, an autoregressive process with exogenous regressors and sea-
sonal effects (Hamilton, 2020) (SARX) was implemented as a linear point-forecast model
that is widely used in time-series analysis. Second, a distributional ANN (Marcjasz et
al., 2023) was used as black-box benchmark model trading computational efficiency and
interpretability for the ability to learn highly non-linear relationships from the data (Yu
et al., 2019). For all benchmarks, the lags L = {1,...,6} were chosen in order to con-
dition the prediction on a history window equivalent to the proposed model. Also, the
future rain oracles as well as the water level measurements were used as exogenous re-
gressors, so that the same information was utilized as with the proposed model.

As a linear model, the SARX model is easy to interpret and shows low computa-
tional demand. The model was implemented according to the formulation used by the
statsmodels (Seabold & Perktold, 2010) python library:

ye=B0+ Y Bl [wit—1> BIX[v,t—1]> B, (18)

leL veV ses

In equation 18, X [w,t — I] refers the inflow (represented by feature index w) at lag I, X [w,t — 1]
is the last measurement of feature v from the set V' of exogenous regressor indices and

ds is a seasonal dummy for diurnal seasonality. Probabilistic samples were generated for

each step in the forecast horizon by sampling M = 80 samples from a normal distri-

bution with the point estimate used as mean and the in-sample residuals’ standard de-

viation.

In the distributional ANN model, an LSTM was used to predict the unconstrained
v, &, A parameters of the predictive JSU distribution. The architecture of an LSTM en-
ables selective memorization and forgetting of information throughout lagged data, mak-
ing it suitable for modelling multivariate time series data that exhibits non-linear rela-
tionships (Hochreiter & Schmidhuber, 1997). The PDF parameter 6 was set as a train-
able constant like for our model as described in Section 2.3.1. For modelling of daily,
weekly and annual seasonal patterns, time information was encoded as features using both,
sine and cosine functions with position in day, week and year as phase. Hyperparame-
ter tuning for the LSTM model’s dropout rate and unit count was performed using the
Optuna (Akiba et al., 2019) Python package.

3 Data

The dataset used covered the period from 1st January 2017 to 31st December 2019
and consisted of the following subsets. All data was available with a frequency of 15 min-
utes except radar raster data with 5 minutes.

1. WTP inflow measurement (inflow)

2. Local rain rate measurement from one station located near the WTP within the
sewage water catchment area of Weiden (rain rate)

3. Water level measurements from four locations spatially distributed throughout the
sewer system (water level), including the tank sewer located near the WTP

4. Rainfall radar raster images covering Germany, provided by the DWD opendata
service (Wetterdienst, 2022)

3.1 Sewer System and Rain Measurement Data

Measured inflow minimum, maximum, average and standard deviations were 28.2
1/s 825.71/s 177.8 /s and 151.1 1/s . During dry weather periods, water level and in-
flow rate exhibited pronounced diurnal and weekly seasonal patterns. In addition, an-
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Figure 4. Example strong rain event followed by phases of rising (blue background), con-
stant (green background) and declining (red background) inflow with corresponding response of

measurement variables.

nual seasonality was observed. Diurnal, weekly and annual seasonalities are shown in Fig-
ure 3.

Figure 4 illustrates the system dynamics after strong rain events: due to the short
catchment response time, the surface runoff dynamics and the broad spatial distribution
of the rain event, inflow starts to rise steeply with a short delay of 15 to 30 minutes af-
ter rainfall onset. Simultaneously, buffering within the network occurs. The water level
in a buffering element at a remote location within the network starts to rise immediately,
whereas the water level in the tank sewer near the WTP starts to rise later. A propor-
tion of the water from the quickly depleting remote buffering elements arrives at the tank
sewer, causing a longer phase of water level increase until depletion starts. Hence, af-
ter the hydraulic capacity limit at the WTP has been reached, the inflow remains ap-
proximately constant until the buffering elements are depleted and the inflow then de-
creases quickly towards dry weather levels.

