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Key Points:

• We provide didactic examples and additional background material to make
VISCOUS easier to understand and apply for general readers.

• We provide a cautionary note on using VISCOUS to approximate Sobol’
sensitivity indices when model inputs are of similar importance.

• We provide an open-source code of VISCOUS in Python, namely, pyVIS-
COUS.

Abstract
Sensitivity analysis is used to increase our understanding of the evaluated model
and ease model parameter estimation. VISCOUS (VarIance-based Sensitivity
analysis using COpUlaS) is a given-data, computationally frugal variance-based
global sensitivity analysis framework. Grounded in Copula theory, VISCOUS
computes the Sobol sensitivity indices using a probability model that describes
the relationship between model inputs (e.g., the perturbations in the model
parameters) and outputs (e.g., the model responses given a parameter pertur-
bation). In this technical note, we make three contributions to make the VIS-
COUS framework easier to understand and apply. First, we provide additional
derivations of VISCOUS to connect the VISCOUS framework to recent devel-
opments in the data science community. We provide didactic examples with
simple test functions in order to help a wider group of modelers understand
the underpinnings of the VISCOUS framework. Second, we evaluate the VIS-
COUS framework using three types of Sobol functions and provide a cautionary
note on using VISCOUS to approximate Sobol’ sensitivity indices for appli-
cations where model inputs are of similar importance. Third, we provide an
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open-source code of VISCOUS in Python, namely, pyVISCOUS. pyVISCOUS
is model-independent and can be applied with user-provided input-output data.

Introduction
Sensitivity analysis (SA) investigates how the uncertainty of model output can
be attributed to the different uncertain input factors and their interactions
(Pianosi et al., 2016). SA is useful in many ways, such as ranking input factors
in order of sensitivity, fixing negligible factors to reduce the dimensionality of
parameter estimation problems, determining the region of the input space that
has a substantial control on model output (e.g., extreme flows) , and prioritizing
data acquisition processes to those aspects where they will have the largest
impact on the desired outcomes (Nossent et al., 2011; Razavi and Gupta, 2015;
Saltelli et al., 2008; van Griensven et al., 2006). SA can also lend insight into
the dominant processes that govern spatiotemporal variability of a system by
exploring the full spectrum of its behavior (Demaria et al., 2007; Markstrom et
al., 2016; Razavi et al., 2021).

SA methods can be generally classified into local and global methods. Local
SA evaluates the effects of the input variations around a specific point in the
input space, and global SA evaluates the effects of the input variations across the
entire variability space (Pianosi et al., 2016). In SA, there are different methods
to define sensitivity indices from the input-output data. The commonly-used
SA methods are based on one of the following two approaches: (1) an analysis of
derivatives, for example the method of Morris (Campolongo et al., 2007; Morris,
1991; Rakovec et al., 2014), and (2) an analysis of variance, for example the
method of Sobol (Homma and Saltelli, 1996; Sobol, 2001).

Variance-based methods are attractive because they are model independent,
they measure sensitivity across the whole input space, they can deal with non-
linear input-output relationship, they measure interaction effects among input
factors, and they handle groups of input factors (Saltelli et al., 2008). The
major challenge associated with application of variance-based methods is their
computational cost, because they require model evaluations for a considerable
number of input samples. Running a model for a large number of input samples
may be difficult to achieve if the prediction model is computationally expensive.
Therefore, much recent research aims to find efficient numerical algorithms to
compute variance-based sensitivity indices. (Hu and Mahadevan, 2019; Sheik-
holeslami et al., 2019)

To overcome the aforementioned computational bottleneck, Sheikholeslami et
al. (2021) developed a computationally frugal global SA framework called VIS-
COUS (VarIance-based Sensitivity analysis using COpulaS). VISCOUS first
uses a Gaussian Mixture Copula Model (GMCM) to approximate the joint
probability distribution between the input (e.g., the perturbations in the model
parameters) and output data (e.g., the model responses given a parameter per-
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turbation); and then computes the Sobol sensitivity indices based on the GMCM
probability model. The input-output data are not used to directly calculate the
Sobol sensitivity indices but are used to train the GMCM, so the input-output
data do not need to follow specific sampling strategies (e.g., as required in the
Sobol method). VISCOUS is then a “given-data” sensitivity analysis method,
in which the GMCM can be developed using any existing input-output data,
and no additional prediction model runs are needed when input-output data
are already available. For example, the input-output data can be from the pre-
vious model runs generated from other modeling purposes, such as uncertainty
propagation and model calibration. Therefore, the benefit of VISCOUS is that
it provides useful approximations of the Sobol sensitivity indices without the
need to produce an extensive sample of new model simulations that follow the
Sobol sampling strategy.

The purpose of this technical note is to make it easier for readers to understand
and apply the VISCOUS framework. Our specific objectives are to: (i) provide
didactic examples and additional background material to make VISCOUS easier
to understand and apply for general readers; (ii) evaluate VISCOUS using three
types of Sobol functions and provide a cautionary note on using VISCOUS to
approximate Sobol’ sensitivity indices for applications where model inputs are
of similar importance; (iii) provide an open-source code of VISCOUS in Python,
namely, pyVISCOUS.

The reminder of the note is organized as follows. The didactic examples and
additional background material are in Sections 2 (Methodology) and 3 (Imple-
mentation). VISCOUS is evaluated in Section 4. The pyVISCOUS code is
described in Section 5. The note concludes with discussion of potential utility
of VISCOUS for different modelling applications.

Methodology of the VISCOUS Framework
This section provides additional background on the VISCOUS framework to
connect VISCOUS to recent developments in the data science community and
make VISCOUS easier to understand for general readers. In this section we
first provide basic knowledge about the copula function, the Gaussian Mixture
Model (GMM), and the Gaussian Mixture Copula Model (GMCM). This will
prepare the ground for introducing the followed derivations. We then provide
step-by-step derivations of the first- and total-order Sobol sensitivity indices
using the GMCM, providing details that are not provided in Sheikholeslami et
al. (2021). Finally, we present Monte Carlo-based approximations of both the
first- and total-order Sobol sensitivity indices, the latter of which is not defined
explicitly in Sheikholeslami et al. (2021). These additions are also important
to evaluate the VISCOUS framework in Section 4.
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The Gaussian Mixture Copula Model (GMCM)
Copula function

Assume a random vector of input-output data, i.e., [𝑥1, … , 𝑥𝑚, 𝑦], each has a con-
tinuous cumulative distribution function (CDF) 𝐹𝑋𝑖

(𝑥𝑖) and 𝐹𝑌 (𝑦), where 𝑖 =
[1, .., 𝑚]. According to the probability integral transform theorem, if 𝑥 is a
continuous random variable with CDF 𝐹𝑋(𝑥), then 𝐹𝑋(𝑥) has a uniform distri-
bution on [0, 1]. The probability integral transformation is given as:

[𝑢𝑥1
, … , 𝑢𝑥𝑚

, 𝑢𝑦] = [𝐹𝑋1
(𝑥1) , … , 𝐹𝑋𝑚

(𝑥𝑚) , 𝐹𝑌 (𝑦)] ( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗
𝐴𝑅𝐴𝐵𝐼𝐶 1)

where [𝑢𝑥1
, … , 𝑢𝑥𝑚

, 𝑢𝑦] is a vector over [0, 1]𝑚+1. Each 𝑢 ∈ [0, 1] follows the
uniform distribution.

According to Sklar’s theorem (Sklar, 1959; Tewari et al., 2011), the joint distri-
bution 𝐹𝑋,𝑌 (𝑥1, … , 𝑥𝑚, 𝑦) of random variables (𝑥1, … , 𝑥𝑚, 𝑦) can be expressed
as a function of the marginal distributions 𝑢𝑥1

, … , 𝑢𝑥𝑚
, 𝑢𝑦:

𝐹𝑋,𝑌 (x, 𝑦) = 𝐶 (𝑢𝑥1
, … , 𝑢𝑥𝑚

, 𝑢𝑦) ( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗ 𝐴𝑅𝐴𝐵𝐼𝐶 2)

where x = [𝑥1, … , 𝑥𝑚], 𝐹𝑋,𝑌 (x, 𝑦) is the joint CDF of random variables (x, 𝑦).
𝐶 is the copula function, 𝐶 ∶ [0, 1]𝑚+1 ⟼ [0, 1]. The copula function 𝐶 is
a joint CDF. It takes the marginal CDFs (𝑢𝑥1

, … , 𝑢𝑥𝑚
, 𝑢𝑦) as inputs, thereby

connecting the marginal CDFs to the joint CDF (Hu and Mahadevan, 2019).

