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Abstract

Spatial analogs have previously been used to communicate climate projections by comparing the future climate of a location

with an analogous recent climate at a different location which is typically hotter. In this study, spatial climate analogs were

computed using observational data to identify and quantify past changes. A sigma dissimilarity metric was computed to

compare the recent climates of nine major Australian cities and early 20th century climate. Evidence of climate shifts is found,

particularly in locations, such as Perth, where precipitation has significantly changed in addition to the warming trend observed

at all cities. Analogs designed to capture extremes, including a human health-relevant climate analog, were constructed and

these also highlight significant climate shifts. This work demonstrates the utility of climate analogs for monitoring past climate

changes as well as examining future change. Tailored analogs could be studied to communicate climate changes relevant to

specific stakeholders.
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Figure S1. As Figure 2 but showing sigma dissimilarity between the city’s climate in 1994-2021/22 and the
climate of other locations in 1938-1965/66.

Figure S2. As Figure 2 but showing sigma dissimilarity between the city’s climate in 1994-2021/22 and the
climate of other locations in 1966-1993/94.
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Figure S3. As Figure 2 but identifying a climate extremes analog instead.
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Key Points

• Climate analogs have been used as a projection tool. Here, analogs are
computed using Australian observations to identify past changes.

• There is already evidence for significant changes in climate in Australian
cities using analogs, particularly where rainfall has changed.

• Climate analogs provide a singular measure of multivariate changes which
may be tailored to meet individual stakeholder requirements.

Abstract

Spatial analogs have previously been used to communicate climate projections
by comparing the future climate of a location with an analogous recent climate
at a different location which is typically hotter. In this study, spatial climate
analogs were computed using observational data to identify and quantify past
changes. A sigma dissimilarity metric was computed to compare the recent
climates of nine major Australian cities and early 20th century climate. Evi-
dence of climate shifts is found, particularly in locations, such as Perth, where
precipitation has significantly changed in addition to the warming trend ob-
served at all cities. Analogs designed to capture extremes, including a human
health-relevant climate analog, were constructed and these also highlight signif-
icant climate shifts. This work demonstrates the utility of climate analogs for
monitoring past climate changes as well as examining future change. Tailored
analogs could be studied to communicate climate changes relevant to specific
stakeholders.

Plain Language Summary

Future climates of cities are frequently compared with the current climates of
other cities. In this work, I see if I can compare the current climates of Australian
cities with other locations’ climates in the past. I found that this method can
be used to identify and quantify past climate change in observational data. The
climate analogs can be made to represent different characteristics of the climate,
so could be designed to be useful for specific industries.

1. Introduction

The world is warming due to anthropogenic greenhouse gas emissions. To date,
the planet has warmed by around 1.1°C relative to pre-industrial levels (IPCC,
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2021). Global warming has been accompanied by local warming across almost
all of the world and significant precipitation changes in some locations as well as
other earth system changes. Scientists have used observational datasets to quan-
tify changes in the climate to date and compute other relevant metrics beyond
trends, such as climate emergence statistics (Hawkins et al., 2020; Mahlstein et
al., 2012).

As greenhouse gas emissions remain close to record high levels (Davis et al.,
2022; Friedlingstein et al., 2022) and global warming will continue as long as
greenhouse gas emissions remain significantly net-positive (King et al., 2022;
MacDougall et al., 2020), further warming and other climate changes are ex-
pected over the coming decades. Climate projections are made based on model
simulations to provide estimates of future local changes. Projections are com-
municated in different ways, but one popular method is spatial climate analogs.
Analogs have been used to illustrate changes by projecting that a location’s cli-
mate may become more like another location’s, typically hotter, current climate,
if greenhouse gas emissions continue. The use of analogs has been popular for
examining different climate impacts including in climate-sensitive industries
such as health (Kalkstein & Greene, 1997) and agriculture (Bergthórsson et al.,
1988; Webb et al., 2013). Climate analogs have previously been computed from
global and regional downscaled model simulations and are used by organizations
including Copernicus (https://climate-analogues.climate.copernicus.eu/) and
the Commonwealth Scientific and Industrial Research Organisation (CSIRO)
in Australia (https://www.climatechangeinaustralia.gov.au/en/projections-
tools/climate-analogues/) to display analogous climates for locations under
different greenhouse gas emissions scenarios for the 21st century. Spatial
climate analogs are relatively straightforward to communicate and understand
and may be computed based on multiple variables.

