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Abstract

Brazil has been severely affected by the COVID-19 pandemic. Temperature and humidity have been purported as drivers of

SARS-CoV-2 transmission, but no consensus has been reached in the literature regarding the relative roles of meteorology,

governmental policy, and mobility on transmission in Brazil. We compiled data on meteorology, governmental policy, and

mobility in Brazil’s 26 states and one federal district from June 2020 to August 2021. Associations between these variables and

the time-varying reproductive number (Rt) of SARS-CoV-2 were examined using generalized additive models fit to data from

the entire fifteen-month period and several shorter, three-month periods. Accumulated local effects and variable importance

metrics were calculated to analyze the relationship between input variables and Rt. We found that transmission is strongly

influenced by unmeasured sources of between-state heterogeneity and the near-recent trajectory of the pandemic. Increased

temperature generally was associated with decreased transmission and specific humidity with increased transmission. However,

the impact of meteorology, policy, and mobility on Rt varied in direction, magnitude, and significance across our study period.

This time variance could explain inconsistencies in the published literature to date. While meteorology weakly modulates

SARS-CoV-2 transmission, daily or seasonal weather variations alone will not stave off future surges in COVID-19 cases in

Brazil. Investigating how the roles of environmental factors and disease control interventions may vary with time should be a

deliberate consideration of future research on the drivers of SARS-CoV-2 transmission.
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Key Points: 19 

• Unmeasured sources of between-state heteorogneity and recent waves of cases are the 20 
dominant drivers of SARS-CoV-2 transmission in Brazil. 21 

• The impacts of policy, meteorology, and mobility on transmission vary in direction and 22 
magnitude within subperiods of our study. 23 

• Relying on proven mitigation measures such as mass vaccinations should be the key 24 
priority in the continued fight against COVID-19.  25 

 26 
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Abstract 39 
 40 
Brazil has been severely affected by the COVID-19 pandemic. Temperature and humidity have 41 
been purported as drivers of SARS-CoV-2 transmission, but no consensus has been reached in 42 
the literature regarding the relative roles of meteorology, governmental policy, and mobility on 43 
transmission in Brazil. We compiled data on meteorology, governmental policy, and mobility in 44 
Brazil’s 26 states and one federal district from June 2020 to August 2021. Associations between 45 
these variables and the time-varying reproductive number (Rt) of SARS-CoV-2 were examined 46 
using generalized additive models fit to data from the entire fifteen-month period and several 47 
shorter, three-month periods. Accumulated local effects and variable importance metrics were 48 
calculated to analyze the relationship between input variables and Rt. We found that transmission 49 
is strongly influenced by unmeasured sources of between-state heterogeneity and the near-recent 50 
trajectory of the pandemic. Increased temperature generally was associated with decreased 51 
transmission and specific humidity with increased transmission. However, the impact of 52 
meteorology, policy, and mobility on Rt varied in direction, magnitude, and significance across 53 
our study period. This time variance could explain inconsistencies in the published literature to 54 
date. While meteorology weakly modulates SARS-CoV-2 transmission, daily or seasonal 55 
weather variations alone will not stave off future surges in COVID-19 cases in Brazil. 56 
Investigating how the roles of environmental factors and disease control interventions may vary 57 
with time should be a deliberate consideration of future research on the drivers of SARS-CoV-2 58 
transmission.  59 

Plain Language Summary 60 

Environmental factors such as outdoor temperature and humidity can affect the spread of the flu 61 
and other respiratory viruses. For this reason, early studies on the COVID-19 pandemic 62 
hypothesized that temperature, humidity, and other environmental factors might create favorable 63 
or less favorable conditions to facilitate the spread of COVID-19. At times, politicans and the 64 
media have disseminated these hypotheses without proper vetting. COVID-19 has caused major 65 
impacts in Brazil, and in this study we use a statistical model that allows us to investigate how 66 
environmental factors, governmental policies, and human mobility are related to COVID-19 67 
transmission in Brazil from June 2020—August 2021. We found that temperature and humidity 68 
were not very important in explaining COVID-19 transmission. Governmental policies and 69 
human mobility played a larger role in explaining transmission, but whether changes in policies 70 
or human mobility led to increased versus decreased transmission varied throughout our study 71 
period. These changes with time may explain why the conclusions of other studies on what 72 
drives the spread of COVID-19 may appear at odds with each other. Continuing to rely on 73 
proven mitigation measures such as mass vaccinations should be the key priority in the fight 74 
against COVID-19 in Brazil.  75 

1 Introduction 76 

The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 77 
2 (SARS-CoV-2), has ravaged Brazil. As of July 2022, the country had recorded the second-78 
highest number of cases and second-highest number of deaths globally (CSSE, 2022). 79 
Disinformation sowed by Brazilian politicians; the defense of ineffective treatment based on 80 
chloroquine; less restrictive social isolation measures in some states and municipalities, 81 
especially those aligned with the federal government; difficulty in controlling the virus in 82 



manuscript submitted to GeoHealth 

 3 

Brazil’s favelas (informal settlements); and a strained healthcare system have been suggested as 83 
key reasons for Brazil’s unfortunate ranking with respect to the pandemic (Ponce, 2020).  84 
 85 

