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Abstract

We conduct a series of eight 45-day experiments with a global storm-resolving model (GSRM) to test the sensitivity of relative

humidity R in the tropics to changes in model resolution and parameterizations. These changes include changes in horizontal and

vertical grid spacing as well as in the parameterizations of microphysics and turbulence, and are chosen to capture currently

existing differences among GSRMs. To link the R distribution in the tropical free troposphere with processes in the deep

convective regions, we adopt a trajectory-based assessment of the last-saturation paradigm. The perturbations we apply to the

model result in tropical mean R changes ranging from 0.5% to 8% (absolute) in the mid troposphere. The generated R spread

is similar to that in a multi-model ensemble of GSRMs and smaller than the spread across conventional general circulation

models, supporting that an explicit representation of deep convection reduces the uncertainty in tropical R. The largest R

changes result from changes in parameterizations, suggesting that model physics represent a major source of humidity spread

across GSRMs. The R in the moist tropical regions is disproportionately sensitive to vertical mixing processes within the

tropics, which impact R through their effect on the last-saturation temperature rather than their effect on the evolution of

the humidity since last-saturation. In our analysis the R of the dry tropical regions strongly depends on the exchange with

the extra-tropics. The interaction between tropics and extratropics could change with warming and presage changes in the

radiatively sensitive dry regions.
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Key Points:11

• Sensitivity experiments suggest that parameterizations are the major source of rel-12

ative humidity spread across global storm-resolving models13
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fecting last-saturation statistics within the tropics15

• The humidity of the dry tropics is disproportionately sensitive to changes in the16

pathways of exchange with the extra-tropics17
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Abstract18

We conduct a series of eight 45-day experiments with a global storm-resolving model (GSRM)19

to test the sensitivity of relative humidity R in the tropics to changes in model resolu-20

tion and parameterizations. These changes include changes in horizontal and vertical grid21

spacing as well as in the parameterizations of microphysics and turbulence, and are cho-22

sen to capture currently existing differences among GSRMs. To link the R distribution23

in the tropical free troposphere with processes in the deep convective regions, we adopt24

a trajectory-based assessment of the last-saturation paradigm. The perturbations we ap-25

ply to the model result in tropical mean R changes ranging from 0.5% to 8% (absolute)26

in the mid troposphere. The generated R spread is similar to that in a multi-model en-27

semble of GSRMs and smaller than the spread across conventional general circulation28

models, supporting that an explicit representation of deep convection reduces the un-29

certainty in tropical R. The largest R changes result from changes in parameterizations,30

suggesting that model physics represent a major source of humidity spread across GSRMs.31

The R in the moist tropical regions is disproportionately sensitive to vertical mixing pro-32

cesses within the tropics, which impact R through their effect on the last-saturation tem-33

perature rather than their effect on the evolution of the humidity since last-saturation.34

In our analysis the R of the dry tropical regions strongly depends on the exchange with35

the extra-tropics. The interaction between tropics and extratropics could change with36

warming and presage changes in the radiatively sensitive dry regions.37

Plain Language Summary38

Water vapor is the most important greenhouse gas in the atmosphere. Therefore,39

for the prediction of future warming it is important that climate models capture the dis-40

tribution of atmospheric humidity and its change under warming. However, climate mod-41

els currently strongly disagree in their representation of humidity, causing uncertainty42

in climate predictions. A recent study has shown that, while there is better agreement43

among the newest generation of climate models, so called global storm-resolving mod-44

els, the remaining inter-model differences are still relevant and therefore need to be bet-45

ter understood. To narrow down the causes of these differences, in this study we exam-46

ine how much the humidity in a storm-resolving model changes in response to changes47

in different model components, which are chosen to reflect the differences that currently48

exist between models. We find the largest humidity changes in response to changes in49

the model’s representation of sub-grid scale processes. In storm-resolving models these50

are turbulent motions and cloud microphysics. Our results suggest that differences in51

the representation of these processes cause a major part of the humidity differences be-52

tween storm-resolving models.53

1 Introduction54

The aim of this study is to better understand sources of uncertainties in modelling55

processes that drive the distribution of tropical free-tropospheric relative humidity. There-56

fore, we examine how much and through which physical mechanisms the relative humid-57

ity in a global storm-resolving model (GSRM) – the newest generation of climate mod-58

els with high horizontal resolution and explicit simulation of convection – is affected by59

changes in model resolution and paramtererizations.60

61

Free-tropospheric relative humidity plays an important role in determining Earth’s62

climate sensitivity. The combined effect of the water vapor and lapse rate feedbacks –63

the two most important feedbacks acting under clear-sky conditions – largely depends64

on how relative humidity responds to warming (Held & Shell, 2012). While to first or-65

der relative humidity is expected to stay constant under warming (Held & Soden, 2000),66

even small deviations from this constancy significantly impact the clear-sky feedback by67
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altering the cancellation between water vapor and lapse rate feedbacks in the saturated68

parts of the emission spectrum (Bony et al., 2006). In line with that, model differences69

in the relative humidity response control the prevailing spread in clear-sky feedback across70

general circulation models (GCMs; Vial et al., 2013). Since the relative humidity change71

simulated by GCMs is described by an upward shift following the rising isotherms, dif-72

ferences in the models’ relative humidity response are closely related to differences in their73

climatology (Po-Chedley et al., 2019). Even if relative humidity does not change with74

warming, its present-day value might affect the clear-sky feedback. While no systematic75

relationship between present-day state and feedbacks has been found for GCMs (John76

& Soden, 2007), 1D radiative convective equilibrium (RCE) studies suggest that partic-77

ularly at high surface temperatures characteristic of the tropics, the closing of the spec-78

tral window results in a strong dependence of the clear-sky feedback on relative humid-79

ity (Kluft et al., 2019; Bourdin et al., 2021; McKim et al., 2021). Thus, to develop a more80

fundamental understanding of climate and climate change, we will need to understand81

what sets the distribution of relative humidity, how it might change, and why it differs82

across models.83

84

The sources of the relative humidity spread across models are poorly understood.85

One reason for this is the number of processes that affect humidity, many of which are86

poorly constrained in GCMs. In particular deep convection, the process accounting for87

most of the vertical transport of water vapour in the tropical atmosphere, is not resolved88

in these models and needs to be parameterized. An important step has been made with89

the development of global storm-resolving models (GSRMs; Satoh et al., 2019). With90

grid spacings of a few kilometers, these models simulate deep convection explicitly and91

thereby forego the need for convective parameterizations. At present, due to the high92

computational effort, storm-resolving simulations are limited to time scales of days to93

months. A first intercomparison of GSRMs, the DYnamics of the Atmospheric general94

circulation Modeled On Non-hydrostatic Domains (DYAMOND; Stevens et al., 2019)95

project, indicates that the inter-model spread in tropical free-tropospheric humidity is96

indeed reduced compared to GCMs (Lang et al., 2021). While this is a promising result97

and highlights the benefit of even approximately resolving deep convection, the study98

also showed that the remaining differences in relative humidity are still an important source99

of uncertainty for the clear-sky outgoing longwave radiation (OLR).100

101

In this study, we attempt to understand the reasons behind the remaining relative102

humidity differences. To this end, we examine how the tropical humidity simulated by103

a GSRM changes in response to modifications in model resolution and model physics.104

These modifications are chosen to resemble currently existing differences across GSRMs.105

A large ensemble of back-trajectories started from the tropical mid troposphere allows106

us to examine the history of the air parcels arriving in these regions and hence the phys-107

ical mechanisms behind humidity changes in the experiments.108

109

To examine these mechanisms we make use of the last-saturation or advection-condensation110

paradigm (Sherwood, 1996; Sherwood et al., 2010), which represents the simplest model111

of what determines the distribution of free-tropospheric humidity. Assuming that wa-112

ter vapor behaves as a conservative tracer for which condensation is a permanent sink113

term, the water vapor content of an air parcel is determined by its temperature at the114

instant at which condensation last occurred. Inside a cloud, an air parcel’s specific hu-115

midity is at saturation. As the parcel rises, it looses water vapor by condensation. Out-116

side the cloud, the air parcel subsides and warms adiabatically, while maintaining the117

specific humidity it had when it was last saturated, so its relative humidity decreases.118

The regions where last-condensation events typically occur are often referred to as the119

“source regions” or “origins” of free-tropospheric air. The source regions of tropical free-120
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tropospheric air are mainly located in the tropical deep convective regions, but a signif-121

icant part of the air in the dry subtropical subsidence regions also originates from the122

extra-tropics (e.g. Cau et al., 2007; Roca et al., 2012; Aemisegger et al., 2021). Accord-123

ing to the last-saturation model, the relative humidity in a given target region only de-124

pends on the properties – mainly the temperature – of the source region and the target125

region.126

127

Numerical implementations of the last-saturation model, which used large-scale wind128

and temperature fields from meteorological analyses to calculate Lagrangian back-trajectories,129

have been successful in reproducing the observed free-tropospheric relative humidity dis-130

tribution (e.g. Sherwood, 1996; Pierrehumbert & Roca, 1998; Dessler & Sherwood, 2000).131

