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Kévin Martins1, Philippe Bonneton1, Olivier De Viron2, Ian L Turner3, Mitchel D Harley3,
and Kristen Splinter3

1Univ. Bordeaux
2La Rochelle University
3UNSW Sydney

November 26, 2022

Abstract

Accurately mapping the evolving bathymetry under energetic wave breaking is challenging, yet critical for improving our

understanding of sandy beach morphodynamics. Though remote sensing is one of the most promising opportunities for reaching

this goal, existing depth-inversion algorithms using linear approaches face major theoretical and/or technical issues in the surf

zone, limiting their accuracy over this region. Here, we present a new depth-inversion approach relying on Boussinesq theory

for quantifying nonlinear dispersion effects in nearshore waves. Using high-resolution datasets collected in the laboratory under

diverse wave conditions and beach morphologies, we demonstrate that this approach results in enhanced levels of accuracy in

the surf zone (errors typically within 10%) and presents a major improvement over linear methods. The new nonlinear depth-

inversion approach provides significant prospects for future practical applications in the field using existing remote sensing

technologies, including continuous lidar scanners and stereo imaging systems.
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Key Points:9

• A new depth-inversion approach for the nearshore and surf zone is proposed, based10

on a Boussinesq theory for quantifying nonlinear dispersion effects11

• Unprecedented levels of accuracy (typically within 10%) are obtained in the surf12

zone over both planar and barred beaches13

• This is a substantial improvement over the existing linear wave theory method,14

which commonly overestimates depths by 40% or more in surf zones, and up to15

80% close to the shoreline16
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Abstract17

Accurately mapping the evolving bathymetry under energetic wave breaking is challenging,18

yet critical for improving our understanding of sandy beach morphodynamics. Though19

remote sensing is one of the most promising opportunities for reaching this goal, existing20

depth-inversion algorithms using linear approaches face major theoretical and/or technical21

issues in the surf zone, limiting their accuracy over this region. Here, we present a new22

depth-inversion approach relying on Boussinesq theory for quantifying nonlinear dispersion23

effects in nearshore waves. Using high-resolution datasets collected in the laboratory under24

diverse wave conditions and beach morphologies, we demonstrate that this approach results25

in enhanced levels of accuracy in the surf zone (errors typically within 10%) and presents26

a major improvement over linear methods. The new nonlinear depth-inversion approach27

provides significant prospects for future practical applications in the field using existing28

remote sensing technologies, including continuous lidar scanners and stereo imaging systems.29

Plain Language Summary30

The coastal science community currently lacks insights into the morphological evolution31

of sandy beaches, including rapid changes that occur during storms. This is, to a large32

extent, explained by the difficulty to monitor the seabed elevation under such conditions33

in a region of the nearshore where high-energy waves break. If a relationship can be established34

between observed wave dynamics at the surface and the water depth below, remote-sensing35

technology presents a promising opportunity to reach this goal since it requires no physical36

interaction with the water environment. However, the existing algorithms to retrieve the37

water depth rely on the linear wave dispersion relation, which fails at describing the non-38

linear dynamics of shoaling and breaking waves. Here, we develop a new depth-inversion39

approach based on a Boussinesq theory, which better describes such dynamics. Using40

a range of wave conditions and beach morphologies, we demonstrate that our approach41

results in significant improvement compared to the classic approaches, achieving typical42

accuracy within 10% in regions of the nearshore where waves break. The new nonlinear43

depth-inversion approach provides very promising prospects for future practical applications44

in the field using, for instance, high-resolution datasets collected with lidar scanners or45

stereo imaging systems.46

1 Introduction47

Understanding the temporal evolution of the nearshore bathymetry is critical to48

a wide range of applications including forecasting of coastal hazards, the morphological49

evolution of the sea/land interface and naval operations. However, mapping with sufficient50

accuracy and resolution the water depth along wave-dominated coastlines remains very51

challenging, especially in the region of energetic wave breaking in the surf zone. Remote-52

sensing technology, combined with depth-inversion algorithms, presents a promising opportunity53

to achieve this goal while minimizing risks associated with human intervention or the54

substantial challenges of installing and maintain in situ measurement equipment.55

When currents are neglected, the linear wave dispersion relation provides a direct56

link between the spatial and temporal information of a surface wave field approaching57

the shore:58

ω2 = gκL tanh (κLh), (1)59

where ω = 2πf is the angular wave frequency, g is the acceleration of gravity, κL denotes60

the wavenumber magnitude1 and h is the mean water depth. Depth-inversion algorithms61

such as cBathy (Holman et al., 2013) use this relationship (Eq. 1) to infer depth from62

1 κ = |⃗k| here denotes the (single-valued) magnitude of the wavenumber vector k⃗
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wave dispersive properties extracted from optical imagery (e.g., see Stockdon & Hol-63

man, 2000; Plant et al., 2008; Holman & Bergsma, 2021). In intermediate water depths,64

Eq. 1 accurately describes the dispersive properties of low-amplitude wave fields so that65

typical errors on the water depth estimated with an algorithm like cBathy can be as low66

as 10% (e.g., see Dugan et al., 2001; Holland, 2001; Brodie et al., 2018). Closer to the67

breaking point and in surf zones, however, nonlinear amplitude dispersion effects intensify68

and significant deviations of dominant wavenumbers from the linear dispersion are expected69

