Strong cloud-circulation coupling explains weak trade cumulus feedback

Raphaela Vogel¹, Anna Lea Albright², Jessica Vial², Geet George³, Bjorn Stevens³, and Sandrine Bony²

¹LMD/IPSL, Sorbonne Université, now at: Universität Hamburg ²LMD/IPSL, Sorbonne Université, CNRS ³Max Planck Institute for Meteorology

November 26, 2022

Abstract

Shallow cumulus clouds in the trade-wind regions cool the planet by reflecting solar radiation. The response of trade cumulus clouds to climate change is a major uncertainty in climate projections. Trade cumulus feedbacks in climate models are governed by changes in cloud fraction near cloud base, with high climate-sensitivity models suggesting a strong decrease in cloud-base cloudiness due to increased lower-tropospheric mixing. Here we show that novel observations from the EUREC4A field campaign refute this mixing-desiccation hypothesis. We find the dynamical increase of cloudiness through mixing to overwhelm the thermodynamic control through humidity. Because mesoscale motions and the entrainment rate contribute equally to variability in mixing, but have opposing effects on humidity, mixing does not desiccate clouds. The magnitude, variability, and coupling of mixing and cloudiness differ drastically among climate models and with the EUREC4A observations. Models with large trade cumulus feedbacks tend to exaggerate the dependence of cloudiness on relative humidity as opposed to mixing, and also exaggerate variability in cloudiness. Our observational analyses render models with large positive feedbacks implausible, and both support and explain at the process scale a weak trade cumulus feedback. Our findings thus refute an important line of evidence for a high climate sensitivity.

1	Strong cloud-circulation coupling explains weak trade cumulus feedback
3	Raphaela Vogel ^{1,2*} , Anna Lea Albright ¹ , Jessica Vial ¹ , Geet George ³ , Bjorn Stevens ³ , Sandrine Bony ¹
	¹ LMD/IPSL, Sorbonne Université, CNRS, Paris, France ² now at: Universität Hamburg, Hamburg, Germany ³ Max Planck Institute for Meteorology, Hamburg, Germany

*To whom correspondence should be addressed; E-mail: raphaela.vogel@uni-hamburg.de

4 August 30, 2022

Shallow cumulus clouds in the trade-wind regions cool the planet by reflecting 5 solar radiation. The response of trade cumulus clouds to climate change is 6 a major uncertainty in climate projections $^{1-4}$. Trade cumulus feedbacks in 7 climate models are governed by changes in cloud fraction near cloud base^{5,6}, 8 with high climate-sensitivity models suggesting a strong decrease in cloud-base 9 cloudiness due to increased lower-tropospheric mixing⁵⁻⁷. Here we show that 10 novel observations from the EUREC⁴A field campaign^{8,9} refute this *mixing*-11 *desiccation* hypothesis. We find the dynamical increase of cloudiness through 12 mixing to overwhelm the thermodynamic control through humidity. Because 13 mesoscale motions and the entrainment rate contribute equally to variability 14 in mixing, but have opposing effects on humidity, mixing does not desiccate 15 clouds. The magnitude, variability, and coupling of mixing and cloudiness 16 differ drastically among climate models and with the EUREC⁴A observations. 17 Models with large trade cumulus feedbacks tend to exaggerate the dependence 18 of cloudiness on relative humidity as opposed to mixing, and also exaggerate 19 variability in cloudiness. Our observational analyses render models with large 20 positive feedbacks implausible, and both support and explain at the process 21 scale a weak trade cumulus feedback. Our findings thus refute an important 22 line of evidence for a high climate sensitivity^{10,11}. 23

2

²⁴ Introduction

Earth's climate strongly depends on the abundance and behavior of its smallest clouds. Shallow 25 trade-wind cumulus clouds are rooted in the turbulent sub-cloud layer and form when thermals 26 rise above the lifting condensation level¹². They may grow only a few 100 m high in dry en-27 vironments, or become positively buoyant and rise up to the trade-wind inversion, where they 28 detrain condensate into stratiform cloud layers. Trade cumuli populate the majority of subtrop-29 ical oceans and cool the planet by reflecting the incoming solar radiation. Due to their large 30 geographical extent, small errors in predicting the way trade cumuli respond to warming can 31 have a large effect on the global radiative budget. This explains why shallow cumuli in the 32 trades are a major source of spread in climate models' estimates of climate sensitivity¹⁻⁴. 33

Cloudiness near the base of the cumulus layer makes up two-thirds of the total cloud cover in 34 the trades¹³ and its change with warming governs the strength of the trade cumulus cloud feed-35 back in climate models^{5,6}. Reductions in cloud-base cloudiness in climate models are tightly 36 coupled with increases in lower-tropospheric mixing due to convective and large-scale circula-37 tions^{5–7}. Based on this strong negative coupling between mixing and cloudiness, the hypothesis 38 emerged that enhanced convective *mixing* might *desiccate* the lower cloud layer and reduce 39 cloudiness in the trades⁷. This *mixing-desiccation* hypothesis suggests that the moisture trans-40 ported by convection from the sub-cloud layer to the trade inversion is compensated by down-41 ward mixing of drier air and evaporation of clouds near cloud base. The mechanism-which is 42 expected to become more pronounced with warming due to the nonlinear Clausius-Clapeyron 43 relationship—is consistent with idealized high-resolution simulations of non-precipitating trade 44 cumuli¹⁴ and with the behavior of climate models that have a strongly positive trade cumulus 45 feedback^{5,7,15}. However, the mixing-desiccation hypothesis has never been tested with obser-46 vations. Using the convective mass flux at cloud base, M, as a proxy for lower-tropospheric 47

⁴⁸ convective mixing, the hypothesis can be tested by analyzing the relationship between M and ⁴⁹ the mean relative humidity (\mathcal{R}) and cloud fraction (C) at cloud base in observations, with ⁵⁰ $C \propto \mathcal{R} \propto M^{\beta}$ and $\beta < 0$ suggesting the mixing-desiccation mechanism to be present in ⁵¹ nature (Fig. 1a).

The mixing-desiccation mechanism is based on a number of assumptions that might not be 52 operating in nature. M is commonly defined as the product of the cloud fraction and the in-cloud 53 vertical velocity, and its variability is mostly governed by the area coverage of active clouds^{16,17}, 54 defined as saturated and buoyant updrafts that ventilate the sub-cloud layer. If variability in the 55 in-cloud vertical velocity near cloud-base is small, a positive relationship between C and M56 is expected ($\beta > 0$, Fig. 1b). This was demonstrated for non-precipitating trade cumuli using 57 Doppler radar data^{17,18} and appears at odds with the mixing-desiccation hypothesis. Yet active 58 clouds represent only half of the total $C^{19,20}$ and the lifetime and variability of passive clouds, 59 such as the detritus of decaying clouds, might be more sensitive to \mathcal{R} and mixing-induced drying 60 of their environment than to M. 61

The sub-cloud layer mass budget provides a theoretical basis for interpreting the mixingdesiccation mechanism. It can be expressed as a budget of the sub-cloud layer height h,

$$\frac{\partial h}{\partial t} + V_h \cdot \nabla h = E + W - M,\tag{1}$$

⁶⁴ where the entrainment rate, E, representing the mass source due to the entrainment of dry and ⁶⁵ warm cloud layer air, and the mesoscale vertical velocity, W, are balanced by the mass export ⁶⁶ due to the convective mass flux, M^{20} . Note that we define M as the (mass) specific mass flux, ⁶⁷ which has units of velocity (see Methods). E is the only term directly affecting the sub-cloud ⁶⁸ layer moisture and heat budgets^{21,22}. If an increase in M is mostly balanced by an increase in E, ⁶⁹ a drying and warming of the sub-cloud layer and a reduction in \mathcal{R} and C is expected (Fig. 1a). ⁷⁰ The trades, however, exhibit strong mesoscale convective organization, which is linked to the presence of mesoscale circulations and substantial variability in $W^{20,23-25}$. This variability in W could contribute to variability in M without directly affecting \mathcal{R} (Fig. 1b). An increase in M could also produce increased inversion cloudiness and thus increased total cloud cover, compensating the radiative effects of a potential decrease in C. The diversity of cloud types and the large variability in W in the trades thus call into question the mixing-desiccation mechanism as the dominant control of C and trade cumulus feedbacks.