Seasonality and meteorology, particularly temperature and humidity, have been purported 86 
drivers of SARS-CoV-2 transmission based on their impact on aerosolization of virus droplets, 87 
virus survival on fomites, host susceptibility, and human behavior (Lowen & Steel, 2014; 88 
Tamerius et al., 2013; Yang et al., 2015). Yet, a myriad of early studies investigating the 89 
associations between meteorology and COVID-19 have not always reached consistent findings 90 
regarding the role of meteorological factors (Colston et al., 2022; Ma et al., 2021; Sera et al., 91 
2021), although these and other studies generally emphasize that while the associations between 92 
COVID-19 and meteorological variables may be significant, they are small compared with 93 
disease control interventions and could not entirely explain excess disease burdens. Several 94 
factors have been suggested as reasons for these inconsistent findings: a short temporal data 95 
record; simplistic statistical frameworks such as correlation analyses that overlook confounding 96 
factors; and error-prone variables such as case counts, which could be biased towards the null 97 
due to underreporting, testing delays, and the proliferation of at-home testing (Kerr et al., 2021; 98 
Mecenas et al., 2020). 99 
 100 

Brazil’s diverse climate, spanning equatorial and tropical zones in the north to temperate 101 
zones in the south, provides a unique range of meteorological conditions over which to examine 102 
these roles. Equally diverse is the political spectrum in Brazil’s federative system, which gives 103 
relative autonomy to states and municipalities. This autonomy resulted in an ensemble of 104 
uncoordinated approaches towards COVID-19 including, for example, facilitating the 105 
propagation of the virus given both strict and relaxed measures at different times (Castro et al., 106 
2021; Kortessis et al., 2020). 107 
 108 

Here, we conduct a spatiotemporally disaggregated time series study examining the roles 109 
of mobility, policy, and meteorology on SARS-CoV-2 transmission in Brazil’s 26 states and 110 
federal capital district (hereafter generically referred to as “states”). Our innovative space-time 111 
disaggregation additionally allows us to document how the drivers of transmission varied 112 
throughout the pandemic in 2020-2021. By incorporating 15 months of data into a flexible and 113 
interpretable statistical framework, we advance our understanding of what drives SARS-CoV-2 114 
transmission gleaned from earlier studies that only considered data from earlier periods of the 115 
pandemic.  116 

2 Materials and Methods 117 

2.1 Data Sources 118 

Our data-driven study synthesizes time series of meteorological variables, policy, and 119 
mobility for each of Brazil’s states over the period 1 July 2020 to 31 August 2021. The start date 120 
of this study is a few months after the first COVID-19 case was detected in Brazil (25 February) 121 
but represents a period in which surveillance capabilities in Brazil were likely more well-122 
developed. Our fifteen-month study period allows us to understand the impacts of meteorology, 123 
policy, and behavior on COVID-19 transmission dynamics over an entire annual seasonal cycle. 124 
 125 
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The Johns Hopkins unified environmental-epidemiological dataset synthesizes data on 126 
meteorology, demography, and COVID-19 control policies (Badr et al., 2021). From this 127 
database we extracted state-level time series of population-weighted daily average temperature 128 
and specific humidity at 2 meters, originally derived from the fifth generation ECMWF 129 
atmospheric reanalysis. We also incorporated a state-level policy index from the Oxford 130 
COVID-19 Government Response Tracker (OxCGRT), which estimates the strictness of 131 
lockdown policies using information on containment and closure policies and public information 132 
campaigns (Hale et al., 2021).  133 
 134 

We included two mobility indicators from Google’s COVID-19 Community Mobility 135 
Reports (Google, LLC, 2022) in our study. Specifically, we consider time series of Google’s 136 
workplaces and residential indicators. These changes represent departures from a pre-pandemic 137 
baseline period (3 January to 6 February 2020) and account for day-of-week variations. While 138 
these two mobility measures are inversely correlated (Spearman’s rank correlation coefficient =  139 
-0.72), they represent different population-level behaviors with respect to trip purpose and are 140 
measured differently. The residential indicator measures daily changes in the time spent in places 141 
of residence, and the workplaces indicator measures daily changes in total visitors to places of 142 
work.  143 
 144 

The time-varying reproductive number of COVID-19 (Rt) for each Brazilian state, 145 
generated with EpiNow2 (Abbott et al., 2020), was used as the response variable in our study. 146 
For a given day in each state, EpiNow2 estimates Rt using available case data from the previous 147 
12 weeks and accounts for delays between infection onset and case reporting (Abbott et al., 148 
2020; Gostic et al., 2020). This approach accounts for quantifiable sources of uncertainty and 149 
propagates these uncertainties from the inputs to the final Rt estimates. Recent work suggests Rt 150 
is likely centered around 1 in most of the world in contrast to previous studies that reported a 151 
substantially higher value (Abbott et al., 2020). We found a mean Rt of 0.996 (95% CI 0.994–152 
0.998) in Brazilian states during our study period. Rt for the entire nation was also generated to 153 
contrast with state-level estimates.  154 

2.2 Statistical Analysis 155 

The impact of the meteorological, mobility, and policy on Rt is quantified using 156 
generalized additive models (GAMs), semiparametric models that estimate the response variable, 157 
in our case Rt, as the sum of nonlinear variable combinations or “smooth functions” (Hastie & 158 
Tibshirani, 1990). Examining individual smooth functions allows us to see the impact of a single 159 
variable or interactions between variables on Rt. GAMs have been extensively used to assess the 160 
environmental health outcomes and drivers of COVID-19 variability (Colston et al., 2022; 161 
Dominici, 2002; Sera et al., 2021).  162 
 163 