This has lead to the conclusion that the relative humidity distribution is determined by132

circulation and temperature structure, while any moisture sources or sinks changing the133

specific humidity of an air parcel after the last-saturation event are of minor importance.134

These sources and sinks include evaporation of cloud condensate or from precipitation,135

as well as mixing due to motions on scales not resolved in the wind field used for the tra-136

jectory calculation. This is not to say that these processes are unimportant, rather to137

say that to the extent they are important, it is through their indirect influence on the138

atmospheric circulation and the temperature structure, which ultimately determine the139

location of last-saturation events.140

141

While the moisture sources and sinks after last-saturation appear to play a secondary142

role in determining spatial variations of relative humidity in the real atmosphere or a given143

model, it is less clear whether they might be important when it comes to explaining the144

more subtle humidity differences between models, particularly when different parame-145

terizations for the processes causing the sources and sinks, i.e. microphysics and turbu-146

lence, are used. To test this, we calculate back-trajectories to perform two types of La-147

grangian relative humidity reconstructions for our model experiments. The first one is148

an implementation of the last-saturation model and therefore only takes into account the149

properties of air parcels in the source and target regions. The second one additionally150

accounts for parameterized moisture sources and sinks during the advection of air parcels151

to the target region. Comparing the two types of reconstructions allows us to quantify152

the importance of changes in moisture sources and sinks in causing the relative humid-153

ity changes in our sensitivity experiments. To our knowledge, the last-saturation model154

has neither been used to understand differences between models, nor has it been imple-155

mented based on wind fields of simulations at storm-resolving resolution. This study there-156

fore also represents a test of how useful the last-saturation model is in explaining dif-157

ferences between models as they begin to resolve the spectrum of vertical motions in the158

atmosphere.159

160

This paper is organized as follows: Section 2 describes the model setup and the sen-161

sitivity experiments performed. In Section 3 the humidity changes produced in our sen-162

sitivity experiments are shown and discussed. The Lagrangian relative humidity recon-163

structions based on back-trajectories are introduced in Section 4. Section 5 presents in-164

sights on the mechanisms behind the humidity changes from the last-saturation model.165

2 Model and experiments166

To examine how changes in model parameterizations and model resolution affect167

tropical relative humidity in a GSRM, we run a series of sensitivity experiments with the168

ICOsahedral Nonhydrostatic model (ICON; Zängl et al., 2015) in its storm-resolving “Sap-169

phire” configuration (Hohenegger et al., 2022) with prescribed sea surface temperature170

(SST).171
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2.1 Control experiment172

The control experiment is run with a quasi-uniform horizontal grid spacing of 5 km.173

For the analysis, the model output is interpolated from the native icosahedral ICON grid174

to a regular 0.1◦×0.1◦ latitude-longitude grid. The vertical grid consists of 110 hybrid175

sigma height levels between the surface and a height of 75 km. Over a flat surface at sea176

level, the distance between model levels in the free troposphere (between about 8 km to177

19 km) is constant at 400m, gradually decreasing towards the surface and increasing to-178

wards the model top. The model time step is 40 seconds. For the treatment of micro-179

physical processes, a one-moment scheme with five hydrometeor categories as described180

by Baldauf et al. (2011) is used. Turbulent mixing is represented by a classical 3D Smagorinksy181

scheme (Smagorinsky, 1963) with the modification by Lilly (1962) to account for ther-182

mal stratification (Dipankar et al., 2015). Radiative transfer is calculated at every grid183

point every 15 minutes using the RTE-RRTMGP scheme (Pincus et al., 2019). The JS-184

BACH land model (Raddatz et al., 2007) is used to represent the physical properties of185

the land surface and land-atmosphere interactions.186

187

The experimental protocol of our experiments closely follows that specified by the188

DYAMOND inter-model comparison (Stevens et al., 2019), with initial conditions taken189

from the global (9km) analysis by the European Centre of Medium Range Weather Fore-190

cast (ECMWF). After initialization, the simulations run freely without further forcing.191

ECMWF operational daily SST and sea-ice concentration are used as boundary condi-192

tions. The simulations start at 0 UTC on 27 June 2021 and span a time period of 45 days.193

194

To test the extent to which humidity differences in our 45-day simulations might195

reflect sampling error, we perform a second control experiment (Control 2) with perturbed196

initial conditions. While the boundary conditions are kept identical to those in the con-197

trol run, the atmosphere is initialised from the ECMWF analysis for 0 UTC on 28 June198

2021, i.e. one day later than in the control experiment.199

200

2.2 Sensitivity experiments201

The changes we apply in our sensitivity experiments are chosen to resemble differ-202

ences in model configuration across the DYAMOND models (Stevens et al., 2019), which203

reflect current differences in modeling approaches between modeling groups. The DYA-204

MOND models differ in various aspects of their configuration. On the one hand, they205

differ in the design of their dynamical core. While (with the exception of two models)206

they agree on the equations they solve (fully-compressible Navier-Stokes equations), they207

differ in their numerical grids and the numerical methods they use to solve the equations.208

This not only influences their “effective” resolution, but also conditions the behavior of209

the parameterizations which act on the grid scale. On the other hand, the models dif-210

fer in the parameterizations they use to represent the effects of subgrid-scale processes.211

For the sensitivity experiments we have to concentrate on a subset of these differences212

that can be tested with the ICON model. We attempt to cover the different types of un-213

certainties by examining the sensitivity of relative humidity to the model resolution as214

well as two different parameterizations. Our sensitivity experiments are described in the215

following and summarized in Table 1.216

217

Even if at 5 km most of the energy in the spectrum of vertical motions is resolved,218

the updrafts of most deep convective systems remain poorly resolved or aliased to larger219

scales. To test the extent to which relative humidity is affected by changes in model res-220

olution we perform three experiments. In the ∆x/2 experiment the horizontal grid spac-221

ing is halved relative to the control experiment to 2.5 km. For the 2∆z and ∆z/2 exper-222
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iments the number of vertical levels is decreased to 55 and increased to 190, respectively.223

This results in a doubling and halving of the vertical grid spacing in the free troposphere224

relative to the control experiment to 800 m and 200 m, respectively. Note that by GSRM225

standards (if not by GCM standards) a vertical grid spacing of 800 m is exceptionally226

coarse and was not employed in any of the DYAMOND models.227

228

In three further experiments we test the sensitivity of relative humidity to changes229

in the parameterizations of turbulence and microphysics. These parameterizations con-230

tain a large number of tunable parameters and we do not attempt to systematically test231

the sensitivity to all of them. Instead we focus on contrasting models, which we see as232

a more extreme case than parameter sensitivities, although in one case we also explore233

a common parameter sensitivity.234

235

Storm-resolving models typically use turbulence paramterizations that are not well236

adapted to global simulations at kilometer-scales. On the one hand, regional storm-resolving237

models have often used turbulence closures designed for LES simulations (like the Smagorinsky-238

Lilly scheme used in our control simulation), although the underlying assumption that239

the truncation scale lies within the inertial range of three-dimensional homogeneous and240

isotropic turbulence (Lilly, 1967) is not satisfied at storm-resolving scales (e.g. Bryan241

et al., 2003). On the other hand, many of the global DYAMOND models employed tur-242

bulence schemes that were inherited from their coarser-resolution predecessors. Similarly,243

the storm-resolving version of the ICON model was run with a total turbulent energy244

(TTE) scheme (Mauritsen et al., 2007) that was originally used at much coarser reso-245

lutions in the early stages of its development (Mauritsen et al., 2022). To examine the246

impact of different turbulence parameterizations on relative humidity, we exchange the247

Smagorinsky scheme used in the control simulation with this TTE scheme. The two schemes248

differ in several aspects. The Smagorinsky scheme calculates both vertical and horizon-249

tal mixing of momentum and scalar variables (although we find that horizontal mixing250

tendencies of specific humidity are negligible compared to vertical mixing tendencies at251

5 km horizontal resolution, see also Section 4.4). The exchange coefficients are specified252

using a mixing length scale that depends on height and the model grid spacing, the 3D253

wind shear and static stability. The TTE scheme, on the other hand, only represents ver-254

tical mixing. The turbulent exchange coefficients are specified using a height-dependent255

mixing length scale and a velocity scale. The latter is determined from a prognostic equa-256

tion for TTE that takes into account shear production, dissipation, third-order flux di-257

vergence and buoyancy production, which allows for mixing in more stably stratified sit-258

uations than in the ICON implementation of the Smagorinsky-Lilly model.259

260

To test the sensitivity of relative humidity to the microphysics parameterization,261

in the 2-mom experiment we exchange the one-moment scheme with the two-moment262

scheme by Seifert and Beheng (2001). While the DYAMOND models all use one-moment263

schemes, this mainly reflects the consensus that the scheme should be computationally264

efficient. The degree of complexity required in the cloud microphysics is an open ques-265

tion, and more complex two-moment schemes have also been proposed for storm-resolving266

simulations (e.g. Morrison et al., 2005; Phillips et al., 2007). The one-moment and two-267

moment microphysics implemented in ICON differ in many of their parameters, so changes268

emerging in the 2-mom experiment do not only result from the fact that two moments269

instead of one moment of the particle size distributions are predicted.270

271

In an additional microphysics experiment, the 2vice experiment, we perturb the one-
moment microphysics by increasing the terminal fall speed of ice particles vice, which rep-
resents a common tuning parameter. In the one-moment scheme it is parameterized as
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Table 1. Summary of simulations performed with the ICON model.