The EUREC⁴A (*Elucidating the role of clouds-circulation coupling in climate*) field cam-77 paign was conceived to test the mixing-desiccation hypothesis^{8,9}. EUREC⁴A took place in 78 January and February 2020 near Barbados, a region selected as a source of data because clouds 79 in its vicinity are representative for the entire trade-wind belt²⁶. During EUREC⁴A we made 80 measurements designed to quantify the magnitude and (co-)variability of M, C, and \mathcal{R} over one 81 month, which was characterized by substantial variability in the mesoscale convective organi-82 zation²⁷ and the large-scale circulation⁹ (see Methods). With the help of these measurements, 83 we are able to test the mixing-desiccation hypothesis with observations for the first time. 84

⁸⁵ Observations of M, C, and \mathcal{R} co-variations

During EUREC⁴A we dropped more than 800 dropsondes from the HALO aircraft flying at 86 about 10 km altitude along 1 h circles of 220 km diameter^{28,29}. We use the dropsonde data to 87 estimate M at the sub-cloud layer top as a residual of the mass budget (Eq. 1) on the 3 h-scale 88 of 3 consecutive circles (see Methods). Fig. 2a shows a large day-to-day variability of M, 89 with higher values at the beginning and end of the campaign, and a campaign-mean of $17.4 \pm$ 90 7.5 mm s⁻¹ (mean \pm standard deviation σ). M shows a pronounced diurnal cycle (Extended 91 Data Fig. 1), with larger values around sunrise and smaller values in the afternoon (consistent 92 with^{20,30}). The mass budget estimates are robust to changes in the estimation procedure and 93 consistent with independent data (Methods and Extended Data Fig. 2). 94

The entrainment rate E is computed as the ratio of the scaled surface buoyancy flux and 95 the buoyancy-jump across h (Eq. S1, Extended Data Fig. 3). E averages to 18.3 ± 6.4 mm s⁻¹ 96 across the campaign (Fig. 2b) and also shows a pronounced diurnal variability (Extended Data 97 Fig. 1). E is mostly controlled by variability in the surface buoyancy flux (Extended Data 98 Fig. 4b). It is the strengthening of winds and surface fluxes that contributes most to the increase 99 in E and M in the second half of EUREC⁴A. W is, with -0.9 ± 6.7 mm s⁻¹, on average nearly 100 zero. Variability in W, however, is substantial and contributes slightly more to variability in M101 compared to E (Extended Data Fig. 4a). So while $M \sim E$ holds on average, consistent with 102 the mixing-desiccation hypothesis (Fig. 1a), variability in M is both controlled by E and W. 103

Fig. 2c shows the novel measurements of the cloud-base cloud fraction C from combined 104 horizontally-staring lidar and radar on board the ATR aircraft flying near cloud base³¹. C is, 105 with $5.4 \pm 3.1\%$, both small and highly variable. The variability of C on the 3 h-scale is sub-106 stantially larger than variability on synoptic and longer timescales¹³. The robustness of C is 107 demonstrated by the internal consistency among complementary and independent measure-108 ments in terms of measurement techniques and spatial sampling³¹. The \mathcal{R} at cloud base is 109 robustly around 86% (Fig. 2d), except for a few outliers. Three data points with much lower \mathcal{R} 110 for ATR compared to HALO (marked with x in Fig. 2d) are excluded in the following analyses, 111 as these situations were associated with air masses that were sampled differently by the two 112 aircraft (see Methods and Fig. A2 in ref^{31}). 113

Despite being fundamental quantities to understand climate sensitivity, the challenging nature of observing M and C so far prevented an observational analysis of the relationship between mixing and cloud-base cloudiness. With the EUREC⁴A observations presented here, we are now able to test the mixing-desiccation hypothesis with data.

Data refute mixing-desiccation hypothesis

The cloud-base cloud fraction is hypothesized to be controlled both dynamically through M and thermodynamically through \mathcal{R} . We can therefore express C as a multiple linear regression $\widehat{C} = a_0 + a_M \widetilde{M} + a_R \widetilde{\mathcal{R}}$, where $\widetilde{()}$ represents standardized values (e.g., $\widetilde{M} = M/\sigma_M$). Fig. 3a shows that the observed C and the reconstructed \widehat{C} agree very well (r=0.83 [0.80, 0.91], with values in the square brackets representing the 25th and 75th quartile of bootstrapped correlations), demonstrating that M and \mathcal{R} dominate variability in C.

The mixing-desiccation mechanism contends that as M increases, E increases and leads to 125 a reduction in \mathcal{R} . The anti-correlation of E and \mathcal{R} is confirmed by the observations ($\mathbf{r}_{E,\mathcal{R}}$ = 126 -0.47 [-0.62, -0.32], Extended Data Fig. 4d). But W is also correlated to \mathcal{R} (r_{W,R} = 0.48 [0.29, 127 0.62], Extended Data Fig. 4e). W does not directly affect the thermodynamic properties of the 128 sub-cloud layer²², as it transports mass with the same properties of the well-mixed sub-cloud 129 layer. The positive correlation between W and \mathcal{R} is thus likely connected to a self-aggregation 130 feedback leading to a net convergence of moisture into areas that are already moist^{25,32,33}. The 131 opposing correlations of E and W with \mathcal{R} lead to a negligible anti-correlation of M and \mathcal{R} 132 (r=-0.08 [-0.26, 0.10], Fig. 3b). While this makes M and R independent predictors of C, it 133 contrasts with the expected desiccation effect of increased mixing. The basic premise of the 134 mixing-desiccation hypothesis thus breaks down in the presence of strong variability in W. 135

Fig. 3c further shows a pronounced positive correlation between C and M (r=0.72 [0.64, 0.81]), demonstrating that M explains more than 50% of variability in C. The EUREC⁴A data are therefore in line with a more direct relation $C \propto M^{\beta}$ and a $\beta > 0$ (Fig. 1b). The tight connection between C and M is also consistent with physical understanding represented in the scaling $C \sim 2C_{\text{core}} \propto 2M/w^*$, where C_{core} is the area fraction of active cloud cores and w^* the Deardorff vertical velocity scale (see Methods and ref²⁴). The correlation of C with \mathcal{R} is weaker (r=0.36 [0.16, 0.56], Fig. 3d). These conclusions are robust to changes in the estimation procedure of M and to independent estimates of C (Extended Data Fig. 5).

The relationships exposed by the EUREC⁴A data are thus in opposition to the mixing-144 desiccation hypothesis, which contends that increasing mixing (larger M) leads to a desiccation 145 of the lower cloud layer (smaller \mathcal{R}) and a reduction in cloud-base cloudiness (smaller C). We 146 also find a positive relationship between C and another indicator of lower-tropospheric mix-147 ing (Extended Data Fig. 4f) and a weak positive correlation between M and the total projected 148 cloud cover (Extended Data Fig. 6). Hence, the EUREC⁴A data emphasizes dynamic factors— 149 the convective mass flux M and the mesoscale vertical velocity W—as dominant controls of C, 150 rather than thermodynamic factors related to the mixing-desiccation mechanism. 151

¹⁵² Models underestimate strong cloud-circulation coupling

How consistent is the present generation of climate models with our observations? To assess 153 how climate models represent the relationship between mixing and cloudiness, we use 10 mod-154 els from the Cloud Feedback Model Intercomparison Project CFMIP³⁴ that provide the neces-155 sary point-wise M, C, and \mathcal{R} output at high temporal resolution near the EUREC⁴A domain 156 (see Methods). In contrast to the consistency among many independent EUREC⁴A observa-157 tions, Fig. 4a shows that the models strongly differ regarding their magnitude and variability of 158 M and C. While some models predict unrealistically low M (CanAM4, MIROC6, and MPI-159 ESM), the IPSL-CM6A has a 5-times larger mean M compared to the EUREC⁴A observations. 160 Except IPSL-CM6A, all models strongly overestimate variability in C (see also ref³⁵), and 8 of 161 10 models also overestimate the magnitude of C. This is partly due to the tendency of mod-162 els to produce stratocumulus clouds in this shallow cumulus regime^{36,37} (evident in the strong 163 increases in C (up to 50-100%) above a critical \mathcal{R} of about 94%, see Extended Data Fig. 7). 164 In contrast, the observations indicate no occurrence of C>13% or $\mathcal{R}>94\%$. The models that 165

¹⁶⁶ produce such more stratocumulus-like conditions with $\mathcal{R}>94\%$ more than 15% of the time ¹⁶⁷ (Extended Data Fig. 8a) are labeled with open symbols in Fig. 4.

Only the BCC-CSM2 model represents the pronounced positive correlation between C and 168 M observed during EUREC⁴A at the 3 h-scale (Fig. 4b). Six of the other models have a correla-169 tion coefficient r < 0.05, of which three models even show a negative correlation. The majority 170 of models thus strongly underestimate the tight coupling between clouds and convection ob-171 served in EUREC⁴A. Instead, these six models are more in line with the mixing-desiccation 172 mechanism and a $\beta < 0$ (Fig. 1a), even though this is not mediated by a pronounced negative 173 correlation between M and \mathcal{R} (Extended Data Fig. 8c). All the models also strongly underesti-174 mate variability in W (Extended Data Fig. 8b), as they do not represent the sub-grid processes 175 leading to the observed variability in the mesoscale vertical velocity (e.g., shallow circulations 176 driven by differential radiative cooling³⁸ or local SST gradients³⁹). The relationships between 177 C and \mathcal{R} are more consistent among most models (Fig. 4b), and also more consistent with the 178 observations compared to the relationships between C and M. 179

In contrast with the observations, clouds as parameterized by climate models are more ther-180 modynamically than dynamically controlled. The misrepresentation of the relative sensitivity 181 of C to changes in M or \mathcal{R} by all models is encapsulated in the ratio of the standardized re-182 gression coefficients a_M/a_R from the regression $\widehat{C} = a_0 + a_M \widetilde{M} + a_R \widetilde{R}$. The model samples 183 lie completely outside the EUREC⁴A data (Fig. 4c). All models, with one exception, substan-184 tially underestimate the value of $a_{\rm M}/a_{\mathcal{R}}$ compared to the observations, highlighting that in the 185 climate models, variability in C is primarily controlled by variations in \mathcal{R} rather than variations 186 in M. Whereas BCC-CSM2 appears credible in terms of the magnitude and relationship of C187 and M, its credibility is eroded by its unrealistic relationship between C and \mathcal{R} (Extended Data 188 Fig. 7), and thus an implausible $a_{\rm M}/a_{\mathcal{R}}$ of -5.2. At odds with the observations, in most mod-189 els M and \mathcal{R} are only weak predictors of C, as evident in the low coefficient of determination 190

(r^2) of the multiple linear regression of \widehat{C} (Extended Data Fig. 8c). The cloud parameterizations of the models thus fail in capturing the key relationships between C and the dynamic and thermodynamic environment observed in nature.