(Thornton & Guza, 1982; Elgar & Guza, 1985b; Herbers et al., 2002; Martins, Bonneton,70

& Michallet, 2021). The present approaches based on optical imagery also suffer from71

technical limitations such as spurious phase shifts induced by breaking waves (Bergsma72

et al., 2019). These issues significantly affect the stability and accuracy of remotely-sensed73

wave dispersive properties, leading to errors on the water depths typically between 50-600%74

near and inside the surf zone (e.g., see Holland, 2001; Catalán & Haller, 2008; Bergsma75

et al., 2016; Brodie et al., 2018). New approaches are thus required in order to consistently76

reduce this error and make it possible to monitor the morphological evolution of sandy77

beaches.78

Technologies such as lidar scanners (Brodie et al., 2015; Martins et al., 2017; Fiedler79

et al., 2021) and stereo-video imagery (de Vries et al., 2011; Bergamasco et al., 2017) have80

seen major developments over the last decade and now allow the collection of accurate81

measurements of the sea-surface elevation in nearshore areas. By making information82

on wave heights directly accessible, these technologies offer the potential to substantially83

improve bathymetry inversion in the surf zone and right up to the shoreline. However,84

a universal nonlinear dispersion relation for shoaling and breaking waves is still lacking85

(for the most recent review refer: Catalán & Haller, 2008). Here, we describe a new depth-86

inversion method that relies on the stochastic Boussinesq theory of Herbers et al. (2002)87

to quantify nonlinear frequency and amplitude dispersion effects within both the shoaling88

and breaking wave regions. The new approach utilises high-resolution datasets of free89

surface elevation and is designed so that it can be applied in the field with any technology90

collecting such data (e.g., lidar scanners, stereo imagery systems). Suitable test datasets91

collected in the laboratory over both planar and barred beaches are used to demonstrate92

that the new nonlinear depth-inversion approach consistently outperforms the linear method93

(Eq. 1), opening new perspectives for practical depth-inversion of surf zones in the field.94

2 Methods95

2.1 Experimental Datasets96

The new Boussinesq depth-inversion approach is developed then evaluated using97

high-resolution surface elevation datasets collected in the laboratory. Here, the objective98

is to mimic under controlled conditions the field situation in which similar datasets can99

now be routinely collected using existing remote-sensing technologies. Though lidars presently100

offer the most robust and practical solution for collecting highly-resolved surface elevation101

data in the field, the approach presented is applicable to any technology capable of col-102

lecting such data (e.g., stereo imagery systems).103

We consider three specific series of experiments, which covered a relatively wide104

range of wave conditions and beach morphologies. The experiments of van Noorloos (2003)105

were performed over a 1:35 planar beach in the 40 m-long wave flume at Delft University106

of Technology (Fig. 1; see also van Dongeren et al., 2007). A second planar beach case107

originates from the Gently sLOping Beach Experiment (GLOBEX) performed over a mildly-108

sloping concrete beach (1:80) specifically built in a 110 m-long wave flume in Delft, the109

Netherlands (Fig. 1; see also Ruessink et al., 2013). Finally, we use a 30 min-long sequence110

extracted from the experiments performed over a mobile bottom in the 36 m-long LEGI111

flume and described in Michallet et al. (2011). The sediment for this latter experiment112

was chosen such that the Shields and Rouse numbers were of similar magnitude as those113
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found in natural environments (Grasso et al., 2009). The beach profile exhibited a pronounced114

sandbar that migrated landward by about 2.5 m during the wave sequence (Fig. 1).115

For the planar beach cases, we concentrate on the most energetic tests performed116

with irregular waves. For the experiments of van Noorloos (2003), this corresponds to117

the C 3 wave test, characterized by a significant wave height Hm0 = 0.1 m and peak118

frequency fp = 0.5 Hz. For GLOBEX, this corresponds to the A2 wave test (Hm0 =119

0.2 m; fp = 0.444 Hz). During the experiments of Michallet et al. (2011), the conditions120

consisted of irregular waves characterized by Hm0 = 0.16 m and fp = 0.4 Hz. The free121

surface elevation ζ was collected at high spatial resolution, which generally varied across122

the direction of wave propagation (Fig. 1).123

2.2 Estimating and Predicting Wave Dominant Dispersive Properties124

In the nearshore region, nonlinear interactions between triads of frequencies lead125

to the growth of forced high-frequency components (Phillips, 1960; Freilich et al., 1984;126

Elgar & Guza, 1985a; Herbers et al., 2000). Both free and forced wave components then127

co-exist at a given frequency, causing deviations of dominant wavenumbers from the linear128

wave dispersion relation (Elgar & Guza, 1985b; Herbers et al., 2002; Martins, Bonneton,129

& Michallet, 2021). In practice, dominant wavenumber spectra can be estimated from130

cross-spectral analyses between adjacent pressure (Elgar & Guza, 1985b; Herbers et al.,131

2002) or wave gauges (Martins, Bonneton, & Michallet, 2021). In the present 1D configuration,132

we follow the procedure described in Martins, Bonneton, and Michallet (2021) to estimate133

the dominant wavenumber spectra κobs across the experiments. A maximum distance134

of 0.3Lp was allowed between adjacent wave gauges for the cross-spectral analysis, where135

Lp is the peak wavelength predicted by the linear wave dispersion relation (Eq. 1).136

