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Abstract

A reduction of dust emission over the major dust source regions in East Asia in the twenty-first century is diagnosed in the

climate change simulations of the Sixth Climate Model Intercomparison Project (CMIP6). Such change is attributable to the

reduction of surface wind speeds in the dust source regions. To evaluate how the magnitude of warming affects dust emission,

we examined two model scenarios, one high-forcing pathway and one medium-forcing pathway. We find dust optical depth over

dust source regions would decrease by 5.6% by the end of the twenty-first century under the high-forcing pathway. Under the

medium-forcing pathway, dust optical depth would decrease by less than 2%. These results provide a quantitative understanding

of how global warming affects dust emission in the major dust source regions in East Asia.
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Key Points: 10 

• Dust emission in East Asia will decrease during the twenty-first century due to the 11 
reduction of surface winds under the warming climate 12 

• The percentage of dust emission reduction depends on the magnitude of warming 13 

• In the extreme warming scenario, dust optical depth over source regions in East Asia will 14 
decrease by 5.6% by the end of the 21st century 15 

  16 
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Abstract 17 
A reduction of dust emission over the major dust source regions in East Asia in the twenty-first 18 

century is diagnosed in the climate change simulations of the Sixth Climate Model 19 

Intercomparison Project (CMIP6). Such change is attributable to the reduction of surface wind 20 

speeds in the dust source regions. To evaluate how the magnitude of warming affects dust 21 

emission, we examined two model scenarios, one high-forcing pathway and one medium-forcing 22 

pathway. We find dust optical depth over dust source regions would decrease by 5.6% by the end 23 

of the twenty-first century under the high-forcing pathway. Under the medium-forcing pathway, 24 

dust optical depth would decrease by less than 2%. These results provide a quantitative 25 

understanding of how global warming affects dust emission in the major dust source regions in 26 

East Asia.  27 

 28 

Plain Language Summary 29 

Over the past half-century, dust emission in the major dust source regions in East Asia exhibited 30 

a downward trend due to reduced surface winds. It has been pointed out that such a trend will 31 

continue in the twenty-first century under global warming. However, the magnitude of the 32 

reduction is unclear. Here we attempt to evaluate quantitatively how dust emission in East Asia 33 

will vary in the twenty-first century under two warming scenarios using climate models. We find 34 

dust optical depth, which is closely associated with dust emission, will decrease by 5.6% under 35 

the extreme warming scenario, while it will decrease by less than 2% in the medium warming 36 

scenario. Thus, we suggest that the variability of dust, which is not included in most climate 37 

models, needs to be taken into consideration for understanding the dust-climate feedback.   38 

 39 
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1 Introduction 40 
Dust emission in East Asia is estimated to account for 11% of the global dust emission (Kok et 41 

al., 2021). Dust originated in East Asia can transport downwind by westerlies across the Pacific 42 

to North America (Hu et al., 2019; Voss et al., 2020), affecting air quality (Wang et al., 2010), 43 

radiative balance (Stanelle et al., 2014), and ocean biogeochemistry along the way (Jickells et al., 44 

2005).  45 

Dust emission in East Asia undergoes interannual variability and is known to be associated with 46 

a number of factors, such as surface wind speeds, precipitation, and surface temperatures in the 47 

source regions (Guan et al., 2017; Kurosaki & Mikami, 2003; Wu et al., 2021). It is also known 48 

that dust emission in East Asia is associated with atmospheric circulations (Zhu et al., 2008) and 49 

oceanic oscillations such as the Pacific decadal oscillation (Gong et al., 2006). Dust events 50 

frequency in East Asia has exhibited a downward trend since the 1950s (Tan et al., 2014; Wu et 51 

al., 2021; Zhao et al., 2004), and such trend is attributed to reduced wind speeds (Guan et al., 52 

2017; Wu et al., 2021; Xu et al., 2020), enhanced precipitation (Wang, 2005), and increasing 53 

surface temperatures (Guan et al., 2017; Wu et al., 2021). Among these factors that affect dust 54 

emission, winds are found to play a dominant role (Gong et al., 2006; Guo et al., 2019).  55 

Although it has been found that dust emission in the major dust source regions would decrease in 56 

East Asia under the warming climate during the twenty-first century (Liu et al., 2020; Zong et 57 

al., 2021), the magnitude of reduction remains unclear and warrants further investigation. In this 58 

work, we propose using surface wind speeds alone to estimate dust emission in East Asia during 59 

the twenty-first century using two scenarios of the Sixth Climate Model Intercomparison Project 60 

