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 Abstract 
 This study uses a newly-developed firebrand spotting parameterization in simulations of the 

 Marshall Fire (2021) to demonstrate that without fire spotting, wind-driven fire simulations cannot 
 reproduce the behavior of some fires. The Marshall Fire, the most destructive in Colorado’s history, 
 took mere hours to cause nearly half a billion dollars in damage and destroy over 1000 homes. In 
 wind-driven events that occur in the wildland-urban interface, the model’s ability to spot is critical for 
 modeling fire spread over water streams and urban features such as highways. Without ignition of fire 
 spots, the simulated Marshall Fire cannot advance. In cases when spotting significantly contributes to 
 fire spread, the process’ nonlinear nature is a source of uncertainty to modeling fire behavior that can 
 broaden the model's ensemble spread and possibly produce a more realistic probability of outcomes. 
 The results in this study corroborate the importance of representing fire spotting in atmosphere-fire 
 behavior coupled models, such as WRF-Fire. 

 Significance Statement 
 Embers are a wildfire concern because they can ignite new fires miles ahead of the source fire, 

 sometimes jumping over highways and rivers. This study demonstrates the importance of having a 
 model component that in addition to simulating embers lofted from the main fire, can also ignite fires 
 resulting from embers' landing across barriers. 

 During the Marshall Fire, embers jumped over a major multi-lane highway and continued the 
 wildfire’s destruction. The simulated Marshall Fire, however, stops at the highway because the model 
 responds to it as a natural barrier. This study illustrates why embers must have a capability to ignite 
 fires in the model, and how this capability could also contribute to the quality of forecast probabilities. 
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 Introduction 
 Firebrands are burning pieces of vegetation or organic materials (embers) generated at a  fire 

 source and carried with the wind and convection. Fire spotting occurs when firebrands are lofted into 
 the air, land on unburned areas, and ignite new fires. Fires driven by high wind speed combined with 
 low relative humidity and flammable vegetation often result in high fire intensities, rapid growth rates, 
 and showers of burning embers starting new fires. Intense spotting increases danger to fire crews, 
 affects fire behavior predictability, and challenges suppression efforts and containment methods by 
 fire crews. 

 Spot fires are considered short-range within a few hundred meters from the source fire, or 
 long-range, with reports of spotting distances as high as 35 km in Australia (1). Short-range spotting 
 accelerates the fire rate of spread by expanding the fire perimeters slightly beyond the fire front  (1)  , 
 whereas long distance spotting can ignite new fires several kilometers downwind, possibly in areas 
 beyond containment boundaries. 

 Embers play a significant role in spreading wildfires and are of critical importance in the 
 wildland-urban interface. When a fire reaches urban zones, it spreads through two primary 
 mechanisms: (a) adjacent structure ignition, i.e. as structures are consumed, radiant and convective 
 heat may ignite adjacent houses; and (b) ember accumulation, when burning embers transported by 
 the wind land on flammable structures, leaf-filled gutters, vents, dry lawns, and mulch beds, igniting 
 spot fires near and far ahead. In an urban setting, embers are the leading cause of home ignitions  (2)  . 

 The Firebrand Spotting parameterization  (3)  was developed  for WRF-ARW model version 
 starting at 4.4. The parameterization uses a Lagrangian particle transport framework to simulate 
 firebrand advection, originating in active fire points determined by WRF-Fire’s fire behavior model. 
 The parameterization identifies locations at risk of fire spotting by modeling transport and physical 
 processes of individual firebrands. 

 In this article, we use numerical simulations to discuss opportunities for an integrated firebrand 
 transport component within a fire-weather coupled community model to advance wildfire research and 
 predictability. This numerical experiment was primarily designed to assess WRF-Fire’s ability to 
 simulate the behavior of a fire that was not suppressed. The Marshall Fire started as a grass fire in 
 the outskirts of Boulder, Colorado on 2021/12/30 approx. at 18Z (11 AM MST) and reached the 
 residential area in about 1 hour. The fast spread was driven by extremely high winds from a 
 downslope windstorm, which was described by  (4)  as  “a perfect storm of fast winds and drought 
 conditions as the combination of historically warm temperatures and low precipitation along the Front 
 Range of the Rocky Mountains left the grasses in a state of extreme dryness”. To this date, the 
 Marshall Fire is the most destructive in Colorado’s State history, with 1084 homes destroyed and 149 
 damaged  (5)  . 