In this study, I investigated whether climate analogs may be used to identify
past climate changes in observational datasets, rather than their common use
for projections. In this instance, the recent climate of a location was compared
with the climate at all locations in the past to identify the best historical analog.
Analysis of historical climate analogs supports previous work to understand the
extent of climate changes to date, such as emergence metrics, and provides a
framework for their use for climate monitoring efforts. Here, I computed climate
analogs for nine major cities in Australia (Figure 1a).

Australia is a continent with diverse local climates, including tropical, arid and
temperate climate types (Peel et al., 2007), and population centres spread across
these climates. Annual-average temperatures vary from below 10°C in moun-
tainous parts of the southeast of the continent to above 28°C in the tropical
north (Figure 1a). Precipitation varies with the arid interior receiving less than
1mm/day whereas some coastal and high-altitude areas experience more than
6mm/day on average (Figure 1b). Australia has also warmed (Figure 1c-f),
especially the southern half of the continent in spring and summer, with tem-
peratures rising an average of about 1.4°C since 1910 (Australian Bureau of
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Meteorology, 2020b). Precipitation change has been more spatially variable
with increases in the north and interior and drying in the coastal south (Fig-
ure 1g-j). Australia’s diverse climate and significant climate changes in the
observed record make it a suitable study region for examining for past spatial
climate analogs to the recent climate.

Figure 1. Maps of (a) average temperatures and (b) average precipitation
across Australia for 1991-2020. Cities for which analogs are computed are
marked in (a) in alphabetical order: ‘a’ for Adelaide, ‘b’ for Alice Springs, ‘c’
for Brisbane, ‘d’ for Canberra, ‘e’ for Darwin, ‘f’ for Hobart, ‘g’ for Melbourne,
‘h’ for Perth, and ‘i’ for Sydney. (c-f) Changes in seasonal-average temper-
atures between 1910-1937/38 and 1994-2021/22 for March-May, June-August,
September-November, and December-February respectively. (g-j) Changes in
seasonal-average precipitation rates between 1910-1937/38 and 1994-2021/22
for March-May, June-August, September-November, and December-February
respectively.

2. Data and Methods

2.1. Observational data
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Observational data from the Australian Gridded Climate Dataset (AGCD;
Evans et al., 2020; Jones et al., 2009) were used in this study. Gridded observa-
tional data for daily precipitation totals, maximum temperature and minimum
temperature from January 1910-August 2022 were interpolated from a native
regular grid of 0.01° to 0.25° using a conservative regridding method. The
data were separated into the four meteorological seasons: March-May (MAM),
June-August (JJA), September-November (SON) and December-February
(DJF). Five sets of climate analogs were computed for which results are shown
here:

1. Seasonal mean temperatures and total precipitation values were calculated
and these eight variables formed the basis of the mean climate analogs
analysis.

2. To better understand the mean climate analog results, analogs computed
from only the four seasonal mean temperature variables were also com-
puted.

3. Similarly, analogs were computed for only the four precipitation variables
too.

4. The first climate extremes analog used eight variables based on two in-
dices recommended by the Expert Team on Climate Change Detection
and Indices (ETCCDI): seasonal values of the highest maximum temper-
ature (TXx) and seasonal values of the highest daily precipitation totals
(Rx1day).

5. The second climate extremes analog was an attempt to develop a health-
relevant metric and this uses four variables: seasonal 90th percentile val-
ues of daily maximum temperature in austral spring (SON) and summer
(DJF) and seasonal 10th percentile values of daily minimum temperature
in austral autumn (MAM) and winter (JJA).

Climate analogs for nine major cities were examined and their locations are
shown in Figure 1a. This includes the eight state and territory capitals of Aus-
tralia and Alice Springs is included as it is characterized by a different climate
to all other cities studied here. In total, over 17 million people live in these nine
cities.

The observations were divided into four periods of equal length: MAM 1910-
DJF 1937/38, MAM 1938-DJF 1965/66, MAM 1966-DJF 1993/94, and MAM
1994-DJF 2021/22. The climate analogs were computed for each of the first
three periods relative to the climate of the city of interest in the 1994-2021/22
period. The results shown here are comparing the 1910-1937/38 period with
the climate of the city of interest in 1994-2021/22, but selected results for other
periods are shown in Supplementary Information.