Dominant wavenumber spectra κrms are then estimated from the surface elevation ζ137

using the Boussinesq theory of Herbers et al. (2002):138

κrms(ω) =
ω√
gh

√
1 + hγfr,1(ω) + h2γfr,2(ω) − 1

h
γam(ω), (2)139

with140

γfr,1(ω) =
ω2

3g
(3)141

γfr,2(ω) =
ω4

36g2
(4)142

γam(ω) =
3

2E(ω)

∫ ∞

−∞
Re{B(ω′, ω − ω′)}dω′, (5)143

where E and B are the spectral and bispectral densities of ζ respectively, and Re{.} denotes144

the real part. Further details on the computation of cross-spectral, spectral and bispectral145

estimates can be found in the Supporting Information. In Eq. 2, the leading-order term146

corresponds to the wavenumber for non-dispersive shallow-water waves. Terms with γfr,1147

and γfr,2 are second and fourth-order frequency dispersion terms, respectively, while γam148

is a second-order amplitude dispersion term. Compared to the original expression for κrms149

given by Herbers et al. (2002, their Eq. 12), we kept the fourth-order frequency term γfr,2150

in order to improve the linear dispersive properties of the Boussinesq approximation. Each151

term was also here expressed in a way that h remains isolated, which facilitates the depth-152

inversion procedure (Section 2.3). The Boussinesq approximation of κrms (Eq. 2) was153

derived assuming that the wave field is weakly nonlinear, weakly dispersive, and that these154

effects are of similar order. By introducing the dispersive term µ = (κph)2, in which155

κp is is the peak wavenumber given by the linear dispersion relation, and the amplitude156

term ϵ = Hm0/2h, this corresponds to Ursell numbers Ur = ϵ/µ around unity. In the157

following, we will only consider regions of the wave flumes where Ur ≳ 0.3.158
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2.3 Depth-inversion Procedure159

The new depth-inversion procedure relies on the capacity of the Boussinesq theory160

of Herbers et al. (2002) to accurately predict the dominant wavenumbers across the shoaling161

and breaking wave regions (Herbers et al., 2002; Martins, Bonneton, Lannes, & Michal-162

let, 2021). When the free surface elevation is measured, the mean water depth h is the163

only unknown in Equations 2-5. At each cross-shore location, h can then be retrieved164

through a minimisation problem, based on the match between observed κobs and predicted165

κrms spectra.166

The mean water depth at each observation location corresponds to the depth h that167

minimises the following expression:168

ωmax∑
ωi=ωmin

αi

(
κobs(ωi)−κrms(ωi)

)2
=

ωmax∑
ωi=ωmin

αi

(
κobs(ωi) −

ωi√
gh

√
1 + hγfr,1(ωi) + h2γfr,2(ωi) −

1

h
γam(ωi)

)2

,

(6)169

where αi are weights and [ωmin;ωmax] defines the frequency range over which the minimisation170

is performed. Though the water depth estimates in the present study were found to be171

relatively insensitive to the use of frequency-dependent weights, we used the coherence172

obtained from the cross-spectral analyses employed to estimate κobs. In the following,173

we consider the range of frequencies [0.7ωp; 2.5ωp], which includes the principal components174

(corresponding to sea/swell) and their first harmonic. This upper limit approximately175

corresponds to the frequency where the Boussinesq theory of Herbers et al. (2002) starts176

to decrease in accuracy within the nearshore region (see also Martins, Bonneton, Lannes,177

& Michallet, 2021).178

The mean water depth estimated with the Boussinesq theory of Herbers et al. (2002)179

is compared with estimates from the linear wave dispersion relation (Eq. 1), which minimise180

the following expression:181

ωmax∑
ωi=ωmin

αi

(
h− 1

κobs(ωi)
tanh−1

[
ω2
i

κobs(ωi)g

])2

(7)182

3 Results183

3.1 Assessment of the Boussinesq Theory for Estimating Nearshore Wave184

Dispersive Properties185

Prior to testing the new nonlinear depth-inversion approach, we first assess the capacity186

of the Boussinesq theory (Eq. 2) to predict the dispersive properties of irregular waves187

in both shoaling and breaking conditions. Fig. 2 shows the cross-shore evolution of observed188

and predicted dominant wave phase velocity c(ω) = ω/κ(ω) at the peak frequency ωp189

(Fig 2g-i) and second harmonic 2ωp (Fig 2j-l). The significant wave height (Fig. 2a-c),190

as well as dispersive µ and amplitude ϵ parameters (Fig. 2d-f), are also shown since they191

are good indicators of the relative position in the flumes (i.e., the presence of shoaling/breaking192

waves). In all tests considered here, wave breaking occurs at around Ur = ϵ/µ ∼ 1.193

The Boussinesq theory of Herbers et al. (2002) accurately predicts the cross-shore194

evolution of dominant wave phase velocity at both the peak frequency ωp (Fig 2g-i) and195

the second harmonic 2ωp (Fig 2j-l). This confirms that the theory accurately quantifies196

the variation of nonlinear amplitude dispersion effects across both the shoaling region197

and the surf zone. At the peak frequency, deviations of observed wave phase velocities198

from the linear predictions steadily increase as short waves approach the breaking point199

and the maximum of these deviations is reached close to the shoreline for both planar200

beaches (up to 30% differences, see Fig 2g-h). For the barred beach, this occurs on the201

landward edge of the sandbar (x ∼ 14 m), corresponding to a 10% difference (Fig 2j).202