Implications for trade cumulus feedbacks

The EUREC⁴A observations provide robust estimates of the mean, the variability, and the cou-195 pling of M, C, and \mathcal{R} in contrasted trade cumulus environments. While the observed variability 196 is substantial, the variability simulated by climate models is unrealistic, as are the drivers of this 197 variability. The EUREC⁴A data thus provide a physical test of the capacity of models to repre-198 sent the interplay of the processes active in regulating trade-wind cloud amount, and may guide 199 future model development. Moreover, the fact that the relationships at the 3 h process scale are 200 consistent with the relationships at the monthly timescale (r>0.84, Extended Data Fig. 8e,f) 201 suggests that the underlying fast physical processes that couple M, \mathcal{R} and C in the models are 202 largely invariant with the timescale. The relationships derived from the EUREC⁴A observations 203 can therefore also be used to evaluate the credible range of trade cumulus feedbacks in the 204 climate models. 205

Fig. 4b demonstrates that all models with a strong trade cumulus feedback represented by a 206 change in the cloud radiative effect (Δ CRE) with warming exceeding 0.37 W m⁻² K⁻¹ (reddish 207 colors, Fig. 4c) represent the refuted mixing-desiccation mechanism with a negative (or very 208 weak) correlation between M and C. Also, these four models exaggerate both the coupling 209 of C to \mathcal{R} (small $a_M/a_{\mathcal{R}}$, Fig. 4c) and the variability in C (σ_C , Extended Data Fig. 8d). Con-210 trastingly, the models that are closer to the observations tend to have a weaker positive ΔCRE 211 with warming. The EUREC⁴A observations of the physical processes that drive the short-term 212 variability of C thus rule out the mechanism that leads to the largest positive trade cumulus 213 feedbacks in current climate models. 214

By showing that mesoscale motions inhibit the mixing-desiccation mechanism, we refute an 215 important physical hypothesis for a large trade cumulus feedback. In the spirit of the story-line 216 approach for constraining equilibrium climate sensitivity¹⁰, our findings thus refute an impor-217 tant line of evidence for a strong positive cloud feedback and thus a large climate sensitivity. 218 The EUREC⁴A observations therefore support recent satellite-derived constraints from observed 219 natural variability^{37,40} and climate-change experiments using idealized high-resolution simula-220 tions^{41,42}, which suggest that a weak trade cumulus feedback is more plausible than a strong 221 one. Moreover, for the first time we take into account all types of clouds present in the trades, 222 including the optically thinnest ones that are usually missed in satellite observations⁴³ and con-223 sider the full spectrum of mesoscale variability that was not represented in idealized simulations 224 of cloud feedbacks. We also provide an explanation for the inconsistency of models with large 225 positive feedbacks: in these models, the observed tight coupling between convective mixing 226 and cloudiness is absent; instead, C is primarily controlled thermodynamically by \mathcal{R} , which 227 exaggerates variability in C and feedbacks to warming. By not representing the variability in 228 mesoscale circulations, the models miss an important process regulating trade cumulus clouds. 229 Future research should focus on better understanding the processes controlling these mesoscale 230 circulations, and how they might change in a warmer climate. 231

232 **References**

- [1] Bony, S. & Dufresne, J.-L. Marine boundary layer clouds at the heart of tropical cloud
 feedback uncertainties in climate models. *Geophys. Res. Lett.* 32, L20806 (2005).
- [2] Vial, J., Dufresne, J. L. & Bony, S. On the interpretation of inter-model spread in CMIP5
 climate sensitivity estimates. *Clim. Dyn.* 3339–3362 (2013).

- [3] Zelinka, M. D. *et al.* Causes of higher climate sensitivity in cmip6 models. *Geo- phys. Res. Lett.* 47, e2019GL085782 (2020).
- [4] Forster, P. et al. The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity,
- book section 7 (Cambridge University Press, Cambridge, United Kingdom and New York,
- NY, USA, 2021). URL www.ipcc.ch/report/ar6/wg1.
- [5] Vial, J., Bony, S., Dufresne, J.-L. & Roehrig, R. Coupling between lower-tropospheric
 convective mixing and low-level clouds: Physical mechanisms and dependence on convection scheme. *J. Adv. Model. Earth Syst.* 8, 1892–1911 (2016).
- [6] Brient, F. *et al.* Shallowness of tropical low clouds as a predictor of climate models'
 response to warming. *Clim. Dyn.* 47, 433–449 (2016).
- [7] Sherwood, S. C., Bony, S. & Dufresne, J.-L. Spread in model climate sensitivity traced to
 atmospheric convective mixing. *Nature* 505, 37–42 (2014).
- [8] Bony, S. *et al.* Eurec4a: A field campaign to elucidate the couplings between clouds,
 convection and circulation. *Surv. Geophys.* 38, 1529 (2017).
- ²⁵¹ [9] Stevens, B. *et al.* Eurec⁴a. *Earth Syst. Sci. Data* **13**, 4067–4119 (2021).
- [10] Stevens, B., Sherwood, S. C., Bony, S. & Webb, M. J. Prospects for narrowing bounds on
 earth's equilibrium climate sensitivity. *Earth's Future* 4, 512–522 (2016).
- [11] Sherwood, S. C. et al. An assessment of earth's climate sensitivity using multiple lines of
- evidence. *Reviews of Geophysics* **58**, e2019RG000678 (2020).
- [12] Malkus, J. S. On the structure of the trade wind moist layer. *Papers in physical oceanog- raphy and meteorology* 13, 1–47 (1958).

- [13] Nuijens, L., Serikov, I., Hirsch, L., Lonitz, K. & Stevens, B. The distribution and variability of low-level cloud in the north atlantic trades. *Quart. J. Roy. Meteor. Soc.* 140, 2364–2374 (2014).
- [14] Rieck, M., Nuijens, L. & Stevens, B. Marine Boundary Layer Cloud Feedbacks in a
 Constant Relative Humidity Atmosphere. J. Atmos. Sci. 69, 2538–2550 (2012).
- [15] Stevens, B. *et al.* The Barbados Cloud Observatory: Anchoring Investigations of Clouds
 and Circulation on the Edge of the ITCZ. *Bull. Amer. Meteor. Soc.* 97, 787–801 (2016).
- [16] Dawe, J. T. & Austin, P. H. Statistical analysis of an les shallow cumulus cloud ensemble
 using a cloud tracking algorithm. *Atmos. Chem. Phys.* 12, 1101–1119 (2012).
- [17] Lamer, K., Kollias, P. & Nuijens, L. Observations of the variability of shallow trade wind
 cumulus cloudiness and mass flux. *J. Geophys. Res. Atmos.* 120, 6161–6178 (2015).
- [18] Klingebiel, M., Konow, H. & Stevens, B. Measuring shallow convective mass flux profiles
 in the trade wind region. *J. Atmos. Sci.* 78, 3205 3214 (2021).
- [19] Siebesma, A. P. *et al.* A Large Eddy Simulation Intercomparison Study of Shallow Cu mulus Convection. *J. Atmos. Sci.* 60, 1201–1219 (2003).
- [20] Vogel, R., Bony, S. & Stevens, B. Estimating the shallow convective mass flux from the
 subcloud-layer mass budget. *J. Atmos. Sci.* 77, 1559 1574 (2020).
- [21] Vial, J., Bony, S., Stevens, B. & Vogel, R. Mechanisms and model diversity of trade-wind
- shallow cumulus cloud feedbacks: A review. *Surv. Geophys.* (2017).
- [22] Albright, A. L., Bony, S., Stevens, B. & Vogel, R. Observed subcloud layer moisture and
 heat budgets in the trades. *J. Atmos. Sci.* (2022).

- [23] Bony, S. & Stevens, B. Measuring area-averaged vertical motions with dropsondes. J. At *mos. Sci.* 76, 767–783 (2019).
- [24] George, G., Stevens, B., Bony, S., Klingebiel, M. & Vogel, R. Observed impact of
 mesoscale vertical motion on cloudiness. *J. Atmos. Sci.* 78, 2413 2427 (2021).
- [25] Narenpitak, P., Kazil, J., Yamaguchi, T., Quinn, P. & Feingold, G. From sugar to flowers:
 A transition of shallow cumulus organization during atomic. *J. Adv. Model. Earth Syst.*13, e2021MS002619 (2021).
- [26] Medeiros, B. & Nuijens, L. Clouds at barbados are representative of clouds across the
 trade wind regions in observations and climate models. *Proc. Natl. Acad. Sci. U.S.A.*113, E3062–E3070 (2016).
- [27] Schulz, H. C³ontext: a common consensus on convective organization during the eurec⁴a
 experiment. *Earth Syst. Sci. Data* 14, 1233–1256 (2022).
- [28] George, G. *et al.* Joanne: Joint dropsonde observations of the atmosphere in tropical north
 atlantic meso-scale environments. *Earth Syst. Sci. Data* 13, 5253–5272 (2021).
- ²⁹³ [29] Konow, H. et al. Eurec⁴a's HALO. Earth Syst. Sci. Data **13**, 5545–5563 (2021).
- [30] Vial, J. *et al.* A new look at the daily cycle of trade wind cumuli. *J. Adv. Model. Earth Syst.* 11, 3148–3166 (2019).
- [31] Bony, S. *et al.* Eurec⁴ a observations from the safire atr42 aircraft. *Earth Syst. Sci. Data* 14, 2021–2064 (2022).
- [32] Bretherton, C. S. & Blossey, P. N. Understanding mesoscale aggregation of shallow cu mulus convection using large-eddy simulation. *J. Adv. Model. Earth Syst.* 9, 2798–2821
 (2017).