We specified six different GAMs. The first used data from the entire study period, and 164 
the others used data from five different three-month periods: June - August 2020 (JJA 2020), 165 
September - November 2020 (SON 2020), December 2020 - February 2021 (DJF 2020-2021), 166 
March-May 2021 (MAM 2021), and JJA 2021. These different GAMs allow us to understand the 167 
role of the environment, mobility, and policy on SARS-CoV-2 transmission over an entire 168 
seasonal cycle but also disentangle seasonality from within-season variability and investigate 169 
how factors affecting transmission could change with time.  170 
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 171 
Specifically, we fit our GAMs to daily, state-level Rt assuming a Gaussian distribution 172 

with a log link. For each time period of interest, our model has the form:  173 
 174 
𝑅",$	~	𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇",$)        Equation 1 175 
 176 
𝑙𝑜𝑔(𝜇",$) 	= 	𝑠(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒",$) 	+ 	𝑠(ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦",$) 	+ 	𝑠(𝐺𝑜𝑜𝑔𝑙𝑒	𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙",$) 	+177 
	𝑠(𝐺𝑜𝑜𝑔𝑙𝑒	𝑤𝑜𝑟𝑘𝑝𝑙𝑎𝑐𝑒𝑠",$) 	+	 𝑠(𝑂𝑥𝐶𝐺𝑅𝑇	𝑝𝑜𝑙𝑖𝑐𝑦",$) 	+ 	𝑡𝑖(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒",$, ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦",$) 	+178 
	𝑡𝑖(𝜎(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)$, ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦",$) 	+ 𝑠(𝑙𝑎𝑔𝑔𝑒𝑑	𝑐𝑎𝑠𝑒𝑠",$) 	+ 		𝑠(𝑠𝑡𝑎𝑡𝑒),             Equation 2 179 

 180 
where t is day; s is each Brazilian state or federal district; 𝑙𝑎𝑔𝑔𝑒𝑑	𝑐𝑎𝑠𝑒𝑠 is the total number of 181 
confirmed COVID-19 cases during the preceding 30 days, which we include to account for 182 
autocorrelation; and 𝜎(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) represents the standard deviation of temperature, used as 183 
a proxy for daily temperature variability. Here, s(...) represents smooths for a single variable, and 184 
ti(...) is a tensor product interaction. All terms have a basis dimension of three (a larger basis 185 
could apply an overly complex model and thereby overfit the data). We use thin plate regression 186 
splines as the smoothing basis for each smooth term in Equation 2 besides the final term, for 187 
which we use random effects as the basis. These random effects account for states with higher or 188 
lower transmission due to random conditions beyond the fixed effects captured by the covariates 189 
in the model.  190 
 191 

We quantified the importance of model terms in Equation 2 by calculating the 192 
accumulated local effects (ALE) of each term on Rt. The ALE are calculated as the change in 193 
modeled Rt over a small range of a given model term using all data samples within that range 194 
and centered around 0 such that the value of the ALE curve can be interpreted as the difference 195 
to the mean prediction. For example, if ALE = 0.05 at a temperature of 20°C, it means that, at 196 
this temperature, Rt is 0.05 higher than the average predicted value of Rt. Other ways to quantify 197 
feature importance from GAMs (e.g., partial dependence, partial effects) can be biased by 198 
correlation among input variables and may result in unrealistic combinations of input variables. 199 
ALE, on the other hand, are unbiased in their estimated feature effect.  200 
 201 

Our analysis was conducted using R (version 4.0.3) with packages mgcv (version 1.8-38) 202 
(Wood, 2011), additive (version 0.0.3) (Badr, 2021), mgcViz (version 0.1.9) (Fasiolo et al., 203 
2019), and vip (version 0.3.2) (Greenwell & Boehmke, 2020).  204 

3 Results 205 

By 31 August 2021, 20,785,196 COVID-19 cases and 580,763 deaths had been reported 206 
in Brazil. São Paulo had the highest number of cases (4,262,684) and deaths (145,836). The 207 
number of cases per capita exhibited substantial spatial variability, but we note that states in 208 
Brazil’s sparsely populated North and Central-West regions had a higher number of cases per 209 
capita than the more densely populated coastal states (Figure 1A). The Northern state of 210 
Roraima, whose health care system has been strained by a recent influx of migrants and refugees 211 
from neighboring Venezuela (Doocy et al., 2019), had the highest case rate of all states: 20,468 212 
per 100,000.  213 

 214 
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 215 

Figure 1. Cumulative cases of COVID-19 per 100,000 population as of 31 August 2021 in 216 
selected Brazilian states and time series of state-level Rt. Selected states represent five most 217 
populous states in 2021, and time series of additional states are shown in Figure S1. For contrast, 218 
the colorbar in (a) saturates at 4,000 and 16,0003  219 

National-level Rt and Rt for individual states share some common features such as 220 
decreasing Rt at the beginning of our study period following the first wave and an increase in 221 
boreal winter (Figures 1B-G, S2). While the overall temporal variations in Rt are, at times, 222 
qualitatively similar between the national- and state-level time series, a closer inspection of Rt 223 
across these spatial scales highlights numerous differences that support our analysis of drivers of 224 
SARS-CoV-2 transmission at the state level.  225 
 226 

The predictive power of our GAMs was evaluated with several performance metrics 227 
(Figure S1). The temporal correlation between EpiStem2 and modeled Rt for different three-228 
month seasons was strong, generally ~0.7, indicating that our modeled Rt provides an excellent 229 
temporal fit to Rt from EpiStem2. We do note that, despite this strong correlation, the GAMs 230 
slightly underpredict Rt for all time periods. Additionally, the model performance is worse for 231 
DJF 2020-2021 and subsequent three-month periods compared with JJA and SON 2020, which 232 
may stem from increased underlying immunity with time or events that alter behavioral patterns 233 
and therefore COVID-19 transmission (e.g., Carnaval, Natal/Christmas).  234 
 235 

Temperature emerges as a significant (p<0.05) predictor for all periods but JJA 2021 236 
(Table S1). Increasing temperatures are associated with a decrease of Rt relative to the mean for 237 
the first four three-month periods of our study; however, during JJA 2021 and for the full study 238 
period, JJA 2020-JJA 2021, we found essentially no change in Rt with temperature (Figure 2A). 239 
The largest temperature effects on Rt of ~0.05 occurred in JJA 2020. The magnitude of these 240 
effects is roughly half the magnitude of the daily variability of Rt (𝜎(Rt) = 0.10). We note, 241 
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though, that the ~9°C range of temperatures over which we observe this change is not commonly 242 
encountered in many Brazilian states besides a handful in Brazil’s south (e.g., Mato Grosso do 243 
Sul, Paraná, Rio Grande do Sul; Figure S3A).  244 
 245 