(CMIP6), namely, one high-forcing pathway and one medium-forcing pathway. Both scenarios 61 

show a statistically significant downward trend in dust emission over the major dust source 62 

regions in East Asia during the twenty-first century under a warming climate.   63 
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2 Data 64 
Here we use the Deep Blue and Dark Target combined aerosol optical depth from the level 3 65 

daily aerosol products from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua 66 

platform (Platnick et al., 2017) to study dust optical depth (DOD) over the major dust source 67 

regions in China from 2003 through 2020. In order to eliminate other types of aerosols to obtain 68 

DOD, the following three criteria were applied based on previous works. First, the Angstrom 69 

exponent is less than 0.6 (Schepanski et al., 2007). Since dust is mostly coarse particles, this 70 

criterion excludes fine aerosols (Dubovik et al., 2002). Second, the single scattering albedo 71 

(SSA) is less than 0.95. This criterion effectively excludes sea salt in the coastal regions as sea 72 

salt has an SSA close to 1 (Ginoux et al., 2012). Third, the SSA at 412 nm is less than that at 670 73 

nm as dust absorption increases from red to blue. Daily mean DOD from MODIS is used to 74 

construct monthly mean and long-term mean DOD. The spatial resolution of DOD is at 1° 75 

longitude by 1° latitude.  76 

To understand the effect of surface winds on DOD, we use monthly mean wind speeds at 10 m 77 

above the surface to construct the relationship between surface winds and DOD. Monthly mean 78 

wind speeds at 10 m were taken from the European Centre for Medium-Range Weather 79 

Forecasts Reanalysis v5 (ERA5) from 2003 through 2020 (Muñoz Sabater, 2019). We also use 80 

monthly mean precipitation from the Global Precipitation Climatology Project (GPCP) Version 2 81 

(Adler et al., 2003) to construct the climatology of precipitation from 1979 through 2020 in the 82 

major dust source regions.  83 

Monthly mean wind speeds at 10 m from two scenarios of CMIP6 were selected to estimate the 84 

future change of dust. The two scenarios used in this work are the shared socioeconomic 85 

pathway 2 with radiative forcing reaching a level of 4.5 Wm-2 in 2100 (ssp245), a medium-86 

forcing pathway, and the shared socioeconomic pathway 5 with radiative forcing reaching a level 87 
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of 8.5 Wm-2 in 2100 (ssp585), a high-forcing pathway. Only models with both scenarios were 88 

selected in this work, and all ensemble members of each model were included for estimating the 89 

future change of dust in East Asia. Table 1 summarizes the modeling centers, model names, and 90 

ensemble members for both scenarios used in this work.    91 

 92 

Table 1. CMIP6 models used in this work. Shown are the modeling centers, model names, and 93 

ensemble members for both scenarios.    94 

 95 
Institution Model ssp245 ssp585 

Commonwealth Scientific and Industrial 
Research Organisation and Bureau of 

Meteorology (CSRIO; Australia) 

ACCESS-CM2 5 5 

ACCESS-ESM1-5 40 10 

Alfred Wegener Institute (AWI; Germany) AWI-CM-1-1-MR 1 1 
Chinese Academy of Meteorological Sciences 

(CAMS; China) CAMS-CSM1-0 2 2 

Chinese Academy of Sciences (CAS; China) CAS-ESM2-0 2 2 
National Center for Atmospheric Research 

(NCAR; United States) 
CESM2 3 3 

CESM2-WACCM 5 5 
Centro Euro-Mediterraneo sui Cambiamenti 

Climatici (CMCC; Italy) 
CMCC-CM2-SR5 1 1 

CMCC-CM2-ESM2 1 1 

Centre National de Recherches Météorologique 
(CNRM; France) 

CNRM-CM6-1 6 6 
CNRM-CM6-1-HR 1 1 

CNRM-ESM2-1 10 5 
Canadian Centre for Climate Modeling and 

Analysis (CCCma; Canada) CanESM5 50 50 

European consortium (EC) EC-Earth3 1 1 
EC-Earth3-CC 1 1 

Chinese Academy of Sciences (CAS; China) FGOALS-f3-L 1 1 
First Institute of Oceanography, Ministry of 

Natural Resources (FIO; China) FIO-ESM2.0 3 3 

National Oceanic and Atmospheric 
Administration Geophysical Fluid Dynamic 

Laboratory (GFDL; United States) 
GFDL-ESM4 1 1 

National Aeronautics and Space Administration 
Goddard Institute for Space Studies (GISS; 

United States) 
GISS-E2-1-G 30 11 

Met Office Hadley Centre (MOHC; United 
Kingdom) HadGEM3-GC31-LL 5 4 

Indian Institute of Tropical Meteorology (IITM; 
India) IITM-ESM 1 1 

Institute for Numerical Mathematics (INM; 
Russia) 