Name Description

Control Control simulation with 5 km horizontal grid spacing, 110 vertical lev-
els (400 m grid spacing in the free troposphere), three-dimensional
Smagorinsky turbulence and one-moment microphysics

Control 2 As Control, but with perturbed initial conditions to estimate internal
variability

∆x/2 Horizontal grid spacing halved to 2.5 km
2∆z Number of vertical levels reduced to 55 (800 m grid spacing in the free

troposphere)
∆z/2 Number of vertical levels increased to 190 (200 m grid spacing in the

free troposphere)
TTE Turbulence scheme exchanged by a one-dimensional total turbulent

energy (TTE) scheme
2-mom Microphysics scheme exchanged by a two-moment scheme
2vice Increased (approximately doubled) fall speed of ice particles in the

one-moment microphysics

a function of ice mass mixing ratio qice and air density ρ:

vice = a(ρqice)
b(ρ0/ρ)c (1)

with ρ0 = 1.225 kg m−2 is the air density at surface conditions. The parameters a, b and272

c are set to 1.25, 0.16 and 0.33, respectively. For our sensitivity experiment we increase273

a to 3.29, which corresponds to the value originally proposed by Heymsfield and Don-274

ner (1990), and c to 0.4, thereby moving it closer to the value of 0.5 used in the two-moment275

scheme of ICON. Combined, these changes approximately double the fall speed of ice276

particles for a given qi and ρ.277

278

3 Sensitivity of relative humidity to changes in model resolution and279

parameterizations280

Figure 1 shows how the tropical mean vertical profile of relative humidity changes
in our sensitivity experiments. Here, relative humidity R is calculated as

R =
q

q∗(T, p)
(2)

with the specific humidity q and the saturation specific humidity q∗ =
Mw
Md

e∗(T )

p−(1−Mw
Md

)e∗(T )
,281

where e∗ is the saturation water vapor pressure at temperature T , p is the pressure and282

Mw and Md are the molar masses of water vapor and dry air, respectively. For e∗ we take283

the value with respect to water for T above the triple point of water Tt and the value284

with respect to ice for T below Tt−23 K. For intermediate T a combination of both is285

used following the documentation of the Integrated Forecast System (ECMWF, 2018).286

Note that a more common definition of relative humidity uses saturation water vapor287

pressure instead of specific humidity. We use equation 2 to make the definition of R con-288

sistent with the one we use for the Lagrangian reconstructions in Section 4. This def-289

inition is typically used in last-saturation studies (e.g. Sherwood et al., 2010) since spe-290

cific humidity is the conserved quantity after last-saturation. Numerically, the difference291

between the two definitions is typically within 1%.292

293
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First it is worth noting that the R spread produced by our experiments is similar294

to the inter-model spread in the DYAMOND ensemble (Figure 1c). Based on the DYA-295

MOND ensemble, Lang et al. (2021) showed that the R spread across GSRMs is reduced296

compared to classical GCMs. This is possibly related to the omission of convective pa-297

rameterisations, which represent a major source of uncertainty in GCMs. Our experi-298

ments support this by showing that even strong perturbations in GSRMs do not repro-299

duce the spread across models with convective parameterizations.300

301

Of the experiments with changed model resolution the largest changes in R are seen302

in the 2∆z experiment with reduced vertical resolution (Figure 1a,b). R increases par-303

ticularly in the upper troposphere, where the difference to the control experiment ex-304

ceeds 10%. In line with this, increasing the vertical resolution (∆z/2) reduces R in the305

upper troposphere. However, the magnitude of the drying is much smaller than the moist-306

ening in the 2∆z experiment, so the R profile shows signs of convergence at vertical res-307

olutions around the one used in the control experiment. Increasing the horizontal res-308

olution (∆x/2) also only leads to a minor increase of R in the lower and mid troposphere.309

Given that the 2∆z experiment represents a rather extreme case, in the sense that GSRMs310

are not commonly run at such coarse vertical resolution, these results suggest that chang-311

ing model resolution within the general scale of GSRM resolution does not represent a312

major uncertainty for R, unless it is chosen exceptionally coarse. Note that this does not313

exclude the possibility that increasing resolution to even finer scales (on the order of 200 m)314

could make a significant difference, which cannot be tested with the chosen setup and315

available computational resources.316

317

Comparably large R changes occur in the TTE and 2-mom experiments, in which318

the parameterizations of turbulence and microphysics were changed. The largest changes319

occur in the lower and mid troposphere, where they have a larger impact on the clear-320

sky OLR than those in the upper troposphere (Lang et al., 2021). Changing to the TTE321

turbulence scheme results in a strong increase in R of up to 8% over a broad altitude322

layer between 2 km to 6 km. This change will be examined in more detail in the follow-323

ing sections as part of our last-saturation analysis of the mid troposphere. Changing to324

the 2-mom microphysics scheme leads to a strong (up to 10%) decrease in R that is con-325

centrated in a rather shallow layer between 1 km and 3 km in the lower free troposphere.326

Dividing the tropics into different moisture regimes also shows that this drying is con-327

centrated in the dry subsidence regimes of the tropics, where shallow clouds prevail (not328

shown). This might indicate that the details in the formulation of the microphysics mat-329

ter particularly in the shallow cloud regime, where humidity is not as strongly constrained330

by the dynamics as in deep convective regimes. Increasing the fall speed of ice particles331

in the 1-mom scheme (2vice) has a smaller effect on R than changing to the two-moment332

scheme. R slightly decreases in the mid to upper troposphere, whereas lower-tropospheric333

R is hardly affected. This may be expected, since ice particles mainly exist at higher al-334

titudes with temperatures below the melting point (located at a height of about 5 km335

in our experiments). Changing between one- and two-moment microphysics, on the other336

hand, potentially affects the characteristics of all types of hydrometeors.337

338

R changes in most sensitivity experiments are larger than the difference between339

the two control experiments (Control and Control 2) which serves as an estimate of in-340

ternal variability. Exceptions are the very subtle changes in the 2vice and ∆z/2 exper-341

iments in the lower free troposphere and in the ∆x/2 experiment in the upper troposphere.342

We conclude that the differences we find in tropical mean R mostly represent system-343

atic differences resulting from the applied perturbations rather than internal variabil-344

ity.345

346
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Temperature profiles differ substantially between the experiments (Figure 1d). Tem-347

perature differences that exist in the lower troposphere intensify with increasing height,348

as is to be expected from temperature profiles following moist adiabats to first order. Warmest349

and coldest temperatures are produced by the TTE and 2vice experiments, respectively.350

The 2-mom experiment stands out due to a positive temperature anomaly that is lim-351

ited to the region between 1 km to 3 km, where the largest negative R anomaly is found.352

This points to a shallower trade inversion in the 2-mom experiment. This could be in-353

dicative of an earlier onset of precipitation in the 2-mom experiment, resulting in clouds354

growing less deep (Stevens & Seifert, 2008).355

356

Based on a simple analytical model Romps (2014) showed that in radiative-convective357

equilibrium R should be an invariant function of temperature as the atmosphere warms.358

An obvious question is therefore if the changes in our sensitivity experiments are explained359

by an upward or downward shift of the R profile following an increase or decrease in tem-360

perature, respectively. This would mean that in experiments with a warmer troposphere361

R should increase in the lower and mid troposphere, where R decreases with height, and362

R should decrease in the upper troposphere, where R increases with height. While the363

TTE and 2-mom runs show a corresponding pattern in their R changes, the tempera-364

ture differences between the experiments is by far not large enough to explain the R dif-365

ferences. This is evident when R is plotted as a function of temperature (not shown).366

We therefore conclude that the differences in R are not explained by a vertical shift fol-367

lowing isotherms.368

369

In summary, our experiments suggest that a large part of the R spread across to-370

day’s GSRMs is can be explained by different formulations of small-scale mixing and cloud371

microphysical processes. At least in the limited number of experiments we performed,372

microphysical choices particularly impact R in a rather narrow altitude region associ-373

ated with shallow convection, whereas the choice of the turbulence scheme affects R in374

a broader mid-tropospheric layer.375

376

In the following we focus on R differences in the mid troposphere (4 km to 8 km,377

indicated by the gray lines in Figure 1). Although mid-tropospheric R differences are,378

similar as in the DYAMOND ensemble, not particularly large, Lang et al. (2021) showed379

that R differences in this region are particularly important for differences in OLR.380