14

- [33] George, G. Observations of meso-scale circulation and its relationship with cloudiness in
 the Tropics. Ph.D. thesis, Universität Hamburg, Hamburg (2021).
- [34] Webb, M. J. *et al.* The cloud feedback model intercomparison project (cfmip) contribution
 to cmip6. *Geosci. Model Dev.* 10, 359–384 (2017).
- [35] Nuijens, L., Medeiros, B., Sandu, I. & Ahlgrimm, M. The behavior of trade-wind cloudiness in observations and models: The major cloud components and their variability.
 J. Adv. Model. Earth Syst. 7, 600–616 (2015).
- ³⁰⁸ [36] Nam, C., Bony, S., Dufresne, J.-L. & Chepfer, H. The too few, too bright tropical low-³⁰⁹ cloud problem in cmip5 models. *Geophys. Res. Lett.* **39**, n/a–n/a (2012).
- [37] Cesana, G. V. & Del Genio, A. D. Observational constraint on cloud feedbacks suggests
 moderate climate sensitivity. *Nature Climate Change* 11, 213–218 (2021).
- [38] Naumann, A. K., Stevens, B., Hohenegger, C. & Mellado, J. P. A conceptual model of a
 shallow circulation induced by prescribed low-level radiative cooling. *J. Atmos. Sci.* 74,
 3129 3144 (2017).
- [39] Lambaerts, J., Lapeyre, G., Plougonven, R. & Klein, P. Atmospheric response to sea sur face temperature mesoscale structures. *J. Geophys. Res. Atmos.* 118, 9611–9621 (2013).
- [40] Myers, T. A. *et al.* Observational constraints on low cloud feedback reduce uncertainty of
 climate sensitivity. *Nature Climate Change* 11, 501–507 (2021).
- [41] Vogel, R., Nuijens, L. & Stevens, B. The role of precipitation and spatial organization
 in the response of trade-wind clouds to warming. *J. Adv. Model. Earth Syst.* 8, 843–862
 (2016).

[42] Radtke, J., Mauritsen, T. & Hohenegger, C. Shallow cumulus cloud feedback in large
eddy simulations – bridging the gap to storm-resolving models. *Atmos. Chem. Phys.* 21,
3275–3288 (2021).
[43] Mieslinger, T. *et al.* Optically thin clouds in the trades. *Atmos. Chem. Phys.* 22, 6879–6898

326 (2022).

Fig. 1 | Illustration of two mechanisms for the coupling of mixing and cloudiness. a, The *mixing-dessication mechanism* contends that E increases in response to an increase in M, which leads to a reduction in \mathcal{R} and cloud-base cloudiness C, and a relationship $C \propto \mathcal{R} \propto M^{\beta}$ with $\beta < 0$. b, The *mesoscale motion control* of cloudiness instead suggests that M is equally controlled by both E and W, such that M is uncorrelated to \mathcal{R} and $\beta > 0$.

Fig. 2 | Timeseries of mixing and cloudiness during EUREC⁴A. Measurements of a, M, b, E and W, c, C, and d, \mathcal{R} , with filled symbols representing the 3 h-scale and open symbols the 1 h-scale. The vertical bars in **a-c** show the estimation uncertainty at the 3 h-scale (see Methods Sec. 'Uncertainty estimation'). The \mathcal{R} in d is shown for both the HALO (blue) and ATR (green) aircraft, with the x markers representing the data points that are excluded in the correlations due to inconsistent sampling of the mesoscale cloud patterns between the two aircraft. The campaign mean $\pm 1\sigma$ is shown on the left side of each panel.

Fig. 3 | Relationships among M, \mathcal{R} , and C. The relationships between \mathbf{a} , the observed C and the reconstructed \widehat{C} from the regression $\widehat{C} = a_0 + a_M \widetilde{M} + a_R \widetilde{\mathcal{R}}$, \mathbf{b} , M and \mathcal{R} , \mathbf{c} , M and C, and \mathbf{d} , \mathcal{R} and C are shown at the 3 h-scale. The error bars represent the estimation uncertainty for M and C, and the sampling uncertainty for \mathcal{R} (see Methods). The dotted line in \mathbf{a} is the 1:1 line. The size of the markers in \mathbf{b} represents C. The shading in \mathbf{c} represents the scaling for $C \propto 2M/w^*$ using the mean $\pm 2\sigma$ of the velocity scale w^* . The grey x markers represent data that are excluded in the correlations due to inconsistent sampling between the two aircraft (see Fig. 2d and Methods). Fig. 4| Relationships in climate models and link to trade cumulus feedback. a, Mean $\pm \sigma/2$ of M and C, b, correlation coefficients r between M and C ($r_{M,C}$) and \mathcal{R} and C ($r_{\mathcal{R},C}$), and c, ratio of the standardized multiple linear regression coefficients a_M/a_R and the thermodynamic component of the trade cumulus radiative feedback. The models are colored in bins of feedback strength. Open symbols refer to models with frequent stratocumulus (defined as having $\mathcal{R}>94\%$ more than 15% of the time, see Extended Data Fig. 8a). The grey shading represents the 25th to 75th quartile and the grey bars the 95%-CI of bootstrapped observational values. For plotting purposes, **a** shows the mean \overline{M} -30 for IPSL-CM6A, and **c** shows the ratio a_M/a_R +3 for BCC-CSM2. In **c**, the upper end of the observational 95%-CI (at 6.75) is cropped.

327 Methods

328 EUREC⁴A field campaign

We use data from the EUREC⁴A field campaign, which took place in January and February 329 2020 and was anchored in Barbados^{8,9}. We focus on measurements made by the HALO²⁹ 330 and ATR aircraft³¹, which flew coordinated patterns in the ca. 220 km diameter EUREC⁴A 331 circle centered at 13.3°N, 57.7°W. The HALO aircraft flew three circles at 10.2 km alti-332 tude in 200 min (ca. 60 min per circle plus 15 min break between circles) and launched 333 dropsondes every 30° of heading (ca. 12 sondes per circle) to characterize the large-scale 334 environment²⁸. At the same time, the ATR aircraft flew 2-3 50 min rectangle-patterns in-335 side the circle near cloud base and measured the cloud fraction with horizontally-staring 336 cloud radar and backscatter lidar, and with several in-situ probes and sensors³¹. Obser-337 vations from the Barbados Cloud Observatory (BCO)¹⁵, and the R/V Meteor⁴⁴ provide 338 additional context at the western and eastern boundaries of the EUREC⁴A circle. 339

A typical flight day of HALO comprised two sets of three consecutive circles lasting about 340 3 h and comprising 30-36 sondes (sometimes defined as circling^{9,22,29}). The 3 h-circle sets 341 are separated by a 1.5 h break to refuel the ATR. The circle patterns were flown from 342 January 22 to February 15 with different starting times between 04:30 and 19:30 local 343 time (LT) to sample the diurnal cycle. Four additional single dropsonde circles are also 344 used, three of which were flown by the P3 aircraft⁴⁵ during nighttime (starting at 00:15 LT 345 on February 9 and 10, and at 01:30 LT on February 11). In total, the dataset comprises 73 346 circles (1 h-scale) and 24 sets of three consecutive circles (3 h-scale), for which 16 have 347 coincident ATR data. We assume that HALO and ATR sample comparable conditions on 348 the 3 h-scale. This is confirmed by the similar cloud-base \mathcal{R} of the aircraft during most 349 flights (Fig. 2d), except for the first 3 h-circle set on February 2 and the second 3 h-circle 350

set on February 7 and 13 where the spatial scale of the cloud organization was larger than
 the scale of the domain sampled by the ATR. These three 3 h-circle sets are marked in the
 figures and excluded from the calculated correlations.

The spatial scale of the observations represents the lower end of Orlanski's⁴⁶ meso- α 354 scale and is comparable in size to a climate model grid box. The 200–300 km scale is 355 the relevant scale of the cloud processes for a trade cumulus ensemble and also the scale 356 that convective parameterizations target. It lies in between the $\mathcal{O}(1 \text{ km})$ scale of individual 357 clouds and the synoptic scale of $\mathcal{O}(1000 \,\mathrm{km})$, and is associated with the emergence of the 358 prominent trade cumulus cloud organization patterns⁴⁷. As the airmasses are advected by 359 about 30 km per hour (at the campaign-mean wind speed of $\sim 9 \,\mathrm{m \, s^{-1}}$ at 1 km height), the 360 spatial sampling of the 220 km diameter circle does not differ substantially between the 1 h 361 and 3 h timescales, which motivates our nomenclature focus on the time rather than space 362 scale. Using the measurements, model and reanalysis data we would not expect our results 363 to change substantially if the analysis domain were increased or reduced by a factor of 364 two or more (see Methods subsection 'Mass flux estimation' for a discussion of the scale 365 sensitivity of the results). 366

The Barbados region was chosen as location of EUREC⁴A because shallow trade cumulus 367 clouds are the dominant cloud type in the area during winter¹³. Furthermore, clouds in the 368 Barbados region are similar to clouds across the trade-wind regions in both observations 369 and models²⁶. The mean meteorological conditions during the EUREC⁴A campaign, as 370 sampled by the dropsondes, also correspond well to the average January-February condi-371 tions from 12 years of data from the ERA-Interim reanalysis⁴⁸ (their Fig. 5), albeit with 372 a 10% larger 850 hPa relative humidity during EUREC⁴A (the EUREC⁴A dropsondes also 373 have an $\sim 8\%$ larger relative humidity compared to the 2013-2022 average in ERA5, not 374 shown). Also, all the four prominent patterns of mesoscale cloud organization⁴⁷ were 375

present during the campaign²⁷. The conclusions drawn from the EUREC⁴A data are thus
 relevant across the tropics and for climate timescales.