INM-CM4-8 1 1 
INM-CM5-0 1 1 
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Institut Pierre-Simon Laplace (IPSL; France) IPSL-CM6A-LR 11 6 
National Institute of Meteorological Science-
Korea Meteorological Administration (NIMS-

KMA; Korea) 
KACE1-0-G 3 3 

Korea Institute of Ocean Science and 
Technology (KIOST; Korea) KIOST-ESM 1 1 

Model for Interdisciplinary Research on Climate 
(MIROC; Japan) 

MIROC-ES2L 30 11 
MIROC6 33 50 

Max Planck Institute for Meteorology (MPI; 
Germany) 

MPI-ESM1-2-HR 2 2 
MPI-ESM1-2-LR 30 10 

Meteorological Research Institute (MRI; Japan) MRI-ESM2-0 5 6 
Nanjing University of Information Science and 

Technology (NUIST; China) NESM3 2 2 

Norwegian Climate Centre (NCC; Norway) NorESM2-LM 13 1 
NorESM2-MM 1 1 

National Center for Atmospheric Research 
(NCAR; Taiwan, China) TaiESM1 1 1 

Met Office Hadley Centre (MOHC; United 
Kingdom) UKESM1.0-LL 6 5 

   96 

3 Results 97 
3.1 DOD and 10 m wind speeds 98 

The two major dust source regions in East Asia include the Taklamakan Desert in northwestern 99 

China and the Gobi Desert in Northern China (Figure 1a). The long-term mean DOD from 100 

satellite from 2003 through 2020 over the major dust source regions is 0.15 (Figure 1a). The 101 

Taklamakan Desert is an extreme arid region with a mean annual precipitation of 100 mm, while 102 

the Gobi Desert is an arid region with a mean annual precipitation of 223 mm averaged from 103 

1979 through 2020 using GPCP (Figure 1a). Although it has been observed that the annual 104 

precipitation over these major dust source regions has been increasing over the past half-century 105 

(Su et al., 2020) and the increase in precipitation can strengthen soil cohesion and enhance 106 

vegetation cover, thus reducing dust emission, previous studies found no correlation between 107 

vegetation and dust emission in northwestern China as vegetation there is sparse (Zhang et al., 108 

2003; Zou & Zhai, 2004). In addition, the correlation between soil moisture and dust emission is 109 
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much weaker compared with that between surface wind speeds and dust emission in this region 110 

(Guo et al., 2019; Wu et al., 2021).  111 

 112 

 113 

Figure 1. Long-term mean DOD and precipitation and the relationship between DOD and 10 m 114 

winds. (a) Long-term mean DOD at 1° by 1° over China from 2003 through 2020 using MODIS 115 

daily DOD. The contour lines are the mean annual precipitation in mm using monthly mean 116 

precipitation from GPCP from 1979 through 2020. The gray box indicates the major dust source 117 

regions (74.5° to 110.5°E, 35.5° to 42.5°N). T and G indicate locations of the Taklamakan 118 

Desert and the Gobi Desert, respectively. (b) Scatterplot of monthly mean DOD as a function of 119 

monthly mean 10 m winds averaged over the major dust source regions from 2003 through 2020. 120 

Monthly mean 10 m winds are from ERA5. The black line is the least-squares regression line 121 

described by the equation y = 0.24x – 0.14.   122 

 123 

The relationship between dust emission and surface wind speeds is well-established (Fécan et al., 124 

1999). The monthly mean DOD averaged over the major dust source regions exhibits a 125 
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statistically significant correlation with the monthly mean 10 m wind speeds averaged over the 126 

same region from 2003 through 2020 (Figure 1b). The correlation between 10 m wind speeds 127 

from ERA5 and DOD from MODIS is 0.4 (p < 0.01), indicating that 10 m wind speeds can be 128 

used to approximate DOD at the monthly scale, which is closely associated with dust emission in 129 

the source regions. Such correlation between satellite-retrieved DOD and wind speeds from other 130 

reanalyses, such as the Modern-Era Retrospective analysis for Research and Application, 131 

Version 2, is also robust. Since surface winds from ERA5 offer the best agreement among 132 

reanalyses when compared with in situ observations (Ramon et al., 2019), in this work, the 133 

relationship between DOD and 10 m wind speeds from ERA5 is used to estimate DOD over the 134 

major dust source regions in East Asia during the twenty-first century.  135 

 136 

3.2 DOD during the twenty-first century 137 

Figure 2 shows the estimates of DOD over the major dust source regions in East Asia during the 138 

twenty-first century using 10 m winds from two scenarios of CMIP6. As winds from models 139 

vary significantly due to the model’s internal variability, wind speeds from each model are 140 

scaled so that the mean wind speeds from each model are equal to those from ERA5 for the 141 

period of 2015 through 2020. In the ssp585 scenario, the multimodel mean time series shows a 142 

statistically significant downward trend of -0.008±0.0003 in DOD per 100 years (Figure 2a), 143 

representing roughly a 5.6±0.2% reduction of the long-term mean DOD obtained from MODIS 144 

for the period from 2003 through 2020.  145 

 146 



manuscript submitted to Geophysical Research Letter 

 