Figure 5 shows inflow measurements plotted against past water level data from a
remote location within the network with lags of 15 minutes and 75 minutes for each, dry
weather periods and rise. Two important system properties explained in Section 2.1 are
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Figure 5. Inflow versus a level measurement from within the sewer network from 15 and 75
minutes in the past for dry weather (a) and after strong rain events (b). Some non-linearity can
be observed particularly after rain events. The shown measurements cover a period from 1st

January 2017 to 31st December 2019.

emergent: first, a non-linear relationship between water level and inflow is observed es-
pecially after strong rain events due to limited hydraulic capacity, buffering and com-
plex flow dynamics. The non-linear effects are less pronounced in the dry weather regime,
indicating that this regime can be modelled well with a linear regression model. Second
the inflow measurement correlates well with the water level from 75 minutes beforedur-
ing dry weather periods. This indicates that the water level measurements might pro-
vide information on future inflow due to the long catchment response time for relatively
large forecast horizons. After rain events, in contrast, a pronounced relation is observed
for the 15-minute lag, but much less for 75 minutes, indicating the effects of buffering
and regime change in flow dynamics with short catchment response time.

3.2 Rain Forecast Data

Historical rain radar forecast data with sufficiently high frequency of at least 15
minutes, as required for model training and calibration, was not available. Hence, radar
forecasts have been constructed in analogy to the DWD RADVOR product (Winterrath
& Rosenow, 2014): The dense optical flow between subsequent raster images has been
estimated using the Robust Local Optical Flow (RLOF) (Senst et al., 2012) algorithm.
The optical flow was then used to interpolate the 5-minute frequency data to 1-minute
resolution in order to prevent fencing artefacts. The resulting raster images were tem-
porally averaged to 15-minute frequency. For the resulting 15-minute averaged raster im-
ages, RLOF was calculated between subsequent images. The resulting optical flow was
then used to extrapolate the 15-minute raster images to forecasts with 15-minute fre-
quency with a forecast horizon of 2.5 hours. From the constructed raster image forecasts,
a time series was generated for each forecasting step by spatial aggregation over the net-
work’s catchment area for each image of the corresponding forecasting step. The abso-
lute physical dimension of the rain rate was not preserved throughout the process, which
is, however, not relevant for the machine learning inflow forecasting model.

3.3 Preprocessing

The water level data exhibited frequent sharp local minima, indicating invalid sen-
sor data. For each measurement station, an individual threshold was defined by visual
examination of the data. Datapoints below the given thresholds were replaced by the
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last valid measurement. In addition, prolonged periods of constant values were present
in water level data. According to personal communication, those datapoints represented
missing sensor data. The corresponding datapoints were marked as invalid and were ex-
cluded from this research. Rain rate data was clipped by a threshold of 0.085 mm/min
because our experiments indicated that very high rain rate values did not provide ad-
ditional information due to the system’s limited hydraulic capacity, while causing a re-
duction of model stability by constituting a sparsely populated extreme data regime.

Due to daylight saving time, a one-hour shift in diurnal inflow patterns was observed
during summer time. One hour of interpolated measurements was inserted at the begin-
ning of summer time and one hour of data was removed at the end of summer time in
order to achieve consistency with respect to the UTC time for straight-forward modelling
of the seasonal patterns.

4 Results

In Section 2, we proposed a machine learning model for probabilistic short-term
WTP inflow rate prediction utilizing rain forecast data and water level measurements
from the sewer network. In this section, our results of the forecast study described in Sec-
tion 2.4 are provided and discussed. In Section 4.1, the proposed model’s ability to learn
the data dependency structure arising from the system properties is examined without
the further inaccuracy added by the uncertainty of rain forecasts by using historical rain
values as perfect (oracle) rain predictions. The influence of rain forecast inaccuracy in
a real-world scenario is then investigated in Section 4.2 using historical rain forecasts con-
structed according to Section 3.2. We focus on out-of-sample scores in order to analyse
the performance in a real-world scenario and in-sample results are provided in the sup-
porting information. Hence, score values mentioned in this section refer to out-of-sample
values. Relative improvements refer to the energy score.

