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Abstract

Subglacial seismicity provides the opportunity to monitor inaccessible glacial beds at the epicentral location and time. Glaciers

can be underlain by rock or till, which determines the mechanics of slip and, if unstable, characteristics of resulting seismicity.

Utilizing a double direct shear apparatus, we found conditions for instability at freezing temperatures and high slip rates for

both bed types, although with very different frictional evolution. During stick-slip stress-drops, we recorded acoustic emissions

with piezoelectric transducers frozen into the ice. Supervised machine learning can classify recorded waveforms and spectra as

coming from rock or till beds. The Random Forest Classifier is interpretable, with the prediction based on the initial oscillation

peaks and high frequency energy. Till events are generally higher stress-drop, with more impulsive first arrivals compared to

rock waveforms. These seismic signatures of mechanical slip processes and associated bed conditions can potentially greatly

enhance interpretation of subglacial seismic data.
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Key Points: 8 

• Ice slip on frozen till or rock at high velocity produce stick-slip stress-drops with AEs 9 
recorded on transducers frozen into the ice 10 

• Supervised machine learning can determine bed type (rock versus frozen till) from 11 
waveform or spectral features 12 

• Feature importance shows till events are more impulsive/higher frequency, consistent 13 
with higher stress-drops, friction, and healing  14 
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Abstract 15 

Subglacial seismicity provides the opportunity to monitor inaccessible glacial beds at the 16 
epicentral location and time. Glaciers can be underlain by rock or till, which determines the 17 
mechanics of slip and, if unstable, characteristics of resulting seismicity. Utilizing a double direct 18 
shear apparatus, we found conditions for instability at freezing temperatures and high slip rates for 19 
both bed types, although with very different frictional evolution. During stick-slip stress-drops, we 20 
recorded acoustic emissions with piezoelectric transducers frozen into the ice. Supervised machine 21 
learning can classify recorded waveforms and spectra as coming from rock or till beds. The 22 
Random Forest Classifier is interpretable, with the prediction based on the initial oscillation peaks 23 
and high frequency energy. Till events are generally higher stress-drop, with more impulsive first 24 
arrivals compared to rock waveforms. These seismic signatures of mechanical slip processes and 25 
associated bed conditions can potentially greatly enhance interpretation of subglacial seismic data. 26 

Plain Language Summary 27 

A glacier can lurch forward while slipping on its base, releasing seismic waves like an earthquake, 28 
which are monitored from the surface. Just like in a tectonic setting, only certain conditions allow 29 
for this type of motion, and aspects of the bed conditions affect how they slip and the resulting 30 
waves. We approximate glacial bed conditions in the lab of two very different types, soft 31 
(sediment) and hard (rock), and measure lurching behavior and resulting waves from each. Using 32 
a variety of data science techniques, we decipher subtle differences between the two bed types 33 
from remotely-sensed waves. This suggests that seismicity can provide important information on 34 
glacial bed conditions and how they differ in time and space.  35 

1 Introduction 36 

Future sea-level rise will largely be determined by fast-slipping polar glaciers, known as ice 37 
streams [Cuffey & Paterson 2010]. Since motion is mostly concentrated at their beds, conditions 38 
there have an outsized effect on the entire system’s mass-balance and evolution. Glacial beds are 39 
separated, to first order, into hard bedrock or soft sediment (till), and then as either ‘wet’ (melting 40 
temperature) or ‘dry’ (frozen or drained) [Clarke 2005]. Water and sediment can flow and evolve 41 
on much shorter time scales than ice deforms, so the bed is one of the most dynamic parts of the 42 
ice sheet system, assumed to be responsible for recent changes in ice flow configurations 43 
[Bougamont et al., 2015] and ongoing responses to the changing climate [Parizek et al., 2013].  44 

Although the basal system is difficult to directly access, growing observations of subglacial 45 
seismicity offer the opportunity to monitor changes with high temporal and spatial resolution 46 
[Aster & Winberry 2017]. Recent studies have used subglacial seismicity observations to infer 47 
differences in bed strength [Guerin et al., 2021], failure mechanism [Kufner et al., 2021], fine-48 
scale asperity interactions [Gräff et al., 2021], basal water pressure [Gräff & Walter 2021], as well 49 
as local basal shear-stresses and slip-rates [Hudson et al., 2022]. 50 