At 2ωp, nonlinear energy transfers between triads of frequencies (mostly self-interactions203
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around ωp) explain the large deviations from the linear prediction deep in the shoaling204

region. For the two planar beaches (Fig 2j-k), these deviations reach their maximum at205

locations corresponding to Ur = ϵ/µ ∼ 0.3 − 0.4 and remain quite steady across both206

the shoaling region and surf zone (15−20% differences for both datasets). For the barred207

case, these differences reach 25% above the sandbar, where wave breaking is most intense208

(x = 9 − 10 m, see Fig 2l).209

Fig. 3 shows that the accuracy of the Boussinesq theory extends across the whole210

range of frequencies [0.7ωp; 2.5ωp], which is consistent with the results of Herbers et al.211

(2002) and Martins, Bonneton, Lannes, and Michallet (2021). Two examples taken from212

the shoaling region close to the breaking point (Ur ∼ 1) and in the surf zone (Ur ∼ 2.6 − 2.8)213

are shown in Fig. 3d-f and 3g-i, respectively. As discussed in Martins, Bonneton, and214

Michallet (2021) for the GLOBEX case, the deviations of observed wave phase velocity215

spectra from linear predictions at a given frequency ω increase with the intensity of nonlinear216

energy transfers and the relative amount of forced energy at ω. Together with the spectral217

bandwidth of incident short waves (Fig. 3a-c), this explains the frequency-dependence218

of deviations from linear predictions observed in the shoaling region (Fig. 3e-g). In the219

surf zone, most components travel almost at the same velocity (Thornton & Guza, 1982;220

Elgar & Guza, 1985b; Martins, Bonneton, & Michallet, 2021), which explains the relatively221

constant observed wave phase velocity across all frequencies (Fig. 3g-i). Overall, the Boussinesq222

theory of Herbers et al. (2002) accurately describes the dynamics of wave fields in both223

shoaling and surf zone situations. For all experiments, a slight positively bias can be noted224

in Boussinesq predictions at frequencies corresponding to the most energetic components225

(up to 3-4% difference between [0.7ωp; 1.5ωp], see Fig. 3d-f). This overestimation appears226

quite consistent across the shoaling region for the two planar cases (Fig. 2g-h).227

3.2 Depth-inversion Applications228

Boussinesq (Eq. 6) and linear (Eq. 7) estimates of the mean water depth h are shown229

in Fig. 4. These are compared against estimates obtained assuming that all incident waves230

propagate as fast as shallow-water waves (cbulk ∼
√
gh) or slightly faster, due to nonlinear231

amplitude effects (cbulk ∼
√
gh(1 + ϵ)). The bulk wave celerity cbulk is computed through232

simple cross-correlation between two wave gauges (Tissier et al., 2011; Martins et al., 2016).233

In both the shoaling region and the surf zone, the new Boussinesq approach substantially234

improves the water depth predictions compared to the linear method. For the C 3 wave235

test of van Noorloos (2003), the normalised error associated with the Boussinesq approach236

remains small (< 10%), except at the early stage of the surf zone (x = 25 − 29 m, see237

Fig. 4a and 4d). The error is generally < 5% for the most nonlinear test of GLOBEX238

(Fig. 4b and 4e), except at a few locations in the surf zone where it reaches ∼ 10% (20% locally).239

This strongly contrasts with the increasing error of the linear method, which overestimates240

the mean water depth by over 40% across the surf zone of the planar beaches considered241

here. The overestimation reaches up to 80% near the shoreline for the GLOBEX case242

(Fig. 4b and 4e). The Boussinesq approach also performs well in the barred beach case243

(Fig. 4c and 4f), especially around the sandbar where mean water depths are estimated244

within 10% (compared to a ∼ 40 − 60% overestimation with the linear approach). It245

is interesting to note that the beach trough section (x = 17−28 m, Fig. 4c) corresponds246

to the only region for all three experiments where the linear approach outperforms the247

new Boussinesq approach. This is explained by the release of bound high-harmonics as248

short waves leave the sandbar region, a phenomenon already reported and described in249

the literature (e.g., see Beji & Battjes, 1993; Becq-Girard et al., 1999; Masselink, 1998).250

In terms of wave phase velocity, this is evidenced in the close match between the observations251

and predictions by the linear wave dispersion at both the peak frequency (Fig. 2i) and252

the second harmonic (Fig. 2l).253
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Consistent with the large discrepancies between
√
gh and the observed wave phase254

velocities for all experiments (Fig. 2g-l), the linear-based shallow-water predictor (cbulk ∼
√
gh)255

poorly performs across both the shoaling and breaking regions considered here. Though256

the modified shallow water-based predictor (cbulk ∼
√

gh(1 + ϵ)) has been observed to257

improve the prediction of wave phase velocities in inner surf zones (Tissier et al., 2011;258

Martins et al., 2018; Martins, Bonneton, & Michallet, 2021), its performance here is quite259

mixed. For the C 3 wave test of van Noorloos (2003), the error made on h is of similar260

order as the proposed Boussinesq approach, except very close to the shoreline where it261

reaches 20% (Fig. 4d). The performances substantially deteriorate for the A2 test during262

