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Abstract

Over the last decade, the evolution of survey acquisition design composed of numerous receivers and shot points has exponentially

increased the seismic data volume. As a result, the demand for efficient algorithms for detecting seismic first arrivals has been

growing. Machine learning methods, especially convolutional neural networks, have shown great potential in previous studies.

However, most existing methods lack generalization ability or be sensitive to noise. This paper proposes a new picking strategy

based on the single-to multi-domain selftrained network to achieve automated picking for the first arrivals. Our self-trained

network learns from a single domain to multiple domains while rejecting the wrong predicted picking and assigning the pseudo-

first-arrivals-times to the unlabeled dataset. The model inherits the advantage from both single-and multi-domain picking

strategies; it has high generalizability and noise robustness. In addition, the model is designed for a limited amount of manually

annotated data to reduce human labor and total seismic processing time. In experiments on an open hard rock seismic multi-

survey dataset, our picking method outperforms the benchmark on most evaluation metrics. Remarkably, our approach achieves

approximately 10 % accuracy improvement against Lalor site data with a sampling rate that differs from training data. The

experimental results demonstrate our method’s high generalizability and robustness for unseen datasets.
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ABSTRACT 

 Over the last decade, the evolution of survey acquisition design composed of numerous 

receivers and shot points has exponentially increased the seismic data volume. As a result, the 

demand for efficient algorithms for detecting seismic first arrivals has been growing.  Machine 

learning methods, especially convolutional neural networks, have shown great potential in 

previous studies. However, most existing methods lack generalization ability or be sensitive to 

noise. This paper proposes a new picking strategy based on the single- to multi-domain self-

trained network to achieve automated picking for the first arrivals. Our self-trained network 

learns from a single domain to multiple domains while rejecting the wrong predicted picking and 

assigning the pseudo-first-arrivals-times to the unlabeled dataset. The model inherits the 

advantage from both single- and multi-domain picking strategies; it has high generalizability and 

noise robustness. In addition, the model is designed for a limited amount of manually annotated 

data to reduce human labor and total seismic processing time. In experiments on an open hard 

rock seismic multi-survey dataset, our picking method outperforms the benchmark on most 

evaluation metrics. Remarkably, our approach achieves approximately 10 % accuracy 

improvement against Lalor site data with a sampling rate that differs from training data.  The 

experimental results demonstrate our method’s high generalizability and robustness for unseen 

datasets. 

INTRODUCTION 

  In seismic processing, first-break picking, determining the onsets of first signal arrivals, 

is a fundamental step in estimating subsurface velocity structure through static 



 

correction(Palmer, 1980). Traditionally, picking was carried out by a human visual inspection of 

the variation of amplitudes and waveforms. However, more advanced seismic acquisition and 

processing systems have been developed over the past decades. Notably, more advanced survey 

design composed of numerous receivers and shot points, like 3D seismic survey, has usually 

been adopted to improve the accuracy and resolution of seismic image. Consequently, manual 

phase picking of such inflated seismic data volume could be time-consuming and a bottleneck of 

the data processing flow. Hence, there is a demand for an automated first-break picking 

technique to reduce human labor. Therefore, many efforts have been made to develop the 

automatic picking method in the previous decade. 

 One of the automated picking strategies focuses on the particular feature of the seismic 

signals, such as the Short-Time Average and Long-Time average ratio(STA/LTA) (Allen, 1978; 

Stevenson, 1976), Energy Ratio(Coppen, 1985, Han et al., 2009), correlation properties (Peraldi 

& Clement, 1972), fractal dimension (Boschetti et al., 1996), Akaike information criterion 

(Takanami & Kitagawa, 1991; Diehl et al., 2009), high-order statics (Yung and Ikellee, 1997) to 

identify the mutation points. These traditional picking methods are classified into two categories 

by their operation domain: (1) single-domain and (2) multi-domain (or array processing)-based 

algorithms (Akram and Eaton (2016)). Single-domain methods only use a signal from an 

individual receiver trace and do not use adjacent receiver information. In contrast, multi-domain 

methods, such as cross-correlation-based algorithms, make simultaneous use of information on 

multiple receiver levels within the array. Because single-domain methods lose the spatial 

information of the receiver array, they tend to work well only under an adequate signal-to-noise 

ratio. As a result, they often get unsatisfactory results for low-quality data. In addition, although 



 

the multi-domain methods mitigate the noise effects to some degree, it still struggles with poor 

data quality. 