Seismic observations are particularly useful since there are limited glacial bed conditions that have 51 
been shown to exhibit the requisite conditions for seismic failure [Iverson 2010, Lipovsky et al., 52 
2019]. Classically, ice deformation, and thus slip due to regelation and viscous creep, is assumed 53 
to be rate-strengthening [Schoof 2005]. Till deformation was also first treated as viscous but later 54 
shown to be Coulomb plastic, essentially rate-neutral [Iverson 2010, Zoet & Iverson 2020]. But 55 
nucleation of seismic instability requires rate-weakening resistance, described by the rate-state 56 
stability parameter (b – a), which allows acceleration due to feedback with decreasing friction, as 57 
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has been shown for fault rocks and gouge [Marone 1998]. This situation provides the opportunity 58 
for seismic observations to present a strong constraint on the conditions at their epicentral location 59 
and origin time, but each potential stick-slip mechanism and characteristics of resulting seismicity 60 
must be thoroughly understood to determine what conditions recorded seismic events represent.  61 

Laboratory simulations provide the opportunity to directly observe slip behavior under controlled 62 
conditions. To date, seismically required rate-weakening has been reported for debris-laden ice on 63 
impermeable rock at sub-freezing temperature and permeable rock at the pressure melting point 64 
[Zoet et al., 2013], pure ice on impermeable rock at sub-freezing temperature [McCarthy et al., 65 
2017], and pure ice on till at sub-freezing temperature [Saltiel et al., 2021], with stick-slip stress-66 
drops reported for debris-laden ice on impermeable rock at sub-freezing temperature [Zoet et al., 67 
2020]. These findings suggest that seismicity is largely associated with dry (frozen or drained) 68 
conditions. Although fast-slipping glaciers are commonly assumed to occur on wet, temperate 69 
beds, local mechanisms could freeze bed regions, for example around obstacles [Robin 1976]. 70 
Experiments have also shown rate-weakening is possible due to cavity formation behind hard bed 71 
obstacles [Zoet & Iverson 2016] and pore-pressure feedback from clast ploughing [Thomason & 72 
Iverson 2008]. Although each of these mechanisms, and the bed conditions which enable them, 73 
show rate-weakening drag, their frictional evolution can differ dramatically. For example, the 74 
critical slip distance (Dc) over which friction evolves to a new steady-state after a change in slip 75 
rate varies by more than an order of magnitude between rock and till beds under similar conditions 76 
in the same apparatus [McCarthy et al., 2017, Saltiel et al., 2021]. These mechanisms’ different 77 
frictional characteristics and applicable scales likely contribute to aspects of the resulting 78 
seismicity, which could further constrain epicentral bed conditions. 79 

We report here, for the first time, experimental stick-slip stress-drops for pure ice on impermeable 80 
rock and till at sub-freezing temperatures. In addition, we measured acoustic emissions (AEs) from 81 
these settings and analyze the measured waveforms using machine learning (ML) classification 82 
algorithms to find the characteristics associated with each bed type. By improving our 83 
understanding of the mechanisms of unstable slip in glacial settings and their expression in seismic 84 
emissions, these experiments and analysis techniques provide the opportunity to extract more 85 
information on conditions / source mechanics of subglacial or other seismic settings. 86 

2 Experimental Methods and Materials 87 

Experiments were conducted using an ambient pressure, cryogenic temperature, servo-hydraulic 88 
biaxial friction apparatus [McCarthy et al., 2016], with modifications to the insulating cryostat and 89 
loading procedure to allow measurement of till [Saltiel et al., 2021]. In this double-direct-shear 90 
configuration, a central ice block slides against two stationary side blocks, with layers of pre-91 
compacted and frozen till or rock on opposite sides of the ice, such that applied horizontal load is 92 
resolved as normal stress and vertical load as shear stress on the sliding interfaces (Figure 1a). 93 
Additional experimental details are described in supporting text S1. 94 

We made three additional modifications to the apparatus from Saltiel et al., [2021]. A Linear 95 
Variable Inductance Transducer (LVIT) position sensor measures the sample displacement 96 
separate from the loading point’s preset displacement. This allowed measurement of displacement 97 
in each stress-drop ‘slip’ event as well as how much slip occurs during ‘stuck’ periods and the 98 
timing of both relative to stress-drops (Figure 1b). Here we refer only to mechanical or bulk stress-99 
drops, the stress change during a slip event as measured by our vertical load cell, not to be confused 100 
with seismologically derived stress-drops. A rubber material was inserted into the loading 101 
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geometry that effectively reduced the stiffness of the apparatus, reaching critical stiffness and 102 
allowing stick-slip instability [Zoet et al., 2020]. We estimate the effective apparatus stiffness 103 
using the mechanical data’s reloading slope between stress-drops, relative to the compression of 104 
the loading train including rubber, the load point displacement minus sample displacement (Figure 105 
1b). We estimate the apparatus stiffness after adding the rubber to be ~ 0.1 kPa/μm or ~ 5 x 105 106 
N/m, significantly less stiff than was estimated without the rubber ~ 1 kPa/μm [Saltiel et al., 2021]. 107 
Additionally, commercial piezoelectric transducers were frozen into the central ice block, facing 108 
one of the ice-bed interfaces, to measure AEs. After experimenting with four different types of 109 
transducers of varying sizes and frequency sensitivities, we settled on Physical Acoustic’s Nano-110 
30TM miniature AE sensor due to its small size and 125-750 kHz response, covering the major 111 
frequency content of the events. All AEs analyzed here were recorded with a single Nano-30. 112 