4.1 Forecast Accuracy with Rain Oracle

Scores over all data and the subsets dry weather, rise and decline are provided in
Table 1. The results indicate that the inflow during dry weather conditions can be fore-
casted accurately by a simple model configuration because the process is dominated by
seasonal effects. In case of rain events, however, the approximation of non-linear effects
by splines and the utilization of future rain as well as network water level data yielded
a significant enhancement of prediction quality. In the following, the effects of the dif-
ferent model design aspects described in Section 2.2 are discussed for dry weather pe-
riods and the rise, high and decline phases after rain events..

The energy score for dry weather periods without approximation of non-linear ef-
fects, using only the lagged inflow and seasonal terms as regressors is 37.461/s. However,
the prediction accuracy for rise after rain events is low with an energy score of 527.111/s
due to the lack of information on the effects of future and past rain.

Utilization of water level data resulted in only a small improvement of 8.28 % for
rising inflow after a rain event, but a larger improvement of 19.16 % for all data, indi-
cating that the catchment response time after strong rainfall events became so short that
the level measurements did not provide information on imminent inflow rise events. A
considerable improvement of 21.88 % is found for the decline phase. For the decline phase,
we have identified the water level measurement from the tank sewer located before the
WTP as most important level measurement. Its water level provided direct information
on the buffering state, as anticipated in Section 2.1. A large improvement by 26.67 % is
observed for dry weather periods, indicating that exogenous level measurements did in-
deed provide usable information on future inflow within the catchment response time.

In Figure 6, an example is shown where level measurements enabled the prediction of
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Figure 6. Probabilistic inflow forecast by the proposed model with (a) and without (b)
utilization of level measurements from within the network. The observed inflow spike is not
explained by a rain event. (c¢) and (d) show a probabilistic inflow forecast by the proposed
model for a strong rain event, with and without the approximation of non-linear effects by linear

splines, respectively.

a temporary inflow increase that is not explained by a measured rain event. We assume
a low-intensity and spatially constrained rain event that did not cover the rain measure-
ment station as a possible explanation for this peak. Due to the moderate increase of
flow rate within the network, the catchment response time was still sufficiently long to
enable forecasting using water level measurements. For the successful prediction of the
rise phase after rain events, our results show that information on future rain is manda-
tory. For this phase, incorporation of measured rain data yielded an improvement over
the model with inflow and water level measurements of 17.62% . A further improvement
by 29.43% was achieved using future rain information. Still, high forecast inaccuracy

is observed during the transition from the steep inflow increase after a rain event to the
high inflow phase when the hydraulic capacity limit is reached. In this regime, the in-
flow was often under- or overestimated, depending on the temporal structure of the as-
sociated rain event. A visual example is depicted in Figure 6. The incorporation of lin-
ear splines for the approximation of non-linear behaviour resulted in an improvement over
all data of 16.49% for 3 thresholds per measurement variable and a further improve-
ment of 8.29% for 15 thresholds. For the rise phase after rain events, the improvements
are 21.82% and 14.76 % . The aforementioned overestimation and fluctuations in pre-
dicted inflow after inflow rise are reduced, indicating that the non-linear effects were ap-
proximated well by the proposed model, as shown in Figure 6.
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Figure 7. Inflow forecast error versus level measurement from within the network. The best-
fit-configuration (a) does not exhibit the overestimation of inflow for high water levels found in
the predictions of a model configuration without approximation of non-linear effects by linear

splines (b).

Figure 7 shows the residuals as a function of a water level measurement with and
without linear splines. For high water levels, overestimation of future inflow is present
without linear splines, indicating that the non-linear relationship shown in Figure 7 was
not modelled well. In contrast, this regime is represented well when linear splines were
used. Furthermore, Figure 7 illustrates heteroscedasticity in the data and hence the ex-
pedience of conditioning the full predictive distribution on the features. There is also an
improvement of 12.51 % and 10.26 % for dry weather periods. Here, it is important to
note that this does not necessarily indicate that pronounced non-linear effects were present
in this regime. Without linear splines, if a feature exhibits linear and non-linear relation-
ships with the inflow for different regimes, accuracy in linear regimes is sacrificed for per-
formance over the whole data range.