 Results 
 The model experiments for the Marshall fire illustrate the impact of firebrand spotting in the fire 

 behavior simulation along with the caveats of an inaccurate fuel layer. 

https://paperpile.com/c/SxTKDV/gFI7
https://paperpile.com/c/SxTKDV/nAtO
https://paperpile.com/c/SxTKDV/ulUK
https://paperpile.com/c/SxTKDV/FxqI
https://paperpile.com/c/SxTKDV/xVVB


 A comparison between a control simulation (CTRL) and an experiment with four spotting 
 locations (4-spots) is shown in Figure 1, panels A-D. In the CTRL experiment, the fire front is 
 contained by Marshall Rd and Hwy 36 because in the fire fuel layer, these are represented by a 
 no-fuel category. 

 CTRL experiment (panels A and C) and 4-spots experiment (panels B and D) at different times (1  st  and 2  nd  rows) into the 
 simulation, and associated fuel layer showing fuel load at surface (panel E). The snapshots in panels A-D show the 
 simulated fire area (black line) and the percentage of firebrands landing ahead of the fire front (colored scale). The 

 4-spots experiment includes fire spots ignited based on the location and time of firebrand landing density in CTRL. The 
 red line (panels A-E) indicates the observed fire perimeter after containment (evening of 2021-12-31). 

 It is known that fuel layers such as the Anderson 13-fuels (current default in WRF-Fire) and 
 Scott and Burgan 40-fuels, are inaccurate, incomplete, and static over long periods of time  (6)  . The 
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 fuels in these layers are simplified representations of various vegetation types, used to parameterize 
 Rothermel’s (1972) surface spread equation, and allowing for rapid application in the field, such as 
 during suppression efforts  (7)  . In the region encompassed by our computational domain (Figure 1, 
 panel E), the Anderson 13-fuels classifies urban fuels in a “no-fuels” category (i.e., with fuel load 
 equal to 0 kg/m  2  ), with the area containing the suburbs burned down by the Marshall Fire represented 
 by short grass, hardwood litter, timber, and closed timber litter (i.e., fuel loads of 0.166, 0.78, 0.896, 
 and 1.12 kg/m  2  , respectively). Even though urban structures are misrepresented by the fuel layer, it 
 realistically represents Marshall Rd and Hwy 36. Roads and highways serve as fire containment 
 barriers, with ember transport being the physical process that allows the fire front to advance across 
 the containment. These experiments show that the lack of an integrated spot-fire ignition capability is 
 a critical model limitation. 

 Even though the 4-spots experiment allowed the model to simulate fire spread across 
 containment barriers, in a case such as the Marshall Fire, four spot fires are a substantial 
 underestimation. Currently, the model limits the number of ignitions to five (in this experiment, one 
 primary ignition, and four spot fires), requiring a CTRL simulation followed by manual configuration of 
 spotting location and ignition time. This is a time-consuming process that is not scalable for producing 
 ensembles, creating datasets for model verification and statistical training sets. 

 This current model limitation is also detrimental to uncertainty estimation of fire spread, which 
 directly impacts probabilistic skill and our ability to characterize model accuracy. Figure 2 shows three 
 experiments illustrating model sensitivities to rate of spread at initialization (iROS 0.5) and fuel 
 moisture content (fmc 1%, fmc 5%) compared to CTRL (iROS=0.05 and fmc=8%). The snapshots on 
 the left show the fire front arrival time (AT) at Hwy 36. In a dry-fuel experiment (fmc 1%), the AT 
 occurs as early as 19Z, indicating at least three hours of uncertainty due to solely fuel moisture 
 content. The snapshots on the right show the effect of various model parameters at 22Z, 
 corresponding to CTRL’s AT. The fire spread and firebrands’ response to different model parameters 
 indicate that automated spotting ignitions would be highly nonlinear in both space and time, 
 potentially leading to a broadening of the ensemble spread in probabilistic forecasts. When 
 uncertainty sources are not represented in the model, forecast ensembles generate narrow spreads, 
 reducing the ensemble skill, i.e., its ability to represent the possible outcomes given the input’s 
 uncertainty. The Rothermel parameterization and its fuel specification requirements are primary 
 sources of structural and data uncertainty in modeling fire behavior, yet, these simulation experiments 
 indicate that firebrand spotting is also an uncertainty source to be considered for improving model 
 accuracy and probabilistic skill. 

 Discussion 
 This study uses the Firebrand Spotting parameterization in the WRF model to highlight the 

 impact of firebrand spotting in the fire behavior simulation of the Marshall fire (Colorado, 2021). The 
 parameterization identifies locations at risk of fire spotting but ignition of fire spots is not currently 
 integrated. 