113 
Figure 1: a) Schematic of biaxial cryostat with additions of rubber spring, to decrease loading 114 
stiffness, AE sensor frozen into central ice bock (pictured within ice in inset on left), and sample 115 
displacement measurement, modified from Saltiel et al., [2021]. For more details about apparatus 116 
see that publication and supporting text S1.  b) An example experiment of measured friction drops 117 
(in black on top) and stick-slip sample displacement (in red on the bottom) with the steady load 118 
point displacement (in black) for reference. Instability was induced by apparatus reaching 119 
subcritical stiffness. c) An example AE waveform before processing, from a single stress-drop.  120 

AEs were recorded using a preamplifier and TiePieTM HS6 differential digital oscilloscope. To 121 
ensure we recorded all relevant spectral content in the waveforms, they were recorded at a sample 122 
rate of 100 MHz for 1 ms time windows around each event (Figure 1c). These oscilloscope settings 123 
provided the optimal real-time viewing of waveforms as they were being recorded (see supporting 124 
movie S1 of experiment including audible stress-drops), but subsequent analysis showed most of 125 
the energy was under 1 MHz, and waveforms were down-sampled to 10 MHz and windowed to 126 
15 μs. Recordings of continuous acoustic signal without applied shear found electrical noise above 127 
3 MHz, so filtering also helped remove persistent noise sources. The oscilloscope was set in rising-128 
limb trigger mode with trigger amplitude set just above the noise level before slip initiates, such 129 
that it did not trigger without an audible stress-drop. Since electrical and other sources of noise 130 
can vary, this trigger level was adjusted throughout the experiment to maximize the number of 131 
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captured events and minimize waveforms of purely noise, but some events were missed, and some 132 
events triggered by noise or other AE sources were saved. 133 

3 Data Processing and Machine Learning Analysis 134 

Most events directly correspond to bulk mechanical stress drops, but to remove AEs associated 135 
with other types of sources (smaller patches of slip, cracking…), noisy events, non-events 136 
triggered by noise, and to normalize the waveforms in a way that focuses on the initial wave 137 
arrivals, we implemented a data cleaning and normalization approach based on that implemented 138 
by Nolte & Pyrak-Nolte [2022], described in supporting text S2. 139 

After removing noisy waveforms, we end up with 2817 total events, including 1547 waveforms 140 
from 6 till experiments and 1270 waveforms from 6 rock experiments. With this labeled catalog 141 
(Figure 2), we systematically explored the ability of numerous supervised ML algorithms to 142 
predict the bed type for each event based on their waveform and spectra. 143 

Input features to the machine learning models were the normalized waveform amplitudes at each 144 
timestep or the log10 power at each frequency for the spectra. The trained models select the most 145 
important temporal portions of the waveforms or frequencies in the spectra for discriminating 146 
between bed labels. We tested five basic ML classification algorithms including XGBoost (mean 147 
prediction accuracy ~74%), random forests (~77%), support vector machines (~75%), Naïve 148 
Bayes (~71%), K-nearest Neighbors (~76%), and fully connected neural networks (~75%). The 149 
waveforms and spectra were independently broken into train and test datasets. Hyperparameters 150 
were tuned for each algorithm and input data type (time or frequency domain) using 5-fold cross 151 
validation, and the highest-accuracy model for each algorithm was then used for prediction on the 152 
test set. The results of all our tests are summarized in supporting text S3, but here we focus our 153 
analysis on the Random Forest Classifier model [Breiman 2001] applied to the processed catalog, 154 
since it obtained some of our highest prediction accuracies, but, most importantly, it gives the 155 
feature importance needed to interpret how the model obtains its results. The feature importance 156 
shows the weighting of each waveform sample or frequency in making its prediction (Figures 4a 157 
and b). The feature importance is key for interpreting how the prediction is made and visually 158 
highlighting the subtle differences between different event sources. The purpose of this study is to 159 
understand how bed differences manifest in the resulting emissions, not to find a black-box 160 
algorithm which best differentiates them. 161 
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Figure 2: a) Waveforms plotted 162 
in chronological order along y-163 
axis, colored by (normalized) 164 
amplitude (red is positive and 165 
blue negative). Rock events are 166 
plotted on the left and till on the 167 
right. b) Waveforms plotted 168 
together for each experiment 169 
(labelled on upper left). Each 170 
waveform (rock in red and till in 171 
teal) is plotted with a thin, light 172 
line, so the darker parts show 173 
many waveforms aligned on top 174 
of each other, and broader lines 175 
show less alignment. Since 176 
experiments vary significantly 177 
by number of events (94 – 465), 178 
that also contributes to the 179 
appearance of each experiment 180 
plot. Although there are subtle 181 
visual differences, it is not 182 
obvious that the two beds can be 183 
deciphered, making it a useful 184 
dataset to explore ML-based 185 
classification.  186 