Both, two-way interaction terms of rain with inflow and cumulation of rain over
the last 1.5 hours did not yield an improvement of prediction accuracy if studied sep-
arately. However, utilization of both, where the cumulated rain was used for interaction
with inflow, resulted in a considerable improvement for rise after rain events by 14.83 %
and also for inflow decline after the following phase near the hydraulic capacity limit by
7.40 % . The behaviour of different model configurations described above with respect
to energy score is also found for the RMSE and MAE. This indicates that the proposed
model was capable to quantify the forecast uncertainty reasonably well.

The proposed model without linear splines outperformed the SARX benchmark model
that used the same inputs by 32.01 %. It is assumed that the proposed model’s advan-
tage originates from the modelling of weekly and annual seasonality and in particular
from conditioning the full predictive distribution on the data, as the RMSE difference
of 14.10 % is significantly smaller . The best-fit configuration of the proposed model out-
performed the SARX by 51.88% for all data and 53.49 % for rise after rain events due
to the effects described above.

The LSTM benchmark model performed similar to the proposed model regarding
both, point forecast and probabilistic scores. Over all data, the proposed model achieved
a small, but statistically significant improvement of 2.94 % over the LSTM. The LSTM
results show superior performance for rise after rain events by 6.19 % , indicating that
the LSTM is suited well for modelling the strongly non-linear dependency structures as
well as possibly complex interactions.
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Table 1. Out-of-sample scores for different configurations of the proposed model with rain
oracles. N-w, Nrn, Nrr, N i: Number of linear splines for inflow, network, rain and interactions.
Ry, Rc: Whether rain forecasts and rain cumulation are used. Bold and italic: Best scores of all

models and proposed model configurations if statistical significance is given.

data Model N:w Nrn Nyy Ny Ry R. RMSE MAE Energy
[1/s] [1/s] [1/s]

all GAMLSS 1 - - - no no 3515  29.88 89.35
all GAMLSS 1 1 - - no no 28.92 24.24 72.27
all GAMLSS 1 1 1 - no no 28.17  23.62 68.38
all GAMLSS 1 1 1 - yes no 24.12 20.50 56.45
all GAMLSS 3 3 3 - yes no 20.19 16.71 47.14
all GAMLSS 15 15 5 - yes no 18.53 15.24 43.23
all GAMLSS 15 15 5 - yes  yes 18.39 15.12 42.72
all GAMLSS 15 15 5 3  yes no 18.57 15.25 43.58
all GAMLSS 15 15 5 3 yes yes 17.24 14.24  39.95
all SARX n.a. n.a. n.a. n.a. yes n.a. 28.08 23.92 83.03
all LSTM n.a. n.a. n.a. n.a. yes n.a. 17.96 14.88 41.16
dry GAMLSS 1 - - - no no 16.28 14.08 37.46
dry GAMLSS 1 1 - - no no 11.85 9.96 27.47
dry GAMLSS 1 1 1 - no no 10.48 8.67 24.71
dry GAMLSS 1 1 1 - yes no 11.04 9.11 25.74
dry GAMLSS 3 3 3 - yes no 9.73 8.04 22.52
dry GAMLSS 15 15 5 - yes no 8.77 7.22 20.21
dry GAMLSS 15 15 5 - yes yes 8.52 6.99 19.65
dry GAMLSS 15 15 5 3 yes 1o 8.81 7.25 20.31
dry GAMLSS 15 15 5 3 yes yes 8.31 6.82 19.08
dry SARX n.a. n.a. n.a. n.a. yes n.a. 14.42 12.24 51.91
dry LSTM n.a. n.a. n.a. n.a. yes n.a. 8.48 6.94 19.46
rise GAMLSS 1 - - - no no 19354 168.04 527.11
rise GAMLSS 1 1 - - mno no 183.17 158.86  483.46
rise GAMLSS 1 1 1 - mno no 159.87 136.01  398.28
rise GAMLSS 1 1 1 - yes no 119.87 104.00 281.08
rise GAMLSS 3 3 3 - yes no 9454  79.96 219.73
rise GAMLSS 15 15 5 - yes no 8175  68.11 187.29
rise GAMLSS 15 15 5 yes  yes 81.28 67.61  186.44
rise GAMLSS 15 15 5 3 yes mno 82.01 68.31  189.94
rise GAMLSS 15 15 5 3 yes yes 69.96 5882 @ 159.52
rise SARX n.a. n.a. n.a. na. yes n.a. 130.59 11294  342.96
rise LSTM n.a. n.a. n.a. na. yes na. 67.26 56.05 149.65
decline  GAMLSS 1 - - - mno no 116.26 100.39  259.18
decline GAMLSS 1 1 - - no no 88.07  76.11  202.46
decline  GAMLSS 1 1 1 - no no 81.59 71.42  189.32
decline  GAMLSS 1 1 1 - yes mno 69.76 6145 165.86
decline  GAMLSS 3 3 3 - yes no 61.03 52.04 142.20
decline  GAMLSS 15 15 5 - yes no 58.54 49.97  134.94
decline GAMLSS 15 15 5 - yes  yes 57.74 49.36 134.08
decline  GAMLSS 15 15 5 3 yes mno 59.03 5030 136.63
decline GAMLSS 15 15 5 3 yes yes 5416  46.60 124.95
decline SARX n.a. n.a. n.a. n.a. yes n.a. 71.34  62.82 179.01
decline LSTM n.a. n.a. n.a. n.a. yes n.a. 55.55 4744  124.92
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4.2 Forecast Accuracy with Rain Forecasts