By computing the derivatives of Equation (2), we get the joint probability den-
sity function (PDF), 𝑓𝑋,𝑌 (x, 𝑦), expressed as:

𝑓𝑋,𝑌 (x, 𝑦) = 𝐶(𝑢𝑥1 ,…,𝑢𝑥𝑚 ,𝑢𝑦)
𝜕𝑢𝑥1 ⋯𝜕𝑢𝑥𝑚 •𝜕𝑢𝑦

• 𝜕𝑢𝑥1
𝑥1

⋯ 𝜕𝑢𝑥𝑚
𝑥𝑚

• 𝜕𝑢𝑦
𝑦

= 𝐶(𝑢𝑥1 ,…,𝑢𝑥𝑚 ,𝑢𝑦)
𝜕𝑢𝑥1 ⋯𝜕𝑢𝑥𝑚 •𝜕𝑢𝑦

• 𝜕𝐹𝑋1 (𝑥1)
𝑥1

⋯ 𝜕𝐹𝑋𝑚 (𝑥𝑚)
𝑥𝑚

• 𝜕𝐹𝑌 (𝑦)
𝑦

= 𝑐 (𝑢𝑥1
, … , 𝑢𝑥𝑚

, 𝑢𝑦) • 𝑓𝑋1
(𝑥1) ⋯ 𝑓𝑋𝑚

(𝑥𝑚) • 𝑓𝑌 (𝑦) ( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗
𝐴𝑅𝐴𝐵𝐼𝐶 3)

where c is the copula density, 𝑓𝑋(𝑥) and 𝑓𝑌 (𝑦) are the marginal PDFs of vari-
ables 𝑥 and 𝑦, respectively.

Gaussian Mixture Model (GMM)

GMM is a parametric PDF represented as a weighted sum of Gaussian prob-
abilistic densities. If each Gaussian probabilistic density represents a cluster,
then a GMM is a clustering algorithm that identifies the probability that each
data belongs to each cluster (Singh, 2019; Xu and Jordan, 1996).

Assume that the input variables z𝑥 and 𝑧𝑦 are in normal space and follow the
standard normal distribution. Their joint PDF is expressed by a GMM as:
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𝑓𝑍𝑋,𝑍𝑌
(z𝑥 , 𝑧𝑦) = ∑𝐾

𝑘=1 𝜆𝑘 • 𝜙(z𝑥, 𝑧𝑦|�𝑘, �𝑘) ( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗ 𝐴𝑅𝐴𝐵𝐼𝐶 4)

where z𝑥 is a 𝑚-dimensional vector, z𝑥= [𝑧𝑥1
, … ,𝑧𝑥𝑚

]. 𝐾 is the total number
of Gaussian components (or clusters). 𝜆𝑘 is the weight of the 𝑘th Gaussian
component. 𝜆𝑘 > 0 and ∑𝐾

𝑘=1 𝜆𝑘 = 1. 𝜙 is the PDF of a (𝑚 + 1)-variate
Gaussian distribution with mean �𝑘 and covariance �𝑘.

�𝑘 = [�𝑘,𝑧𝑥
, 𝜇𝑘,𝑧𝑦

] ( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗ 𝐴𝑅𝐴𝐵𝐼𝐶 5)

�𝑘 = [�𝑘,𝑧𝑥𝑧𝑥
�𝑘,𝑧𝑥𝑧𝑦

�𝑘,𝑧𝑦𝑧𝑥
𝜎2

𝑘,𝑧𝑦

] ( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗ 𝐴𝑅𝐴𝐵𝐼𝐶 6)

where �𝑘,𝑧𝑥𝑧𝑥
is the variance of and covariance between z𝑥, �𝑘,𝑧𝑥𝑧𝑦

is the covari-
ance between z𝑥 and 𝑧𝑦, and �𝑘,𝑧𝑥𝑧𝑦

= �𝑘,𝑧𝑦𝑧𝑥
. 𝜎2

𝑘,𝑧𝑦
is the variance of 𝑧𝑦.

The GMM parameters (�, �,�) are usually estimated by the expectation-
maximation (EM) algorithm. The details of the EM algorithm are in
Appendix A1. The number of Gaussian components 𝐾 can be selected from
a set of GMMs using the Bayesian Information Criterion (BIC).

Further, the conditional PDF of 𝑧𝑦 given z𝑥, 𝑓𝑍𝑌 |𝑍𝑋
(𝑧𝑦|z𝑥) can be derived by:

𝑓𝑍𝑌 |𝑍𝑋
(𝑧𝑦|z𝑥) = 𝑓𝑋,𝑌 (z𝑥, 𝑧𝑦) /𝑓𝑋 (z𝑥) ( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗ 𝐴𝑅𝐴𝐵𝐼𝐶 7)

where

𝑓𝑍𝑋
(z𝑥) = ∑𝐾

𝑘=1 𝜆𝑘 • 𝜙(z𝑥|�𝑘,𝑧𝑥
, �𝑘,𝑧𝑥𝑧𝑥

) ( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗ 𝐴𝑅𝐴𝐵𝐼𝐶 8)

Gaussian Mixture Copula Model (GMCM)

There are various forms of copula functions. Traditional copula functions are
usually defined for bivariate problems, and only a few functions, such as the
Gaussian copula and the student’s 𝑡 copula, are well-studied for the multivariate
high-dimensional cases (Hu and Mahadevan, 2019). In GMCM, the Gaussian
copula function is adopted to model the correlation of random variables.

A Gaussian copula, 𝐶𝐺, has the form of:

𝐶𝐺(𝑢) = Φ𝑅(Φ−1(𝑢𝑥1
), … ,Φ−1(𝑢𝑥𝑚

),Φ−1(𝑢𝑦)) ( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗
𝐴𝑅𝐴𝐵𝐼𝐶 9)

where Φ𝑅 is the joint CDF of a multivariate normal distribution with
mean vector zero and covariance matrix equal to the correlation matrix
𝑅 ∈ [−1, 1](𝑚+1)×(𝑚+1). Φ−1 is the inverse CDF in the standard normal
distribution.

The Gaussian copula in Equation (9) operates on (Φ−1(𝑢𝑥1
), … ,Φ−1(𝑢𝑥𝑚

),Φ−1(𝑢𝑦)).
For ease of notation, let z = [𝑧𝑥1

, … ,𝑧𝑥𝑚
,𝑧𝑦] = [Φ−1 (𝑢𝑥1

) , … ,Φ−1 (𝑢𝑥𝑚
) ,Φ−1 (𝑢𝑦)].
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z is called the standardized vector. Each element of z follows the standard nor-
mal distribution. Importantly, 𝐹𝑥𝑖

(𝑥𝑖) = 𝑢𝑥𝑖
= Φ (𝑧𝑥𝑖

) , 𝐹𝑦(𝑦) = 𝑢𝑦 = Φ(𝑧𝑦),
where 𝑖 = [1, 2, .., 𝑚].
Based on Equation (2), we compute the derivatives of Equation (9) to get the
joint PDF of (x, 𝑦), 𝑓𝑋,𝑌 (x, 𝑦):

𝑓𝑋,𝑌 (x, 𝑦) = 𝜕𝑚+1Φ𝑅(Φ−1(𝑢𝑥1 ),…,Φ−1(𝑢𝑥𝑚 ),Φ−1(𝑢𝑦))
Φ−1(𝑢𝑥1 )•…•Φ−1(𝑢𝑥𝑚 )•Φ−1(𝑢𝑦) • Φ−1(𝑢𝑥1 )

𝜕𝑢𝑥1
⋯ Φ−1(𝑢𝑥𝑚 )

𝜕𝑢𝑥𝑚
• Φ−1(𝑢𝑦)

𝑢𝑦
•

𝜕𝑢𝑥1
𝑥1

⋯ 𝜕𝑢𝑥𝑚
𝑥𝑚

• 𝜕𝑢𝑦
𝑦 ( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗ 𝐴𝑅𝐴𝐵𝐼𝐶 10)

where 𝜕𝑚+1Φ𝑅(Φ−1(𝑢𝑥1 ),…,Φ−1(𝑢𝑥𝑚 ),Φ−1(𝑢𝑦))
Φ−1(𝑢𝑥1 )•…•Φ−1(𝑢𝑥𝑚 )•Φ−1(𝑢𝑦) is the Gaussian copula density 𝑐𝐺(𝑢).