 Our results show that the model’s ability to spot can be critical for modeling fire spread over 
 barriers present in urban and wildland areas, such as highways and water streams. These numerical 
 experiments suggest that underprediction of simulated fire spreads, an issue often attributed to the 
 fire behavior parameterization and fuel data inputs, can be also caused by the presence of 
 containment barriers, which the model is currently unable to breach. Without a spotting capability, 
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 Model experiments showing sensitivities affecting the fire front arrival time at Hwy 36 (left), and the variability in fire spread 
 and firebrands at 22Z (right). From top to bottom: CTRL, rate of spread at initialization iROS=0.5, fuel moisture content of 

 1% (fmc 1%) and 5% (fmc 5%). 



 numerical models are limited in their role to provide tactical information to operational firefighters, 
 guide land managers, and assist researchers to better understand the various processes and the 
 result of their interactions. In turn, this affects our collective efforts to advance wildfire science, in that 
 the representation of mechanisms of fire spread is incomplete, impacting all stakeholders that directly 
 or indirectly rely on information produced by numerical models. 

 These numerical experiments also indicate that fire spread and firebrands are spatially and 
 temporally sensitive to parameters and model structure. The interaction between these nonlinear 
 processes can impact the model’s ability to represent ensemble spread and probability of outcomes, 
 in that fire spotting can be a significant source of uncertainty to fire behavior that is currently not 
 represented in the model. 

 Even though WRF-Fire is currently bound by large uncertainties in the fuels and Rothermel 
 parameterization, ensemble simulations and sensitivity tests are essential exercises that enable these 
 structural uncertainties to be partially addressed, improve model predictability, identify and quantify 
 sources, and advance applications, especially those which depend on the interactions between 
 weather and fire. 

 Materials and Methods 
 The numerical simulations  (8)  were produced using WRF-ARW  (9)  v4.3.3, configured with two 

 nested domains, with 1000 and 111m of horizontal grid spacing, and boundary conditions from the 
 High-Resolution Rapid Refresh (HRRR) model  (10)  . WRF-Fire  (11)  , part of the WRF-ARW modeling 
 system, was used for the fire behavior component. The fuel layer used by WRF-Fire (Anderson 
 13-fuels) originates from the LANDFIRE database  (12)  .  Additional information about the model 
 configuration can be found in the accompanying Supporting Information. 
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 Supporting Information 
 The numerical simulations  (8)  were produced using  WRF-ARW (11) v4.3.3 (develop branch, 

 pre-release v4.4), configured with two nested domains, with 1000 and 111m of horizontal grid 
 spacing, fixed 3-s time step, 45 vertical levels, fire grid refinement of 4, and boundary conditions from 
 the High-Resolution Rapid Refresh (HRRR) model  (10)  . 

 The model physics suite included the WRF Single-Moment 6-class scheme as the 
 microphysics, RRTMG and Dudhia scheme for long and shortwave radiation, Yonsei University 
 scheme for Planetary Boundary Layer, revised MM5 surface layer scheme, and Noah Land Surface 
 Model  (9)  . 

 The simulations were configured with Lambert projection centered at 39.967139, -105.364591 
 reference coordinates, outer domain size of x=164, y=160, and inner domain size of x=361, y=343 
 with ij start at 76 and 60. 

 WRF-Fire  (11)  was used for the fire behavior component.  The main fire was ignited from a 
 55-m line at an approximate location, near the locations under investigation by local authorities 
 (39.956029, -105.230189). Ignition radius was set to 100-m, and start and end times to 300s and 
 600s. 

 The model parameters modified for multiple experiments included: number of ignitions, fire rate 
 of spread at ignition time (fire_ignition_ros), and fuel moisture content (fuelmc_g). The experiments 
 configurations followed those from CTRL with the following differentiation: 

 ●  CTRL: fire_ignition_ros = 0.05, fuelmc_g = 0.08. 
 ●  4-spots: four additional point ignitions at the coordinates and times: (39.953964, -105.227496, 

 2400s); (39.958407, -105.207693, 6000s); (39.965521, -105.183354, 8700s); (39.969594, 
 -105.193540, 11400s) 

 ●  iROS 0.05: fire_ignition_ros = 0.5 
 ●  fmc 1%: fuelmc_g = 0.01 
 ●  fmc 5%: fuelmc_g = 0.05 
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