381

4 Lagrangian reconstructions of relative humidity382

4.1 Reconstructions based on the last-saturation model383

To obtain a better understanding of the physical mechanisms behind the humid-384

ity changes produced in our experiments we use a last-saturation framework based on385

back-trajectories. For this analysis we focus on the altitude region between 4 km and 8 km,386

where R differences in the DYAMOND ensemble were shown to have a comparably large387

effect on the clear-sky radiation budget (Lang et al., 2021). A main goal is to understand388

to what extent the changes in R are explained by changes in the properties of the source389

regions of air parcels, i.e. the points of last-saturation/condensation, and by changes in390

moisture sources and sinks during subsequent advection.391

392

To investigate this we perform Lagrangian reconstructions of R for the ICON ex-
periments described in Section 2. The reconstruction for each experiment is performed
in two different ways. The first one is an implementation of the last-saturation paradigm
similar to earlier studies (e.g. Sherwood, 1996; Dessler & Sherwood, 2000; Pierrehum-
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Figure 1. Changes in tropical mean relative humidity (R) and temperature (T ) resulting

from changes in model resolution and parameterizations in the sensitivity experiments. (a) Verti-

cal profiles of R in control and sensitivity experiments, (b) change in R compared to the control

experiment and (c) standard deviation of R across ICON experiments (solid) and the DYA-

MOND multi-model ensemble (dashed). (d) Change in temperature T compared to the control

experiment. Horizontal dashed lines mark the altitude region between 4 km and 8 km, for which

the mechanisms behind the R changes are investigated based on back-trajectories.

bert & Roca, 1998), although the latter were based on much coarser wind fields from GCMs
or reanalysis data. The underlying assumption is that specific humidity q is conserved
after the last-condensation event. Hence, the specific humidity at a given target point
qt equals the specific humidity the respective parcel had when it last experienced con-
densation qlc. R at the target point is then equal to

Rlc =
qlc
q∗t
, (3)

where q∗t denotes the saturation specific humidity at the target point. qlc should gener-
ally equal its saturation value q∗ls (though supersaturation can occur with respect to ice),
so that Equation 3 can be written as

Rlc ≈
q∗ls
q∗t

=
e∗(Tlc)

e∗(Tt)

pt
plc
, (4)

where e∗ is the saturation water vapour pressure, Tlc and Tt are the temperatures of the393

last-condensation point and the target point, respectively, and plc and pt are the corre-394

sponding air pressures. Thus, if the last-saturation reconstruction captures the humid-395

ity changes in the ICON experiments, this means that they are explained by tempera-396

ture and pressure changes between the source and target regions.397

398

For the reconstructions we use the actual qlc rather than q∗ls, i.e. Equation 3 rather399

than Equation 4, since R is not always exactly 100% at the instant of last-condensation400

(see Section 4.3). This slightly improves our reconstructions, but our main conclusions401

do not depend on whether or not qlc = q∗ls is assumed for the last-saturation events. The402

terms last-condensation and last-saturation are used interchangeably in the following.403

404

For the second reconstruction of R moisture sources and sinks s, which can change
a parcel’s water vapour content during its advection after the last-condensation event,
are added:

Rlc+s =
qlc + s

q∗t
. (5)
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s includes evaporation of hydrometeors that are transported with or sediment through405

an air parcel, as well as turbulent mixing. These processes are represented by the pa-406

rameterizations of microphysics and turbulence in the ICON model. As we will show in407

Section 4.6, the inclusion of these sources and sinks brings the reconstructed R closer408

to the ICON-simulated R (subsequently denoted by RICON).409

410

Using the reconstructions, the change in R between a sensitivity experiment and
the control experiment can be decomposed into three contributions:

∆RICON = ∆Rlc + ∆(Rlc+s −Rlc) + ∆r. (6)

The first term on the right hand side represents changes in source and/or target region411

pressure and temperature. The second term denotes the effect of changes in parameter-412

ized moisture sources and sinks acting during advection to the target region. The resid-413

ual r is the difference RICON−Rlc+s. It results from shortcomings in the reconstruc-414

tion method (Sections 4.2 to 4.6), but also from the fact that the Lagrangian reconstruc-415

tion does not include any numerical diffusion, as opposed to the Eulerian advection scheme416

in ICON. Hence, the ∆r term includes changes in numerical diffusion, which might be417

important in the experiments with changed model resolution but is not captured by the418

Lagrangian reconstruction.419

420

The methods used to determine the points of last-condensation and the moisture421

sources and sinks along back-trajectories are described in the following.422

4.2 Back-trajectories423

Back-trajectories are calculated offline using the ICON version of the trajectory424

tool LAGRANTO version 2.0 (Wernli & Davies, 1997; Sprenger & Wernli, 2015). An en-425

semble of 150,000 back-trajectories is released once per day at 12 UTC from randomly426

selected points in the tropics (30◦S to 30◦N) between 4 km and 8 km height. In the fol-427

lowing we will refer to this region as the target region.428

429

Comparing the R distribution of the 150,000 trajectory starting points to the one430

obtained from the full field showed that the sampling error is small compared to the R431

differences between the model experiments. By starting the trajectories at 12 UTC only,432

depending on longitude we sample at different local times and thus capture different phases433

of the diurnal cycle of free-tropospheric humidity. A comparison showed that when sam-434

pling at 0 UTC, the moistest tropical regions appear moister by about 2% than when435

sampling at 12 UTC. This is likely a signature of the diurnal cycle of global precipita-436

tion, which was highlighted by Stevens et al. (2019). The effect of the sampling on the437

humidity differences between two experiments is small because the effect of the diurnal438

cycle is similar in each experiment. As our main interest is in the differences between439

experiments we conclude that starting trajectories once per day is sufficient.440

441

Trajectories are integrated backwards in time for 15 days based on 1-hourly instan-442

taneous 3D model wind fields. Out of a total of 45 simulated days, due to the 15-day lead443

time for the back-trajectories and the omission of the first five simulated days due to model444

spinup, a 25-day period remains for the Lagrangian reconstructions.445

446

Given that the trajectory calculations are based on hourly model wind fields, and447

that the transport algorithms we use neither share the same numerical methods used by448

the ICON model nor are performed on the same grid, individual trajectories are not ac-449

curate, in the sense that they do not necessarily follow the exact paths they would fol-450
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low if they were calculated online during model integration (Miltenberger et al., 2013).451

However, from a large ensemble of back-trajectories it is possible to infer the statistical452

properties of the points of last condensation and subsequent moisture sources and sinks,453

as we will show in the following.454

455

4.3 Last-condensation events456

We define the point of last condensation to be the first point along a back-trajectory,457

for which the local moisture tendency from the microphysics parameterization (dq
dt )mic458

takes on a negative value, i.e. as the point at which condensation last occurred. We de-459

cided for this definition rather than using a threshold value on relative humidity, because460

the critical relative humidity for condensation in ICON can exceed 100% with respect461

to ice. As a result of the spatial interpolation of the model fields, both the interpolation462

from the native ICON grid to a latitude-longitude grid and the interpolation from the463

latitude-longitude grid onto the trajectory positions performed by LAGRANTO, there464

are points where (dq
dt )mic < 0 (and are therefore detected as condensation points), but465

the local relative humidity is significantly smaller than 100%. We therefore introduce the466

additional condition that the local relative humidity must be higher than 80%. If this467

condition is not met, the search for a last-condensation event is continued backwards along468

the trajectory.469

470

Last-condensation events identified by this method are subject to different uncer-471

tainties. Condensation events will be missed if they occur in between the 1-hourly model472

output time step, which our trajectories are calculated on. We expect this to introduce473

a dry bias in the reconstructed R, since on average the identified last-condensation events474

occur too far in the past and therefore at too cold temperatures, assuming that most air475

parcels undergo subsidence on their way to the target region. Furthermore, the last-condensation476

events we determine are restricted to the 15-day period covered by the back-trajectories,477

so events occurring further in the past are not detected. We do not find a last-condensation478

event within 15 days for 7% of the trajectories. This is expected to introduce a moist479

bias in the reconstructed R, assuming that the condensation events further back in time480

would occur at higher altitudes and therefore colder temperatures than the trajectory481

end points.482

483

4.4 Moisture sources and sinks from parameterized processes484

To estimate the magnitude of moisture sources and sinks S (Equation 5), along each
trajectory we sum up the local tendencies of q from the microphysics and turbulence pa-
rameterizations (dq

dt )mic and (dq
dt )turb, respectively, between the time of last condensation

tlc and the target point (t = 0):

s =

tlc∑
t=0

((
dq

dt
)mic,t + (

dq

dt
)turb,t)∆t, (7)

where ∆t = 1 h is the model output interval. The moisture tendency from the turbu-485

lence scheme (dq
dt )turb output by ICON only includes the contribution from vertical mix-486

ing, although the Smagorinsky turbulence scheme also performs horizontal mixing. In-487

cluding the contribution from horizontal mixing for one of the ICON experiments showed488

it to be negligible compared to the effect of vertical mixing.489

490
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4.5 Spatial averaging491