Since Φ−1(𝑢)
𝜕𝑢 = 1

𝜙(Φ−1(𝑢)) = 1
𝜙(𝑧) , where 𝜙 is the PDF of the standard normal

distribution, Equation (10) can be expressed as:

𝑓𝑋,𝑌 (x, 𝑦) = 𝑐𝐺(𝑢) × 1
𝜙(𝑧𝑥1 ) • ⋯ 1

𝜙(𝑧𝑥𝑚 ) • 1
𝜙(𝑧𝑦) × 𝑓𝑋1

(𝑥1) ⋯ 𝑓𝑋𝑚
(𝑥𝑚) • 𝑓𝑌 (𝑦)

( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗ 𝐴𝑅𝐴𝐵𝐼𝐶 11)

In GMCM, the Gaussian copula density 𝑐𝐺(𝑢) of Equation (11) is approximated
by the GMM. As such, GMM is combined with the copula. Equation (11) is
approximated as:

𝑓𝑋,𝑌 (x, 𝑦) ≈ 𝑓GMM(z) × 1
𝜙(𝑧𝑥1 ) • ⋯ 1

𝜙(𝑧𝑥𝑚 ) • 1
𝜙(𝑧𝑦) × 𝑓𝑋1

(𝑥1) ⋯ 𝑓𝑋𝑚
(𝑥𝑚) • 𝑓𝑌 (𝑦)

( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗ 𝐴𝑅𝐴𝐵𝐼𝐶 12)

where 𝑓GMM(z) is an estimated GMM. Note that 𝑓GMM (z) = ∑𝐾
𝑘=1 𝜆𝑘 •

𝜙(z|�𝑘, �𝑘) according to Equation (4).

In addition, based on Equations (12) and (8), we can get the marginal PDF of
variable x, 𝑓𝑋 (x):
𝑓𝑋 (x) ≈ 𝑓GMM(𝑧𝑥1

, … ,𝑧𝑥𝑚
) × 1

𝜙(𝑧𝑥1 ) • ⋯ 1
𝜙(𝑧𝑥𝑚 ) × 𝑓𝑋1

(𝑥1) ⋯ 𝑓𝑋𝑚
(𝑥𝑚)

( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗ 𝐴𝑅𝐴𝐵𝐼𝐶 13)

where 𝑓GMM(𝑧𝑥1
, … ,𝑧𝑥𝑚

) is derived from 𝑓GMM (z) based on Equation (8). From
Equations (12) and (13), we see that GMCM operates on both the observed
variables (𝑥1, … , 𝑥𝑚, 𝑦) and the standardized variables (𝑧𝑥1

, … ,𝑧𝑥𝑚
,𝑧𝑦).

Estimation of variance-based sensitivity indices using
GMCM
This section provides derivations of the first- and total-order Sobol sensitivity
indices in the VISCOUS framework. Assume a hydrologic model:

𝑦 = 𝐻(𝑥1, 𝑥2, … , 𝑥𝑚) ( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗ 𝐴𝑅𝐴𝐵𝐼𝐶 14)

where a total of 𝑚 input factors are evaluated in sensitivity analysis. According
to Saltelli et al. (2008), variance of model response (𝑦) is decomposed into
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partial variances: first-order variance (𝑉𝑖), second-order variance (𝑉ij), …, until
𝑚-order variance (𝑉i..m).
𝑉 (𝑦) = ∑𝑚

𝑖=1 𝑉𝑖+∑𝑚
𝑖=1 ∑𝑚

𝑗=𝑖+1 𝑉ij+…+𝑉i..m ( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \∗ 𝐴𝑅𝐴𝐵𝐼𝐶 15)

where 𝑉 (𝑦) is the variance of the model response 𝑦.

The first-order sensitivity index (𝑆𝑖) is calculated as:

𝑆𝑖 = 𝑉𝑖
𝑉 (𝑦) = 𝑉 (𝐸(𝑦|𝑥𝑖))

𝑉 (𝑦) ( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗ 𝐴𝑅𝐴𝐵𝐼𝐶 16)

where 𝑉𝑖 is the first-order variance which represents the contribution to the
variance of response 𝑦 due to an individual input factor 𝑥𝑖. The first-order
sensitivity index is also called the main effect sensitivity index.

The total-order variance (𝑆Ti) is calculated as:

𝑆Ti = 1 − 𝑆∼𝑖 = 1 − 𝑉 (𝐸(𝑦|x∼𝑖))
𝑉 (𝑦) ( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗ 𝐴𝑅𝐴𝐵𝐼𝐶 17)

where 𝑉 (𝐸(𝑦|x∼𝑖)) represents the total contribution to the variance of response
due to non-x𝑖 (i.e., x∼𝑖). x∼𝑖 is a random vector of all input variables fixed except
𝑥𝑖. The total-order sensitivity index is also called the total effect sensitivity
index.

From Equations (16) and (17), we see that the calculation of conditional expecta-
tions, 𝐸(𝑦|𝑥𝑖) and 𝐸 (𝑦|x∼𝑖), is the cornerstone of the variance-based sensitivity
analysis. The following takes 𝐸(𝑦|𝑥𝑖) as an example and explains how it is com-
puted. The computation of 𝐸 (𝑦|x∼𝑖) follows the same logics except replacing
the scalar 𝑥𝑖 with the vector x∼𝑖.

If the input factor 𝑥𝑖 is fixed to a generic value ̃𝑥𝑖, the resulting conditional
expectation of 𝑦 is:

𝐸 (𝑦|𝑥𝑖 = ̃𝑥𝑖) = ∫Ω𝑌 𝑦 • 𝑓𝑌 |𝑋 (𝑦|𝑥𝑖 = ̃𝑥𝑖) dy ( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗ 𝐴𝑅𝐴𝐵𝐼𝐶 18)

In GMCM, the conditional PDF, 𝑓𝑌 |𝑋 (𝑦|x), is approximated using GMMs and
is calculated by dividing Equation (12) by Equation (13):
𝑓𝑋,𝑌 (x,𝑦)

𝑓𝑋(x) ≈ 𝑓GMM(𝑧𝑥1 ,…,𝑧𝑥𝑚 ,𝑧𝑦)
𝑓GMM(𝑧𝑥1 ,…,𝑧𝑥𝑚 ) • 1

𝜙(Φ−1(𝑢𝑦)) • 𝑓𝑌 (𝑦) ( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗
𝐴𝑅𝐴𝐵𝐼𝐶 19)

Therefore, Equation (18) is approximated by:

𝐸 (𝑦|𝑥𝑖 = ̃𝑥𝑖) ≈ ∫Ω𝑌 𝑦 • 𝑓GMM(𝑧𝑥1 ,…,𝑧𝑥𝑚 ,𝑧𝑦)
𝑓GMM(𝑧𝑥1 ,…,𝑧𝑥𝑚 ) • 1

𝜙(Φ−1(𝑢𝑦)) • 𝑓(𝑦)dy ( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \∗
𝐴𝑅𝐴𝐵𝐼𝐶 20)

Since 𝑓𝑌 (𝑦)𝑑𝑦 = 𝐹𝑌 (𝑦) = 𝑑𝑢𝑦, Equation (20) becomes:

𝐸 (𝑦|𝑥𝑖 = ̃𝑥𝑖) ≈ ∫1
0 𝑦 • 𝑓GMM(𝑧𝑥1 ,…,𝑧𝑥𝑚 ,𝑧𝑦)

𝑓GMM(𝑧𝑥1 ,…,𝑧𝑥𝑚 ) • 1
𝜙((Φ−1(𝑢𝑦))) 𝑑𝑢𝑦 ( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗

𝐴𝑅𝐴𝐵𝐼𝐶 21)
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To drop the dependence upon the specific value ̃𝑥𝑖, the variance of 𝐸 (𝑦|𝑥𝑖) is
estimated by integrating 𝐸 (𝑦|𝑥𝑖 = ̃𝑥𝑖) over the probability density function of

̃𝑥𝑖, expressed as:

𝑉 (𝐸 (𝑦|𝑥𝑖)) = ∫Ω𝑥𝑖
𝐸2 (𝑦|𝑥𝑖 = ̃𝑥𝑖) 𝑑 ̃𝑥𝑖−[∫Ω𝑥𝑖

𝐸 (𝑦|𝑥𝑖 = ̃𝑥𝑖) 𝑑 ̃𝑥𝑖]
2 ( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \∗

𝐴𝑅𝐴𝐵𝐼𝐶 22)

From this, we see that two loops are needed in the estimation of 𝑉 (𝐸 (𝑦|𝑥𝑖)).
The inner loop is to integrate over 𝑑𝑢𝑦 to compute 𝐸 (𝑦|𝑥𝑖 = ̃𝑥𝑖). The outer
loop is to integrate over 𝑑 ̃𝑥𝑖 to eliminate the dependence on the value of ̃𝑥𝑖.