The forecast study results for the models with forecasts used for training and pre-
diction are discussed in the following. Out-of-sample scores over all data and the sub-
sets dry weather, rise and decline are provided in Table 2. The patterns found in the re-
sults with oracles, as described in Section 4.1, are also evident in the results with rain-
forecasts. However, the forecast accuracy of our best-fit model with rain forecasts is re-
duced significantly by 26.66 % in comparison to our best-fit model with rain oracles. The
inferior performance is primarily found for the phases after a rain event, indicating that
the rain forecast accuracy can be identified as the limiting factor here. However, a mi-
nor increase in RMSE by 6.39 % is also found for dry weather, which may also be attributed
to the rain forecast accuracy, as false rain events are predicted in some situations. Fig-
ure 8 shows a comparison of rain forecasts using rain oracles and rain forecasts for an
exemplary rain event, illustrating the impact of rain forecast inaccuracy for a real-world
use case. Furthermore, the impact of the rain forecast error on the energy score and on
the prediction of the inflow rise starting time after rain events is visualized as a func-
tion of forecast time step. The energy score disadvantage increases approximately lin-
early with forecast time, mirroring the decrease in correlation between the rain forecast
and actual measured rain. Similarly, the RMSEs of predicted rain onset times and pre-
dicted inflow rise times exhibit an approximately linear trend. Notably, the RMSE of
inflow rise start times is significantly lower than that of rain onset times, except for long
forecast times. This discrepancy may suggest that the model has learned to offset some
of the errors in the rain forecasts. Also, information from level measurements within the
network can be leveraged, particularly for short forecast times, thereby enhancing the
predictive accuracy.

Considering the benchmarks, the LSTM results show a more pronounced advan-
tage over the GAMLSS for later steps in the forecast horizon than with rain oracles, whereas
the GAMLSS still performed better for short forecast horizons. As the rain forecasts were
constructed as time series from radar raster forecast, they exhibited uncertainty in the
temporal domain as well as in magnitude of rain rate. Thus, we suggest that the LSTM
was able to extract more predictive information from the relations in the temporal do-
main and the magnitude of the rain forecasts, as forecasts for the full forecast horizon
were presented as features to the inflow forecast models. Furthermore, whereas the GAMLSS
and LSTM showed far superior performance to the SARX model for rain oracles, the rel-
ative performance difference between the GAMLSS and LSTM in the one hand and the
SARX in the other hand is smaller. This supports the finding that the rain forecast ac-
curacy represented the main limiting factor for the inflow forecast accuracy.

5 Discussion

We implemented and evaluated a machine learning model for probabilistic intra-
day inflow prediction utilizing water level measurements from within the network, rain
measurements and future rain as exogenous variables. The model was specified with re-
spect to dominant properties of sewer networks, with a focus on non-linear effects aris-
ing from flow-dependent catchment response time and buffering of water within the net-
work.