 Another automated strategy is a machine learning based on neural networks. The 

networks automatically extract and transform sensitive attributes or features of the onset of the 

seismic signal with the manually annotated label. This strategy appeared in the 1990s, and some 

authors applied neural networks for estimating first arrivals (Murat & Rudman, 1992; 

McCormack et al., 1993). Most initial trials used neural networks are based on fully connected 

(FC) layers where all the inputs from one layer connect to every activation unit of the next layer. 

Because FC Layers hardly analyze the spatial structure of inputs, they often fail to capture a 

crucial feature of first arrivals. More recently, many deep learning applications for arrivals 

picking have been developed (e.g., Ozawa et al., 2018; Yuan et al., 2018; Zhu & Beroza, 2019). 

Most of those methods are based on the convolutional neural network architecture(CNN), an 

extended neural network imitating the visual perception mechanism of the living creature 

(LeCun et al., 1989). They have achieved high performance in various computer vision tasks 

(e.g., Krizhevsky et al., 2017; Girshick et al., 2014). CNN explicitly assumes that inputs have a 

specific series structure, like images. This assumption allows us to efficiently encode crucial 

time-space features of first arrivals from the input signals. Zhu and Beroza (2018) proposed a 

single-domain picking method for a single three-component record based on a U-shaped fully 

convolutional network (U-net) (Ronneberger et al., 2015) to estimate the onset of P-wave and S-

wave. Yuan et al. (2018) applied CNN to classify whether a local multitrace patch contains first 

arrivals. Hu et al. (2019) used U-net to recognize the inherent patterns of first arrivals on multi-

domain. They directly apply the trained U-net model to another seismic dataset. Their direct 

transfer test shows that the U-net model can estimate the first arrivals on a simple dataset without 



 

retraining the network because both datasets have a similar first break pattern. However, if the 

test data set has different first arrivals patterns than the training dataset, U-net should be retrained 

with parts of the test data.  

 As mentioned before, the multi-domain methods have obvious advantages in terms of 

robustness against noise compared with the single-domain methods. On the other hand, in terms 

of supervised machine learning, single-domain learning has some advantages in the model 

generalization ability. The diversity of seismic acquisition parameters, such as receiver interval 

and sampling rate, and a limited amount of supervised data often result in overfitting in neural 

networks. This issue tends to become apparent in multi-domain supervised model learning 

because the multi-domain model learns the spatial information of a specific training data field. In 

contrast, because single-domain learning only uses a single trace, it can learn relatively similar 

first arrival patterns of the test dataset from the training dataset. In addition, we can provide a 

relatively large amount of training datasets for single-domain learning. These advantages 

increase the single-domain model’s generalizability for unseen data. Loginov et al. (2022) 

compared several neural network architectures, including single-domain and multi-domain 

approaches for first arrivals picking for land seismic data. Their study shows the single-domain 

approach that provides the most reliable results in the case of first-arrival travel-time variations 

typical of complicated near-surface structures. 

 Self-training (Yarowsky, 1995) is one of the approaches in semi-supervised learning 

(Fralick, 1967), which train a model to learn pseudo-labels predicted by another previously-

learned model. The algorithm starts by learning a supervised classifier on the labeled training set. 

Then, the classifier selects the part of the unlabeled dataset using the confidence of the 



 

classifier’s prediction and assigns pseudo-labels to them. The pseudo-labeled examples are then 

used to enrich the training data, and the process is repeated until the algorithm converges.  

This study proposes a new strategy based on a single- to multi-domain self-trained network to 

improve automated first arrivals picking accuracy and stability. Our self-trained network 

iteratively learns while rejecting the poor pick and assigning the pseudo-first arrivals times to the 

unlabeled dataset. One characteristic of our method is it starts from single-domain training and 

then shifts the multi-domain training. Hence, our model is a hybrid of single-domain and multi-

domain convolution-based networks and inherits the advantage of both domain strategies; the 

generalized ability of the single-domain network and the noise robustness of the multi-domain 

network. In addition, the model is designed for a limited amount of manually annotated data, 

which can reduce human labor and total seismic processing time. 