Monte Carlo-based approximation of variance-based sensi-
tivity indices
This section explains the Monte Carlo approximations of the first-order and the
total-order sensitivity indices, respectively. In Monte Carlo-based approxima-
tion, the estimated GMM, 𝑓GMM(•), is used to generate samples ( ̃𝑧1, … , ̃𝑧𝑚, ̃𝑧𝑦).
Since two loops are needed to compute 𝑉 (𝐸 (𝑦|𝑥𝑖)) and 𝑉 (𝐸 (𝑦|x∼𝑖)), two
rounds of sampling are conducted. Details are explained below.

First-order sensitivity index

Computing the first-order sensitivity index of 𝑥𝑖 requires including the standard-
ized data (𝑧𝑥𝑖

, 𝑧𝑦) in the GMM inference. The GMM inference is done through
the EM algorithm (see Appendix A1). With the inferred GMM 𝑓GMM(•), the
first round of sampling is conducted to generate 𝑁1 Monte Carlo samples from
𝑓GMM(•). See Z̃1 in Equation (23). Z̃1is used for the outer loop to eliminate
the dependence on the value of ̃𝑥𝑖.

Z̃1 =
⎛⎜⎜⎜⎜
⎝

̃𝑧1,𝑥𝑖
̃𝑧2,𝑥𝑖
⋮

̃𝑧𝑁1,𝑥𝑖

̃𝑧1,𝑦
̃𝑧2,𝑦
⋮

̃𝑧𝑁1,𝑦

⎞⎟⎟⎟⎟
⎠

, Z̃2 =
⎛⎜⎜⎜⎜
⎝

̃𝑧𝑟1,𝑥𝑖
̃𝑧𝑟1,𝑥𝑖
⋮

̃𝑧𝑟1,𝑥𝑖

̃𝑧′
1,𝑦
̃𝑧′
2,𝑦
⋮

̃𝑧′
𝑁2,𝑦

⎞⎟⎟⎟⎟
⎠

, 𝑟1 = [1, … , 𝑁1].

( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗ 𝐴𝑅𝐴𝐵𝐼𝐶 23)

The second round of sampling is repeated 𝑁1 times by looping through each
sample of Z̃1. Per iteration, 𝑁2 Monte Carlo samples are firstly generated from
𝑓GMM(•), and then all values of z𝑥𝑖

are replaced by a sample of Z̃1. See Z̃2in
Equation (23). The first column of Z̃2 is replaced by ̃𝑧𝑟1,𝑥𝑖

of Z̃1. Z̃2 is used for
the inner loop to integrate over 𝑑𝑢𝑦 to compute 𝐸 (𝑦|𝑥𝑖 = ̃𝑥𝑖). 𝑁1 and 𝑁2 can
be but do not have to be equal (𝑁1 = 𝑁2 in our study).

Given a fixed value ̃𝑧𝑥𝑖
= ̃𝑧𝑟1,𝑥𝑖

, the conditional expectation in Equation (21) is
approximated by:

𝐸 (𝑦∣𝑥𝑖 = ̃𝑥𝑟1,𝑖) ≈ 1
𝑁2

∑𝑁2
𝑟2=1 𝐹 −1

𝑌 (𝑢𝑟2,𝑦) • 𝑓GMM(( ̃𝑧𝑟1,𝑥𝑖 , ̃𝑧𝑟2,𝑦))
𝑓GMM( ̃𝑧𝑟1,𝑖) • 1

𝜙( ̃𝑧𝑟2,𝑦)
( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗ 𝐴𝑅𝐴𝐵𝐼𝐶 24)
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where ( ̃𝑧𝑟1,𝑥𝑖
, ̃𝑧𝑟2,𝑦) is the 𝑟th

2 sample of Z̃2, 𝑟2 = [1, … , 𝑁2]. ̃𝑧𝑟2,𝑦 denotes the
standardized value of 𝑦 in the standard normal distribution. With ̃𝑧𝑟2,𝑦, the PDF
and CDF of ̃𝑧𝑟2,𝑦 in the standard normal distribution (i.e., 𝜙( ̃𝑧𝑟2,𝑦) and Φ( ̃𝑧𝑟2,𝑦))
can be computed. 𝐹 −1

𝑌 (𝑢𝑟2,𝑦) is the inverse CDF of 𝑢𝑟2,𝑦 in the original space
of 𝑦, ̃𝑦𝑟2

= 𝐹 −1
𝑌 (𝑢𝑟2,𝑦). Similarly, ̃𝑥𝑟2,𝑖 = 𝐹 −1

𝑋𝑖
(𝑢𝑟2,𝑥𝑖

).

Eliminating the dependence on the value of ̃𝑥𝑖, the variance of 𝐸 (𝑦|𝑥𝑖) in Equa-
tion (22) is approximated by:

𝑉 (𝐸 (𝑦|𝑥𝑖)) ≈ 1
𝑁1

∑𝑁1
𝑟1=1 𝐸2 (𝑦∣𝑥𝑖 = ̃𝑥𝑟1,𝑖) − [ 1

𝑁1
∑𝑁1

𝑟1=1 𝐸 (𝑦∣𝑥𝑖 = ̃𝑥𝑟1,𝑖)]
2

( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗ 𝐴𝑅𝐴𝐵𝐼𝐶 25)

With Equations (24) and (25), and Equation (16), the first-order sensitivity
index can be computed.

Total-order sensitivity index

Computing the total-order sensitivity index of 𝑥𝑖 requires including the stan-
dardized data (z∼𝑥𝑖

, 𝑧𝑦) = (𝑧𝑥1
, .., 𝑧𝑥𝑖−1

, 𝑧𝑥𝑖+1
, … , 𝑧𝑥𝑚

, 𝑧𝑦) in the GMM inference.
Similarly, with the inferred GMM 𝑓GMM(•), the first round of sampling is con-
ducted to generate 𝑁1 Monte Carlo samples from 𝑓GMM(•). See Z̃1in Equation
(26). Z̃1is used for the outer loop to eliminate the dependence on the value of

̃𝑥𝑖.

Z̃1 =
⎛⎜⎜⎜⎜
⎝

̃z1,∼𝑥𝑖
̃z2,∼𝑥𝑖

⋮
̃z𝑁1,∼𝑥𝑖

̃𝑧1,𝑦
̃𝑧2,𝑦
⋮
̃𝑧𝑁1,𝑦

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

̃𝑧1,𝑥1
̃𝑧2,𝑥1
⋮

̃𝑧𝑁1,𝑥1

⋯
̃𝑧1,𝑥𝑖−1
̃𝑧2,𝑥𝑖−1

⋮
̃𝑧𝑁1,𝑥𝑖−1

̃𝑧1,𝑥𝑖+1
̃𝑧2,𝑥𝑖+1

⋮
̃𝑧𝑁1,𝑥𝑖+1

⋯
̃𝑧1,𝑥𝑚
̃𝑧2,𝑥𝑚
⋮

̃𝑧𝑁1,𝑥𝑚

̃𝑧1,𝑦
̃𝑧2,𝑦
⋮
̃𝑧𝑁1,𝑦

⎞⎟⎟⎟⎟
⎠

,

Z̃2 =
⎛⎜⎜⎜⎜
⎝

̃z𝑟1,∼𝑥𝑖
̃z𝑟1,∼𝑥𝑖

⋮
̃z𝑟1,∼𝑥𝑖

̃𝑧1,𝑦
̃𝑧2,𝑦
⋮
̃𝑧𝑁2,𝑦

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

̃𝑧𝑟1,𝑥1
̃𝑧𝑟1,𝑥1
⋮

̃𝑧𝑟1,𝑥1

⋯
̃𝑧𝑟1,𝑥𝑖−1
̃𝑧𝑟1,𝑥𝑖−1

⋮
̃𝑧𝑟1,𝑥𝑖−1

̃𝑧𝑟1,𝑥𝑖+1
̃𝑧𝑟1,𝑥𝑖+1

⋮
̃𝑧𝑟1,𝑥𝑖+1

⋯
̃𝑧𝑟1,𝑥𝑚
̃𝑧𝑟1,𝑥𝑚

⋮
̃𝑧𝑟1,𝑥𝑚

̃𝑧′
1,𝑦
̃𝑧′
2,𝑦
⋮
̃𝑧′
𝑁2,𝑦

⎞⎟⎟⎟⎟
⎠

,

𝑟1 = [1, … , 𝑁1] ( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗ 𝐴𝑅𝐴𝐵𝐼𝐶 26)

The second round of sampling is repeated 𝑁1 times by looping through each
sample of Z̃1. Per iteration, 𝑁2 Monte Carlo samples are firstly generated from
𝑓GMM(•), and then all values of z∼𝑥𝑖

are replaced by a sample of Z̃1. See Z̃2in
Equation (26). Z̃2 is used for the inner loop to integrate over 𝑑𝑢𝑦 to compute
𝐸 (𝑦∣𝑥𝑖 = x̃𝑟1,∼𝑖).