Our results show that the incorporation of exogenous variables provides a signif-
icant benefit for the prediction of inflow. In particular, reliable information on future rain
is mandatory to achieve a prediction of the dynamics found for strong rain events with
sufficient accuracy for practical use. Also, data from sensors spatially distributed through-
out the network can provide valuable information to understand and predict the system
behaviour. However, our results indicate that non-linear effects prevent accurate inflow
prediction using a basic linear time series model like the evaluated SARX benchmark
model. Using approximation via linear splines, those relationships were represented suc-
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Figure 8. Probabilistic forecast of inflow after a rain event by the proposed model with (a)
rain oracles and (b) rain forecasts. In this particular example, prediction using rain forecasts is
relatively accurate, as the onset time of inflow rise is predicted well, but prediction is still signifi-
cantly worse than with rain oracles. (c) depicts the average energy score disadvantage when using
rain forecasts versus rain oracles for all rain events (red), alongside the Pearson correlation coef-
ficient between forecasted and measured rain rates (blue), as functions of forecast time. Larger
negative values indicate a larger disadvantage. (d) shows the RMSE of predicted WTP inflow rise
start times after rain events, using rain forecasts (red), and the RMSE of rain onset times in the

rain forecasts, compared to actual measurements (blue), both as functions of forecast time.
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Table 2. Out-of-sample scores for different configurations of the proposed model with rain fore-
casts. Ny w, Nrn, Nrr, N i: Number of linear splines for inflow, network, rain and interactions.
Ry, Rc: Whether rain forecasts and rain cumulation are used. Bold and italic: Best scores of all

models and proposed model configurations if statistical significance is given.

data Model N:w Nrn Nyy Ny Ry R, RMSE MAE Energy
[1/s] [1/s] [1/s]

all GAMLSS 15 15 5 3 yes yes 21.58 17.54 50.60
all SARX n.a. n.a. n.a. n.a. yes n.a. 30.38  25.64 91.15
all LSTM n.a. n.a. nh.a. n.a. yes n.a. 21.66 17.64 49.14

dry GAMLSS 15 15 5 3 yes yes 8.92 7.33 20.50
dry SARX n.a. n.a. n.a. n.a. yes n.a. 1529 1291 57.06
dry LSTM n.a. n.a. n.a. n.a. yes n.a. 8.85 7.20 20.03

rise GAMLSS 15 15 5 3 yes yes 102.35 84.32  240.92
rise SARX n.a. n.a. n.a. na. yes n.a. 14499 12441  381.28
rise LSTM n.a. n.a. n.a. na. yes na. 96.76 80.45 219.74

decline GAMLSS 15 15 5 3 yes yes 66.82  57.07 152.10
decline SARX n.a. n.a. n.a. n.a. yes n.a. 79.63  69.93  199.86
decline LSTM n.a. n.a. n.a. n.a. yes n.a. 65.64  55.95 146.78

cessfully while still resembling a linear model for the unconstrained PDF parameters, pro-
viding interpretability and intelligibility.

Our model generates probabilistic forecasts, providing full information on the fore-
casted probability distribution of future inflow. Resembling a machine learning method,
the proposed model exhibits good adaptability properties as it does not rely on exten-
sive specification of expert knowledge on the target system. Although knowledge of some
of the studied system’s key properties like the watershed lag time may guide the a pri-
ori choice of included measurement variables and model hyperparameters like the lags
and thresholds, feature selection and regularization using LASSO relaxes the demand
for exact specification. Furthermore while the model has been designed considering phys-
ical network properties, the resulting inclusion of linear splines as a modeling technique
offers versatility in capturing other non-linear relationships. Therefore, incorporating ad-
ditional input variables into the model is a straightforward process through retraining.