Increased specific humidity was generally associated with an increase in Rt except during 246 
MAM 2021, which exhibits an inverted U-shaped relationship (Figure 2B). The effect of specific 247 
humidity on Rt is significant for all study periods except MAM 2021 (Table S1) and roughly 248 
double in magnitude compared with temperature’s effect; for example, the largest increase in Rt 249 
relative to the mean associated with variations in specific humidity is ~0.1, observed during JJA 250 
2020-JJA 2021 (Figure 2B). As with temperature, most states have a tight range of specific 251 
humidity and do not experience daily variations in specific humidity equivalent to the range over 252 
which we observe this 0.1 effect (Figure S3B).  253 
 254 

The ALE of the OxCGRT policy and Google-derived mobility variables are generally 255 
equivalent or slightly larger in magnitude than the effects of meteorological variables. However, 256 
in contrast to the generally consistent conclusions we draw regarding the sign of temperature and 257 
specific humidity effects on Rt, the OxCGRT policy and Google-derived mobility variables 258 
generally have inconsistent effects on Rt across three-month study periods and the full study 259 
period. Specifically, the ALE of OxCGRT policy reverses direction between nearly every period 260 
(Figure 2C), and the direction of the residential and workplace mobility in SON 2020 and MAM 261 
2021 differ from other periods in our study (Figure 2D-E). 262 
 263 
The lagged cases term, which gauges the trajectory of the pandemic, has the largest effect on Rt 264 
(Figure 2F) and is significant in every time period of our study (Table S1). Its ALE are several 265 
times larger than that of the meteorological or policy- and mobility-related terms (note the scale 266 
in Figure 2F). The direction of this relationship, indicating that more cases in the previous 30 267 
days are associated with lower transmission, likely reflect a reduction in the size of the 268 
susceptible pool following periods with a high number of cases. While our model accounts for 269 
the cumulative number of cases in the previous 30 days, we have also tested how examining the 270 
number of cases for longer periods (60 days) impacts results and found no substantive difference 271 
in key conclusions (not shown).  272 
 273 

In our model we included a term to test Rt differences in states with tropical (small daily 274 
variations in temperature) versus temperate (large variations) climates (𝜎(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒); 275 
Equation 2). Since this term consists of 1 value per state per time period compared with other 276 
continuous variables shown in Figure 2 we present the ALE differently and show their 277 
distribution in Figure S4. These results reveal that the ALE of temperature variability on Rt is 278 
larger in states with the largest daily variations in temperature, although the average impact of 279 
temperature variability on Rt is not consistently positive or negative (Figure S4). This effect of 280 
temperature variability on transmission could explain some of the differences in COVID-19 281 
cases between Brazil’s tropical states with fewer COVID-19 cases (e.g., Pará, Maranhão; Figure 282 
1A) and temperate states with more COVID-19 cases (e.g., Rio Grande Do Sul, Santa Catarina).  283 
 284 

The significance of model terms and their effect on Rt (Table S1, Figure 2) are somewhat 285 
different concepts than importance. We next explore how each term’s relative influence on 286 
model prediction by adopting the root-mean-square error (RMSE) as an indicator of importance, 287 



manuscript submitted to GeoHealth 

 8 

with a higher RSME representing greater importance of a model term. Figure 3 shows that the 288 
random effects term, which accounts for unexplained state-level heterogeneity, and the total 289 
number of confirmed COVID-19 cases in the preceding 30 days are clearly the most important 290 
terms in our model.  291 
 292 

 293 
Figure 2. Accumulated local effects (ALE) of (a) temperature, (b) specific humidity, (c) the 294 
OxCGRT policy index, (d) Google workplaces mobility, (e) Google residential mobility, and (f) 295 
the number of cumulative cases in the preceding 30 days. Effects of model terms are shown for 296 
values between each term’s 10th and 90th percentiles. Shaded bands for each curve denote the 297 
95% confidence interval. Note the different scale of the vertical axis in (f). 298 
 299 

Figure 3 also highlights the evolving role of model terms on Rt. While specific humidity 300 
and OxCGRT policy are generally the most important terms in our model after the random 301 
effects and lagged cases terms, the precise order of importance changes for different time 302 
periods. During MAM 2021, temperature is the third most important term in our model (Figure 303 
3), which is consistent with the large ALE of temperature during this time period (Figure 2A); 304 
however, for other periods (e.g., JJA 2021), temperature is the least important.  305 
 306 

Given the importance of state-level random effects in Figure 3, we also show how these 307 
random effects impact Rt. The ALE of the random effects have spatial structure, and these effects 308 
are consistently positive in Brazil’s South and Southeast Regions and negative in the North 309 
(Figure S6). The spatial structure of this map roughly resembles Brazil’s population density as 310 
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well as gross domestic product per capita, and the random effects could be accounting for 311 
conditions related to sociodemographics.  312 

4 Discussion 313 

As one of the countries hardest hit by the COVID-19 pandemic, there is an acute need to 314 
characterize the drivers of SARS-CoV-2 transmission in Brazil to inform policy and other 315 
mitigative measures for future surges in cases. Earlier attempts to answer this question in the 316 
literature were often limited by short temporal record, methodological frameworks that were 317 
prone to the biases of input data and could not account for nonlinear relationships, and 318 
conclusions that raised questions the generalizability and robustness of their policy-relevant 319 
conclusions to different time periods. Our study leverages fifteen months of data within a 320 
flexible, nonparametric regression model, allowing us to understand drivers of transmission over 321 
an entire seasonal cycle, and investigates how the relationships between transmission and 322 
meteorology, policy, and human mobility change from season to season.  323 
 324 