 Some proposed methods have already used the preliminary predicted pick or extracted 

attribute to improve the final picking results. Sabbiones and Velis (2010) proposed a poor trace-

by-trace picks correcting technique to exploit the benefits of the data present in the entire shot 

record. Wang et al. (2022) used the U-Net as the coarse segmentation network to obtain the 

approximate first positions of break arrivals. Then, they pick up the data and predict the first 

arrivals using a refine-segmentation network based on U-Net. Yuan et al. (2020) used U-Net to 

segment seismic images and recurrent neural networks for arrival picking. Duan & Zhang (2020) 

applied the short- and long-time window average ratio (STA/LTA) method to obtain the 

preliminary picking and then fix poor picks based on the multitrace analysis using CNN. Tsai et 

al. (2018) introduced deep semi-supervised machine learning for first arrivals pickings. They 

extracted the significant features from unlabeled data using an unsupervised autoencoder to 

prepare the input of supervised training. Chen et al. (2019) proposed combined k-means 



 

clustering with CNN classification for arrival picking. Their CNN classified the first waveform 

from the entire signal, and then k-means clustering picked the first arrivals from the first 

waveform. The differences between these methods and our proposed self-trained method are 

below. (1) Our method directly uses preliminary picking as supervised data. Therefore, our 

strategy has the potential to extract more information from the preliminary pick to improve 

prediction accuracy. (2) Our neural network learns from single- to multi-domain in order to 

improve both generalized ability and noise robustness. 

 The remainder of this paper is organized as follows. The next section presents the new 

workflow based on a self-training deep learning model. In section 3, we evaluate our model 

using an open seismic multi-survey dataset. We discuss the capability and limitation of our 

model and future prospects in section 4 

Method 

The workflow of our single- to multi-domain self-trained learning method consists of 

three stages (Figure 1);  

1) Single-domain network learning using the manually labeled dataset.  

2) Predicting first arrivals for an unlabeled dataset using a trained network and automatically 

selecting the highly confident prediction to assign pseudo-labels.  

3) Multi-domain network learning using the assigned pseudo-labels and predicting first arrivals 

for an unlabeled dataset. 



 

 

Figure 1. Workflow for first-break piking using the single to-multi-domain self-trained network. 

 

Single-domain network learning. 

 Our workflow starts from single-domain learning using the manually labeled training 

data as supervised data. Before single-domain learning, we normalize each training waveform by 

removing its mean and dividing it by the standard deviation. The manual first arrival times are 

converted to binary labels with 1 for pixels labeled as “first arrivals” and 0 otherwise. As a 

single-domain learning network, we use the 1D U-net architecture, a modification of U-net, to 

deal with 1-D time series data. The input is a single trace of the dataset. The network output and 



 

the ground truth label (binary label) are compared using a root mean squared error loss function. 

The network is trained to minimize the loss using the adaptive moment estimation (Adam) 

optimizer (Kingma & Ba, 2014).  

 

Generating pseudo-labels 

 After training a single-domain network, we apply the trained model to the unlabeled 

dataset. The self-training process needs to determine the confident samples from unlabeled data 

for pseudo-labeling. Our strategy for selecting the confident samples is the following step(Figure 

2). We regard the outputs of the trained model as the first arrival probability. At first, we select 

some fixed percent p1 of the predicted arrival times in descending order of arrival probability 

(from now on, we call this selected arrivals time “good picking time”). Next, we calculate the 

piece-wise linear regression curve of “good picking time” versus the offset between the source 

and receiver. Then, delete all predicted samples located more than three standard deviations 

away from the regression line. In addition to regression filtering, we remove some fixed percent 

p2 (p1 < p2) of the predicted traces in ascending order of first arrival probability. The remaining 

predicted first arrivals times are assigned the pseudo label. In addition to removing the outlier, 

we apply moveout correction for unlabeled data using piece-wise regression curve shift and limit 

the area of interest to 256 samples (Figure 3). This constraint helps increase the generalization 

ability of the trained model.  