Our results using rain oracles indicate that the proposed model as well as the prob-
abilistic LSTM used as benchmark are capable of handling the system dynamics so well
that practical application seems promising within the context of WTP process control
optimization. However, high accuracy of rain forecast data is crucial to exploit the po-
tential of the studied machine learning methods. Here, the probabilistic LSTM showed
superior performance for long forecast horizons if our inaccurate baseline rain forecasts
were used instead of the perfect rain oracles. This comes at the price of reduced inter-
pretability and intelligibility, though, and the proposed GAMLSS showed marginally bet-
ter accuracy for short forecast horizons. Although both, the LSTM and our GAMLSS
exhibited superior performance to the SARX, we therefore consider the handling of the
complex information from inaccurate rain forecasts for long forecast horizons a present
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limitation of our model and propose further tuning with respect to the used rain fore-
casting method’s properties as a subject of further research. Furthermore, the follow-
ing relevant aspects can be identified for future research:

1. Probabilistic rain forecast information (Sgnderby et al., 2020) hold strong poten-
tial as input quantity of probabilistic inflow models because information on the
rain forecast predictive distribution can be propagated.

2. We utilized spatially aggregated rain information as a single time series. Spatially
resolved measured rain rates and rain forecast information may represent an in-
teresting aspect of future research, especially for wastewater sewer networks with
large spatial extent, where local features of rain events as well as longer catchment
response time may provide additional information.

3. While this research focused on the prediction of inflow rates, the adaption of our
model for forecasting also pollutant load, which represents a further relevant in-
put for WTP optimization methodology, is of interest.

4. Regarding changing rainfall dynamics due to climate change, our results, in line
with the literature, demonstrate that a data-driven model can be trained on rel-
atively short historic time horizons, considering the gradual changes caused by cli-
mate change. To further facilitate effective adaptation to changing structures re-
sulting from climate change, online learning schemes can be employed.

5. Incorporating physical models, such as rainfall-runoff models, as model inputs may
be beneficial for explicitly modeling system dynamics where possible and desir-
able. This approach can reduce the complexity of the relationships that our model
must approximate. Furthermore, this may be advantageous with regard to the pre-
vious point on climate change, as the dynamics within the sewer network do not
change significantly with increasing rainfall strength once the network’s hydraulic
capacity limit is reached. Therefore, changes in rainfall-runoff dynamics might dom-
inate the deviations from the learned dynamics.

6. Within the scope of our study, data and resources for building a well-calibrated
hydrodynamic benchmark model were not accessible. We consider situations where
the adaptation of hydrodynamic models for a particular sewer network is not fea-
sible or desired as primary use cases for data-driven models. Nevertheless, bench-
marking data-driven models, such as ours, against a hydrodynamic model can be
of interest. As our results demonstrate, the prediction uncertainty of our data-driven
inflow forecast model and LSTM is primarily driven by the inaccuracy of rain fore-
casts. Here, it is an interesting research question whether data-driven methods show
an advantage in adapting to and compensating for some uncertainties or subop-
timal calibration of rain forecasts.

As a conclusion, our results show that exogenous information on future rain and the net-
work’s hydrodynamic state is crucial for inflow prediction with a focus on rain events

and the information can be utilized within an intelligible probabilistic machine learning
forecast model suitable for practical implementation. However, accurate probabilistic rain
forecasts with suitably short runtimes are required for successful application.

Acronyms

WTP Wastewater treatment plant

GAMLSS Generalized additive model for location, scale and shape
SARX Seasonal autoregressive exogenous model

ANN Artificial neural network

ReLU Rectified linear unit

LSTM Long short-term memory

RMSE root-mean-square error
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MAE Mean absolute error
BIC Bayesian information criterion

6 Open Research

The inflow, level measurement and rain measurement time series data used for model
calibration and evaluation in the study are available at Zenodo via https://doi.org/
10.5281/zenodo. 69926944 with Creative Commons Attribution 4.0 International license
(Sonnenschein & Ziel, 2022¢). The time series data of spatially aggregated rain radar fore-
casts used for model calibration and evaluation in the study are available at Zenodo via
https://doi.org/10.5281/zenodo.6992694 with Creative Commons Attribution 4.0
International license (Sonnenschein & Ziel, 2022b). The model implementation and the
code for the generation of the results, tables and figures is available at Zenodo via https://
doi.org/10.5281/zenodo.6997701 with (Sonnenschein & Ziel, 2022a). Rain radar raster
data is available on the Open Data Server of Deutscher Wetterdienst via https://opendata
.dwd.de/climate_environment/CDC/grids_germany/5 minutes/radolan/reproc/2017
_002/bin/ Wetterdienst (2022).
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