Similar with Equations (24) and (25), 𝐸 (𝑦∣𝑥𝑖 = x̃𝑟1,∼𝑖) can be computed by:
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𝐸 (𝑦∣x∼𝑖 = x̃𝑟1,∼𝑖) ≈ 1
𝑁2

∑𝑁2
𝑟2=1 𝐹 −1

𝑦 (𝑢𝑟2,𝑦) • 𝑓GMM((z̃𝑟1,∼𝑥𝑖 , ̃𝑧𝑟2,𝑦))
𝑓GMM(z̃𝑟1,∼𝑥𝑖 ) • 1

𝜙( ̃𝑧𝑟2,𝑦)
( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗ 𝐴𝑅𝐴𝐵𝐼𝐶 27)

𝑉 (𝐸(𝑦|x∼𝑖)) can be approximated by:

𝑉 (𝐸 (𝑦|x∼𝑖)) ≈ 1
𝑁1

∑𝑁1
𝑟1=1 𝐸2 (𝑦∣x∼𝑖 = x̃𝑟1,∼𝑖)−[ 1

𝑁1
∑𝑁1

𝑟1=1 𝐸 (𝑦∣x∼𝑖 = x̃𝑟1,∼𝑖)]
2

( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗ 𝐴𝑅𝐴𝐵𝐼𝐶 28)

With Equations (27) and (28), and Equation (17), the total-order sensitivity
index can be computed.

Didactic examples
This section uses a two-parameter Rosenbrock function to demonstrate the im-
plementation of the VISCOUS framework step-by-step. This example is in-
tended to help users to understand the details of the GMCM probability model,
such as the Gaussian components and GMM, and enable users to utilize the
VISCOUS framework for their own applications.

Implementation steps
Six steps are involved in the VISCOUS framework according to Sheikholeslami et
al. (2021). Taking the first-order sensitivity index of variable 𝑥𝑖 as an example,
the steps are:

Step 1. Select the to-be-evaluated input and output data based on the goal of
sensitivity analysis, i.e., input-output sample data (𝑥𝑖, 𝑦).
Step 2. Calculate the CDF of 𝑥𝑖 and 𝑦, respectively, using the kernel density
estimate to obtain the CDF data (𝑢𝑥𝑖

, 𝑢𝑦).
Step 3. Calculate the inverse CDF of (𝑢𝑥𝑖

, 𝑢𝑦) in the standard normal distri-
bution to obtain the standardized data (𝑧𝑥𝑖

, 𝑧𝑦).
Step 4. Estimate the GMM based on the standardized data (𝑧𝑥𝑖

, 𝑧𝑦) via the
EM algorithm in Appendix A1.

Step 5. Generate Monte Carlo samples based on the estimated GMM.

Step 6. Calculate the variance-based first-order sensitivity index based on
Equations (24), (25), and (16), and the total-order sensitivity index based on
Equations (27), (28), and (17).

Demonstration using the Rosenbrock function
The Rosenbrock function, also referred to as the Valley or Banana function, is
a popular test problem for uncertainty analysis, sensitivity analysis, and op-
timization algorithms (Rosenbrock, 1960). In the two-dimensional form, the
Rosenbrock function is defined as:
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𝑦 = 100(𝑥2 − 𝑥2
1)2 + (1 − 𝑥1)2, 𝑥1, 𝑥2 ∈ [−2, 2] ( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗

𝐴𝑅𝐴𝐵𝐼𝐶 29)

where (𝑥1, 𝑥2) are the two input variables uniformly distributed in [−2, 2]. The
global minimum is at (𝑥1, 𝑥2) = (1, 1), where 𝑦 = 0.

The distribution of the Rosenbrock function is shown in Figure 1. It involves
a long steep valley and a gradually sloping floor. The Rosenbrock function
in its two-dimensional form enables us to visualize the function itself and the
implementation steps of VISCOUS.

Figure . Distribution of the Rosenbrock function

Determine input-output data and calculate CDFs (steps 1-3)

In step 1, when we compute the first-order sensitivity index of 𝑥1 for the Rosen-
brock function, two variables (𝑥1, 𝑦) are included in the VISCOUS framework.
Assume the sample size is 10,000. Following steps 1-3 in Section 3.1, we get
three sets of data: input-output sample data (𝑥1, 𝑦), CDF data (𝑢𝑥1

, 𝑢𝑦), and
standardized data (𝑧𝑥1

, 𝑧𝑦). Figure 2 shows the distribution of each variable
among the three data sets.
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Figure . Histograms of sample data, CDF data, and standardized data.

Estimate the GMM (Step 4)

In step 4, for ease of visualization, we first used two Gaussian components to
estimate the GMM (𝐾 = 2). Two components are unlikely to be sufficient to
depict the joint PDF of (𝑧𝑥1

, 𝑧𝑦) in the Rosenbrock problem, but the resulting
visualization can help to understand what the Gaussian components are and
how they are grouped together to form the GMM that represents the joint PDF
of the evaluated input and out variables.

Based on two Gaussian components, the GMM is expressed as:

𝑓 (𝑧𝑥1
, 𝑧𝑦) = 𝜆1𝜙 (𝑧𝑥1

, 𝑧𝑦∣�1, �1) + 𝜆2𝜙 (𝑧𝑥1
, 𝑧𝑦∣�2, �2) ( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗

𝐴𝑅𝐴𝐵𝐼𝐶 30)

where 𝜙 is the PDF of a bivariate Gaussian distribution with mean �𝑘 and
covariance �𝑘(𝑘 = 1, 2). Note the GMM inference is based on the standardized
data (𝑧𝑥1

, 𝑧𝑦). Figure 3 shows the contour of each Gaussian component and the
inferred GMM. The weighted sum of the two bivariate Gaussian distributions
(components) makes up the joint PDF of the standardized data (𝑧𝑥1

, 𝑧𝑦). The
two components are well separated and of different weights, and the mixture
contour closely resemble the component contours.

Figure . PDFs of two bivariate Gaussian components and the GMM.
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The inferred parameter values of the two components are also provided:

𝜆1 = 0.31, 𝜆2 = 0.69

�1 = [𝜇1,𝑧𝑥1
, 𝜇1,𝑧𝑦

] = [0.99, 0.43], �2 = [𝜇2,𝑧𝑥1
, 𝜇2,𝑧𝑦

] = [−0.44, −0.12]

�1 = [
𝜎2

1,𝑧1
cov1,𝑧𝑥1 𝑧𝑦

cov1,𝑧𝑦𝑧𝑥1
𝜎2

1,𝑧𝑦

] = [0.32 0.32
0.32 0.73] , �2 = [

𝜎2
2,𝑧𝑥1

cov2,𝑧𝑥1 𝑧𝑦

cov2,𝑧𝑦𝑧𝑥1
𝜎2

2,𝑧𝑦

] = [ 0.52 −0.40
−0.40 0.71 ]

In Figure 4, the inferred GMM are investigated in depth. Figure 4(a) shows that
when using two Gaussian components, the standardized data (𝑧𝑥1

, 𝑧𝑦) are clas-
sified into two clusters. Each Gaussian component represents a cluster. Each
Gaussian component is a probabilistic density function, so it identifies the prob-
ability that each data belongs to each cluster. In Figure 4(b), the joint PDF of
each data point is estimated as the weighted average PDF in the two Gaussian
components, which is the GMM. Figure 4(c) shows the 2-dimension histogram
or distribution frequency of the standardized data (𝑧𝑥1

, 𝑧𝑦).
When comparing with Figure 4(c), it is found that the 2-component GMM in
Figure 4(b) does a very poor job in representing the distribution of (𝑧𝑥1

, 𝑧𝑦).
Specifically, the estimated GMM has high probability densities in the lower left
part of the (𝑧𝑥1

, 𝑧𝑦) space, while the input samples cluster at the bottom of the
𝑧𝑦 axis (𝑧𝑦 = −1). Due to this inaccurate representation, we cannot use this
estimated GMM for the subsequent Monte Carlo sampling and the sensitivity
index estimation.