The changing sign and magnitude of drivers of SARS-CoV-2 transmission (e.g., Figures 325 
2-3), also demonstrated in Yin et al. (2022) could explain the inconsistencies between our work 326 
and other studies on COVID-19 in Brazil and, more broadly, the variability in the published 327 
literature. Two studies focused on COVID-19 in Brazil in early- to mid-2020 (Pequeno et al., 328 
2020; Rosario et al., 2020) found increased temperatures were associated with decreased 329 
severity, similar to our findings for JJA 2020 (Figure 2A). However, we have shown that this 330 
negative relationship between temperature and transmission does not persist later in 2020 or in 331 
2021. This finding demonstrates the importance of analyzing each season separately. For 332 
example, considering the full study period might lead to the conclusion that temperature has a 333 
statistically significant but essentially null impact on transmission (Table S1, Figure 2A), while 334 
temperature bears a larger association with transmission in most of the three-month periods.  335 

 336 
The relatively small impact of policy and mobility was surprising, given that at the early 337 

stage of the pandemic when transmissibility was high and immunity was low, disease control 338 
interventions are believed to have a stronger impact on transmission than any environmental 339 
driver (Carlson et al., 2020). There are at least two potential reasons for this finding. One 340 
explanation could lie in the evolving behavioral responses to the pandemic. Using the correlation 341 
between Rt and the OxCGRT policy and Google workplaces and residential variables as a proxy 342 
for behavioral responses during periods of increased versus decreased transmission, we find 343 
considerable spatiotemporal variability between these variables and Rt (Figure S5). Another 344 
explanation could be related to what these terms precisely measure and the data from which they 345 
are formed. The OxCGRT policy index measures how the government has implemented health 346 
and containment measures but does not show whether policy has been implemented effectively or 347 
measure compliance to policies. It is likely that the variability in restrictive measures over time 348 
by states and municipalities and the continued urban public transit, even during high periods of 349 
transition, favored population mobility and consequently the circulation of the virus (Castro et 350 
al., 2021; Kortessis et al., 2020). Brazil’s federal government not only underestimated the impact 351 
of COVID-19 but also did not coordinate efforts, at times even trying to influence state and 352 
municipal governments against measures of social distancing (Castro et al., 2021). Governmental 353 
responses are also reactive and might not have a substantial effect if enacted in response to a 354 
surge in cases. Additionally, the Google mobility terms also derive from cell phone usage and 355 
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internet access, which vary across Brazil (Instituto Brasileiro de Geografia e Estatística, 2018) 356 
and are unequally distributed among socioeconomic groups.  357 

 358 

 359 
Figure 3. Permutation-based variable importance plot for GAM model terms using the root mean 360 
square error as the loss function. Larger values for a particular term indicate that removal of that 361 
variable causes the GAM to lose accuracy in its prediction. The zoomed-in version of the grey 362 
region in the left panel is shown on the right.  363 
 364 

We chose a relatively small number of model terms (Equation 2) compared with other 365 
studies which have included air pollutants (Wu et al., 2020); sociodemographic data and 366 
additional mobility indicators (Colston et al., 2022; Nottmeyer & Sera, 2021); and additional 367 
meteorological variables (Colston et al., 2022; Ma et al., 2021; Zhang et al., 2022). Our selected 368 
meteorological terms have an established precedent for shaping respiratory virus seasonality 369 
(Lowen & Steel, 2014) and were most-commonly investigated in early studies on the 370 
meteorological drivers of SARS-CoV-2 transmission (Kerr et al., 2021). The policy and mobility 371 
terms represent plausible proxies for governmental responses and individual-level behavior that 372 
likely affect transmission. We acknowledge that including additional terms may further improve 373 
model performance or change the role purported impact of our chosen variables on Rt. However, 374 
additional terms could also lead to overfitting or decreased interpretability if no clear mechanism 375 
to tie a particular term to transmission exists.  376 
 377 
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In addition to the ecological fallacy that challenges studies investigating drivers of 378 
COVID-19 transmission, our study has several limitations. Our analysis was conducted at the 379 
state level rather than at the municipal level, the lowest level of political division, to provide the 380 
highest granularity possible without encountering missing data (e.g., the OxCGRT policy data 381 
does not have time series for all of Brazil’s municipalities). This limitation is particularly 382 
relevant due to state and municipal alignments with the federal government which affected the 383 
intensity, duration, and timing of local responses against the disease (Castro et al., 2021). 384 
Brazil’s mass vaccine campaign, which likely impacted underlying immunity and behavior, 385 
began in January 2021 and was not explicitly accounted for due to lack of information on 386 
vaccine rollout at the state level. Terms included in our model are not exhaustive, and other 387 
studies have highlighted additional drivers that bear a significant association with transmission. 388 
We also did not account for multiple SARS-CoV-2 variants and their different transmissibility; 389 
however, conducting our analysis in several three-month periods could partially mitigate this 390 
limitation.  391 

5 Conclusions 392 

In summary, we found that meteorological variables play a statistically significant, but 393 
relatively small, role in explaining spatiotemporal variations in SARS-CoV-2 transmission in 394 
Brazil. Higher temperatures were generally associated with decreased Rt, higher specific 395 
humidity with increased Rt, and increased total visitors in workplaces with decreased Rt (Figure 396 
2), although these terms were not always significant in all time periods we examined (Table S1). 397 
On the other hand, the impact of governmental policies and time spent in places of residences 398 
were associated with both increases and decreases in Rt, depending on the time period (Figure 2). 399 
Most variations in Rt, though, were attributed to unexplained between-state heterogeneity and the 400 
trajectory of the pandemic (i.e., the number of recent cases; Figures 2-3).  401 
 402 