Figures 2a and 2b show the (randomly chosen) start positions of back-trajectories492

for an exemplary simulation time step on a map. Each dot corresponds to one start po-493

sition, colored by the ICON-simulated relative humidity (RICON) and reconstructed rel-494

ative humidity (Rlc+s), respectively, for the respective position. Target regions for which495

RICON takes on intermediate values show up as a mixture of very high and very low val-496

ues in Rlc+s. This is likely due to the fact that gradients and extremes in RICON are smoothed497

out due to the limited resolution of the ICON model. While each value of RICON in Fig-498

ure 2a represents a grid-cell average, values of Rlc+s in Figure 2b represent structures499

(or “filaments”) on smaller scales, which are not resolved on the ICON grid. To smooth500

the reconstructed fields the sampling would need to be improved by increasing the num-501

ber of trajectories per ICON grid cell and averaging over them. Another source of noise502

in the reconstructed R are inaccuracies in the trajectories, which result from the coarse503

(1-hourly) temporal resolution and spatial interpolation of the input data (see Section504

4.2). These inaccuracies can result in last-condensation points being spatially displaced505

from their true position.506

507

To minimize sampling biases and to make our analysis framework more commen-508

surate with the information content in the input data we coarsen our analysis region by509

averaging all results within boxes that span an area of 2◦×2◦ in the horizontal and the510

complete altitude range between 4 km and 8 km in the vertical. These boxes will be re-511

ferred to as target boxes in the following. We predict the horizontally and vertically av-512

eraged relative humidity in each target box as the mean of Rlc, respectively Rlc+s, of513

all back-trajectories released from within the box. As shown in Figure 2c and 2d, there514

is good agreement between the spatially averaged RICON and Rlc+s, though the recon-515

structed field is still a bit noisier.516

517

For some trajectories, the Lagrangian reconstruction yields extreme, unphysically518

high values of R. In these cases the last-condensation event occurred at higher temper-519

atures than that of the target point, so the air parcels have ascended after the last-condensation520

event. The ascent and associated cooling would not be possible without further conden-521

sation, which would keep the air parcel’s relative humidity at around 100%. However,522

due to the shortcomings in our method described in Sections 4.2 and 4.3, these further523

condensation events are missed and an extremely high value of R is predicted. We re-524

move these cases prior to the spatial averaging by discarding trajectories for which Rlc+s525

is more than 10% higher than the maximum of RICON, which is about 130% in the con-526

trol experiment. This is the case for 5% of all trajectories for which a last-condensation527

event was determined.528

529

4.6 Reconstructed relative humidity530

To evaluate the methods described above, we examine how well RICON is repro-531

duced by Equations 3 and 5 in our control experiment. The distribution of RICON is bi-532

modal with a prominent peak at values below 20% (Figure 3). Such a bimodal distri-533

bution is well known from observations (e.g. Zhang et al., 2003; Ryoo et al., 2009) and534

has been attributed to the rapid drying by radiative subsidence; after being moistened535

by upward transport, air parcels dry out rapidly and spend a short time at intermedi-536

ate humidity (Mapes, 2001).537

538

Both kinds of Lagrangian reconstructions reproduce the ICON-simulated RICON539

well (Figure 3). While the distribution of Rlc is shifted to lower values compared to RICON,540

the distribution of Rlc+s is closer to, but shifted to slightly higher values than RICON.541
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Figure 2. Illustration of spatial averaging performed to reduce noise in the reconstructed

relative humidity field for an exemplary time step (17 July 2021, 12Z). Scatterplots of (a) ICON-

simulated relative humidity (RICON) and (b) reconstructed relative humidity Rlc+s at the start

positions of back-trajectories. Spatially averaged (c) RICON and (d) Rlc+s over 2◦ × 2◦ boxes.

The improvement of the reconstruction by including moisture sources and sinks is en-542

couraging, as this would be expected if the approach was working as intended. The fact543

that the inclusion of moisture sources and sinks from the parameterizations increases the544

predicted relative humidity is not surprising. Per definition, microphysical processes can545

only increase an air parcel’s q after the point of last condensation. Turbulent mixing can546

generally either increase or decrease q. However, vertical mixing, which dominates along547

our trajectories (see Section 4.4), primarily moistens air parcels that subside through the548

free troposphere due to a down gradient moisture flux and the exponential decrease of549

q with height. Why Rlc+s tends to overestimate RICON is less clear and likely reflects550

uncertainties in our method and/or the fact that the Lagrangian reconstruction does not551

incorporate numerical diffusion. However, the aim of the Lagrangian reconstruction in552

this study is not to obtain a perfect reproduction of RICON, but rather to explain hu-553

midity differences between different ICON experiments. As we will show in Section 5.2,554

this is possible despite some small deviations of the Rlc+s distribution to the RICON dis-555

tribution.556

557
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Figure 3. ICON-simulated and reconstructed relative humidity distributions in the control

experiment. Probability density of tropical relative humidity simulated by the ICON model

(RICON, black) as well as from Lagrangian reconstructions based on the plain last-saturation

model (Rlc, red) and taking into account moisture sources and sinks from parameterized pro-

cesses (Rlc+s, blue). Histograms are based on 2◦ × 2◦ spatially averaged relative humidity (see

text for details).

4.7 R-space558

To distinguish between different tropical humidity regimes, we divide the target boxes559

and the corresponding back-trajectories into ten equal-sized bins of RICON. The driest560

bins in this ”R-space” correspond to the (sub-)tropical subsidence regions, whereas the561

moistest bins correspond to deep convective regions in the Intertropical Convergence Zone562

(ITCZ) and the Indo-Pacific Warm Pool. In our experiments, which are performed for563

a period in northern-hemisphere summer, the regions of highest R are centered around564

about 10° N and the driest regions are concentrated south of the equator, where the sub-565

siding branch of the strong cross-equatorial Hadley cell is located (Figure 4a). Regions566

of intermediate R are more widely distributed across the tropics, with a larger propor-567

tion located north of the equator.568

569

The back-trajectories demonstrate how the origins of air parcels differ between re-570

gions of low and high R. For the driest target regions south of the equator, last conden-571

sation occurs in two different regions remote from the target region: on the southern edge572

of the tropical deep convective regimes close to the equator, and in the sub- and extra-573

tropics (Figure 4b). Towards regions of higher R, the fraction of air parcels originating574

from within the tropics increases (Figure 4c). Air parcels arriving in the driest regimes575

have on average travelled for about one week since last condensation (Figure 4c), which576

is consistent with the time periods found by Cau et al. (2007) based on reanalysis fields.577

These air parcels have subsided from high altitudes, as evident from low last-condensation578

temperatures of about 220 K. The large difference between source and target temper-579

ature causes the extremely low target R of these parcels (Equation 4). In summary, re-580

gions of low R are characterized by source regions that are cold and remote. Towards581

regions of higher R, last-condensation events occur closer to the target regions and at582

temperatures more similar to that of the target region (Figure 4b,c). Air parcels arriv-583

ing in the moistest target regions have travelled for less than a day since last conden-584

sation.585

586

Figure 5a shows mean and standard deviation of the reconstructed Rlc and Rlc+s,587

respectively, plotted against mean RICON for each bin in R-space for the control exper-588
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iment. The spread in the reconstructed R in each bin is comparable to the difference in589

RICON between neighbouring bins, demonstrating that the Lagrangian reconstruction590

succeeds in predicting the R of a given target box. Again, it is evident that the plain591

last-saturation reconstruction underestimates R, particularly in moist regimes, while the592

reconstruction with moisture sources and sinks slightly overestimates R, particularly in593

dry regimes.594

595

The difference between Rlc+s and Rlc provides an estimate of the effect of param-596

eterized moisture sources on relative humidity. It increases from about 0.5% in the dri-597

est decile to about 6% in the moistest decile (Figure 5b). Although parcels that end up598

with low R also originate from moist regions, where microphysical processes and turbu-599

lent mixing are potentially active, they passed these regions at much colder temperatures600

(cf. Figure 4c), at which water vapor concentrations (and hence also sources) are small.601

Therefore, the effect from parameterized moisture sources on R increases from dry to602

moist regions when it is measured in absolute units. When the change in R from param-603

eterized sources is measured relative to the final (reconstructed) value of R it decreases604

from about 15% in the driest decile to about 5% in the moistest decile. This reflects that605

the probability to encounter moisture sources is enhanced for parcels that end up with606

low R, because they have been transported over a longer time since last condensation607

(cf. Figure 4c). In general, the difference between Rlc+s and Rlc is small compared to608

the range of R values occurring throughout the tropics. This is in line with many ear-609

lier studies, which concluded that moisture sources and sinks are not relevant for explain-610

ing spatial variations of tropical R (e.g. Sherwood, 1996; Dessler & Sherwood, 2000),611

corroborating the general validity of the last-saturation paradigm. Nevertheless, they might612

be relevant for explaining more subtle R differences between model experiments. This613

will be examined in the course of this study.614
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20 40 60 80 100
Percentile of ICON

60°S

40°S

20°S

0°

20°N

40°N

60°N

la
t

(a)
Target

20 40 60 80 100
Percentile of ICON

(b)
Last condensation

20 40 60 80 100
Percentile of ICON

220

230

240

250

260

270

T l
c /

 K

(c)

0

5

10

15

20

fre
qu

en
cy

 / 
%

0
1
2
3
4
5
6
7

t lc
 / 

d

0.5

0.6

0.7

0.8

0.9

1.0

f

Figure 4. Characteristics of target and source regions in the control experiment in R-space.