Confidential manuscript submitted to Geophysical Research Letters 

 7 

4 Stick-Slip Instability at Frozen Conditions 187 
These experiments show the temperature dependence of instability, as both rock and till 188 
experiments were undertaken over a range of temperatures. Although analyzing the temperature 189 
dependence of AEs is outside of the scope of this letter, we did find stress-drops only at frozen 190 
temperatures (< ~ 0 °C for rock and < ~ -2.5 °C for till beds in Figure 3). It must be noted that 191 
temperatures are approximate, since they are measured behind the till/rock, there is some lag time 192 
before the temperature on the sliding interface reached those recorded. This is consistent with rate-193 
weakening friction shown for till beds at ~ -3 °C using the same apparatus [Saltiel et al., 2021]. 194 
We estimate the apparatus stiffness with rubber to be ~ 0.1 kPa/μm or ~ 5 x 105 N/m, which is the 195 
same order of magnitude as the critical stiffness estimated from velocity-step experiments ∼ 0.02 196 
kPa/μm or 1 × 105 N/m (calculation on page 13 of Saltiel et al., [2021]). This factor of five 197 
difference is consistent with the error inherit in applying estimations of rate-state friction 198 
parameters (b – a, Dc) from a single experiment, as well as in our rough estimation of apparatus 199 
stiffness. Past studies of ice on rock friction did not find rate-weakening until lower temperatures, 200 
< ~ -18 °C for McCarthy et al., [2017]. In that study, experiments above -18 °C which exhibited 201 
slight rate-strengthening were undertaken at less than half the slip rate, which could affect the rate-202 
dependence as well as stability more broadly [Schulson & Fortt 2012]. It is also possible to reach 203 
instability at nominally stable conditions given the strong elastic contrast between ice and rock 204 
beds [Rice et al., 2001]. This highlights the range of factors that contribute to seismic instability, 205 
further experiments and analysis are needed to fully map the conditional dependence of stability. 206 

207 
Figure 3: Example experiments of the temperature effect on slip stability for a) rock and b) till 208 
beds. Each experiment begins with stress-drops but, after a hold (described in supporting text S1), 209 
with increasing temperature the ice starts to slide stably without sudden friction drops or audible 210 
stick-slips. The transition to stable sliding occurs around 0 °C for the rock experiment. In the till 211 
experiment, the stability temperature is reached during the hold, but as it is re-cooled stress-drops 212 
resume below about -2.5 °C. Each estimated transition temperature is highlighted with a solid 213 
black horizontal line, but the temperatures are not measured directly at the ice-bed interface, so the 214 
interface temperature lags that recorded. The lag time (estimated to be ~100 s given rock/till 215 
thermal diffusivities ~1 mm2/s) is represented by the yellow region right of the measured 216 
temperature. Additionally, when the temperature probe goes above ~0 °C the ice will remain at its 217 

300 350 400 450 500 550 600 650 700
0

0.2

0.4

0.6

0.8

-3.5

-3

-2.5

-2

-1.5

Te
m

pe
ra

tu
re

 (º
C

)

Te
m

pe
ra

tu
re

 (º
C

)
Time (s)   Time (s)   

0

0.2

0.3

400 450 500 550 600 650 700 750 800
-2

0

2

Fr
ic

tio
n 

co
ef

fic
ie

nt

Fr
ic

tio
n 

co
ef

fic
ie

nt

a)   b)   Rock Bed: V = 100 micron/s   Till Bed: V = 100 micron/s   

Hold Stable SlidingUnstable Stick-Slip HoldUnstable Stick-Slip Stable Sliding



Confidential manuscript submitted to Geophysical Research Letters 

 8 

pressure melting point. It is also apparent that the till experiment has higher friction and healing 218 
rate (as the friction rose more after hold times of similar duration). 219 