GLOBEX, where the error remains high over a large portion of the surf zone and reaches263

up to 40% near the shoreline (Fig. 4e). For the barred beach case (Fig. 4c and 4f), the264

error remains high everywhere (∼ 30%), except above the sandbar where nonlinear effects265

are strongest (Fig. 2f).266

4 Discussion and Concluding Remarks267

Developing the capacity to map nearshore and surf zone bathymetry right up to268

the shoreline is a prerequisite to accurately quantify the morphological evolution of sandy269

beaches. Depth-inversion algorithms applied to remotely-sensed surface wave properties270

are a very promising approach to achieving this goal. However, present solutions incorporate271

theoretical limitations, namely, the use of the linear wave dispersion relation in regions272

where nonlinear effects strongly alter the dispersive properties of incident waves (e.g.,273

see Thornton & Guza, 1982; Herbers et al., 2002; Martins, Bonneton, & Michallet, 2021).274

Here, we present and test a new depth-inversion approach based on the stochastic Boussinesq275

theory of Herbers et al. (2002) for quantifying nonlinear frequency and amplitude dispersion276

effects and overcome these limitations.277

For the relatively wide range of wave conditions and beach morphologies considered278

herein, the proposed Boussinesq approach results in enhanced levels of accuracy in the279

surf zone. Boussinesq estimates of the mean water depth are typically accurate within280

10%, which substantially improves the predictions compared to the linear wave dispersion281

relation (errors in the range 40-80% across the surf zone). Considering frequencies just282

around the energy peak [0.7ωp; 1.5ωp] during the minimisation procedure (Eq. 7) typically283

halves the error made in both the shoaling and breaking wave regions (see Fig. S3 in Supporting284

Information), though an 80% overestimation is still obtained at the shoreline during GLOBEX.285

Since the linear dispersion relation generally underestimates the peak phase velocity by286

typically 10−30% in surf zones, this suggests that errors on the mean water depth are287

approximately doubled compared to those on wavenumbers, which is consistent with the288

analysis of Dalrymple et al. (1998). In contrast, the range of frequencies considered here289

only has a limited impact on the performances of the Boussinesq approach, which is explained290

by the accuracy of the theory at least up to 2.5ωp (Fig. 3d-i).291

As for most depth-inversion algorithms, the error made on the water depth estimates292

has two principal sources: 1) observed ω−κ pairs, whose accuracy very much depends293

on the nature of the data; and 2) the theoretical framework for retrieving depth from294

those observations. Here, the main source of uncertainty on wavenumber estimates is thought295

to be related to the time-synchronisation of wave gauges. Imprecise time-synchronisation296

procedures introduces time lags related to the sampling frequency fs (maximal lag is 0.5/fs),297

resulting in errors in wavenumber estimates. Here, we estimated that such procedures298

could, at most, lead to 3% errors during GLOBEX and the experiments of Michallet et299

al. (2011) (see Fig. S2 of Supporting Information). For the observations reported by van300

Noorloos (2003), the potential errors reach 10%, which is consistent with the larger errors301

on water depths obtained for these particular experiments. In typical field situations,302

where all data should be collected simultaneously, this source of error can be avoided.303

In the proposed Boussinesq approach, an additional source of error originates from the304

estimation of the nonlinear amplitude dispersion term γam. By analysing the sensitivity305
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of depth estimates to varying levels of noise in the input signal (Fig. S1 of Supporting306

Information), it was found that γam is relatively insensitive to levels of noise that are307

realistic for lidar data collected in the field. The systematic noise in lidar data is typically308

two orders of magnitude lower than incident wave amplitudes, so that negligible influence309

of noise on the mean water depth estimates is expected.310

Though bulk wave celerity can be easily estimated at large spatial scales from optical311

imagery in the field (e.g., Lippmann & Holman, 1991), the new work presented here has312

highlighted the limitations of shallow-water waves predictor (cbulk ∼
√
gh) for local depth-313

inversion applications. The modified predictor (cbulk ∼
√

gh(1 + ϵ)) empirically incorporates314

nonlinear amplitude effects and leads to improved water depths estimation in inner surf315

zones, however, two main issues arise with this predictor: the accuracy appears limited316

under highly nonlinear conditions (Fig. 4e-f), and the seaward boundary limit where it317

can be used remains uncertain. Limited accuracy is thus expected when a wide range318

of incident wave conditions and/or beach morphology is considered. The new Boussinesq319

approach does not suffer from these limitations, mainly because it accurately predicts320

both frequency and amplitude nonlinear dispersion effects. Importantly, the proposed321

approach does not require any form of calibration, thus laying the basis for a universal322

depth-inversion relationship for nearshore and surf zone regions. The development of this323

new method was motivated by the recent widespread collection of high-resolution free324

surface elevation datasets by lidar scanners in the field (e.g., Brodie et al., 2015; Mar-325

tins et al., 2018; Fiedler et al., 2021). Lidar scanners have the unique feature that they326

directly measure both surf zone processes and the subaerial section of sandy beaches. In327

combination with the proposed nonlinear depth-inversion procedure, these sensors open328

a whole new range of possibilities for continuous monitoring of the morphological evolution329

of sandy beaches extending from the nearshore to the dunes.330
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Figure 1. Beach elevation z against the cross-shore distance x for the experiments of van