Histograms showing meridional distributions of (a) target regions and (b) last-condensation

points for ten decile-bins of RICON. (c) Bin-averages of last-condensation temperature (Tlc, black

solid) and time passed since last condensation (tlc, blue), as well as fraction of last-condensation

points located within the tropics, defined as 30° S to 30° N (f , gray). The temperature of the

target region is denoted by the black dashed line.

5 Mechanisms controlling mid-tropospheric relative humidity differ-616

ences617

5.1 Changes in mid-tropospheric relative humidity618

The representation of mid-tropospheric R differences in R-space (Figure 6a) shows619

that for most experiments changes in R are larger in moist than in dry regions. There-620

fore, differences in tropical mean R (Figure 1) mainly reflect differences in the moist re-621
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Figure 5. ICON-simulated and reconstructed relative humidity R for the control experiment

in R-space. (a) Reconstructed R (Rrec) versus ICON-simulated R (RICON) for ten decile-bins of

RICON. Points correspond to bin-mean values, the shading indicates ± one standard deviation of

Rrec. Colours distinguish reconstructions based on the plain last-saturation model (Rlc, red) and

taking into account moisture sources and sinks from parameterized processes (Rlc+s, blue). (b)

The difference Rlc+s−Rlc (∆Rs) in absolute units (black, left x-axis) and relative to Rlc+s (gray,

right x-axis).

gions. A similar behaviour was also found for mid-tropospheric humidity differences among622

the DYAMOND models (Lang et al., 2021). The robustness of R in dry regions is re-623

lated to their cold source temperatures, which will be discussed in more detail in Sec-624

tion 5.3.625

626

As already evident from the tropical mean R profiles, mid-trospheric R changes627

are largest in the experiment with the TTE turbulence scheme. The representation in628

R-space shows that R increases throughout the tropics, but the strongest increase (about629

10%) occurs in rather moist regimes around the 80th percentile of R. In comparison, the630

sensitivity of mid-tropospheric R to changes in the microphysics (2-mom and 2vice) is631

weaker and limited to regions of intermediate and high R. The experiment with halved632

vertical resolution (2∆z) is the only one in which changes in R are larger in dry than633

in moist regimes. The increase in mid-tropospheric R in the experiment with doubled634

horizontal resolution (∆x/2) is concentrated in moist regimes.635

636

Internal variability, which we estimate from the difference between the two control637

experiments, is larger in dry than in moist regions. This may be expected given that the638

source regions of dry air are remote (Figure 4) and therefore strongly influenced by the639

large-scale circulation, which varies on timescales that are longer than our simulation640
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period. While in the moist regions (and therefore also in the tropical mean) changes in641

R are larger than the estimated internal variability in all sensitivity experiments, in the642

dry regions this is only the case for the TTE and 2∆z experiments. Thus, the R differ-643

ences we find in dry regions are strongly coloured by internal variability and systematic644

differences could only be quantified based on longer experiments. This should be kept645

in mind for the discussions in the following.646

647
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Figure 6. ICON-simulated and reconstructed changes in mid-tropospheric R in the sen-

sitivity experiments displayed in R-space. (a) Changes in ICON-simulated R compared to

the control experiment (∆RICON). (b) Changes in R reconstructed by a plain last-saturation

model (∆Rlc) and (c) changes in the effect of moisture sources and sinks after last condensation

(∆(Rlc+s−Rlc)). (d) Changes in the residual (∆r), i.e. in the difference between ICON-simulated

and reconstructed R. The sum of the terms shown in (b) to (d) yields the ICON-simulated R
changes shown in (a). Lagrangian reconstructions were not performed for the ∆x/2 experiment

(see text for explanation).

5.2 Changes in source and target regions vs. changes during advection648

The two types of Lagrangian reconstructions (Equations 3 and 5) are used to shed649

light on the physical processes behind the R changes in the sensitivity experiments. The650

reconstructions were performed for all experiments except the ∆x/2 experiment for rea-651

sons of limited resources as the doubled horizontal resolution increases the model out-652

put by a factor of four. Additionally, to obtain the same accuracy of trajectories as for653

the control experiment the timestep for the trajectory calculation would need to be halved.654

In total, the required model output for the ∆x/2 experiment would increase by a fac-655

tor of 8 and the trajectory calculations would get correspondingly expensive.656

657

For most experiments the R differences that were reconstructed based on the plain658

last-saturation model (∆Rlc, Figure 6b) explain a large part of the actual differences (∆RICON,659

Figure 6a), whereas the effect from changes in parameterized processes given by ∆Rlc+s−660

∆Rlc is small (Figure 6c). This means that the R changes must be mainly caused by661

changes in the source and/or target temperature (see also Section 5.3), whereas changes662

in moisture sources and sinks that affect an air parcel’s water vapor content on its way663

to the target region are of minor importance. Most importantly, different from what one664

might expect, the strong mid-tropospheric moistening in the TTE experiment is not a665

direct consequence of enhanced vertical turbulent mixing that moistens air parcels as they666

are transported from source to target regions. Instead, it must be explained by changes667

in the properties of source and/or target regions themselves, which we will investigate668

further in later sections. Similarly, one might expect that the moistening in the 2∆z ex-669

periment with coarser vertical resolution results from enhanced numerical diffusion dur-670

ing vertical advection after last condensation. However, the moistening is at least partly671

reproduced by the Lagrangian reconstructions, which do not account for changes in nu-672
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merical diffusion after last condensation. Having said this, the reconstructions do not673

fully capture the strong moistening of dry regions, which is also evident from the pos-674

itive residual term (Figure 6d). Hence, a part of the moistening might well be explained675

by enhanced numerical diffusion on the pathway from the source to the target point.676

677

From the fact that the last-saturation model successfully reproduces the R changes678

between experiments, one could also conclude that they are caused by changes in the re-679

solved circulation and the temperature structure. This is true under the assumption that680

the location (and hence temperature) of last-condensation points only depends on the681

resolved circulation and temperature structure. However, as we will explain in Section682

5.5, this assumption does not always hold.683

684

There are exceptions, where changes in parameterized moisture sources and sinks685

after last condensation do play a role in changing R. As one would expect, this mainly686

concerns the experiments with changes in the parameterizations of turbulence and mi-687

crophysics. In the TTE experiment, turbulent moistening during advection is enhanced688

for dry and intermediate regimes and reduced for moist regimes. Overall, the contribu-689

tion from the changing moisture sources to the total R change is small. The (rather weak)690

drying of the mid troposphere in the 2-mom experiment is mainly due to a reduction in691

moisture sources (Figure 6c), while the plain last-saturation reconstruction predicts al-692

most no change (Figure 6b). Hence, the drying is caused by reduced evaporation of cloud693

condensate or precipitation. However, additional trajectory calculations showed that the694

stronger reduction in R in the layer between 1 km and 3 km in the 2-mom experiment695

(Figure 1) is to a large extent captured by the plain last-saturation model. The ratio of696

air parcels that have subsided from the free troposphere since last condensation to air697

parcels that have very recently experienced saturation during ascent increases in the 2-698

mom experiment, indicating that the microphysical perturbation also affects the resolved699

transport associated with shallow convection. This would be consistent with the micro-700

physics limiting the depth of shallow convection as mentioned in Section 3.701

702

The ∆r term includes any changes in RICON that are not explained by either of703

the two Lagrangian reconstructions (with or without moisture sources along the trajec-704

tory). As explained above, the positive ∆r in the 2∆z experiment might result from an705

increase in numerical diffusion, which is not captured by the Lagrangian reconstruction.706

However, there are also a positive, albeit smaller ∆r for the TTE, 2-mom and 2vice ex-707

periments, for which we do not expect changes in numerical diffusion.708

709

In summary, the R changes in our experiments are largely explained by the last-710

saturation model, and only slightly modulated by changes in moisture sources after last711

condensation. In the 2∆z experiment the part of the R change that cannot be explained712

by either of the two mechanisms is likely related to changes in numerical diffusion.713

714

5.3 Changes in source temperature vs. changes in target temperature715

The fact that R differences are largely explained by the last-saturation model leaves
changes in the saturation specific humidity in the source regions and in the target re-
gion as possible causes (Equation 4). With a linear expansion the relative humidity change
predicted by the last-saturation model can be approximated as follows:

∆Rlc ≈
Lv

Rv

Rlc

T 2
lc

∆Tlc −
Lv

Rv

Rlc

T 2
t

∆Tt = ∆Rs + ∆Rt, (8)
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where Rv is the gas constant of water vapor and Lv is the specific heat of vaporization716

of water. The first term ∆Rs corresponds to the change in Rlc due to changes in source717

temperature, the second term ∆Rt is the change in Rlc due to changes in target tem-718

perature. From Equation 4 there should be a third term representing changes in source719

pressure, which we found to be negligible compared to the temperature terms. Changes720

in target pressure do also not play a role since our target region is a fixed altitude re-721

gion in all experiments.722

723

∆Rs and ∆Rt are shown in Figure 7. Their sum is a good approximation of ∆Rlc724

(not shown). The two terms tend to have opposite signs, indicating that an increase in725

last-condensation temperature, which increases Rlc, is typically accompanied by an in-726

crease in the target temperature, which decreases Rlc. However, ∆Rs overcompensates727

∆Rt for all experiments. This is likely related to the fact that the source regions are gen-728

erally located above the target regions (Figure 4c) and temperature differences between729

experiments increase with height (Figure 1d).730

731

The overcompensation described above is also evident from the fact that changes732

in R (Figure 6a) follow a similar pattern as changes in last-condensation temperature733

∆Tlc (Figure 8a). The 2-mom experiment is an exception, because its R change is con-734

trolled by a change in parameterized moisture sources after last condensation (Section735

5.2). As noted already in Section 5.2, the magnitudes of R changes are damped towards736

dry regimes, although the magnitudes of ∆Tlc hardly change throughout R-space. This737

is because the absolute temperature of the source regions Tlc increases from dry to moist738

regimes (Figure 4c). Due to the non-linear dependence of e∗ on T the same temperature739

change results in a smaller change in e∗lc at lower temperatures than at higher temper-740

atures, and hence in a smaller change in R. Thus, the robustness of R in dry regions is741

a consequence of the low water vapor concentrations in the cold source regions.742

743
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Figure 7. Contributions from source and target temperature changes to changes in mid-

tropospheric R in the sensitivity experiments shown in R-space. (a) Contribution from change

in last-condensation temperature (∆Rs) and (b) contribution from change in target temperature

(∆Rt). The sum of two terms approximates the R changes that were reconstructed based on the

last-saturation model (Rlc in Figure 6b). Note the different in y-axis ranges in this figure and

Figure 6.
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5.4 Changes in tropical source regions vs. changes in extra-tropical source744

regions745

The source regions of tropical mid-tropospheric air lie both within the tropics (here746

defined as 30◦S to 30◦N) and in the extra-tropics (Figure 4). Hence, changes in Tlc could747

result from changes in tropical last-condensation temperatures Tlc,trop, extra-tropical last-748

condensation temperatures Tlc,extra or the share of tropical last-condensation points f :749

∆Tlc ≈ f∆Tlc,trop + (1− f)∆Tlc,extra + ∆f(Tlc,trop − Tlc,extra) (9)

In moist regimes, the changes in Tlc are dominated by changes in Tlc,trop (Figure750

8b), whereas in the driest 40 percentiles changes in Tlc,trop and Tlc,extra are commensu-751

rately important (Figure 8c). Note that the fraction of tropical last-condensation events752

f shapes the lines in Figure 8 b and c. While the absolute changes in Tlc are similar for753

tropics and extra-tropics (not shown), extra-tropical changes do not affect the moist re-754

gions because f is close to 1 there (Figure 4). Changes in f between experiments play755

a minor role in changing Tlc (Figure 8d).756

757

Internal variability (as measured by the Control 2 simulation) increases towards758

dry regions both for tropical and extra-tropical source regions (Figure 8b,c). For the extra-759

tropics, changes in most sensitivity experiments are similar in magnitude and go in the760

same direction as in the Control 2 experiment, which may indicate that the control cli-761

mate was an outlier with colder extra-tropical source temperatures. This explains why762

in the control experiment the driest regions have a lower R than in all the sensitivity ex-763

periments (Figure 6). Thus, to a large extent, changes in Tlc,extra in our sensitivity ex-764

periments can be explained by, or at least not differentiated from, internal variability.765

This variability is likely caused by changes in the dynamic mechanisms that bring air766

to saturation in the extratropics and transport it to the tropics. The fact that the rel-767

ative humidity of the dry regions is disproportionately affected by these changes empha-768

sizes the important role of the exchange between extra-tropics and tropics in controlling769

the humidity of the dry regions, which has been highlighted in several studies (e.g. Waugh,770

2005; Cau et al., 2007; Roca et al., 2012; Villiger et al., 2022). In particular, a change771

in these exchange mechanisms under warming represents a possible pathway for chang-772

ing the relative humidity of the dry regions.773

774

A change in Tlc,trop can generally result from a change in the tropical temperature775

profile and/or a change in the height distribution of last-condensation points. Additional776

analysis showed that both mechanisms are of similar importance in our experiments. De-777

pending on the experiment they either counteract or reinforce each other. In the TTE778

experiment, for example, tropical temperature increases (see Figure 1d) and last con-779

densation occurs at lower altitudes on average. Both effects increase Tlc,trop. In the 2vice780

experiment, on the other hand, the two effects counteract; tropical temperature decreases,781

but last-saturation takes place at lower altitudes on average. This explains why the R782

change in the 2vice experiment is relatively small despite the large temperature change783

(Figure 1).784

785

–21–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

20 40 60 80 100
Percentile of ICON

1

0

1

2

3

T l
c

Tlc

20 40 60 80 100
Percentile of ICON

f Tlc, trop

20 40 60 80 100
Percentile of ICON

(1 f) Tlc, extra

20 40 60 80 100
Percentile of ICON

f (Tlc, trop Tlc, extra)
Control 2
2 z

z/2
TTE
2-mom
2vice

Figure 8. Changes in last-condensation temperature Tlc in sensitivity experiments shown

in R-space. (a) Total change of Tlc compared to the control experiment, (b) contribution from

changes in tropical last-condensation temperatures Tlc,trop, (c) contribution from changes in

extra-tropical last-condensation temperatures Tlc,extratrop and (d) contribution from changes in f ,

the share of tropical last-condensation events.

5.5 Mechanisms behind the moistening in the TTE experiment786

Mid-tropospheric R increases most strongly in the experiment with the TTE tur-787

bulence parameterization. The analysis above has shown that this moistening is largely788

explained by an increase in the average temperature at last condensation. The full dis-789

tribution of tropical last-condensation temperature Tlc,trop for the control and the TTE790

experiment are shown in Figure 9. It is apparent that the distribution is bimodal in both791

experiments, implying that there are two distinct source regions for tropical mid-tropospheric792

air. The warm mode at around 265 K corresponds to “young” air parcels with high R793

that either experienced last condensation very recently and have since subsided over only794

a short distance or are even saturated at the time considered. The cold mode at around795

220 K represents “old” air parcels that have subsided from the upper troposphere, where796

deep convection detrains preferentially, and hence end up with a low R in the mid tro-797

posphere. In the TTE experiment the two modes stay at roughly the same temperature798

as in the control experiment, but the share of young air parcels increases at the expense799

of old air parcels. In line with that, snapshots of R and moisture tendencies from mi-800

crophysics reveal that condensation occurs over a broader area of the tropical mid tro-801

posphere at any given time in the TTE experiment (not shown).802

803

One possible explanation for the broadening of saturated mid-tropospheric regions804

would be that convective updrafts cover a larger area. However, a corresponding anal-805

ysis showed that this is not the case in the TTE experiment. The reason rather appears806

to be a strong turbulent mixing between lower and mid troposphere performed by the807

TTE scheme. Figure 10a shows vertical profiles of the specific humidity tendencies pro-808

duced by the turbulence scheme in the control and TTE experiments for an exemplary809

model output timestep. To distinguish between different tropical large-scale circulation810

regimes, profiles were averaged within five 20-percentile ranges of column-integrated wa-811

ter vapor. In the control experiment the Smagorinsky turbulence scheme only acts within812

the boundary layer throughout all circulation regimes; the air within the boundary layer813

is moistened by mixing water vapor upward from the surface. The TTE scheme behaves814

very differently. Most importantly, it performs a strong mixing between the lower and815

mid troposphere, particularly in the moist tropics, which manifests as a drying of the816

lower troposphere and a moistening of the mid troposphere. In other words, the TTE817

scheme unintentionally acts similar to a convective parameterization.818

819
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The mid-tropospheric moistening by turbulent mixing in the TTE experiment is820

accompanied by increased condensation, as evident from the specific humidity tenden-821

cies produced by the microphysics parameterization shown in Figure 10b. The strong822

vertical mixing creates a moist background that favours condensation whenever air is823

displaced upward, such that condensation is not restricted to convective updrafts in the824