2.2. Climate analog identification

There are different methods for the identification of climate analogs. The ob-
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jective of climate analogs previously has been to identify locations with similar
climates in a future climate scenario to a present-day climate at a specific loca-
tion. This has been done by comparing means and variability in temperature
and precipitation (e.g. Bergthórsson et al., 1988). Gavin et al., (2003) compared
methods for analog identification leading to subsequent studies using Standard-
ized Euclidean Distance (SED) for the purpose of analog analysis (e.g. Veloz et
al., 2012; Williams et al., 2007). SED is defined as:

SEDij =
√√√
⎷

𝑁
∑
𝑘=1

(𝑏ki − 𝑎kj)
2

𝑠kj
2

where N is the number of variables included analysed, a is the mean of vari-
able k at the location of interest, j, in the recent climate, b is the mean climate
under a future scenario at location, i, and skj is the standard deviation of climate
variable k at location j. The SED is straightforward to compute and interpret
aiding its’ popularity for climate analog studies. In a comparison study, Grenier
et al., (2013) suggested that the effects of differences between analog metrics
were smaller than dependence in model selection in determining the location of
the best analog.

While the SED has become well used in analog studies, it has been shown to
suffer from artefacts of covariance in the variables that are used as inputs, and
comparison between SED statistics based on different numbers of input variables
(N in the equation for SED) is challenging (Mahony et al., 2017). Mahony et
al., (2017) developed an alternative method based on standardizing the data
and extracting principal components (PCs) before computing similarity in this
transformed data space. This approach has been used in some subsequent analog
analyses (Fitzpatrick & Dunn, 2019; Lotterhos et al., 2021).

Covariance between input variables is an issue in the Australian region as
seasonal-average temperature and precipitation variability is associated with
climate modes, such as the El Niño-Southern Oscillation, which may persist for
multiple seasons. Also, seasonal and annual temperature and precipitation are
inversely correlated in some areas of Australia (e.g. Nicholls, 2004). Thus, the
SED approach is sub-optimal for examining Australian climate analogs. In this
study, an adaptation of the method developed by Mahony et al., (2017) was
used instead. For a given location and set of variables the following steps were
taken:

1. The data for each variable at the city of interest for 1994-2021/22 were
standardized based on the mean and standard deviation over the 28 values
for each season in the period.

2. Mean values of all variables for 1910-1937/38 and 1938-1965/66 and 1966-
1993/94 at every location were computed and then standardized using the
same mean and standard deviation computed in step 1. These values are
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compiled into arrays for each time period, [B1’], [B2’], and [B3’] containing
all variables.

3. An array of the standardized variables in the 1994-2021/22 period at the
city of interest was compiled, [C’], and principal component analysis was
performed on this array. Eight principal components (PCs) were extracted
for arrays where eight variables were included and four PCs were extracted
where analogs were being computed based on only four variables.

4. The arrays compiled in step 2 were projected onto all PCs so that Maha-
lanobis distance, D (Mahalanobis, 1936), may be computed in the trans-
formed data space as:

𝐷ij =
√√√
⎷

𝑁
∑
𝑛=1

(𝑧in − 𝑦jn)2

𝑠in
2

where N is the number of PCs (either 8 or 4 in this study), 𝑧in is the mean of
each PC projected on to [C’], 𝑦jn is each PC projected on to [B1’], [B2’], or [B3’],
and 𝑠in is the standard deviation of each PC projected on to [C’]. D may be
calculated at all locations in the domain and its computation bears similarity to
the SED as was used in earlier studies (e.g. Veloz et al., 2012; Williams et al.,
2007), but is based on PCs of the set of variables at the city of interest rather
than the raw variable data.

1. Sigma dissimilarity was computed by converting Mahalanobis distance
using the Chi-distribution where the mean, �, is:

𝜇 =
√2Γ ( 𝑘+1

2 )
Γ ( 𝑘

2 )

and the standard deviation, �, is

𝜎 = √𝑘 − 𝜇2

where k is the number of degrees of freedom and in this analysis,
k=N as all principal components were used regardless of variance
explained. For the analysis of analogs for climate means using sea-
sonal average temperature and precipitation, and climate extreme
indices, k=8, so �=2.74 and �=0.70. For the analysis of temperature
means only, precipitation means only, and the health-related tem-
perature extremes, k=4, so �=1.88 and �=0.68. The conversion of
Mahalanobis distance to sigma dissimilarity allows comparability of
results between analog analyses where k is different.