Figure . When using 2 Gaussian components, the GMM clustering (panel a)
and joint PDF (panel b) results for (𝑧𝑥1

, 𝑧𝑦), in comparison with the histogram
of samples (𝑧𝑥1

, 𝑧𝑦) (panel c).

To get a better GMM estimate, we then used the BIC criterion and selected
an optimal Gaussian component number 18. Like Figure 4, Figure 5 shows the
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clustering and joint PDF results using the 18-component GMM. When using
18 Gaussian components, the standardized data (𝑧𝑥1

, 𝑧𝑦) are classified into 18
clusters. In Figure 5(b), the estimated probability density (GMM) matches the
distribution frequency of (𝑧𝑥1

, 𝑧𝑦) in Figure 5(c). Therefore, the 18-component
based GMM better represents the distribution of (𝑧𝑥1

, 𝑧𝑦) than the 2-component
based GMM in Figure 4(b). This result highlights the impacts of the number
of Gaussian components on GMM performance.

Figure . When using 18 Gaussian components, the GMM clustering (panel a)
and joint PDF (panel b) results for (𝑧𝑥1

, 𝑧𝑦), in comparison with the histogram
of (𝑧𝑥1

, 𝑧𝑦) (panel c). Note panel c is the same as Figure 4(c).

Monte Carlo sampling and sensitivity estimation (steps 5, 6)

In step 5, we set 𝑁1 = 𝑁2 = 1000 and generated Monte Carlo samples ( ̃𝑧𝑥1
, ̃𝑧𝑦)

based on the inferred GMM. In step 6, we calculated the first-order sensitivity
based on Equations (24), (25), and (16), and calculated the total-order sensitiv-
ity using Equations (27), (28), and (17).

To quantify the sampling uncertainty in VISCOUS, we repeated the entire pro-
cesses 50 times to obtain 50 sets of sensitivity index results. Each experiment
uses a different set of input-output sample data with size 10,000; and in the sen-
sitivity index calculation, the Monte Carlo sample sizes are 𝑁1 = 𝑁2 = 10, 000.
For comparison, the same 50 sets of sample data were applied to the Sobol
method, getting 50 sets of sensitivity index results. Figure 6 compares the
results of the VISCOUS framework and the Sobol method. For both the first-
order and total-order sensitivity indices, VISCOUS produces similar median
sensitivity indices as Sobol but has a larger sampling uncertainty.
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Figure . First-order and total-order sensitivity indices of the Sobol and VIS-
COUS methods.

Evaluation of the VISCOUS Framework
This section evaluates the VISCOUS framework using three types of Sobol func-
tions and provides a cautionary note on the non-identifiability issue using VIS-
COUS to approximate sensitivity indices for applications where different input
factors have similar importance.

Sobol function
According to Kucherenko et al. (2011), model functions can be classified into
three types based on their dependence on variables.

• Type A function: Variables are not equally important in terms of sensi-
tivity.

• Type B function: Variables are equally important, and no interaction
exists between variables. Therefore, 𝑆𝑖 = 𝑆Ti, ∑ 𝑆𝑖 = 1, and 𝑆𝑖 = 1/𝑛.

• Type C function: Variables are equally important, and interaction exists
between variables. Therefore, 𝑆𝑖 < 𝑆Ti, and ∑ 𝑆𝑖 < 1.

Type A functions are the most common type of functions in practice. For in-
stance, in most water system models, a large proportion of model output varia-
tion is often associated with a small proportion of the input factors (Markstrom
et al., 2016). In statistics, this is known as the sparsity of factors principle or
the Pareto principle (Box and Meyer, 1986). The sparsity of factors principle
states that a small subset of factors is often responsible for most of the system
output uncertainty.

Type B and C functions have equally important variables. Equal importance
means that all variables have the same sensitivity at all orders (i.e., first-order,
second-order, …, and total-order). Type B and C functions differ in the interac-
tions between variables. Both types of functions are rare in practice. Examining
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the performance of the VISCOUS framework in them enables a more compre-
hensive evaluation of the strengths and weakness of VISCOUS.

The popular Sobol function is adopted to examine the performance of VISCOUS
in all three cases (Kucherenko et al., 2011):

𝑓(𝑋) = ∏𝑛
𝑖=1

|4𝑥𝑖−2|+𝑎𝑖
1+𝑎𝑖

( 𝑆𝐸𝑄 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \ ∗ 𝐴𝑅𝐴𝐵𝐼𝐶 31)

Set 𝑛 = 10, then (𝑥1, … , 𝑥10) are the ten input variables uniformly distributed
in [0, 1].We can conveniently get all the three types of function by changing
𝑎𝑖 (Table 1) (Kucherenko et al., 2011). In the Type A function, 𝑥1and 𝑥2 are
equally important, 𝑥3 … 𝑥10 are equally important, and 𝑥1and 𝑥2 are not the
same as sensitive as 𝑥3 … 𝑥10. In the Type B and C functions, all ten 𝑥 variables
are equally important.

Table . Configurations of three types of Sobol’ function.

Type A 𝑎1 = 𝑎2 = 0, 𝑎3 = … = 𝑎𝑛 = 6.52
Type B 𝑎𝑖 = 6.52
Type C 𝑎𝑖 = 0

Sensitivity indices
Figure 7 shows the first-order and total-order sensitivity indices using the VIS-
COUS and Sobol methods. As in Figure 6, the Sobol sensitivity indices are the
benchmark; and the calculation of each sensitivity index is repeated 50 times to
quantify sampling uncertainty. Each experiment uses a different set of input-
output sample data with size 100,000; and the Monte Carlo sample sizes are
𝑁1 = 𝑁2 = 10, 000.

Figure 7(a,c,e) show the first-order sensitivity indices of three functions. VIS-
COUS produces similar sensitivity results with Sobol in all three functions. Fig-
ure 7(b,d,f) show the total-order sensitivity indices of three functions. The
sensitivity ranking of different variables is consistent between VISCOUS and
Sobol in all three functions. Specifically, in the Type A function, 𝑥1 and 𝑥2 are
more sensitive than 𝑥3, … 𝑥10.Moreover, 𝑥1 and 𝑥2 are equally important, and
𝑥3, … 𝑥10 are equally important. In the Type B and C functions, all 𝑥 variables
are equally important.
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Figure . First-order and total-order sensitivity indices of VISCOUS and Sobol
methods for the Type A, B, and C functions.

However, with respect to the values of total-order sensitivity indices, the perfor-
mance of VISCOUS varies by function type. In the Type A function, VISCOUS
results are on average 10% higher than Sobol’s. In the Type B and C functions,
VISCOUS results are quite different from Sobol’s and are unacceptably wrong.
For instance, in the Type B function, according to its definition, 𝑆Ti = 𝑆𝑖 = 1/𝑛
(see Section 4.1). Here 𝑛 = 10, so the true total-order sensitivity indices of the
Type B function are 𝑆𝑇 1 = … = 𝑆𝑇 10 = 0.1. However, the VISCOUS results
are around 0.6 in Figure 7(d).

Taking Sobol’s sensitivity indices as the benchmark, we conclude that, when the
number of variables is 10 (n=10), VISCOUS provides a useful approximation
of total-order sensitivity index estimates for the Type A function. However,
VISCOUS provides incorrect total-order sensitivity index estimates for the Type
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B and C functions. The following section tests whether the above conclusion
holds with a different number of variables.

Dimensionality effects on total-order sensitivity indices
To investigate the effects of the dimensionality (the number of function variables)
on total-order sensitivity indices, we changed the number of function variables
to be 4, 6, and 8 and applied the VISCOUS framework to the corresponding
functions in all three types. Same as the above, the sensitivity indices of Sobol
are the benchmark; the calculation of each sensitivity index is repeated 50 times
to quantify the sampling uncertainty. Each experiment uses a different set of
input-output sample data with size 100,000, and the Monte Carlo sample sizes
are 𝑁1 = 𝑁2 = 10, 000. Experiments use the same k-means method to generate
priors. Results are shown in Figure 8.

For the type A function (the first row of Figure 8), as the number of variables
increases from 4 to 8, VISCOUS always produces acceptable total-order sensitiv-
ity indices in comparison with Sobol. However, for the Type B and C functions
(the second and third rows of Figure 8), as the number of variables increases
from 4 to 8, VISCOUS produces progressively worse total-order sensitivity in-
dices in comparison with Sobol. The comparison shows that the performance of
the VISCOUS framework in the Type A function is stable, and it can provide
acceptable total-order sensitivity estimates. The performance of the VISCOUS
framework in the Type B and C functions is not stable, and the total-order
sensitivity estimates get worse as the number of variables increases. We will
explore why this happens to the Type B and C functions in the next section.
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Figure . Total-order sensitivity indices of VISCOUS and Sobol methods for
the Type A, B, and C functions when the number of variables is 4,6, and 8,
respectively. “n” denotes the number of variables of the corresponding Sobol
function.