TTE experiment. This explains why the share of young air parcels with last condensa-825

tion within the mid troposphere is increased.826

827

It is worth revisiting Figure 6c, which shows how the effect of parameterized mois-828

ture sources changed compared to the control simulation. Given that the turbulent moist-829

ening of the free troposphere is more intense in the TTE experiment, it may be surpris-830

ing that for the moist percentiles the moistening from parameterized processes decreased831

compared to the control run. However, it can be understood as a consequence of the larger832

share of young air parcels in the moist percentiles, for which the time period available833

for moistening is reduced. This is also evident from Figure 11, which shows the relative834

change in time since last condensation (tlc) to the control experiment for all sensitivity835

experiments. In the TTE experiment, parcels arriving in the moistest percentile have836

on average been transported for a more than 40% shorter time since last condensation.837

For the other experiments changes in tlc are within ± 10%.838

839

While the last-saturation model technically explains the R increase in the TTE ex-840

periment, it does not do so for the reasons we expected. The original idea was that last-841

condensation points are determined by the resolved circulation and temperature struc-842

ture. Thus, if the change in R is explained by the last-saturation model, it must be caused843

by changes in circulation and temperature, while changes in parameterized processes can844

only play a role if they affect these resolved properties. In the TTE experiment, how-845

ever, condensation is not exclusively driven by resolved upward motions, but also by the846

strong parameterized vertical mixing of water vapor. Thus, in this case, parameterized847

moisture sources directly influence the location of the last-condensation events. Never-848

theless, the fact that the last-saturation model succeeds in reproducing the R change still849

tells us that the change is driven by changes within the tropical source regions, i.e. the850

ITCZ and warm pool region, whereas changes in moisture sources during subsequent ad-851

vection play a minor role.852

853

The behavior of the TTE scheme is certainly unexpected and indicates that the854

scheme has not been sufficiently adapted to storm-resolving resolutions. Whether this855

type of one-dimensional scheme is appropriate for use at storm-resolving resolution is856

a question to be addressed in other studies. Having said that, the fact that even this ex-857

treme perturbation did not change R far beyond the inter-model spread in DYAMOND858

is promising. Many of the DYAMOND models used turbulence parameterizations that859

were not specifically adapted to storm-resolving resolution due to their early develop-860

ment stage. Hence, a better adaption of the schemes in future model versions might fur-861

ther reduce the spread in tropical R.862

863
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Figure 9. Probability density distribution of last-condensation temperature Tlc for tropical

last-condensation points in the control (black) and TTE (red) experiments.
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Figure 10. Moisture tendencies from (a) turbulence and (b) microphysics parameterizations

in the control (black) and TTE (red) experiment for an exemplary simulation time step (17 July

2021, 12Z). Each panel in (a) and (b) shows a vertical profile of specific humidity tendencies aver-

aged over a 20-percentile range of column-integrated water vapor, sorted from dry profiles on the

left to moist profiles on the right.
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Figure 11. Relative change in time since last condensation (tlc) to the control experiment for

all sensitivity experiments depicted in R-space.

6 Summary and conclusions864

In this study our aim was to narrow down the model uncertainties that cause the865

remaining spread in tropical relative humidity R across GSRMs, as has been quantified866

in a recent study based on DYAMOND, the first model intercomparison initiative for867

GSRMs. To this end, we test the sensitivity of R to changes in model resolution and pa-868

rameterizations in a series of six 45-day experiments with the ICON model in a storm-869

resolving configuration. The changes we apply to the model are inspired by differences870

among the DYAMOND models. They include changes in horizontal and vertical grid spac-871

ing, as well as in the parameterizations of microphysics and turbulence. We use a last-872

saturation model based on 3D backward trajectories to gain insight into the mechanisms873

behind the R changes in the sensitivity experiments. This analysis is restricted to the874

mid troposphere.875

876

The rather strong perturbations applied in our sensitivity experiments result in changes877

in tropical R that are of similar magnitude as the spread across the DYAMOND mod-878

els. An earlier study had shown based on the DYAMOND ensemble that the R spread879

across GSRMs is reduced compared to classical GCMs with convective parameterizations.880

Our experiments support this finding by showing that even strong perturbations in GSRMs881

cannot reproduce the spread in R seen in models with convective parameterizations. More-882

over, our experiments show that tropical R is rather robust to changes in model reso-883

lution within the general scale of GSRM resolutions. The three experiments with dif-884

ferent vertical grid spacing (800 m, 400 m and 200 m in the free troposphere) show that885

R changes are modest as soon as a certain threshold vertical resolution is exceeded. The886

experiments with 5 km and 2.5 km horizontal grid spacing produce a very similar R dis-887

tribution. While these results suggest that differences in model resolution do not con-888

tribute significantly to the current R spread across GSRMs, it does not exclude the pos-889

sibility that reducing the horizontal grid spacing to much finer scales (on the order of890

200 m) could make a difference, which needs to be tested in future experiments.891

892

In our experiments, R changes more strongly in response to exchanging the micro-893

physics and turbulence schemes, indicating that the model physics rather than resolu-894

tion (at storm-resolving scales) are the major source of R spread across GSRMs. While895

microphysical changes affect R most strongly in the altitude layer associated with shal-896

low clouds, exchanging the turbulence scheme changes R over a broad altitude region897

in the lower to mid troposphere. We could not test the extent to which the dynamical898

core, and choices it makes in how to solve the transport equations, systematically influ-899
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ences the distribution of source regions. However, the similarity of spread between our900

(parameterized) physics sensitivity studies, and the relatively modest effect of grid spac-901

ing lead us to believe that these effects are unlikely large.902

903

Like the R differences between DYAMOND models, the R changes in our exper-904

iments are smallest in the dry subsidence regimes of the tropics. This is a consequence905

of the low water vapor concentrations in their cold source regions. However, since the906

sensitivity of OLR to changes in relative humidity is particularly high in dry background907

states (e.g. Spencer & Braswell, 1997), small R differences in the dry zones are never-908

theless important from a radiative perspective (Lang et al., 2021). At the same time, this909

study highlights that understanding humidity differences between models is particularly910

challenging for the dry regions. The R of the dry regions is subject to larger internal vari-911

ability on timescales of days to months, which storm-resolving simulations are currently912

limited to. This is because the source regions of dry air are located remotely (mainly on913

the edges of the inner-tropical deep-convective regimes and in the extra-tropics) and there-914

fore depend on the large-scale circulation. Thus, while one simulated month is sufficient915

to quantify systematic R differences in moist regions, longer simulations would increase916

our confidence in the sources of variability in the dry regions. Because changes in both917

tropical and extra-tropical origins need to be considered to understand R differences in918

dry regions (see also Cau et al., 2007; Roca et al., 2012), changes in the mechanisms of919

exchange between tropics and extra-tropics in a warmer climate represent an important920

pathway for changing the relative humidity of the dry regions, which would have impor-921

tant implications for the clear-sky climate feedback.922

923

The mid-tropospheric R changes in our experiments, including the strong moist-924

ening in the experiment with the exchanged turbulence scheme, are largely captured by925

the last-saturation model. This means that most R changes are explained by changes926

in source temperature, i.e. the temperature at which air parcels typically experience last927

condensation, whereas changes in the moistening or drying by parameterized processes928

after last condensation play a minor role. This is even true when the parameterized mois-929

ture sources are modified directly, like in our microphysics and turbulence experiments.930

Overall, this study shows that the last-saturation model is not only successful in explain-931

ing variations in tropical R in the real atmosphere or a given model, as shown by many932

previous studies (e.g. Sherwood, 1996; Pierrehumbert & Roca, 1998; Dessler & Sherwood,933

2000), but it can also be a helpful tool for explaining the causes of humidity differences934

between models. However, it has also become clear that last-saturation statistics can be935

directly affected by changes in parameterized moisture sources, e.g. by enhanced turbu-936

lent moistening. Therefore, if the last-saturation model explains a change in R, it does937

not necessarily mean that it is due to changes in the resolved circulation or the temper-938

ature structure.939

940

In our experiments the most substantial change in R was found in response to chang-941

ing the turbulence parameterization from a Smagorinsky-type scheme to a total turbu-942

lent energy (TTE) scheme. The resulting increase in R was largest in the mid troposphere943

of moist regions. The reason appears to be that the TTE scheme produces a strong tur-944

bulent moistening of the mid troposphere in the inner, moist tropics. This moistening945

favours condensation, which is why from a last-saturation perspective the share of young946

air parcels with warm source temperatures increases in the TTE experiment. Thus, the947

R of the moist tropical regions, while less radiatively important than the dry regions,948

is disproportionally sensitive to vertical mixing processes that structure the humidity through949

their effect on the last-saturation temperatures, i.e. by increasing mid-level cloudiness,950

rather than their effect on the evolution of humidity since its last-saturation.951

952
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While the behavior of the TTE scheme is certainly unexpected and indicates that953

the scheme is poorly adapted to storm-resolving resolutions, the fact that even this ex-954

treme perturbation does not change R beyond the differences in the DYAMOND ensem-955

ble is very promising. Due to their early development stage, many of the DYAMOND956

models in fact used turbulence parameterizations that were not specifically adjusted to957

storm-resolving resolution. This nourishes hopes that tropical relative humidity will be-958

come even more consistent across future model versions with better adapted schemes.959
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