For fuller discussion of this methodology I refer the reader to Mahony et al.,
(2017). However, there are a few key differences between this study and Mahony
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et al., (2017) that must be highlighted. The most obvious difference is that
here analogs with the recent climate were identified for past climates rather
than future climates. Here, gridded observational data were used to represent
the recent climate and the standard deviation in step 1 is computed from the
location gridcell, whereas in Mahony et al., (2017) a collection of local station
data were used. The construction of AGCD, based on interpolation of station
data (Evans et al., 2020; Jones et al., 2009), means that the gridcell standard
deviation is essentially derived from multiple stations, although their relative
influence depends on the density of station data and the variable in question.
Part of the motivation for computing analogs for major cities was that these
are locations where station density is high and the climate variability in the
gridded dataset should be more accurate. Also, as discussed in step 5, k=N
in this analysis, whereas in Mahony et al., (2017) the higher-order principal
components were not used in the Mahalanobis distance calculation. The analysis
here was based on fewer principal components, so even the higher-eigenvalue PCs
explain more variance than the 0.01 threshold employed for truncation of PCs
by Mahony et al., (2017). This is mainly due to the analysis of four seasonal-
mean temperatures rather than a combination of four seasonal-mean maximum
and four seasonal-mean minimum temperatures which leads to analogs based
on 8 rather than 12 variables when seasonal-total precipitation is also included.

3. Results

3.1. Climate means analysis

Sigma dissimilarity values show the level of agreement between the recent cli-
mate (1994-2021/22) of a given location and the climate at all locations further
in the past (1910-1937/38). For the nine major cities analyzed here, Darwin
and Perth show the biggest difference between recent and past climates at their
locations at 2� and 1.6� respectively (Figure 2). As Mahony et al., (2017) point
out, 2� dissimilarity equates to approximately the 95th percentile of climate
variability so could be considered a moderately novel climate. No sites show
anything close to what Mahony et al., (2017) suggest is extremely novel, 4�
dissimilarity. While other cities do not show strong dissimilarity between their
recent and past climates, the best analogs to recent city climates tend to be
further north for the cities in southern Australia. For example, the best early
20th century analog to Sydney’s recent climate is near Newcastle and the best
analog to Brisbane’s recent climate is near Bundaberg. Adelaide’s best analog
is thousands of kilometers away in southwest Western Australia. In general, the
best historical analogs to present day city climates may be found in warmer
locations. When the analysis was repeated comparing the recent period with
later historical periods the sigma dissimilarity for Darwin and Perth decreases
and the best analogs tend to move nearer to the city locations (Figures S1, S2).
There is little evidence of interannual or decadal variability affecting the sigma
dissimilarity patterns, despite the strong climate variability on these timescales
that Australia experiences.
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Figure 2. (a-i) Sigma dissimilarity between the city’s climate in 1994-2021/22
and the climate of other locations in 1910-1937/38. The smaller the sigma
dissimilarity, the more similar the climate is. The value of sigma dissimilarity
between the city’s climate in 1994-2021/22 and 1910-1937/38 is given in the
top-left of each map. The black symbol shows the nearest analog. The unfilled
circle shows the city’s location.

To investigate the factors behind the identified local climate changes, the analogs
were also computed for seasonal temperatures only and seasonal precipitation
only. Figure 3 shows the locations of the best historical analogs from 1910-
1937/38 to present-day city climates based on seasonal temperature and precip-
itation in combination (in black) and separately (in red and blue respectively).
There are some significant differences between the temperature and precipita-
tion analogs. For example, Melbourne’s recent temperatures are most similar to
those in past southeast South Australia, whereas the best rainfall analog shows
no movement from Melbourne at all. For Brisbane, the best temperature and
rainfall analogs are to the south, but the best climate analog is to the north.
This highlights that particularly in regions of strongly variable climates, such
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as the eastern seaboard of Australia (Figure 1a,b), close proximity can result in
very different local climates resulting in seemingly disparate movements between
the best temperature, precipitation, and climate analogs.

Figure 3. (a-i) Locations of the most analogous climate in 1910-1937/38 rela-
tive to each city’s climate of 1994-2021/22. The black symbol shows the nearest
climate analog while the red and blue symbols show the nearest analogs for
temperature only and precipitation only, respectively. The unfilled circle shows
the city’s location.

3.2. Climate extremes analysis

Analysis on extreme climate indices (seasonal TXx and Rx1day) was also per-
formed but showed little dissimilarity between the recent climate and historical
climate of 1910-1937/38 at the city locations (Figure S3). This is due to the
much higher interannual climate variability in these indices compared with the
climate means. This effect is also illustrated by the broad swaths of Australia
with low sigma dissimilarity values for past relative to recent city climate. The
best analogs still show movement towards warmer climates. For example, the
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best analog for Hobart’s recent climate extremes in the early 20th century is
found near Sydney.