378 **Observations**

For estimating the cloud-base mass flux M, \mathcal{R} , and many other variables, we use dropsonde data from the JOANNE dataset²⁸, namely Level-3 (gridded quality-checked sondes) and Level-4 (circle products) vertical profiles of thermodynamic quantities, wind, and mesoscale vertical velocity, W. The HALO dropsondes are corrected for a dry bias by multiplying the relative humidity with 1.06²⁸.

For the cloud-base cloud fraction C, we use the BASTALIAS lidar-radar synergy product³¹, which includes both cloud and drizzle (but not rain) and constitutes an upper bound on C. We also test the relationships for three additional estimates of C:

387

388

- the non-drizzling cloud product from the radar-lidar synergy (C_{only}) , which excludes drizzle and constitutes a lower bound on C
- in situ estimates from a microphysical probe defined based on thresholds of liquid water content plus particle size (C_{pma})
- 391

• in situ high-frequency (25 Hz) humidity sensor, with cloud defined as relative humidity \geq 98% ($C_{\rm turb}$)

The in situ sensors measure the along-track C, while the lidar-radar synergy samples clouds inside the rectangle at a distance up to 8 km from the aircraft³¹. Despite pronounced differences in the measurement principles and sampling, Fig. 18 of ref³¹ demonstrates the internal consistency and robustness among the independent C estimates. The ATR turbulence measurements also include measurements of vertical up- and downdraft velocities⁴⁹, from which an in-cloud mass flux M_{turb} is computed by multiplying C_{turb} with the in-cloud vertical velocity.

Additional HALO aircraft measurements used are total projected cloud cover (CC) esti-400 mates from the differential absorption lidar WALES, the hyperspectral imager specMACS, 401 and the cloud radar HAMP²⁹. From these cloud masks we derive the CC along the 1 h cir-402 cle. For specMACS and HAMP, the cloud detection is ambiguous and we consider both 403 the *probably cloudy* and the *most likely cloudy* flags in our CC estimates. 404

We also use ceilometer and cloud radar data from the BCO and the R/V Meteor to test 405 the robustness of the sub-cloud layer height definition (not shown). Radar cloud fraction 406 profiles are obtained by correcting the hydrometeor fraction profiles with ceilometer data 407 during periods of rain (see ref³⁰ for a description of the correction applied). The BCO 408 cloud radar data also demonstrates that missing the level of maximum cloud-base cloud 409 fraction in 3 h averages by e.g. 60 m does not affect the variability of C (correlations 410 of r=0.99 and r=0.93 with the maximum C when 60 m above and below the peak level, 411 respectively), and only marginally affects its magnitude (18% and 33% smaller relative to 412 the maximum C for being 60 m above or below the peak level, respectively). So only if the 413 ATR flight level deviated from the height of maximum cloudiness in ways that co-varied 414 with M would we expect such a height difference to influence our analysis. As the ATR 415 aircraft usually flew a bit above h (Extended Data Fig. 3a), and because it sampled much 416 more clouds in 3 h compared to the stationary BCO, a potential influence of missing the 417 peak level is deemed not to bias our findings. 418

419

Surface buoyancy flux

To estimate the surface buoyancy flux $(\overline{w'\theta'_v}|_s)$, needed to compute M), we use dropsonde 420 humidity, temperature, and wind data at 20 m height, and apply the Coupled Ocean-421 Atmosphere Response Experiment (COARE) bulk flux algorithm version $3.6^{50,51}$. For 422 the sea-surface temperature (SST), we extrapolate the 2 m depth SST of the R/V Meteor 423 (thermosalinograph primary backboard temperature), or alternatively from the AutoNaut 424

⁴²⁵ Caravela⁵², to the dropsonde location based on a fixed zonal and meridional SST gradi-⁴²⁶ ent of -0.14 K/degree. A gradient of -0.14 K/degree corresponds to the median zonal ⁴²⁷ and meridional gradient (-0.145 K/degree and -0.135 K/degree, respectively) across the ⁴²⁸ EUREC⁴A circle over the period from January 19 to February 15 in the ERA5 reanal-⁴²⁹ ysis⁵³ and in two satellite SST products (from the Advanced Baseline Imager on board ⁴³⁰ the Geostationary Operational Environmental Satellite, GOES-16 ABI, and the Collecte ⁴³¹ Localisation Satellites, CLS).

The sonde-derived surface buoyancy flux on the 3 h-scale compares favorably to bulk 432 fluxes from the R/V Meteor mast, with a correlation coefficient r=0.83 and a mean off-433 set of 0.1% relative to R/V Meteor. The sonde-derived flux has a comparable magnitude 434 to the flux measured at the R/V Ron Brown⁵⁴ further upstream, and is also well-correlated 435 (r=0.81) with ERA5. The ERA5 fluxes, however, overestimate the surface buoyancy flux 436 compared to the sonde-derived flux by 25%, which is mostly due to the overestimation 437 of the sensible heat flux by 64% relative to the observations (9.8 W m⁻² and 6.0 W m⁻² 438 for ERA5 and dropsondes, respectively). A strong overestimation of the sensible heat 439 flux compared to buoy measurements in the region is also present in the predecessor 440 ERA-interim reanalysis⁵⁵. Overall, the good correspondence of our sonde-derived surface 441 buoyancy flux with the independent data lends credibility to our estimation procedure. The 442 sonde-derived surface buoyancy flux is also used to compute the Deardorff sub-cloud layer 443 vertical velocity scale $w^* = (h \frac{g}{\theta_v} \overline{w'\theta'_v}|_s)^{1/3}$ shown in Fig. 3c, where g is the gravitational 444 acceleration. 445

446 Mass flux estimation

Vogel et al.²⁰ developed a method to estimate the shallow-convective mass flux at the subcloud layer top as a residual of the sub-cloud layer mass budget, and tested it in real-case large-eddy simulations (LES) over the tropical Atlantic. Here the method is applied to EUREC⁴A observations, in parallel with Albright et al.²² who close the sub-cloud layer moisture and heat budgets and provide an independent constraint on the entrainment rate E. Except for the surface-buoyancy flux estimate (see the previous section), all data for the budgets come entirely from the dropsondes.

Eq. 1 expresses the budget of the sub-cloud layer height h per unit area and constant density. $\frac{\partial h}{\partial t}$ represents the temporal fluctuation of h and $V_h \cdot \nabla h$ its horizontal advection, E is the entrainment rate, W the mesoscale vertical velocity (positive upwards), and Mthe convective mass flux at h.

The sub-cloud layer height h is defined as the height where the virtual potential tempera-458 ture $(\theta_{\rm y})$ first exceeds its density-weighted mean from 100 m up to h by a fixed threshold 459 $\epsilon = 0.2 \,\mathrm{K}^{22,56}$. Extended Data Fig. 3a confirms that our h is usually close to the ATR 460 flight altitude, and h is also well within the range of independent BCO and R/V Meteor 461 observations of the maximum radar cloud-base cloud fraction and the peak frequency of 462 the first ceilometer cloud-base height (not shown). This confirms that our h agrees well 463 with the level of maximum near-base cloud fraction, which was set as the target height for 464 the ATR flight level and thus for evaluating the mass budget³¹. 465

The entrainment rate E represents the deepening of h due to small-scale mixing at the 466 sub-cloud layer top. We use a modified version of the classical flux-jump model^{57,58} that 467 accounts for the finite thickness of the transition layer, the ~ 150 m thick stable layer sep-468 arating the mixed layer from the cloud layer (see ref²² for details). The buoyancy flux at h469 is modeled as a fixed fraction $A_{\rm e}$ of the surface buoyancy flux, $\overline{w'\theta'_{\rm v}}|_{\rm c}$, where $A_{\rm e}$ is the ef-470 fective entrainment efficiency. The buoyancy-jump at the sub-cloud layer top is computed 471 as $\Delta \theta_{\rm v} = \Delta \theta + 0.61(\overline{\theta}\Delta q + \overline{q}\Delta \theta)$, with $\Delta \theta = C_{\theta}(\theta_{\rm h+} - \overline{\theta})$ and $\Delta q = C_{\rm q}(q_{\rm h+} - \overline{q})$. 472 is the specific humidity, C_q and C_{θ} are scaling coefficients accounting for uncertainty in 473 the depth over which the jumps are computed, the subscript h+ refers to the value of q or 474

 θ above *h* (computed as the average from *h* to *h* + 100 m), and \overline{q} and $\overline{\theta}$ are averages from to the mixed-layer top (defined as the height of maximum relative humidity below 900 m). Finally, *E* is computed as

$$E = \frac{A_{\rm e} \left. \overline{w' \theta_{\rm v}'} \right|_{\rm s}}{\Delta \theta_{\rm v}} \tag{S1}$$

The uncertain parameters $A_{\rm e}$, $C_{\rm q}$ and C_{θ} are estimated through a joint Bayesian inversion to close the moisture and heat budgets by ref²², yielding maximum-likelihood estimates of $A_{\rm e} = 0.43 \pm 0.06$ (mean $\pm 1\sigma$), $C_{\rm q} = 1.26 \pm 0.34$, and $C_{\theta} = 1.15 \pm 0.31$.