5 Bed Type Classification from Acoustic Emissions 220 

Using a wide range of classification algorithms, we consistently find prediction accuracy above 221 
50%, mostly between 65% and 80% (Supporting Figure S3), showing it is possible to tell if a 222 
population of AEs was emitted by a till or rock bed. This is not clear by visually examining the 223 
waveforms (Figure 2), showing algorithms successfully extract subtle features corresponding to 224 
the different bed labels. The logarithm of event spectra is also predictive (see supporting text S4). 225 

To be able to apply our findings from laboratory AEs to field-scale seismicity, it is vital that we 226 
can interpret how the algorithms make their prediction. Although transfer learning methods offer 227 
the potential to train with labelled laboratory or modelled datasets and ‘transfer’ the model to more 228 
limited field or laboratory data [e.g., Wang et al., 2021], clear differences in the spectral content, 229 
travel path effects, and scale of field seismic data make this a daunting task. By isolating and 230 
interpreting the features the algorithms are using to make their successful predictions, we can 231 
understand the differences to look for and interpret in field data. The feature importance for the 232 
Random Forest Classifier model shows that it focuses on the peak and valley of the first full 233 
oscillation of the initial wave arrival (Figure 4a). Plotting all the normalized waveforms (color 234 
coded by bed type) together, we can see that the till (teal) waves tend to have higher amplitude in 235 
these first peaks. Similarly, log spectra show more energy at higher frequencies for the till in 236 
comparison to rock spectra (Figure 4b). Analyzing the mechanical data from 23 till and 22 rock 237 
experiments (including other experiments without recorded AEs), we find that the stress-drops of 238 
stick-slip events on till beds are generally higher (Figure 4c). The more impulsive arrivals and 239 
higher frequency content is consistent with till’s higher stress-drops, since seismological stress-240 
drop is calculated by the corner frequency where energy starts to fall off [e.g., Zoet et al., 2012]. 241 
This, in turn, can be explained by till’s higher healing (Figures 3 and 4d), friction (Figure 3), as 242 
well as the rougher till surface (with its larger grain sizes). 243 

    244 
Figure 4: a) Feature importance, showing the weighting of each waveform sample to the model 245 
prediction, highlights the importance of the initial wave arrivals. The superimposed normalized 246 
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waveforms show till (teal) events are higher amplitude than rock (red) in these first oscillations. 247 
b) Feature importance of each frequency in the model prediction, show till (teal) and rock (red) 248 
spectra partially separate from each other above about 100 kHz, with till having more energy at 249 
these higher frequencies. c) Distribution of largest repeated mechanical stress-drop amplitude from 250 
23 till and 22 rock experiments at similar conditions show till has higher stress-drops, although the 251 
two populations overlap significantly. d) Stress-drops vs recurrence interval for till and rock 252 
experiments shows till’s greater healing (higher slope) contributes to higher stress-drops, while 253 
rock healing varies, but is generally lower. 254 

It is likely that obtaining much higher prediction accuracies is impossible since each bed creates 255 
events like the other. The stress-drop and healing rates of the two populations clearly overlap 256 
(Figure 4c and d); spectra and waveform characteristics do as well. How this effects prediction can 257 
be most clearly seen with the log spectra since the visual separation is greatest. Figure 5a and b 258 
show that misclassified events are in the region between the event types, while Figure 5c shows 259 
that the waveform statistical attributes also greatly overlap. Although correctly predicting every 260 
event is unrealistic, given a sufficient sample size, our results suggest it could be possible to predict 261 
the bed type of a group of events from the same epicentral conditions (see supporting text S5). 262 

   263 
Figure 5: Log spectra of correct and misclassified a) till and b) rock events and c) distributions of 264 
statistical measures of waveforms from all experiments from each bed show how much the event 265 
populations overlap. The higher variance in the till waveform distributions is due to their more 266 
impulsive nature, but there are many rock events with just as high variance.  267 

6 Conclusions 268 

This study presents stick-slip stress-drops and resultant AEs for ice on rock and till beds at sub-269 
freezing temperatures, a labeled dataset with which we explore how ML can decipher the bed from 270 
AE characteristics. We found that instability, and thus seismicity, only occurs for each bed below 271 
a certain temperature (~0 °C for rock and ~-2.5 °C for till), sliding stably as the temperature warms 272 
above and stick-slipping again when frozen below these estimated temperatures. Although the 273 
different bed types exhibit stick-slip behaviors at similar conditions, the mechanics of their drag 274 

a)

b)

c)
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are very different, demonstrated by friction that evolves over an order of magnitude more distance 275 
(Dc), significantly more rate-weakening (b – a), higher friction, and healing rates in frozen till 276 
compared to rock beds [Saltiel et al., 2021]. Resultant emissions have subtle differences, difficult 277 
to decipher visually, but which ML-based classification was able to identify; successfully 278 
predicting the bed type of a given waveform about 65% to 80% of the time, depending on the 279 
classification algorithm, processing steps, and data type used. The Random Forest Classifier was 280 
particularly successful (~77% mean prediction accuracy) and interpretable, since it provides 281 
feature importance of each waveform sample or frequency, showing the models focus on the initial 282 
wave arrivals and certain frequencies, where till events are higher amplitude. This is consistent 283 
with till’s more impulsive failure, higher stress-drops, and friction, in turn due to a rougher and 284 
faster healing interface. 285 