 

Multi-domain network learning 

  To further improve the preliminary first arrivals pick from the single-domain U-net based 

network, we use the multi-domain neural network based on 2D U-net architecture. The 



 

supervised data are pseudo-labeled test dataset samples generated in the previous step. For multi-

domain learning, we extract a series of adjacent seismic traces, which have all been assigned the 

pseudo label. Because the number of assigned pseudo-label samples is limited, we choose the 

number of adjacent traces small to ensure the supervised data volume. In this study, we extract 

five adjacent moveout-corrected and time-windowed traces as the supervised data. The input 

shape is 5 x 256. As Duan & Zhang (2020) also adopt the five adjacent traces for the input image 

to identify the poor pick, such a limited spatial input size may be enough to learn the horizontal 

consistency of seismic data. Because the optimized weight of convolutional kernels of the single-

domain network helps extract the crucial feature of the first arrivals, we copy and expand 

weights from 1D into 2D and transfer them as the weight for the 2D U-net architecture. This 

weight transfer operation stabilizes multi-domain learning and reduces computational costs. We 

use Rectified Adam (RAdam) (Liu et al., 2019) as the optimization algorithm that schedules the 

learning rate warmup strategy (starts with a small learning rate and gradually increases the 

learning rate as the training progresses). During the workflow, stages 2) and 3) can be iterative; 

we can assign the new pseudo-label using the multi-domain learning prediction results. The self-

trained algorithm works well if the assigned pseudo-label is correct and the unlabeled data 

contains the additional information on the actual first arrival times. However, incorrect pseudo-

labels cause inappropriate training, accumulating errors in the iterative self-training process. 

Therefore, we should monitor the error between the predicted picking time and the “good 

picking time” (a confidently predicted time of single-domain model result, not a ground truth) at 

each iteration and stop the training if the error increases.  



 

 

Figure 2. (a) Gray circles represent the preliminary predicted picks of the single-domain learning 

model, and blue circles are the confident picking (selected  p1 % of whole samples) for 

calculating the pice-wise regression line(orange line). (b) The samples located more than three 

standard deviations away from the regression line (gray circle) are eliminated. Besides, the 

remains with the below arrivals probability of p2 percentile are removed. Finally, the remains 

(blue circle) are used as pseudo-labeled data.  

 

 

Figure 3. (a) A shot record before moveout correction. The dashed orange line indicates the 

piece-wise regression line. (b) A shot record after moveout correction and cropping. 



 

 EXPERIMENT & RESULT 

  St-Charles et al. (2021) recently released the open multi-survey dataset with manual 

picking annotation and U-Net based pickup accuracy benchmark. The dataset contains four 

distinct seismic explorations at hard rock mining sites: These are called “Lalor,” “Brunswick,” 

“Halfmile,” and “Sudbury.” Along with the multi-survey dataset, the first break pick annotations 

for 72.3 % of traces are provided. The annotations are deemed valid by a human expert. The 

accuracy benchmark, which we will compare our model results with, is based on a U-net 

architecture. The input to the benchmark model is a line gather which is treated as an image with 

multiple channels. Its first channel is seismic amplitude. Other channels contain source-receiver 

distances and the distances to the closest previous and next receivers on the same line. 

  For the performance metric, we use the Mean Average Error(MAE), the Mean Bias 

Error(MBE), and the Root Mean Squared Error (RMSE), where all errors are measured at the 

sample scale following St-Charles et al. (2021). We also calculate the Hit Rate at δ samples 

(HR@δpx) defined by the following equation, 

 

HR@δpx =
𝑛{(|𝑃𝐴 − 𝑃𝑀| < δ)  ∩ (𝑃𝐴 > 0) }

𝑛(𝑃𝐴 > 0)
 (1) 

 

where 𝑃𝑀 = {𝑃𝑀𝑖
}

𝑖=1

𝑁
 and 𝑃𝐴 = {𝑃𝐴𝑖

}
𝑖=1

𝑁
 are the manual and the automated pickings, 

respectively. 𝑁 is the number of all traces. Additionally, we set the first arrivals times of no-

pickup traces as -1 for both manual and automated picking. Hence, the equation (1) means the 

fraction of manually annotated traces where the prediction error is smaller than δ samples. In this 

paper, we set δ = 1, 3, 5, 7, 9 for the equation to evaluate the model capability under different 

accuracy requirements. 