Non-identifiability in GMM inference
We hypothesize that the inaccuracy of VISCOUS’ estimation of the total-
order sensitivity index in the Type B and C functions stems from the
non-identifiability of the GMM inference. This section first illustrates the
non-identifiability phenomenon, then explores the mathematical reason behind
it, and provides solutions for obtaining well-posed inferences in the presence of
non-identifiability.
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Non-identifiability phenomenon in GMM inference

Taking the Type B function as an example, we calculated the total-order sensi-
tivity index of 𝑥1 using VISCOUS. Ten variables (𝑧𝑥2

, … , 𝑧𝑥10
, 𝑧𝑦) were included

in the GMM inference. The input-output sample data size is 100,000. Figure
9 and Figure 10 show the prior and posterior distributions of three GMM com-
ponents, respectively. This component number is selected among multiple can-
didates by comparing their BICs (see Section 2.1.2). For readability, only the
𝑧𝑥2

, 𝑧𝑥3
, 𝑧𝑥4

, 𝑧𝑦 dimensions are shown in the two figures. Figure 11 details the
posterior parameter estimates of the GMM components on all ten dimensions.

In Figure 9, the prior distributions of all three components are almost the same
on the 𝑧𝑥2

, 𝑧𝑥3
, 𝑧𝑥4

dimensions (the first three columns of Figure 9); the 1st and
3rd components are also hard to separate on 𝑧𝑦 dimension (the last column of
Figure 9). Therefore, the prior information is highly exchangeable between the
three components.
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Figure . Prior distributions of three Gaussian components on selected dimen-
sions of the Type B function. The scattered grey dots are the standardized
data samples. “Cpnt” is short for component. The prior component weights are
�prior = [0.32, 0.37, 0.31]. The elements below the diagonal are symmetrically
equal to the elements above the diagonal and are not drawn for simplicity.
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After the GMM inference, we get the posterior distributions of the three compo-
nents (Figure 10). The three components become distinct on the 𝑧𝑥4

dimension
(the third column of Figure 10). However, the three components are still ho-
mogeneous on 𝑧𝑥2

and 𝑧𝑥3
dimensions, and the 1st and 3rd components are

homogenous on 𝑧𝑦 dimension. Figure 11 details the similarity of the poste-
rior distributions of the three components over eight of ten dimensions (i.e.,
𝑧𝑥2

, 𝑧𝑥3
, 𝑧𝑥5

, … , 𝑧𝑥10
, 𝑧𝑦). Therefore, the GMM inference result are not skillful

as they do not gain much from its inference data in comparison with the prior
distributions. The similar phenomena are also found in the Type C function
(reported in Appendix A2).
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Figure . Posterior distributions of three Gaussian components on selected
dimensions of the Type B function. The posterior component weights are
�posterior = [0.30, 0.37, 0.33]. Notations are the same as in Figure 8.
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Figure . Posterior mean and covariance estimates of three Gaussian components
for the Type B function. “Cpnt” is short for component.

Grouped component parameters in GMM inference

The phenomenon shown above is called non-identifiability. Non-identifiability is
the inability to infer some or all parameters of interest from the available data
(Renard et al., 2010; Wagener et al., 2001). This section explains the reason
behind the non-identifiability of GMM and therefore VISCOUS.

In GMM, the likelihood of all samples is expressed by:

𝑃(𝑍|�) = ∏𝑁
𝑛=1 ∑𝐾

𝑘=1 𝜆𝑘𝒩 (z𝑛|�𝑘, �𝑘) (32)

where � = [�, �, �] is the parameter vector, 𝑁 is the total number of input samples.
z𝑛= [z𝑛,𝑥, 𝑧𝑛,𝑦] is the nth standardized input sample.

Consider a simple example of the non-identifiability of GMM with two compo-
nents. The likelihood is:

𝑃(𝑍|�) = ∏𝑁
𝑛=1 [𝜆1𝒩 (z𝑛|�1, �1) + 𝜆2𝒩 (z𝑛|�2, �2)] (33)

Assuming the two Gaussian components are independent, the likelihood function
can be re-parameterized as:
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𝑃(𝑍|�) = ∏𝑁
𝑛=1 𝒩 (z𝑛|�, �) (34)

where,

�EM=𝜆1�1 + 𝜆2�2 (35)

�EM=𝜆2
1�1 + 𝜆2

2�2 (36)

The re-parameterized likelihood function depends on the weighted sum of �1 and
�2., not on the individual �1 and �2. Therefore, �EM and �EM are identifiable and
its inference are well posed, but the individual �1 and �2 are not identifiable.

However, VISCOUS needs well-posed inference on both grouped parameters
(�EM, �EM) and individual component parameters �𝑘. This is because to compute
the conditional expectations in variance-based sensitivity indices, both the joint
and the marginal distributions of the GMM are needed (see Equations (24) and
(27)). The next section will provide a solution for getting well-posed inference
on individual component parameters.

Non-exchangeable priors in GMM inference

The strength of the prior information determines whether the inference on in-
dividual component parameters is well-posed or ill-posed in the presence of
non-identifiability (Renard et al., 2010). According to Renard et al. (2010), an
inference result is well-posed if the associated posterior has the following prop-
erties: (1) it integrates to unity; (2) it is informative, and (3) it depends on
reasonably continuously on the inference data.

Inference using the non-exchangeable and precise priors yields well-posed indi-
vidual component parameters. Non-exchangeable priors mean that the priors for
one component are distinctly different from the priors for all other components:

𝜇𝑘 ≠ 𝜇𝑘′ . 𝑂𝑟, [𝜇𝑘,𝑥 , 𝜇𝑘,𝑦] ≠ [𝜇𝑘′,𝑥 , 𝜇𝑘′,𝑦] (37)

Σ𝑘 ≠ Σ𝑘′ . 𝑂𝑟, [Σ𝑘,𝑥𝑥 Σ𝑘,𝑥𝑦 Σ𝑘,𝑦𝑥 𝜎2
𝑘,𝑦 ] ≠ [Σ𝑘′,𝑥𝑥 Σ𝑘′,𝑥𝑦 Σ𝑘′,𝑦𝑥 𝜎2

𝑘′,𝑦 ] (38)

where 𝑘 and 𝑘′ represent two different Gaussian components of the GMM
(𝑘, 𝑘′ ∈ [1, .., 𝐾], 𝑘 ≠ 𝑘′). Otherwise, if 𝜇𝑘 = 𝜇𝑘′ and Σ𝑘 = Σ𝑘′ , then the two
priors are exchangeable between the 𝑘th and 𝑘′thcomponents (see Figure 9).

The inherent challenge in generating non-exchangeable priors exists in equally
important variables. In the Type B and C functions, the equally important
variables have the same distribution and same interaction with other variables
(including 𝑦), the prior information on these equally important variable dimen-
sions is very similar or even the same (see Figure 9). if the sample data induce
exchangeable priors and cannot discriminate between components, then the sam-
ple data cannot discriminate between the individual component parameters. In
this case, it is hard for any inference algorithm to explicitly discriminate these
component parameters.
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In the literature, there are two main approaches to generating non-exchangeable
and precise prior information. The first solution is to create strong constraints
on the prior component means and covariances. Univariate problems can follow
Bartolucci (2005), multivariate problems can follow Zio et al. (2007), or use a
hierarchical prior (Malsiner-Walli et al., 2017; Teh et al., 2006). The second
approach is ad hoc and includes two steps. It first estimates multiple Gaussian
components, and then merges these components according to some criteria. Ex-
ample criteria include the closeness of the means (Li, 2005), the modality of the
obtained mixture density, the degree of overlapping measured by misclassifica-
tion probabilities, and the entropy of the resulting partition (Malsiner-Walli et
al., 2017). Note this work used the k- means, not one of the above approaches
to generate the priors of Gaussian component parameters. Applying the above
approaches to generate the priors is out of scope of this study.