Noorloos (2003, top left), Michallet et al. (2011, top right) and GLOBEX (Ruessink et al., 2013,

bottom). The wave paddle is located at x=0m and grey ’+’ symbols show the wave gauges

location. The barred beach profile for the experiments of Michallet et al. (2011) was obtained by

averaging the elevations measured before and after the wave sequence, which are shown as black

dotted lines (most morphological changes concentrate over the bar, x = 7− 18m).
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Figure 2. Assessment of the Boussinesq theory (Eq. 2) to predict the cross-shore evolution

of dispersive properties during the experiments of van Noorloos (2003, left panels), GLOBEX

(middle panels) and Michallet et al. (2011, right panels). Panels a-c) show the cross-shore

evolution of significant wave height Hm0 for short and infragravity (IG) waves computed as

(16 ζ2)1/2 (cutoff frequency at 0.6fp). Panel d-f) show the amplitude (ϵ=Hm0/2h) and disper-

sion (µ=(κph)
2) parameters. Panels g-j) show the observed and Boussinesq predictions of the

wave phase velocity at the peak frequency ωp, while panels k-m) show those at the second har-

monic 2ωp. These quantities are compared with the predictions from the linear wave dispersion

(Eq. 1) and shallow-water predictors. In all panels, the grey shaded area indicates regions of the

wave flume where wave breaking occurs.
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Figure 3. Assessment of the Boussinesq theory (Eq. 2) to predict wave phase spectra for

the experiments of van Noorloos (2003, left panels), GLOBEX (middle panels) and Michallet et

al. (2011, right panels). Panels a-c) show the energy density spectra of ζ at two positions cor-

responding to shoaling (panels d-f) and breaking situations (panels g-i). The normalised wave

phase velocities predicted with the Boussinesq (blue lines) and linear wave (red line) theories are

compared against observations (black crosses). In the surf zone (panels g-i), the green horizontal

line corresponds to the modified shallow-water wave celerity predictor (
√

gh(1 + ϵ)). The cross-

shore locations were selected based on the Ursell number (Ur ∼ 1 and Ur ∼ 2.6 − 2.8 for shoaling

and breaking situations, respectively) and are indicated for each experiment. The vertical lines

indicate the range of frequencies [0.7ωp; 2.5ωp] used for the depth-inversion.
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Figure 4. Results of the depth inversion applications for the experiments of van Noorloos

(2003, left panels), GLOBEX (middle panels) and Michallet et al. (2011, right panels). Panels

a-c) show the beach elevation profile estimated using Boussinesq (Eq. 6) and the linear wave

theory (Eq. 7). These are compared with estimates based on shallow-water waves propagation

velocity (’SW’: cbulk ∼
√
gh and ’Modified SW’: cbulk ∼

√
gh(1 + ϵ)). In panel c), the orange-

shaded area around the measured profile corresponds to the bed elevation changes observed

during the considered wave sequence. Panel d-f) show the corresponding normalised absolute

difference (NAD) of measured and predicted water depths. In all panels, the grey shaded area

indicates regions of the wave flume where wave breaking occurs.
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1 Introduction10

This Supporting Information contains additional details on the quantification of11

uncertainties on the mean water depths estimated with the new Boussinesq depth-inversion12

procedure. This is primarily intended to support the discussion points and conclusions13

of the study as provided in Section 4 of the manuscript. Below, additional information14

on the spectral analyses is first given (Section 2). We then provide an analysis on the15

sensitivity of depth estimates to the observations used for the inversion procedure. The16

sensitivity to spectral and bispectral estimates, which are used to quantify non-linear amplitude17

dispersion effects, are analysed in Section 3.1 by adding varying levels of white noise to18

the timeseries of free surface elevation ζ. The uncertainty on observed wavenumbers and19

the associated error on water depth estimates are analysed in Section 3.2 by quantifying20

the effect of potential time lags originating from the synchronisation process on the computation21

of wave phase speeds at the peak frequency. Finally, the depth-inversion results obtained22

using only the range of frequencies corresponding to the most energetic components ([0.7ωp, 1.5ωp])23

are given in Section 4.24

2 Definition and computation of spectral products25

At the basis of the depth-inversion procedure, dominant wavenumber spectra κobs26

are estimated using cross-spectral analyses following Martins et al. (2021). Let Cx1, x2
27

denote the cross-spectrum computed from the surface elevation signal ζ measured at two28

adjacent gauges located at positions x1 and x2:29

Cx1, x2(ω) = E
[
Ax1(ω)A

∗
x2
(ω)

]
, (1)30

where ω = 2πf is the angular frequency, A are the complex Fourier coefficients of ζ at31

the corresponding locations, ∗ denotes the complex conjugate and E is an expected, or32

ensemble-average, value. The coherence coh(ω) and phase ϕ(ω) spectra computed between33

x1 and x2 are then given by:34

cohx1, x2
(ω) =

[
Cx1, x2(ω)C

∗
x1, x2

(ω)

Cx1, x1(ω)Cx2, x2(ω)

]1/2
(2)35

ϕx1, x2(ω) = arctan

[
Im{Cx1, x2

(ω)}
Re{Cx1, x2(ω)}

]
, (3)36

where Re{·} and Im{·} are the real and imaginary parts of the cross-spectra, respectively.37

The time delay (in sec) per frequency is obtained from the unwrapped phase ϕunw which,38