The mesoscale vertical velocity W at h is computed by vertically integrating the divergence of the horizontal wind field measured by the dropsondes²³ from the surface up to h. W is at the lower end of the meso- α scale of ref⁴⁶, what climate modelers often associate with the *large-scale*. The terms h, E and W are computed at the 1 h-scale of a single circle and then aggregated to the 3 h-scale (three circles).

The temporal fluctuation of h is estimated as the linear regression slope of h computed from the 30-36 soundings available per 3 h-circle set. Similarly, the horizontal advection of h is estimated as the sum of the linear regressions of the eastward $(\partial h/\partial x)$ and northward $(\partial h/\partial y)$ gradients of the individual h, multiplied by the wind speed at the 3 h-mean h. Both $\partial h/\partial t$ and $V_h \cdot \nabla h$ are only available on the 3 h-scale.

The default M shown in the paper is the equilibrium mass flux M = E + W, which reproduces well the mass flux diagnosed directly from cloud-core area fraction and vertical velocity in LES²⁰. This equilibrium M is also available on the 1 h-scale of an individual circle. Taking into account $\partial h/\partial t$ and $V_h \cdot \nabla h$ in the mass flux estimate leads to M' = $M - \frac{\partial h}{\partial t} - V_h \cdot \nabla h$, which shows very similar characteristics compared to M (Extended Data Fig. 3). This is mainly because both the advection $(-1.3 \pm 2.7 \text{ mm s}^{-1})$ and temporal fluctuation $(0.5 \pm 6.8 \text{ mm s}^{-1})$ terms are on average about zero, and the advection term is 498

499

also nearly invariant. The inclusion of advection and $\frac{\partial h}{\partial t}$ in M' slightly enhances variability on the diurnal timescale (Extended Data Fig. 1a).

Cold pools formed by evaporating precipitation destroy the structure of the sub-cloud layer 500 and make the estimation of h less robust. We thus exclude soundings that fall into cold 501 pools in the analysis using the criterion of $h < 400 \,\mathrm{m}$ developed by ref⁵⁶ based on the 502 EUREC⁴A soundings. The influence of these and other assumptions on the magnitude and 503 variability of M are discussed in the Methods subsection 'Robustness of observational 504 estimates'. Also note that our M is defined as the (mass) specific mass flux and has units 505 of velocity. It differs from the more familiar mass flux (in units of kg $m^{-2} s^{-1}$) by the air 506 density, which is usually assumed to be constant^{18,59}, and which is justified here given the 507 small density variations across the measurements (mean $\pm \sigma$ of 1.104 \pm 0.0077 kg m⁻³, i.e. 508 less than 0.7% of the mean). 509

⁵¹⁰ While the 1 h-scale variability of M can be substantial (e.g., 2nd 3 h-circle sets on Jan 26 ⁵¹¹ and Feb 13, Fig. 2), the median estimation uncertainty is only 20% at the 3 h-scale (see ⁵¹² section below). Also, M has a similar magnitude and reassuring correlation (r=0.77) to ⁵¹³ the independent M_{turb} estimate from in-situ turbulence measurements on the ATR aircraft ⁵¹⁴ (Extended Data Fig. 2d).

The mass budget terms show different degrees of scale sensitivity (see also discussion 515 in ref²⁰). Extended Data Fig. 2c and 4a show that the correlation between W and M is 516 slightly larger at the 1h-scale compared to the 3h-scale ($r_{W,M 3h}$ =0.60 and $r_{W,M 1h}$ =0.67), 517 while they are essentially the same for E and M ($r_{E,M,3h}=0.54$ and $r_{E,M,1h}=0.55$). The 518 scale sensitivity of the W variance is in line with radiosonde data from the EUREC⁴A 519 ship array, which show that the divergence amplitudes at equivalent radii of 100-300 km 520 scale inversely with radius⁶⁰ (as in ERA5 and ICON, consistent with ref²³). In ERA5, 521 the scale sensitivity of the surface buoyancy flux, which contributes most to variability in 522

E (Extended Data Fig. 4b), is much smaller compared to the scale sensitivity of W (not 523 shown). This is likely because variability in the surface buoyancy flux is mostly controlled 524 by the surface wind speed (Extended Data Fig. 4h) and radiative cooling⁶¹, both of which 525 are large-scale. The surface wind speed has autocorrelation coefficients of 0.74 for a two 526 day and 0.48 for an eight day lag (Fig. 3d of ref²²). Although weaker compared to the 527 synoptic variability, the surface wind also has a distinct diurnal cycle^{62,63}, which causes a 528 diurnal cycle of the surface buoyancy flux (Extended Data Fig. 1c and ref²⁰). Some of the 529 diurnal variability in E is thus lost for longer temporal averaging. Also, the variability in 530 the temporal fluctuation and horizontal advection of h (eq. 1) decreases on larger scales²⁰. 531 In summary, M variability decreases on larger averaging scales. The scale sensitivity of W532 is larger compared to E, such that the contribution of W to M variability tends to become 533 smaller compared to the contribution of E on much larger scales. 534

As noted above, E describes the net effect of local processes and must be inferred from 535 the statistics of other quantities (i.e., the mean sub-cloud layer growth rate, or the dilu-536 tion of sub-cloud layer properties). This raises the question if the E estimate itself might 537 depend on the mesoscale environment and therefore introduce spurious co-variabilities 538 between M, W, and C. The Bayesian estimation of the uncertain parameter estimates A_{e} , 539 C_{q} , and C_{θ} is a priori independent of M and W. Also, the synoptic variability during 540 EUREC⁴A can be well explained by keeping them constant²². Ref²² also explored to what 541 extent other factors correlated with residuals in their Bayesian fits and found no evidence 542 of a systematic effect of other factors, including windspeed and shear⁶⁴. As discussed 543 above, the variability in E tends to be less scale-sensitive than W, and mostly controlled 544 by larger-scale factors like the surface wind speed (through the surface buoyancy flux, 545 Extended Data Fig. 4b,h). Furthermore, E and W are anticorrelated ($r_{E,W}$ =-0.35, Ex-546 tended Data Fig. 4g). So both statistically from the anticorrelation and physically through 547

the scale argument, we believe that our parameterization of E does not induce spurious co-variability.

550 Uncertainty estimation

For the M, \mathcal{R} , and C estimates, we distinguish two sources of uncertainty: sampling uncertainty and estimation (or retrieval) uncertainty. For all terms, the sampling uncertainty is computed at the 3 h-scale as the standard error, $SE = \sigma/\sqrt{n}$, of the three individual 1 h circle values (each representing ~50 min of flight or up to 12 sondes), where σ is the standard deviation and n the number of circles.

The estimation uncertainty is computed differently for every term according to the under-556 lying assumptions and choices. For \mathcal{R} , the manufacturer stated uncertainty (i.e., repeata-557 bility) is 2% and some additional uncertainty stems from the correction of the dry bias of 558 the HALO dropsondes (see ref^{28}). Because this uncertainty is the same for all data points, 559 the estimation uncertainty of \mathcal{R} is not shown in the figures. For C, the estimation uncer-560 tainty is computed for every 3 h-circle set as the SE of the four different estimates of C, 561 namely C itself, C_{onlv} , C_{turb} , and C_{pma} . The uncertainty estimate therefore represents un-562 certainty in measurement principles and spatial sampling³¹. Additional uncertainties of the 563 individual C estimates (e.g. due to the choice of thresholds) are neglected, as sensitivity 564 tests suggest they are smaller than the uncertainty among the different C estimates³¹. 565

For W, the advection term $V_h \cdot \nabla h$, and the temporal fluctuation $\partial h/\partial t$, the estimation uncertainty is taken as the SE of the respective regression used to compute the term. Because $\partial h/\partial t$ is computed from individual sondes, it contains both temporal and spatial variability of h on the 3 h-scale and its SE is inflated.

The estimation uncertainty of the surface buoyancy flux is a combination of uncertainty in the underlying SSTs and in the COARE bulk flux algorithm. We estimate the uncertainty in the underlying SSTs by computing the SE of five different versions of the flux (three with different fixed SST gradients (the default median value and the median $\pm IQR$, i.e. -0.14 K/degree, -0.21 K/degree, and -0.07 K/degree), one with a temporally varying gradient (not shown), and one with a different baseline SST (from the AutoNaut Caravela⁵² instead of the R/V Meteor)), and add a 5% uncertainty of the COARE algorithm given in ref⁵⁰ as the 1 h–uncertainty in the 0-10 m s⁻¹ wind speed range. For $A_{\rm e}$ and $\Delta\theta_{\rm v}$, we use the relative uncertainties of the Bayesian inversion as the estimation uncertainty (i.e. $\sigma(A_{\rm e})/A_{\rm e}$ for $A_{\rm e}$, and the average of $\sigma(C_{\rm q})/C_{\rm q}$ and $\sigma(C_{\theta})/C_{\theta}$ for $\Delta\theta_{\rm v}$).