Given how different the slip mechanics of these two beds are, it is somewhat surprising how similar 286 
the resultant AEs are, but the interpretability of our ML results offers a path forward for 287 
classification. The findings are also counter to our original hypothesis based on the much longer 288 
frictional evolution distances (Dc) found in velocity-step experiments, which suggest less 289 
impulsive, lower frequency emissions. It is likely that different aspects of the frictional mechanics 290 
counter each other, for example more healing has been associated with higher frequency emissions 291 
in laboratory and natural faults [McLaskey et al., 2012], which could cancel the spectral effect of 292 
longer Dc. In a similar way, till experiments’ higher Dc and b – a balance each other to produce a 293 
critical rheological stiffness of the same order as rock [Saltiel et al., 2021]. In the end, our findings 294 
suggest that supervised ML-based classification and unsupervised correlation studies could find 295 
unknown and non-intuitive relationships between seismic emission characteristics and the 296 
mechanics / conditions of rupture in subglacial, as well as tectonic, volcanic, or induced seismicity 297 
settings. Laboratory experiments offer the opportunity to obtain well-controlled, labeled datasets, 298 
but results need to interpretable. Although it will be difficult to transfer models trained in the lab 299 
directly to field-scale data, the understanding gained can be used to infer characteristics of natural 300 
seismic sources. 301 
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Text S1: Experimental Details 31 
For this study we only used bulk ice samples, frozen slowly from deionized water in 32 

a slightly oversized die, and subsequently cut down to 50 x 50 x 100 mm with a microtome 33 
housed in a cold room (~ - 12 °C). The bulk freezing process results in large, non-uniform 34 
grain size compared to ‘standard ice,’ created using a narrow range of seed ice grain sizes 35 
[Cole 1979]. Saltiel et al., [2021] showed an insignificant frictional difference between the 36 
two types, so we employed bulk ice in this study. The simplified freezing process is much 37 
less time intensive and allows the ultrasonic transducers to be frozen directly into the ice 38 
sample (Figure S1), minimizing travel distance from the ice-bed interface and contact 39 
surfaces which can greatly diminish recorded acoustic amplitudes. The sliding surfaces 40 
were roughened with a no. 100 grit sandpaper using the same procedure as McCarthy et 41 
al., [2017], who determined a roughness average (Ra) of 7 ± 1 μm using a profilometer 42 
(Mitutoyo SF-210). 43 

 44 
Figure S1:   Bulk ice with an ultrasonic 45 
transducer (AE sensor) frozen into it. The bulk 46 
freezing process allows the suspension of the 47 
sensor in the deionized water during slow 48 
freezing. The sensor is oriented to face the 49 
sides of the block, where the ice-bed interface, 50 
source of AEs, will be when loaded into the 51 
apparatus. 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 61 
 62 
 63 
 64 

As in Saltiel et al., [2021], we control temperature with Peltier thermoelectric coolers 65 
in front and behind the ice block, as well as circulation of chiller fluid through the side 66 
blocks where both temperature and flow rate of chiller fluid were actively controlled to 67 
reach the desired temperature. Resistance Temperature Detectors (RTDs) ported directly 68 
behind the till or rock monitor the temperature as close to the sliding interfaces as possible. 69 
Unlike in Saltiel et al., [2021], we preformed experiments with both stable and changing 70 
temperature to explore the effect on stick-slip instability, stress-drops, and resulting AEs. 71 

Actively chilled aluminum side blocks were employed with either frozen till or rock 72 
attached to their ice-facing sides (Figures 1a, S2). All till experiments used a sample 73 
collected from the Matanuska glacier in south-central Alaska and were prepared using the 74 
same procedure described in Saltiel et al., [2021]. For rock beds, we employed Barre 75 
granite quarried from Barre Township, Vermont, that was cut into two 10 x 50 x 50 mm 76 
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slabs. A hole was drilled into the back side of the rock with the size and orientation of the 77 
side blocks’ RTD port, to embed the RTD and measure the temperature directly behind the 78 
ice-rock interface. These slabs were then epoxied onto the aluminum side blocks and 79 
roughened using no. 100 grit sandpaper. 80 