Corresponding author: Kévin Martins, kevin.martins@u-bordeaux.fr
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in the case of progressive waves propagating in one dimension, is easily retrieved from39

phase jumps. The wavenumber κ(ω) and (cross-shore) phase velocity c(ω) spectra are40

then readily computed as:41

κ(ω) = ϕunw
x1, x2

(ω)
/
∆x (4)

c(ω) = ω∆x
/
ϕunw
x1, x2

(ω), (5)

where ∆x is the spacing between the two wave gauges. κ refers to the single-valued wavenumber42

modulus and is representative of the energy spread across both forced and free components43

at a given frequency (Herbers et al., 2002; Martins et al., 2021). In practice, κ and c provide44

estimates at x = (x1+x2)/2 of the dominant wavenumber (in an energy-averaged sense)45

and the corresponding propagation velocity, respectively. Cross-spectra are here computed46

using Welch’s method and Hann-windowed blocks of 128 seconds, which were overlapping47

by 75%. This results in each spectral estimate having approximately 51, 71 and 30 equivalent48

degrees of freedom for the datasets of van Noorloos (2003), GLOBEX and Michallet et49

al. (2011), respectively, while a spectral resolution of 0.0078Hz is retrieved in all cases.50

Let E and B denote the spectral and bispectral densities of the free surface elevation51

signal ζ, respectively. The energy spectra E is here given by:52

E(ω) = 2 E [A(ω)A∗(ω)] , (6)53

The bispectrum of ζ is here computed following Kim and Powers (1979) as:54

B(ω1, ω2) = E [A(ω1)A(ω2)A
∗(ω1 + ω2)] , (7)55

Both energy spectra and bispectra of ζ are computed using 128 s blocks overlapping by56

75%. Statistical stability of bispectra is increased by merging estimates over three frequencies57

(Elgar & Guza, 1985). This results in bispectral estimates having approximately 90, 14958

and 55 equivalent degrees of freedom during the experiments of van Noorloos (2003), GLOBEX59

and Michallet et al. (2011), respectively, with a spectral resolution of 0.023Hz for all experiments.60

3 Sensitivity of Depth Estimates to Observations61

3.1 Computation of Bispectral Products62

In the new Boussinesq depth-inversion method described in the manuscript, dominant63

wavenumber spectra κrms are estimated from ζ as follows (Herbers et al., 2002):64

κrms(ω) =
ω√
gh

√
1 + hγfr,1(ω) + h2γfr,2(ω)−

1

h
γam(ω), (8)65

with66

γfr,1(ω) =
ω2

3g
(9)67

γfr,2(ω) =
ω4

36g2
(10)68

γam(ω) =
3

2E(ω)

∫ ∞

−∞
Re{B(ω′, ω − ω′)}dω′, (11)69

where g is the acceleration of gravity, h is the mean water depth and Re{.} denotes the70

real part.71

In contrast with linear theory-based depth-inversion algorithms, which do not estimate72

non-linear amplitude effects, the estimation of γam leads to an additional source of uncertainty73

in the final water depth estimate through computations of E and B. The sensitivity of74

the water depth estimates to the computation of spectral and bispectral products was75
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here analysed by adding varying levels of white noise to the free surface elevation signal ζ.76

Fig. S1 gathers the results of this sensitivity analysis performed at the two locations corresponding77

to shoaling and breaking situations used in the manuscript. For each level of signal-to-noise78

ratio (SNR), the analysis was repeated 200 times, and results are shown in terms of deviation79

from the measured mean water depth value hobs: δh = (h−hobs)/hobs×100. The development80

of the present depth-inversion methodology was motivated and designed for future use81

in the field using highly-resolved free surface elevation datasets. At the moment, lidar82

scanners offer the most robust and promising solution, but the new depth-inversion approach83

can be applied to any technology capable of collecting high-resolution free surface elevation84

datasets (e.g., stereo-video imagery). Though this might vary between field deployments85

and lidar scanner models, the systematic noise in lidar data does not generally exceed86

a few centimeters, which is 1-2 orders of magnitude lower than the amplitude of incident87

waves typically measured in the field (Brodie et al., 2015; Martins et al., 2016; Fiedler88

et al., 2021). Thus, it is worth noting that SNR associated with typical lidar deployments89

should typically be above 20. Here, the estimation of γam was hence found little sensitive90

to realistic levels of noise for lidar data collection in the field (Fig. S1). For instance, a91

SNR of 20 has negligible effects on the water depth estimates, with deviations of mean92

water depths within 1%. The predicted water depths rapidly increase for SNR lower than93

15 and, though considered unrealistic, a SNR of 10 for instance leads to water depth estimates94

that deviate by up to 2% and 4% compared to a situation without noise in shoaling and95

breaking situations, respectively. Since bispectra only reflect non-linear couplings within96

a signal, the influence of the added noise mostly biases low γam (hence bias high h) by97

overestimating the variance of the signal (see Eq. 11).98
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Figure S1. Sensitivity of mean water depths estimates to the computation of non-linear

amplitude dispersion effects (γam in Eq. 11) at two cross-shore locations corresponding to shoal-

ing (top panels) and breaking (bottom panels) situations. Boussinesq estimates of the mean wa-

ter depths are shown in terms of deviation from the observed value hobs: δh = (h−hobs)/hobs∗100.
The error bar corresponds to the standard deviation obtained for the 200 repetitions performed.
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3.2 Estimation of Wave Dominant Dispersive Properties99