 147 

Figure 2. Time series of DOD over the major dust source regions during the twenty-first 148 

century. (a) The CMIP6 ensemble mean time series, the multimodel mean time series and its 149 

linear trend estimated using monthly mean 10 m winds from ssp585 of CMIP6. (b) The same as 150 

(a) using monthly 10 m winds from ssp245.    151 

 152 

Among the 36 models considered here, 30 models exhibit statistically significant downward 153 

trends in DOD, while only four models exhibit statistically significant upward trends in DOD 154 

(Figure 3a). The same analysis was repeated using the ssp245 scenario, in which the multimodel 155 

mean time series shows a statistically significant downward trend of -0.0024±0.0003 in DOD per 156 

100 years, 30% of that for the ssp585 scenario (Figure 2b). 16 of the 36 models exhibit 157 

statistically significant downward trends in DOD, while four models exhibit statistically 158 

significant upward trends in DOD (Figure 3b).      159 

 160 
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 161 

Figure 3. CMIP6 ssp585 and ssp245 twenty-first century trends in DOD. (a) The linear trend 162 

and 95% confidence intervals of the ensemble mean and the multimodel mean trend for ssp585. 163 

(b) The same as (a) but for ssp245. 164 

 165 
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4 Discussion 166 
This decline in DOD indicates that dust emission in the major dust source regions in East Asia 167 

will decrease during the twenty-first century, which would likely contribute to the improvement 168 

of air quality in the dust source regions and downwind regions, especially in the springtime, 169 

when dust events are frequent. Under the warming climate, not only dust emission in East Asia 170 

will decline, but in other major dust source regions, such as the Saharan Desert, the largest desert 171 

in the world, dust emission will also decline due to reduced surface wind speeds (Evan et al., 172 

2016). In addition, decreasing dust has been observed in the Middle East over the past decade as 173 

a result of enhanced soil moisture and precipitation and reduced surface wind speeds (Xia et al., 174 

2022).  175 

So far, the radiative effect dust has on climate is uncertain. It is known that dust reflects 176 

shortwave radiation, but how dust interacts with longwave radiation is less clear. As large 177 

particles can absorb longwave radiation more effectively, the radiative effect of dust depends on 178 

the size of the particle (Mahowald et al., 2014). On the global scale, the direct radiative effect of 179 

dust is estimated to be between -0.48 and +0.2 Wm-2 (Kok et al., 2017). But on the regional 180 

scale, the direct radiative effect of dust can be one order of magnitude larger. For example, 181 

during a two-week observation in Zhangye, located between the Taklamakan and Gobi Deserts, 182 

the direct longwave radiative effect of dust was estimated to vary between 2.3 and 20 Wm-2, 183 

compensating for over one-half of the shortwave cooling effect at the surface (Hansell et al., 184 

2012). Given the radiative effect of dust, the decrease in dust emission in the twenty-first century 185 

will inevitably affect the energy balance of the surface and the atmosphere, particularly in the 186 

source regions.   187 
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Currently, the interannual variability of dust is not included in most climate models. In addition, 188 

the indirect effects of dust on climate are poorly understood. Thus, efforts should be given to 189 

better represent dust variability in models to understand and predict the dust-climate feedback in 190 

the future.         191 

     192 

5 Conclusions 193 

This work estimated the trend of East Asia dust during the twenty-first century under two 194 

warming scenarios. We did so by examining DOD, derived from surface winds in CMIP6 195 

models, over the major dust source regions. Under the high-forcing pathway, that is, radiative 196 

forcing reaching a level of 8.5 Wm-2 in 2100, DOD in East Asia is estimated to reduce by 5.6% 197 

compared with the mean DOD from 2003 through 2020 over the dust source regions. Under the 198 

medium-forcing pathway, that is, radiative forcing reaching a level of 4.5 Wm-2 in 2100, DOD in 199 

East Asia is estimated to reduce by less than 2%. It is worth noting that such estimations did not 200 

take into consideration the complex dust-climate feedback that is not well understood, nor did 201 

they include other factors that may affect dust emission, such as land use change. Nevertheless, 202 

our results provide a quantitative understanding of East Asia dust emission in the twenty-first 203 

century and indicate that the degree dust emission responds to climate change varies with the 204 

magnitude of warming.  205 
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