⁵⁸⁰ Uncertainties in the three individual terms of E are propagated by adding their fractional ⁵⁸¹ uncertainties in quadrature to yield the estimation uncertainty of E. In the same spirit, ⁵⁸² the estimation uncertainty is propagated from the 1 h-scale to the 3 h-scale, and from the ⁵⁸³ individual terms of Eq. 1 to M.

The uncertainties of the correlations and the multiple linear regression are estimated with bootstrapping (10,000 repetitions). We communicate these uncertainties by mentioning the 25th and 75th quartiles in the text, and by displaying both the quartiles and the 2.5% and 97.5% quantiles (representing the 95% confidence interval, CI) in Fig. 4 and Extended Data Fig. 8. Apart from the uncertainty quantification described here, we assess the robustness of the M and C observations to several other choices and assumptions in the Methods subsection 'Robustness of observational estimates'.

591 Other mixing indicators

⁵⁹² Other proxies for lower-tropospheric mixing were used in previous studies ^{5,7,65} that can be ⁵⁹³ estimated from the dropsonde data and compared to the variability in *C*. Here we compute ⁵⁹⁴ the boundary-layer vertical advection (BVA) diagnostic from ref⁶⁵ defined as BVA = ⁵⁹⁵ $\int_0^{Z_{\min}} W(z) \frac{\partial MSE}{\partial z} \rho dz$, where MSE is the moist static energy, Z_{\min} the level of minimum ⁵⁹⁶ MSE that marks the top of the trade-wind layer (on average at 2900 m), and ρ the density. ⁵⁹⁷ Note that a lower (more negative) BVA value indicates stronger mixing.

Ref⁶⁵ found a pronounced positive relationship between changes in BVA and changes 598 in C from a series of single-column model experiments with the IPSL-CM5A model, 599 which is characterized by a strong positive low-cloud feedback and the presence of the 600 mixing-desiccation mechanism (Fig. 4). Extended Data Fig. 4f shows a pronounced neg-601 ative correlation between BVA and M in the EUREC⁴A data, indicating good agreement 602 in their complementary definitions of mixing. Smaller BVA (stronger mixing) is also as-603 sociated with larger C (not shown), which is at odds with the IPSL-CM5A model. The 604 absolute correlation between BVA and C (r=0.34), however, is considerably smaller than 605 the correlation between M and C (r=0.72). 606

607

General circulation models

The cloud fraction, net mass flux (upward and downward), and relative humidity at cloud base are calculated for 10 Coupled Model Intercomparison Project (CMIP) models:

- 4 from the fifth phase, CMIP5⁶⁶: CanAM4⁶⁷, MPI-ESM-LR⁶⁸, IPSL-CM5A-LR⁶⁹,
 HadGEM2-A⁷⁰, and
- 612 613

6 from the sixth phase, CMIP6⁷¹: BCC-CSM2-MR⁷², CNRM-CM6-1⁷³, IPSL-CM6A-LR⁷⁴, MIROC6⁷⁵, MRI-ESM2-0⁷⁶, HadGEM3-GC31-LL⁷⁷,

using the sub-hourly vertical profiles at selected sites (named cfSites in CMIP5 and CF_{subhr} 614 in CMIP6) provided by CFMIP³⁴. Note that the M from the models is not computed using 615 Eq. 1, but is defined according to the respective convective parameterization scheme of 616 the models (see references above). We use the atmosphere-only *amip* configuration from 617 1979-2008, selecting data from December, January, February, and March to be broadly 618 consistent with the winter conditions sampled during EUREC⁴A. For each model, between 619 2-6 sites are available in the north Atlantic trades between $60-50^{\circ}$ W and $12-16^{\circ}$ N, namely 620 the BOMEX, NTAS, EUREC⁴A, BCO, and RICO sites. All profiles with clouds above 621

622 600 hPa (about 4.2 km) are dropped to ensure a focus on shallow convection. We verified 623 that in terms of the large-scale environment, the cfSites fall into the climatological trade 624 cumulus regime as defined by ref⁴⁰.

The cloud base level is defined as the level of maximum cloud fraction between 870-625 970 hPa (between about 400-1300 m). If the maximum cloud fraction is smaller than 626 0.25% for a given profile, the cloud-base level is taken at the climatological level of max-627 imum cloud fraction. The hourly cloud-base data are aggregated to a 3 h-timescale, which 628 corresponds to the 3 h-scale of the EUREC⁴A data, as well as a monthly timescale. The 629 values computed are insensitive to (a) averaging across the sites before aggregating to the 630 3 h-timescale, (b) removing the site near the Northwest Tropical Atlantic Station buoy up-631 stream of the EUREC⁴A circle (near 51°W and 15°N), (c) focusing only on January and 632 February, and (d) excluding nighttime values outside the hours sampled during EUREC⁴A 633 (not shown). 634

We use the thermodynamic component of the change in the cloud radiative effect at the top 635 of the atmosphere (Δ CRE) with warming under given dynamical conditions to quantify 636 the strength of the trade cumulus radiative feedback. Ref² showed that the Δ CRE with 637 warming is a good approximation of the cloud feedback computed with radiative kernels⁷⁸. 638 The CRE is defined as the difference between all-sky (all, including clouds) and clear-sky 639 (clr, clouds assumed to be transparent to radiation) net downward radiative fluxes, CRE 640 = $R_{\text{all}} - R_{\text{clr}} = (LW_{\text{clr}} - LW_{\text{all}}) + (SW_{\text{all}} - SW_{\text{clr}}) = CRE_{LW} + CRE_{SW}$, with R being 641 the total radiative flux, and LW and SW its longwave and shortwave components. The 642 radiative fluxes are defined positive downward. The ΔCRE with warming is then simply 643 the difference in CRE between the warmer *amip4K* (4 K uniform increase in SST) and the 644 *amip* (control) simulations, normalized by the 4 K temperature difference (i.e., $\Delta CRE/\Delta T_s$) 645 = $(CRE_{amip4K} - CRE_{amip}) / 4K)$. To restrict the feedback estimation to the trade cumulus 646

regime, we focus on ocean-only grid points between 35°S to 35°N, and use the regime partitioning of ref⁴⁰ with trade cumulus regimes in each simulation (*amip* or *amip4K*) defined as having a climatological annual mean estimated inversion strength smaller than 1 K and a vertical velocity at 700 hPa between 0–15 hPa d⁻¹.

Robustness of observational estimates

Applying the mass budget formulation to the EUREC⁴A dropsonde data involves several choices for definitions and thresholds. These choices are guided by constraints from independent data and from closure of the moisture and heat budgets in ref²², which provides justification for the default configuration described in the Methods subsection 'Mass flux estimation'. Nevertheless, it is important to assess and understand the sensitivity of the mass budget estimates and the key relationships to different estimation choices.

We focus first on the influence of different definitions of the sub-cloud layer height h658 and the entrainment rate E on the mean and standard deviation (σ) of M and E, the re-659 spective correlations of M with E and W, and the correlation and mean difference to the 660 independent $M_{\rm turb}$ estimate from turbulence measurements onboard the ATR aircraft (see 661 Extended Data Fig. 2). For the h definition, we compare our default h to an alternative 662 definition, *h.parcel*, which defines h as the level of neutral buoyancy of a surface-lifted 663 parcel (with density-weighted θ_v averaged from 30–80 m) plus 0.2 K θ_v -excess. Using 664 *h.parcel* leads to a 16 m shallower mean h compared to the default. The slightly shallower 665 h decreases $\Delta \theta_{\rm v}$ (the denominator of the E formulation in Eq. S1) from 0.36 K to 0.34 K, 666 which slightly increases E and M by $\sim 1.5 \text{ mm s}^{-1}$. While W is unaffected by this small 667 change in h, the resulting M has a slightly reduced correlation to the independent M_{turb} 668 compared to the default M (r=0.69 vs. r=0.77). The same chain of arguments holds for 669 increasing and decreasing the threshold ϵ in the h definition by ± 0.05 K. With $\epsilon = 0.25$ K 670 instead of 0.2 K (case *h.eps*=0.25), h increases by 31 m, and through the larger $\Delta \theta_{\rm v}$ de-671

creases E and M by $\sim 3.3 \text{ mm s}^{-1}$. Due to the presence of a thin transition layer²², the response to $\epsilon \pm 0.05 \text{ K}$ is nonlinear and a reduction of ϵ to 0.15 K (*h.eps=0.15*) leads to a disproportionately smaller $\Delta \theta_v$ and $\sim 6 \text{ mm s}^{-1}$ larger E and M. The 35 m shallower mean h with $\epsilon = 0.15 \text{ K}$ also strongly increases σ_E , which increases the correlation between E and M at the expense of a decreased correlation between the unaffected W and M (Extended Data Fig. 2c).