In order to collect surface elevation data at high spatial resolution in the considered100

experiments, each wave test was repeated several times and wave gauges were displaced101

along the different wave flumes. A cross-correlation technique applied on waves gauges102

held at a fixed position in the flume is then typically used to achieve the time-synchronisation103

between the signals from all wave gauges (e.g., see van Noorloos, 2003). This approach104

leads to an error on the time correction that is bounded by the sampling frequency fs,105

i.e. errors up to 0.5/fs can be made locally. In the surf zone during the experiments of106

van Noorloos (2003), with a spatial resolution of 0.3m, this represents up to 5% of the107

time taken by a wave component around the peak frequency to travel between two wave108

gauges. The time-synchronisation is thus believed to be a non-negligible source of errors109

in the estimations of the mean water depth. The effect of potential time lags on the final110

estimate of the mean water depth is investigated here at the peak frequency by adjusting111

the observed wavenumber κobs in the depth-inversion procedure. The results are shown112

in Fig. S2 in terms of deviation from the value predicted without adjustments. As expected,113

the effect of potential time lags due to errors in the synchronisation process is greatest114

for the dataset from the experiments of van Noorloos (2003) due to the lower sampling115

rate (20Hz, instead of 100Hz for GLOBEX and 50Hz for the experiments of Michallet116

et al., 2011). For all experiments, the variations in mean water depth estimates obtained117

for realistic variations of the wave propagation velocity is relatively large compared to118

the errors obtained. Though it is hard to estimate how likely such time lags were introduced,119

we suspect that they explain a substantial fraction of the errors obtained on the mean120

water depths estimates in this study, especially at localised spikes (e.g., see around x =121

26, 30m in Fig. 4a and 4d, x = 71m in Fig. 4b and 4e and x = 10m in Fig. 4c and122

4f of the manuscript).123
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Figure S2. Sensitivity of mean water depths estimates to potential time lags introduced

during the synchronisation process at two cross-shore locations corresponding to shoaling (top

panels) and breaking (bottom panels) situations. Results are shown in terms of deviation of mean

water depth estimate from the value estimated without adjustments as a function of the adjust-

ments made to the observations (here the wave phase velocity at the peak frequency cp). The

adjustments made to the peak wave velocity are bounded by both the sampling frequency and

spatial resolution characterising each experiment.

–4–



manuscript submitted to Geophysical Research Letters

4 Depth-inversion Using Most Energetic Components124

The full range of frequencies [0.7ωp; 2.5ωp] is presently used during the minimisation125

procedure for estimating the mean water depth (Eq. 7-8 of the companion manuscript).126

Fig. S3 shows the depth-inversion results obtained when only frequencies within [0.7ωp; 1.5ωp]127

are considered, i.e. taking only the most energetic components of the wave field. As briefly128

discussed in the manuscript, only accounting for the most energetic wave components129

substantially reduces the error made with the linear approach, which is explained by the130

increasing deviations of wavenumbers predicted by the linear wave dispersion from observations131

as frequencies increase (Fig. 3 of the manuscript). An important remark to be made here132

is that using only frequencies within [0.7ωp; 1.5ωp] corresponds to the minimal error that133

can be reached with a linear approach, since the error on mean water depth estimates134

are expected to grow with the number of super-harmonics considered. For the planar beach135

cases, the error reduces from around 30−40% to 10% just seaward of the surf zone. Except136

close to the shoreline during GLOBEX, where the error remains around 80% for both137

frequency ranges, considering only frequencies within [0.7ωp; 1.5ωp] typically halves the138

error made in the surf zone for all cases. In shallow water depths (µ ≲ 0.1, see Fig. 2d-f139

of the manuscript), it is worth noting that the water depth estimates obtained with the140

linear approach and the shallow-water wave celerity predictor (cbulk ∼
√
gh) converge141

towards the same value. This is explained by the fact that in shallow water,
√
gh provides142

a good estimate of the peak wave phase velocity.143
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Figure S3. Results of the depth inversion applications over the range of frequencies

[0.7ωp; 1.5ωp] for the experiments of van Noorloos (2003) (left panels), GLOBEX (middle

panels) and Michallet et al. (2011) (right panels). Panels a-c) show the beach elevation

profile estimated using Boussinesq and the linear wave theory. These are compared with

estimates based on shallow-water waves propagation speed (’SW’: cbulk ∼
√
gh and ’Modified

SW’: cbulk ∼
√

gh(1 + ϵ)). In panel c), the orange-shaded area around the measured profile

corresponds to the bed elevation changes observed during the considered wave sequence. Panel

d-f) show the corresponding normalised absolute difference (NAD), computed between measured

and predicted water depths. In all panels, the grey shaded area indicates regions of the wave

flume where wave breaking occurs.
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Michallet, H., Cienfuegos, R., Barthélemy, E., & Grasso, F. (2011). Kinematics of169

waves propagating and breaking on a barred beach. European Journal of Me-170

chanics - B/Fluids, 30 (6), 624 – 634. doi: 10.1016/j.euromechflu.2010.12.004171

van Noorloos, J. C. (2003). Energy transfer between short wave groups and bound172

long waves on a plane slope (Unpublished master’s thesis). Delft University of173

Technology, Delft, The Netherlands.174

–6–