 81 

 82 
Figure S2: Photo of apparatus fully loaded. Since the peltier coolers cover the ice block, a 83 
photo without the cover is inset in the bottom left corner showing the central ice block at 84 
the end of an experiment, at the end of its full displacement. 85 

All experiments were undertaken at ~50 kPa of normal stress and a load point velocity 86 
of 100 μm/s (just over 3 km/yr) for the entire displacement of 40 mm. This relatively high 87 
load point velocity was chosen because previous work has shown that stability decreases 88 
with slip velocity [Zoet et al., 2013, Saltiel et al., 2021]. Since the load point Linear 89 
Variable Differential Transformer (LVDT) only has 20 mm of stroke, the load point was 90 
stopped halfway through each experiment and then LVDT was reset to complete the rest 91 
of the experimental displacement. In this way, every experiment included a hold of about 92 
60 seconds during which the shear stress relaxed and then reloaded, usually resulting in the 93 
largest stress-drop and AE of each experiment. 94 
 95 
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Text S2: Data Cleaning, Trimming, and Normalization 96 
We implemented a data cleaning, trimming, and normalization approach based on 97 

that implemented by Nolte and Pyrak-Nolte [2022]. First, waveforms were trimmed to a 98 
total of 1200 samples, including 400 samples before the trigger point, giving a total window 99 
of 15 microseconds. Waveforms were then normalized by the sum of the squared 100 
amplitudes of the first 400 samples after the trigger, multiplied by a cosine taper. Zero and 101 
large amplitude waveforms were removed, defined as having a sum of the first 400 102 
normalized samples greater than 15. This threshold was found to give the best catalog of 103 
non-noise events without removing too many. 325 events were then removed that a have 104 
high amplitude low frequency noise component. Finally, the waveforms were realigned to 105 
the first maximum peak after the trigger, which refined alignment by a few samples in most 106 
cases. From this catalog of normalized, filtered, and aligned 1200-sample waveforms, we 107 
used a trial-and-error approach to determine how much of the pre- and post-trigger 108 
waveforms to use for training the models and found a total length of 150 samples, with 45 109 
before the trigger, was optimal. This subsample of the waveforms emphasizes the first 110 
arrivals of each AE, which are more dependent on source effects, while ignoring the coda, 111 
which depend more on path effects. Although, as we will show in the next section, the 112 
original, unprocessed catalog was able to produce as high prediction accuracies, the 113 
processed waveforms were clearer to interpret, the main point of this study. 114 
 115 
Text S3: Results from Suite of ML Classification Algorithms 116 
 We systematically tested of a suite of ML classification algorithms, the original, 117 
full catalog and that created by the trimming and cleaning processing steps described 118 
above, using both waveforms and spectra. Figures S3 – S6 show the distributions of 119 
prediction accuracies for each of these combinations of algorithms and catalogs. 120 
 121 

 122 
Figure S3: Whisker plot 123 
showing the distribution of 124 
prediction accuracies using 125 
the processed waveform 126 
catalog for each algorithm 127 
tested. Random Forest 128 
Classifier shows the 129 
highest mean accuracy of 130 
the all the algorithms which 131 
give a distribution, and, 132 
most importantly, provides 133 
feature importance for 134 
interpretation, so we focus 135 
on those results. 136 
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Figure S4: Whisker plot showing the 137 
distribution of prediction accuracies for each 138 
input data type tested, using the processed 139 
catalog. Waveforms show the tightest 140 
distribution and highest mean. Spectra are not 141 
very accurate, because the low frequency 142 
power dominates the spectral power and thus 143 
contains little information (see S4 below). 144 
But log10 of the spectrum retain the high 145 
frequency information and accuracy can be as 146 
high as the predictions using waveforms. 147 

 148 
 149 

 150 
Figure S5: Whisker plot showing the distribution of prediction accuracies for the original, 151 
‘full’, catalog of events vs. the processed, ‘trimmed’, catalog, using the processing steps 152 
described in text S2. Although the full catalog is able to give as good, or sometimes better 153 
predictions accuracies, which is not surprising since it contains more information, we focus 154 
our analysis on the processed, ‘trimmed’, catalog since the results are easier to interpret, 155 
the main focus of this study. 156 
 157 
Text S4: Predictions using Spectrum vs Log Spectrum 158 
 We first undertook our analysis using spectrum, to test the predictive power of 159 
spectral information. But since the low frequency power dominates, using straight spectral 160 
power greatly diminishes the amount of data available (Figure S6a), and thus the 161 
predictions are relatively poor (Figure S4). By taking the log of the spectrum the higher 162 
frequency information is useful (Figure S6b) and predictions are more accurate. 163 
 164 
 165 
 166 
 167 
 168 
 169 
 170 
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a) 171 