 

 As per St-Charles et al. (2021), we conduct a random hyperparameter search of 50 trials 

in the single-domain network training phase. For each trial, we train on two sites and evaluate on 

a third site as the validation.  Table 1 shows the cross-validation folds setting. During the 

hyperparameter search, we set the batch size for training at 300. Table 2 displays the explored 

range of the hyperparameters. For the optimization, we use learning rates uniformly across a 

logarithmic scale of [10−5, 5 · 10−3]. Early stopping is performed if the HR@1px on the 

validation site does not improve for more than 5 consecutive epochs. [ 

 

Table 1. Distribution over hyperparamters for 50 trials of single-domain learning 

 

Table 2. The cross-validation setting 

 

 The schematic U-net architecture of our method is illustrated in Figure 4. We set either 3 

or 4 down/up-sampling stages in the model. Each stage consists of a flat convolution layer and a 

down/up-sampling convolution layer. The flat convolution layer has a kernel with a size of 3 and 

a convolution step size of 1. The down-sampling convolution layer has a kernel with a size of 7 

and a convolution step size of 4.  The up-sampling is done by deconvolution.  At each up/down-

sampling step, we double/halve the number of feature maps. The first convolution layer contains 



 

either 16, 32, or 64 feature maps.  After each convolution map, the convolution output is applied 

to batch normalization (Ioffe and Szegedy, 2015) and dropout(Srivastava et al., 2014), and then it 

passes a rectified linear unit (ReLU). Dropout ratios are set uniformly in the range [0~0.5]. 

 

Figure 4. The schematic U-net architecture in this study. “n” stand for the number of feature maps 

of the first convolution layer. During the hyperparameter search, we search the number of 3 or 4 

down/up-sampling stages in the model, and this figure shows the case of the 3 down/up-sampling 

stages. Except for the last convolution layer, the convolution outputs are applied to batch 

normalization and dropout, passing a rectified linear unit (ReLU). The output gives the arrivals 

probability for each sample in the input. 

 
 After 50 trials, we preserve the hyperparameter configuration leading to the model with 

the best validation HR@1px score. The 10 single-domain models have trained again with this 

configuration, starting from different random seeds. Then, we use each predicted result to assign 

the pseudo-label samples for 10 multi-domain training. We set the proportions of confident 

traces p1 to 10 %. As the ratio of eliminated traces p2, we use the 1 minus accuracy of the 



 

validation score at the first iteration, and then the ratio p2 decreases 5 % by each iteration. The 

pseudo-labeled traces are applied flip augmentation with a spatial axis to increase the data 

volume and diversity. Multi-domain training uses the same hyperparameter configuration as 

single-domain training, except that the convolutional kernel dimension is converted from 1D to 

2D. We extend the weights of the single-domain model to 2D and transfer them into the initial 

weights of the kernels. During the training phase, the batch size is fixed at 1000. We monitor the 

HR@1px score between the predicted picking time and the “good picking time” at each iteration 

of multi-domain learning and stop the training if the error does not decrease 2 consecutively 

iterations.  

 Figure 5 shows the distribution of our single-domain model (Light blue bar) and the 

benchmark (St-Charles et al., (2021)) (Blue dotted open bar) performance obtained from 

different validation sites during the hyperparameter search. We can observe that performance of 

our single-domain learning model is relatively stable at all test sites compared with the 

benchmark performance. Table 3 shows the evaluation metrics of the best trial for each fold 

computed on the test site. The single-domain learning model shows the intimate performance of 

the benchmark in terms of HR1px at test sites except for Lalor. It remarks better results on the 

Lalor test site, which has data with a different sampling rate which the predictive model did not 

experience during training and validation. The results indicate the high generalized ability of 

single-domain machine learning. However, the single-domain learning model performs slightly 

worse on the lenient accuracy requirement (HR＠δpx, δ >1). This poor result may be due to the 

lack of spatial information of shot gather during the training. Multi-domain learning improves all 

of the model performance from single-domain results. As a result, our proposed method remarks 

the state-of-the performance except for some Hit Ratio of Brunswick site.  



 

 

Figure 5. Distribution of HR@1px scores obtained on the validation site of each fold across. Our 

single-domain model (light-blue bar) remarks a more consistent result than the benchmark result 

(blue dotted open bar).  