Climate analogs may take different input variables to be useful to specific stake-
holders. An attempt to showcase this for temperature extremes specifically is
provided here. Hot and cold extremes cause health problems and increased
mortality rates including in Australia (Cheng et al., 2019; Coates et al., 2022;
Gasparrini et al., 2017), although the relative importance of heat and cold for
excess fatality is debated (Longden, 2019). Acclimatization is relevant to heat ex-
tremes with people more vulnerable to heat that come after cold periods (Nairn
et al., 2014). Thus, the 90th percentile of seasonal maximum temperatures in
spring and summer, and the 10th percentile of seasonal minimum temperatures
in autumn and winter were used as input variables for a health-relevant climate
analog.

The input variables in this case have lower interannual variability than TXx
and Rx1day, so the sigma dissimilarity is broadly higher (Figure 4). Darwin is
still the only city to have transitioned to experiencing a truly novel climate with
respect to this health-relevant analog with local dissimilarity of 3.2� between the
recent period and 1910-1937/38 window. However, as with the climate means
analog, the best health-relevant analogs are in warmer locations than the city
of interest. For example, Sydney’s health-relevant climate analog for the 1994-
2021/22 period is a location near Brisbane in the 1910-1937/38 period. There
is potential for stakeholders to use climate analogs information to understand
the challenges their sector may face in the current climate.
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Figure 4. (a-i) Sigma dissimilarity between the city’s temperature extremes in
1994-2021/22 and the temperature extremes of other locations in 1910-1937/38.
The value of sigma dissimilarity between the city’s temperature extremes in
1994-2021/22 and 1910-1937/38 is given in the top-left of each map. The black
symbol shows the nearest analog. The unfilled circle shows the city’s location.

4. Discussion and Conclusions

This analysis is the first, to the author’s knowledge, to apply climate analog
techniques to study past climate changes in the instrumental period rather than
future climate scenarios. Through using an adapted version of the Mahony et
al., (2017) methodology, climate analogs were computed and significant changes
in climate were identified, particularly in Darwin and Perth while other major
Australian cities experienced more subtle changes between the early 20th century
and recent period. Darwin was the only tropical location studied here and
showed the strongest climate shift in the observational record using both the
mean climate analog and the health-relevant analog. In general, climate changes
in the tropics are clearer than in high-latitude regions due to lower interannual
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variability (Diffenbaugh & Scherer, 2011; Hawkins et al., 2020; Mahlstein et al.,
2011). Perth has experienced significant rainfall decline (Delworth & Zeng, 2014;
Hope et al., 2006) as well as the warming that has been observed in all major
Australian cities and this has contributed to the high dissimilarity between
current and past Perth climate. As the climate continues to change, analogs
could be updated. Seamless analysis of past and future analogs could also be
conducted by blending observations, high-resolution reanalyses and projections.

Climate analogs for extremes indices were explored in this study. In general,
the high interannual variability in climate extremes reduces sigma dissimilarity
values between present and past climates but shifts in best analogs to warmer
locations are still identified. Australia has experienced significant increases in
the frequency and intensity of heat extremes over the past century (Alexander &
Arblaster, 2017; Lewis & King, 2015; Perkins & Alexander, 2013), while changes
in rainfall extremes have been less clear and are more complex (Alexander &
Arblaster, 2017; Dey et al., 2019, 2020).

This study uses only observational data to explore historical climate analogs.
Thus, the cause of movements in the best analog and the sigma dissimilarity
statistics cannot be directly attributed to anthropogenic climate change here.
However, the underlying warming of Australia (Eyring et al., 2021) and in-
creased frequency and intensity of hot extremes (Seneviratne et al., 2021) have
been attributed to anthropogenic forcings previously. This study adds a new
way of framing historical climate changes in Australia.

This study focused on only major Australian cities where there is a reason-
able density of weather stations (Jones et al., 2009). Extending climate analog
analysis to rural locations could be useful, particularly if analogs are designed
with stakeholders such as local agriculture or water management, but would be
susceptible to issues with data quality. The application of climate analogs to
specific stakeholders requires careful thought and co-design between scientists
and sectoral experts. The example of a health-relevant analog in this study is
illustrative and would require refinement for further use.

This work has shown that climate analogs may be used to identify past climate
changes as well as for communication of projections. Further work to make
historical analogs relevant to stakeholder interests could be beneficial.
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