Brazil is a global leader at administering COVID-19 vaccines. Its vaccination rate–an 403 
estimated 80% as of July 2022–exceeds that of the United States, Germany, the United 404 
Kingdom, and several other developed nations that had the earliest access to vaccines (Johns 405 
Hopkins Centers for Civic Impact, 2022). The rate of vaccinations in Brazil has been credited 406 
with preventing approximately 1,000,000 deaths from COVID-19 (Watson et al., 2022). While 407 
meteorology might weakly modulate transmission, we found no indication that daily or seasonal 408 
weather conditions alone will curb the virus in Brazil. At this point in time, disease control 409 
interventions and vaccines appear to be the greatest weapons to fight the pandemic in Brazil and 410 
throughout the world.  411 

Acknowledgments 412 
This work was supported by the NASA Health and Air Quality Program (award number 413 
80NSSC18K0327).  414 
 415 
Open Research 416 
The Johns Hopkins unified COVID-19 environmental-epidemiological dataset, which contains 417 
the meteorological data and OxCGRT policy index used in this study, is publicly available at 418 
www.github.com/CSSEGISandData/COVID-19_Unified-Dataset/. Google’s COVID-19 419 
Community Mobility Reports are available at www.google.com/covid19/mobility/.  420 
 421 



manuscript submitted to GeoHealth 

 12 

References 422 
Abbott, S., Hellewell, J., Thompson, R. N., Sherratt, K., Gibbs, H. P., Bosse, N. I., Munday, J. 423 

D., Meakin, S., Doughty, E. L., Chun, J. Y., Chan, Y.-W. D., Finger, F., Campbell, P., 424 
Endo, A., Pearson, C. A. B., Gimma, A., Russell, T., CMMID COVID modelling group, 425 
Flasche, S., … Funk, S. (2020). Estimating the time-varying reproduction number of 426 
SARS-CoV-2 using national and subnational case counts. Wellcome Open Research, 5, 427 
112. https://doi.org/10.12688/wellcomeopenres.16006.2 428 

Badr, H. S. (2021). additive: Bindings for Additive TidyModels. Comprehensive R Archive 429 
Network (CRAN). https://hsbadr.github.io/additive/ 430 

Badr, H. S., Zaitchik, B. F., Kerr, G. H., Nguyen, N.-L. H., Chen, Y.-T., Hinson, P., Colston, J. 431 
M., Kosek, M. N., Dong, E., Du, H., Marshall, M., Nixon, K., Mohegh, A., Goldberg, D. 432 
L., Anenberg, S. C., & Gardner, L. M. (2021). Unified real-time environmental-433 
epidemiological data for multiscale modeling of the COVID-19 pandemic [Preprint]. 434 
Epidemiology. https://doi.org/10.1101/2021.05.05.21256712 435 

Carlson, C. J., Gomez, A. C. R., Bansal, S., & Ryan, S. J. (2020). Misconceptions about weather 436 
and seasonality must not misguide COVID-19 response. Nature Communications, 11(1), 437 
4312. https://doi.org/10.1038/s41467-020-18150-z 438 

Castro, M. C., Kim, S., Barberia, L., Ribeiro, A. F., Gurzenda, S., Ribeiro, K. B., Abbott, E., 439 
Blossom, J., Rache, B., & Singer, B. H. (2021). Spatiotemporal pattern of COVID-19 440 
spread in Brazil. Science, 372(6544), 821–826. https://doi.org/10.1126/science.abh1558 441 

Colston, J. M., Hinson, P., Nguyen, N.-L. H., Chen, Y. T., Badr, H. S., Kerr, G. H., Gardner, L. 442 
M., Martin, D. N., Quispe, A. M., Schiaffino, F., Kosek, M. N., & Zaitchik, B. F. (2022). 443 
Effects of hydrometeorological and other factors on SARS-CoV-2 reproduction number in 444 
three contiguous countries of Tropical Andean South America: A spatiotemporally 445 
disaggregated time series analysis [Preprint]. medrXiv. 446 
https://doi.org/10.1101/2022.06.13.22276339 447 

CSSE. (2022). Johns Hopkins Center for Systems Science and Engineering (CSSE) Coronavirus 448 
Resource Center. https://coronavirus.jhu.edu/map.html 449 

Dominici, F. (2002). On the Use of Generalized Additive Models in Time-Series Studies of Air 450 
Pollution and Health. American Journal of Epidemiology, 156(3), 193–203. 451 
https://doi.org/10.1093/aje/kwf062 452 

Doocy, S., Page, K. R., de la Hoz, F., Spiegel, P., & Beyrer, C. (2019). Venezuelan Migration 453 
and the Border Health Crisis in Colombia and Brazil. Journal on Migration and Human 454 
Security, 7(3), 79–91. https://doi.org/10.1177/2331502419860138 455 

Fasiolo, M., Nedellec, R., Goude, Y., & Wood, S. N. (2019). Scalable visualisation methods for 456 
modern Generalized Additive Models (arXiv:1809.10632). arXiv. 457 
http://arxiv.org/abs/1809.10632 458 

Google, LLC. (2022). Google COVID-19 Community Mobility Reports. 459 
https://www.google.com/covid19/mobility/ 460 