Even with the above methods of generating non-exchangeable priors, high di-
mensionality poses another challenge to the GMM inference. An unconstrained
GMM with 𝐾 components and 𝐷 dimensional data involves 𝐾 × 𝐷 × 𝐷 + 𝐾 ×
𝐷+𝐾 parameters. In detail, 𝐾 covariance matrices each of size 𝐷×𝐷, 𝐾 mean
vectors of length 𝐷, plus a component weight vector of length 𝐾. This can be a
problem for high-dimensional problems because it can quickly become impossi-
ble to find a sufficient amount of sample data to make good inferences regardless
of their prior distributions. This partly explains why VISCOUS produces pro-
gressively worse total-order sensitivity indices as the number of variables in the
Type B and C functions increases (see Figure 8).

Code Availability
Access to the VISCOUS source code (pyVISCOUS) and examples are available
in a public repository at https://github.com/h294liu/pyviscous.git. pyVIS-
COUS can be installed with pip or from source. We also provide example note-
books for the Rosenbrock function and three Sobol functions (Type A, B, and
C). Each example notebook contains code and documentation on how to gener-
ate input-output data, set up and run VISCOUS, and evaluate the sensitivity
index results.

Conclusions
The purpose of this technical note is to make the VISCOUS (VarIance-based
Sensitivity analysis using COpUlaS) framework easier to understand and apply.
In this note, we make three contributions. First, provide didactic examples and
additional background material to make VISCOUS easier to understand and
apply for general readers. Second, we evaluate VISCOUS using three types
of Sobol functions and investigate the non-identifiability property for functions
where different model inputs are of similar sensitivity. Third, we provide an
open-source code of VISCOUS in Python, namely, pyVISCOUS.
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This contribution extends the introductory VISCOUS paper of Sheikholeslami
et al. (2021) in several ways: basic knowledge about the copula function, the
Gaussian Mixture Model (GMM), and the Gaussian Mixture Copula Model
(GMCM); step-by-step derivations of the first- and total-order Sobol sensitivity
indices using the GMCM for didactic test problems; Monte Carlo-based approx-
imations for both the first- and total-order Sobol sensitivity indices.

Our evaluation of VISCOUS using three types of Sobol functions shows that
VISCOUS provides the same sensitivity ranking as the Sobol method for both
first-order and total-order sensitivity indices (see Figure 7). For first-order sen-
sitivity indices, VISCOUS provides accurate estimates. For total-order sensi-
tivity indices, when all variables are not equally important (Type A functions),
VISCOUS provides a useful approximation of the Sobol total-order sensitivity
indices. When all variables are equally important (Type B and C functions),
VISCOUS does not perform well and produces progressively worse total-order
sensitivity indices as the number of variables increases (see Figure 8).

Type A functions are the most common type of functions in practice, since a
small subset of factors is often responsible for most of the system output uncer-
tainty. Therefore, VISCOUS is suitable for most system models. The advantage
of VISCOUS lies in that it provides useful approximations of the Sobol sensi-
tivity indices by using any existing input (e.g., the perturbations in the model
parameters) and output data (e.g., the model responses given a parameter per-
turbation). As a “given-data” sensitivity analysis framework, VISCOUS does
not require the input data follow specific sampling strategies, it also does not
need additional model runs when input-output data are available. For example,
the input-output data can be from the previous model runs generated from other
modeling purposes, such as uncertainty propagation and model calibration.

VISCOUS’ inaccurate estimates of total-order sensitivity indices stem from the
non-identifiability of the GMM inference. In the GMM inference, the individual
Gaussian component parameters (e.g., mean and covariance) are grouped and
thus cannot be identified. In the presence of non-identifiability, obtaining well-
posed inferences on individual component parameters requires non-exchangeable
and precise prior information. VISCOUS currently uses the k-means method to
generate priors. The k-means method works well with Type A functions but not
with Type B and C functions. Future work is needed to incorporate the method
of creating non-exchangeable priors into VISCOUS, so VISCOUS can handle
the functions with equally important variables (i.e., Type B and C functions).

Future work is also needed to better understand the applicability of VISCOUS
for different applications. For example, further research is needed to understand
the number of model evaluations that are needed for VISCOUS to provide re-
liable sensitivity estimates. We gladly invite discussion and collaboration with
others interested in related issues of sensitivity and uncertainty analysis for com-
putationally expensive models. We seek collaborations to assess pyVISCOUS’
effectiveness in large samples of model types and study locations across a vari-
ety of hydroclimatic and environmental regimes. This will further help us test,
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improve, and modify the proposed sensitivity analysis framework.
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Appendix
Appendix A1. Expectation-Maximization (EM) algorithm
in GMM inference
With the likelihood function in Equation (31), the average log-likelihood of all
samples is:

log (𝑃 (𝑍|�)) = ∑𝑁
𝑛=1 log (∑𝐾

𝑘=1 𝜆𝑘𝒩 (z𝑛|�𝑘, �𝑘)) (A1)

where � = [�, �, �] is the parameter vector. � is the component weight vector. �
and � are the mean vector and covariance matrix of a Gaussian component. 𝑁
is the total number of input samples, z𝑛= [z𝑛,𝑥, 𝑧𝑛,𝑦] is the nth set of samples
in the standard space.

The EM algorithm is to maximize the average log-likelihood, that is, to solve
the following optimization problem:

max log (𝑃 (𝑍|�)) = max ∑𝑁
𝑛=1 [log ∑𝐾

𝑘=1 𝜆𝑘𝒩 (z𝑛|�𝑘, �𝑘)] (A2)

According to Jensen’s inequality and the evidence lower bound, the above opti-
mization problem can be simplified as follows for ease of computation (Biarnes,
2020):

max log (𝑃 (𝑍|𝜃)) ≥ max ∑𝑁
𝑛=1 ∑𝐾

𝑘=1 𝑙𝑜𝑔[𝜆𝑘𝒩 (z𝑛|�𝑘, �𝑘) (A3)

= max ∑𝑁
𝑛=1 ∑𝐾

𝑘=1 [log (𝜆𝑘) + log (𝒩 (z𝑛|�𝑘, �𝑘))] (A4)

Given the above, the EM algorithm proceeds as follows (Biarnes, 2020;
Bonakdarpour, 2016; Pedregosa et al., 2011):

1. Initialize the parameter vector � = [�, �, �] to a set of random values.
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2. Expectation (E) step: Assign component labels to each sample using �.
In other words, compute the posterior probability of sample z𝑛 belong-
ing to each component. It is equal to the ratio between the component
probability and the sum of all component probabilities:

𝑃 (𝐿𝑛 = 𝑘|z𝑛) = 𝑃(z𝑛|𝐿𝑛=𝑘)𝑃(𝐿𝑛=𝑘)
𝑃(z𝑛) = 𝜆𝑘𝒩(z𝑛|�𝑘,�𝑘)

∑𝐾
𝑘=1 𝜆𝑘𝒩(z𝑛|�𝑘,�𝑘) (A5)

where 𝐿𝑛 denotes the component label. Moreover, compute the log-
likelihood log (𝑃 (𝑍|𝜃)) based on Equation (A1).

1. Maximization (M) step: Update the parameters 𝜃 using the just computed
posterior probability 𝑃 (𝐿𝑛 = 𝑘|z𝑛) so that the log-likelihood can be max-
imized. Many parameter update approaches exist in the literature, the
approach used in this study is:

�̂�𝑘 = 1
𝑁 ∑𝑁

𝑛=1 𝑃 (𝐿𝑛 = 𝑘|z𝑛) • 𝜆𝑘 (A6)

̂�𝑘 = 1
𝑁 ∑𝑁

𝑛=1 𝑃 (𝐿𝑛 = 𝑘|z𝑛) • z𝑛 (A7)

̂�𝑘 = √ 1
𝑁 ∑𝑁

𝑛=1 𝑃 (𝐿𝑛 = 𝑘|z𝑛) • (z𝑛sub
− ̂�𝑘)2 (A8)

1. Iterate steps 2 and 3 until the log-likelihood converges.

Appendix A2. GMM inference results of the Type C func-
tion
When using VISCOUS to calculate the total-order sensitivity index of
𝑥1, ten variables (𝑥2, … , 𝑥10, 𝑦) are included in the GMM inference.
For the Type C function, the Gaussian mean and covariance estimates
of one experiment are shown in Figure A1. In this experiment, a
seven-component GMM is constructed. The component weights are
� = [0.13, 0.23, 0.18, 0.04, 0.09, 0.23, 0.10]. The Gaussian means and
covariances are almost the same among the 2nd, 3rd, and 6th components.
Therefore, the three components are not well separated and cause the failure of
the GMM inference.
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Figure A1. Posterior mean and covariance estimates of seven Gaussian compo-
nents for the Type C function.
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