 

Table 3. Metrics calculated on the test site. Ten runs with different random seeds were 

performed, and the mean plus-or-minus the standard deviation over the ten runs was shown. The 

Hit Rates(HR) are in percentage, and the errors are in a number of samples. 

 



 

  Multi-stage segmentation picking Network (MSSPN) (Wang et al., 2022) also shows 

outstanding results against the first arrival picking of the Hardrock seismic multi-survey dataset. 

Through their workflow, they calibrated the human-labeled first arrival time, which means they 

moved the label of non-peak (non-trough) times to the nearest peak (trough) time. Not only their 

sophisticated workflow, but this operation also contributes to improving their result. However, 

because the first arrivals phase is easily affected by noise and energy absorption (Hu et al., 

2019), the actual first arrivals time is sometimes not located at the peak or trough. Therefore, we 

decided not to calibrate the human-labeled first arrival time on purpose for comparison with 

benchmark results. In addition, they eliminated outliers from the result of their deep learning 

model. The post-processing improved their precision score (The proportion of the predicted 

samples are identified correctly). Note if there are no outlier exclusions, precision is equal to 

HR@1px. Suppose we remove outliers according to the arrival probability, our precision score 

increases while our recall score (the proportion of the manually annotated samples are identified 

correctly) decreases. Figure 6 shows the precision-recall curve of our proposed method with 

picking calibration operations. Unfortunately, because we cannot find the recall from MSPNN 

results, we cannot compare our results with theirs.  

DISCUSSION 

 Due to the enormous hyperparameter space and computation costs, we cannot guarantee 

that our hyperparameter choices (such as the number of traces of inputs of a multi-domain 

network, the proportion of selecting confident samples (p1, p2), and neural network architecture) 

are optimal. However, our result is enough to reveal the effectiveness of self-trained learning in 

which a multi-domain network learns from the predicted arrivals times of a single-domain 

network.  



 

 

 

Figure 6. Precision-Recall curve of our proposed method. Results with pick calibration (Red 

lines) are better than the ones without pick calibration. The dashed shaded lines represent each 

random seed’s results, and the solid lines represent their means. 

 
 We cannot assure whether analyzing seismic data as an image using a U-net based 

network is ideal. Mousavi et al. (2020) proposed a hierarchical attention-based network for 

simultaneous earthquake detection and phase picking. The attention mechanism helps to 

incorporate global and local scale features within the full waveform. It has the potential to 

improve picking accuracy and learning efficiency. 



 

  Because our proposed methods solely use the simple piece-wise linear regression for 

estimating the approximation relation between first arrivals time and offset, the proposed 

methods might have limitations for the more complex geological area having anisotropic and 

heterogeneous velocity. In such fields, common midpoint-offset-azimuth bins based on statistical 

analysis (Colombo et al., 2016) are an alternative to remove the outliers.  

  There may be other effective methods of eliminating outlier values during the self-

training. For example, suppose we apply multi-domain prediction to other domains besides the 

common shot domains, such as the common receiver domain. In that case, we can consider the 

samples where the predicted first arrival times between multi-domains are consistent are highly 

confident. The ensemble method has the potential to increase predictive performance and model 

robustness. Furthermore, Han et al. (2021) applied the 3D U-Net for picking first arrivals and 

obtain a more consistent result than the one predicted by the 2-D. Although manually making the 

3D labeled data is difficult and time-consuming, our method can generate 3D pseudo-labeled 

data using the trained single-or multi-domain network. Extending our approach to the 3D domain 

is the future work. 

CONCLUSION 

 In this paper, we propose a single to multi-domain self-trained network for automatically 

picking the first arrivals in seismic data. First, our network starts learning from single-domain 

with labeled data to generate the pseudo-label on unlabeled data. Then our network learns on 

multi-domain using pseudo-label as supervised data. The hybrid domain learning strategy derives 

the advantage from both single- and multi-domain; the generalizability of the single-domain 

learning and noise robustness of the multi-level learning. In experiments on an open multi-survey 

dataset, our workflow clarifies the multi-analysis improves the preliminary picking result of 



 

single-domain learning. Besides, the result of the Lalor site, which has a sampling rate that 

differs from the training data, indicates the high generalizability of our model. Finally, our 

proposed method surpasses the benchmark on most evaluation metrics. 
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