 172 
b)  173 

 174 
Figure S6: a) Spectrum from every till (teal) and rock (red) event, and the feature 175 
importance used to make Random Forest Classifier model predictions. Most spectral power 176 
is below 200 kHz, b) by taking the log spectrum, the higher frequency information is 177 
useable and prediction accuracy is improved.  178 
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Text S5: Testing Experimental Differences 179 
 To ensure that the prediction is not based on some aspect of the waveform specific 180 
to the ice sample or other uncontrolled aspect of the experiment and not the bed type which 181 
we are testing for, we also tested each experiment independently, not allowing the 182 
algorithm to train on data from the same experiment as the testing. We divide the data into 183 
training and test sets based on experiment, i.e., for a given model training run the 184 
waveforms from 5 till and 5 rock experiments are used for the training set, and the 185 
remaining 1 till and 1 rock experiment are used for testing. By separating training and test 186 
sets by experiment, any experiment-dependent features of the waveforms would be 187 
irrelevant for classification. The prediction accuracy is summarized by a 6 till by 6 rock 188 
experiments matrix, giving the accuracy for 36 models with each combination used as the 189 
testing data (Figure S7). 190 

Figure S7: a) Mean prediction accuracy given 191 
different sets of rock and till experiments used as 192 
testing dataset. In each case, the other 193 
experiments were used as training data, 194 
producing a model for each combination of 195 
testing experiments (6 till and 6 rock experiments 196 
make for 36 different train and test datasets, and 197 
models). Although some experimental variation 198 
is expected, relatively consistent results across 199 
testing datasets (either randomly selected from 200 
all experiments or from an individual one) shows 201 
that the overall predictability is not experiment 202 
dependent. b) Table on right provides the 203 
temperature range, number of events, and 204 
accuracy for each individual experiment. 205 
This prediction accuracy calculates how often the model could correctly classify individual 206 
waveforms as coming from till or rock beds, but we envision a tool whereby a collection 207 
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of seismic events recorded from a given location would be analyzed to determine the 208 
probability it came from a till- or rock-bedded section of a glacier. So, the more relevant 209 
accuracy is if a single experiment can be accurately predicted to be till or rock, and how 210 
many events would be needed to make such a prediction accurate. Since its clear from 211 
Figure 5 that there are overlapping ‘till-like’ rock events and visa-versa, the direct 212 
prediction does not have to be used for the overall population prediction. For example, we 213 
find that all the experiments can be correctly predicted if 37.5% ‘rock-like’ events, or 214 
62.5% ‘till-like’ events, is used as the cut-off for overall prediction (Figure S8). Our data 215 
shows a sharp cut off at these values, so it likely would not remain a perfect classifier with 216 
more experiments, but it does suggest how predictions might be made given the 217 
overlapping event populations. 218 

Figure S8: Each experiments 219 
percentage of events predicted 220 
as rock, which we label as ‘rock-221 
like’ events. The till and rock 222 
experiments perfectly separate 223 
if more than 37.5% of the events 224 
are predicted as rock. 225 

 226 
 227 

 228 
 229 

Since there are rock experiments with more ‘till-like’ events than ‘rock-like’ events, it is 230 
possible that the model is ‘defaulting’ to till since there are slightly more till than rock 231 
events overall. We do not believe this is the case, given the significant overlap in the 232 
characteristics of rock and till events (Figure 5). While the rock stress-drops have a tighter 233 
distribution (Figure 4c), these stress drops do not follow a simple relationship with 234 
recurrence interval, as would be expected with a single healing rate and as seen with the 235 
till experiments (Figure 4d). Although there is not enough data to fully constrain, Figure 236 
4d suggests that some rock experiments sit on the till healing relation (stress-drops of about 237 
25 kPa per second of recurrence interval), while others have lower healing rates. This may 238 
explain the imbalance in prediction accuracy, why there are more ‘till-like’ rock AEs than 239 
‘rock-like’ till AEs. Some experiments near the cut-off, such as 270, would be very difficult 240 
to predict correctly. 270 is one of the rock experiments with a high healing rate (~22 kPa/s), 241 
which might contribute to its having more ‘till-like’, misclassified events. 242 

Movie S1: Movie of experiment and AE recording in real-time. Audible stick-slips and 243 
mechanical stress-drop data (not shown) both simultaneously occur with the recorded AEs. 244 
Some events appear to have two arrivals, probably one from each ice interface, since they 245 
have different path lengths they arrive at the sensor at slightly different times even if they 246 
occur at the same time. In these cases, the processing steps from text S2 remove the later 247 
arrival. 248 