Gostic, K. M., McGough, L., Baskerville, E. B., Abbott, S., Joshi, K., Tedijanto, C., Kahn, R., 461 
Niehus, R., Hay, J. A., De Salazar, P. M., Hellewell, J., Meakin, S., Munday, J. D., 462 
Bosse, N. I., Sherrat, K., Thompson, R. N., White, L. F., Huisman, J. S., Scire, J., … 463 
Cobey, S. (2020). Practical considerations for measuring the effective reproductive 464 
number, Rt. PLOS Computational Biology, 16(12), e1008409. 465 
https://doi.org/10.1371/journal.pcbi.1008409 466 



manuscript submitted to GeoHealth 

 13 

Greenwell, B. M., & Boehmke, B. C. (2020). Variable Importance Plots—An Introduction to the 467 
vip Package. The R Journal, 12(1), 343–366. https://doi.org/10.32614/RJ-2020-013 468 

Hale, T., Angrist, N., Goldszmidt, R., Kira, B., Petherick, A., Phillips, T., Webster, S., Cameron-469 
Blake, E., Hallas, L., Majumdar, S., & Tatlow, H. (2021). A global panel database of 470 
pandemic policies (Oxford COVID-19 Government Response Tracker). Nature Human 471 
Behaviour, 5(4), 529–538. https://doi.org/10.1038/s41562-021-01079-8 472 

Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive models (1st ed). 473 
Instituto Brasileiro de Geografia e Estatística. (2018). 2018 Access to Internet and TV and 474 

ownership of cell phone for personal use. Continuous National Household Sample 475 
Survey, PNAD-Contínua. https://www.ibge.gov.br/en/statistics/multi-domain/science-476 
technology-and-innovation/18083-annual-dissemination-477 
pnadc3.html?edicao=27537&t=resultados 478 

Johns Hopkins Centers for Civic Impact. (2022). International vaccine data. 479 
https://coronavirus.jhu.edu/region/brazil 480 

Kerr, G. H., Badr, H. S., Gardner, L. M., Perez-Saez, J., & Zaitchik, B. F. (2021). Associations 481 
between meteorology and COVID-19 in early studies: Inconsistencies, uncertainties, and 482 
recommendations. One Health, 12, 100225. https://doi.org/10.1016/j.onehlt.2021.100225 483 

Kortessis, N., Simon, M. W., Barfield, M., Glass, G. E., Singer, B. H., & Holt, R. D. (2020). The 484 
interplay of movement and spatiotemporal variation in transmission degrades pandemic 485 
control. Proceedings of the National Academy of Sciences, 117(48), 30104–30106. 486 
https://doi.org/10.1073/pnas.2018286117 487 

Lowen, A. C., & Steel, J. (2014). Roles of Humidity and Temperature in Shaping Influenza 488 
Seasonality. Journal of Virology, 88(14), 7692–7695. https://doi.org/10.1128/JVI.03544-489 
13 490 

Ma, Y., Pei, S., Shaman, J., Dubrow, R., & Chen, K. (2021). Role of meteorological factors in 491 
the transmission of SARS-CoV-2 in the United States. Nature Communications, 12(1), 492 
3602. https://doi.org/10.1038/s41467-021-23866-7 493 

Mecenas, P., Bastos, R. T. da R. M., Vallinoto, A. C. R., & Normando, D. (2020). Effects of 494 
temperature and humidity on the spread of COVID-19: A systematic review. PLOS ONE, 495 
15(9), e0238339. https://doi.org/10.1371/journal.pone.0238339 496 

Nottmeyer, L. N., & Sera, F. (2021). Influence of temperature, and of relative and absolute 497 
humidity on COVID-19 incidence in England—A multi-city time-series study. 498 
Environmental Research, 196, 110977. https://doi.org/10.1016/j.envres.2021.110977 499 

Pequeno, P., Mendel, B., Rosa, C., Bosholn, M., Souza, J. L., Baccaro, F., Barbosa, R., & 500 
Magnusson, W. (2020). Air transportation, population density and temperature predict the 501 
spread of COVID-19 in Brazil. PeerJ, 8, e9322. https://doi.org/10.7717/peerj.9322 502 

Ponce, D. (2020). The impact of coronavirus in Brazil: Politics and the pandemic. Nature 503 
Reviews Nephrology, 16(9), 483–483. https://doi.org/10.1038/s41581-020-0327-0 504 

Rosario, D. K. A., Mutz, Y. S., Bernardes, P. C., & Conte-Junior, C. A. (2020). Relationship 505 
between COVID-19 and weather: Case study in a tropical country. International Journal 506 
of Hygiene and Environmental Health, 229, 113587. 507 
https://doi.org/10.1016/j.ijheh.2020.113587 508 

Sera, F., Armstrong, B., Abbott, S., Meakin, S., O’Reilly, K., von Borries, R., Schneider, R., 509 
Royé, D., Hashizume, M., Pascal, M., Tobias, A., Vicedo-Cabrera, A. M., MCC 510 
Collaborative Research Network, Hu, W., Tong, S., Lavigne, E., Correa, P. M., Meng, 511 
X., Kan, H., … Lowe, R. (2021). A cross-sectional analysis of meteorological factors and 512 



manuscript submitted to GeoHealth 

 14 

SARS-CoV-2 transmission in 409 cities across 26 countries. Nature Communications, 513 
12(1), 5968. https://doi.org/10.1038/s41467-021-25914-8 514 

Tamerius, J. D., Shaman, J., Alonso, W. J., Bloom-Feshbach, K., Uejio, C. K., Comrie, A., & 515 
Viboud, C. (2013). Environmental Predictors of Seasonal Influenza Epidemics across 516 
Temperate and Tropical Climates. PLoS Pathogens, 9(3), e1003194. 517 
https://doi.org/10.1371/journal.ppat.1003194 518 

Watson, O. J., Barnsley, G., Toor, J., Hogan, A. B., Winskill, P., & Ghani, A. C. (2022). Global 519 
impact of the first year of COVID-19 vaccination: A mathematical modelling study. The 520 
Lancet Infectious Diseases, S1473309922003206. https://doi.org/10.1016/S1473-521 
3099(22)00320-6 522 

Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood 523 
estimation of semiparametric generalized linear models: Estimation of Semiparametric 524 
Generalized Linear Models. Journal of the Royal Statistical Society: Series B (Statistical 525 
Methodology), 73(1), 3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x 526 

Wu, X., Nethery, R. C., Sabath, M. B., Braun, D., & Dominici, F. (2020). Air pollution and 527 
COVID-19 mortality in the United States: Strengths and limitations of an ecological 528 
regression analysis. Science Advances, 6(45), eabd4049. 529 
https://doi.org/10.1126/sciadv.abd4049 530 

Yang, W., Lipsitch, M., & Shaman, J. (2015). Inference of seasonal and pandemic influenza 531 
transmission dynamics. Proceedings of the National Academy of Sciences, 112(9), 2723–532 
2728. https://doi.org/10.1073/pnas.1415012112 533 

Yin, C., Zhao, W., & Pereira, P. (2022). Meteorological factors’ effects on COVID-19 show 534 
seasonality and spatiality in Brazil. Environmental Research, 208, 112690. 535 
https://doi.org/10.1016/j.envres.2022.112690 536 

Zhang, S., Wang, B., Yin, L., Wang, S., Hu, W., Song, X., & Feng, H. (2022). Novel Evidence 537 
Showing the Possible Effect of Environmental Variables on COVID‐19 Spread. 538 
GeoHealth, 6(3). https://doi.org/10.1029/2021GH000502 539 

 540 



 
 

1 
 

 

GeoHealth 

Supporting Information for 

Evolving Drivers of Brazilian SARS-CoV-2 Transmission: A Spatiotemporally 
Disaggregated Time Series Analysis of Meteorology, Policy, and Human Mobility 

Gaige Hunter Kerr1, Hamada S. Badr2, Alisson F. Barbieri3, Josh M. Colston4, Lauren M. 
Gardner2, Margaret N. Kosek4, and Benjamin F. Zaitchik2  

1 Department of Environmental and Occupational Health, George Washington University, 
21218, USA  
2 Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, 
MD 21218, USA  
3 Demography Department, Universidade Federal de Minas Gerais, Belo Horizonte, MG 
31270-901, Brazil 
4 Division of Infectious Diseases and International Health, University of Virginia School 
of Medicine, Charlottesville, VA 22903 
5 Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 
21218, USA 

 
Contents of this file  
 

Figures S1 to S6 
Table S1  

 
 



 
 

2 
 

 
Figure S1. Same as Figure 1B-G in the main text but showing time series of Rt for other 
Brazilian states and the federal district.  
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Figure S1 (continued). 
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Figure S2. Scatter plot showing GAM-predicted versus EpiNow2-estimated Rt for 
different periods of interest. The solid line shows the 1:1 line. Inset text denotes the root 
mean square error (RMSE), Pearson correlation coefficient (r), and the slope of the linear 
regression fit (m), where GAM Rt is the dependent variable and EpiNow2 Rt is the 
explanatory variable. 
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Figure S3. Distribution of state-level GAM model terms for the full study period, JJA 
2020-JJA 2021. Bands show the 95% confidence interval generated from each model 
term and its margin of error.  
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Figure S4. Distribution of the ALE for state-level temperature variability 
(σ(temperature)+ in Equation 2 in the main text). Different groups of boxes represent 
different quartiles of temperature variability: Q1 represents states with temperature 
variability in the 0-25th percentile, Q2 in the 25-50th percentile, Q3 in the 50-75th 
percentile, and Q4 in the 75-100th percentile. Individual box features, from bottom to top, 
denote the first quartile, the median, and the third quartile. Whiskers extend to ±1.5 times 
the interquartile range.  
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Figure S5. ALE of the state-level random effects. States with ALE>0 can be interpreted 
as states with higher propensity for transmission. 
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Figure S6. Spearman’s rank correlation coefficient measuring the relationship between 
state-level Rt and (A) the OxCGRT policy, (B) Google workplaces, and (C) Google 
residential model terms for each study time period. States where the OxCGRT policy 
term has no daily variations for a particular period are denoted with the NA value. 
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Period 

 
Deviance 
explained 
(%) 

p-value  

f(temperat
ure) 

f(specific 
humidity) 

f(Temperat
ure, 
Specific 
humidity) 

f(Temperat
ure 
variability, 
Specific 
humidity) 

f(OxCGRT 
Policy 
Index) 

f(Google 
workplaces
) 

f(Google 
residential) 

f(Lagged 
cumulative 
cases) 

f(state) 

JJA 2020- 
JJA 2021 

26.8 0.0025 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

JJA 2020 67.4 < 0.0001 < 0.0001 < 0.0001 0.0008 < 0.0001 0.0995 < 0.0001 < 0.0001 < 0.0001 

SON 2020 37.9 0.0015 < 0.0001 0.5377 < 0.0001 < 0.0001 0.0075 < 0.0001 < 0.0001 < 0.0001 

DJF 2020- 
2021 

30.6 < 0.0001 0.0001 0.7890 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

MAM 
2021 

46.8 < 0.0001 0.1721 < 0.0001 0.1475 < 0.0001 0.0795 0.0842 < 0.0001 < 0.0001 

JJA 2021 29.5 0.7750 0.0001 < 0.0001 0.0183 < 0.0001 0.0009  0.0003 < 0.0001 < 0.0001 

 
Table S1. Generalized additive model (GAM) deviance explained and significance of 
smoothing parameters for each study period and terms. Here, JJA = June-July, SON = 
September-November, DJF = December-February, and MAM = March-May.  

  
 
 