The next set of choices regard the entrainment rate estimate. We test the influence of 678 the different surface buoyancy flux estimates from ERA5 and R/V Meteor. As the ERA5 679 flux is 25% larger than the other fluxes, we scale it to have same mean as the dropsonde-680 derived flux (case *sbf=ERA5.sc*). For *sbf=ERA5.sc*, the variability in E and M are substan-681 tially larger compared to the default dropsonde flux, increasing their correlation. For case 682 *sbf=Meteor*, the differences to the default estimates is smaller (Extended Data Fig. 2a,b) 683 and the correlation with $M_{\rm turb}$ slightly larger than in the other configurations. The esti-684 mates are also unaffected by changing the three coefficients $A_{\rm e}$, $C_{\rm q}$, and C_{θ} estimated by 685 Bayesian inversion in ref²² to close the moisture and energy budgets during EUREC⁴A 686 when cold pool soundings (defined as having $h < 400 \,\mathrm{m}$ following ref⁵⁶) are excluded 687 (*diffEpars*). We further compare four different ways of computing $\Delta \theta_{\rm v}$. Computing the 688 value at h+ as averages from h to h + 50 or h + 150 m (instead of to h + 100 m) has a 689 similar (but more linear) influence as increasing $\epsilon \pm 0.05$ K (see discussion above). Using 690 two different heights for averaging θ_v across the mixed layer (up to h in tvbar=h and up 691 to the level where q first falls below its mean by a threshold of 0.3 g kg⁻¹ in tvbar=qgrad) 692 hardly influences the estimates. 693

Lastly, we show the influence of computing the mass budget including the cold pool soundings for two sets of surface buoyancy flux estimates, case *withCP* for the default dropsonde-derived flux and *withCP_sbf=ERA5.sc* for the scaled ERA5 flux. In both cases,

15

the mean and σ of both M and E are increased when cold pools are included (matching the mean E of ref²² who included cold pools). However, especially for the default surface fluxes (case *withCP*), the correlation with M_{turb} is strongly reduced.

Extended Data Fig. 2a,d also show the influence of selected choices on the total mass flux M', which includes the contribution of the temporal fluctuation and horizontal advection of h. Because these additional terms are on average nearly zero (Extended Data Fig. 3c), their inclusion does not affect \overline{M} . $\sigma_{\rm M}$ instead increases by ~1.5 mm s⁻¹ due to the pronounced variability in the temporal fluctuation term. As this term is not very robust, we use the more reliable equilibrium M as our best estimate. The equilibrium M is also robust at the 1 h-scale of an individual circle (case *1h-scale*).

Overall, Extended Data Fig. 2 makes us very confident in the robustness of our mass budget estimates because they only show a modest sensitivity to the various choices, and because we can explain these sensitivities physically. Also, the independent ATR M_{turb} estimates (Extended Data Fig. 2d) and the additional constraints on E from our complementary analyses of the moisture and heat budgets in ref²² (dashed lines in Extended Data Fig. 2b) lend further credibility to our default estimation choices.

⁷¹³ Next, we focus on the sensitivity of the key relationships between M, C, and \mathcal{R} to a se-⁷¹⁴ lected set of plausible estimation choices of M and the different C estimates from the ATR ⁷¹⁵ aircraft. Extended Data Fig. 5a shows that the positive correlation between M and C is sig-⁷¹⁶ nificant for all parameter choices, and both the equilibrium M and total M'. Furthermore, ⁷¹⁷ also the negligible correlation between M and \mathcal{R} is very robust.

Extended Data Fig. 5b further confirms that the default M also has strong correlations with the three independent estimates of C from the ATR aircraft. The same is true for the other estimation choices of M, with a small overall range of correlations of $0.52 < r_{M,C} < 0.73$. Correlations between C and \mathcal{R} are more variable between the different C

16

estimates and range from $0.12 < r_{\mathcal{R},C} < 0.63$. It's not surprising that the C_{only} estimate that neglects contributions from drizzle has the strongest correlation with \mathcal{R} , as it mostly features passive clouds that are more affected by ambient humidity than the more active clouds that also include drizzle. Note that there is also a slight dependency of $r(\mathcal{R},C)$ on the *M* estimates, as the cases *h.parcel* and *h.eps=0.25* result in different *h* and thus different heights where \mathcal{R} is evaluated.

The bottom panels of Extended Data Fig. 5 also confirm the robustness of the correlation coefficient of the multiple linear regression $\hat{C} = a_0 + a_M \widetilde{M} + a_R \widetilde{R}$ and the ratio of the standardized regression coefficients a_M/a_R to the M estimation choices (Extended Data Fig. 5c) and the different C estimates (Extended Data Fig. 5d). There is no configuration with $a_M/a_R < 1$, indicating that C is always more strongly coupled to M than to \mathcal{R} in the observations. Slightly larger values of a_M/a_R and smaller correlations are evident for the total M'.

Also, the standard deviation of C (σ_C) is very similar for the different C estimates that include drizzle (between 2.1–3.7%, with 3.1% being the σ_C of the default BASTALIAS lidar-radar synergy product), and only slightly lower for the C_{only} estimate (1.6%) when using the full sample. Variability is slightly reduced in the smaller sample that overlaps with the HALO flights, because it excludes two night flights with larger cloudiness and two flights in dry environments with very small cloudiness (σ_C of 1.7–2.4% for the Cestimates that include drizzle).

Overall, Extended Data Fig. 5 thus demonstrates the insensitivity of the observed relationships to a wide range of configurations. We therefore conclude that the relationships
 between mixing and cloudiness observed during EUREC⁴A are very robust.

745 **Data availability**

All data used in this study are published in the EUREC⁴A database of AERIS 746 (https://eurec4a.aeris-data.fr/, last access: 28 July 2022). We use v2.0.0 of the 747 data²⁸ (https://doi.org/10.25326/246). The specific ATR JOANNE dropsonde 748 datasets³¹ used are the BASTALIAS product (https://doi.org/10.25326/316), 749 measurements⁴⁹ turbulence (https://doi.org/10.25326/128), the and the PMA 750 (https://doi.org/10.25326/237). CloudComposite dataset The specific HALO 751 datasets²⁹ used are cloud masks derived from WALES cloud-top height estimates 752 (https://doi.org/10.25326/216), HAMP cloud radar (https://doi.org/10.25326/222), 753 and specMACS (https://doi.org/10.25326/166), and the flight segmentation prod-754 uct (https://doi.org/10.5281/zenodo.4900003). From the BCO¹⁵, we used ceilometer 755 (https://doi.org/10.25326/367) and cloud radar data (https://doi.org/10.25326/55). From 756 the R/V Meteor⁴⁴, we used standard dship meteorological data for the EUREC⁴A 757 Meteor cruise M161 (retrieved from http://dship.bsh.de/, last access: 28 June 758 2022), surface heat fluxes (https://doi.org/10.25326/312), ceilometer measurements 759 (https://doi.org/10.25326/53), and cloud radar data (v1.1, https://doi.org/10.25326/164). 760 We further used data from AutoNaut Caravela⁵² (https://doi.org/10.25326/366), and 761 10 min air-sea flux data (v1.3, https://doi.org/10.25921/etxb-ht19) from the R/V Brown⁵⁴. 762 Also, we used CLS Daily High Resolution Sea Surface Temperature maps (retriev-763 able through the AERIS operational center https://observations.ipsl.fr/aeris/eurec4a-764 data/SATELLITES/CLS/SST/, last access: 28 June 2022, or directly from 765 https://datastore.cls.fr/catalogues/sea-surface-temperature-infra-red-high-resolution-766 ABI SSTs ABI_G16-STAR-L3C-v2.7 daily), GOES-16 from the product 767

(https://doi.org/10.25921/rtf0-q898), and ERA5⁵³ reanalysis data. The CMIP5 and

18

⁷⁶⁹ CMIP6 climate model output are available for download at https://esgf-node.llnl.gov.

Code availability

The scripts used for the analyses and other supporting information that may be useful for

reproducing this study can be obtained from https://doi.org/10.5281/zenodo.7032765.

773 **References**

- ⁷⁷⁴ [44] Mohr, W. et al. Eurec4a campaign, cruise no. m161, 17 jan 2020 03 mar 2020,
- bridgetown barbados ponta delgada portugal, meteor-berichte (2020). URL
- https://www.tib.eu/de/suchen/id/awi%3A9cd8fcd5182aa44edcd25c7d688ba9c78
- [45] Pincus, R. *et al.* Observations from the noaa p-3 aircraft during atomic. *Earth Syst. Sci. Data* 13, 3281–3296 (2021).
- [46] Orlanski, I. A rational subdivision of scales for atmospheric processes. *Bull. Amer. Me- teor. Soc.* 56, 527–530 (1975).
- [47] Stevens, B. *et al.* Sugar, gravel, fish and flowers: Mesoscale cloud patterns in the trade
 winds. *Quart. J. Roy. Meteor. Soc.* 146, 141–152 (2020).
- [48] Brueck, M., Nuijens, L. & Stevens, B. On the seasonal and synoptic time-scale variability
 of the north atlantic trade wind region and its low-level clouds. *J. Atmos. Sci.* 72, 1428–
 1446 (2015).
- [49] Brilouet, P.-E. *et al.* The eurec⁴ a turbulence dataset derived from the safire atr 42 aircraft. *Earth Syst. Sci. Data* 13, 3379–3398 (2021).

- [50] Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A. & Edson, J. B. Bulk parameterization of air-sea fluxes: Updates and verification for the coare algorithm. *J. Climate* 16,
 571 591 (2003).
- [51] Edson, J. B. *et al.* On the exchange of momentum over the open ocean. *J. Phys. Oceanogr.* 43, 1589 1610 (2013).
- [52] Siddle, E., Heywood, K. J., Webber, B. G. M. & Bromley, P. First measurements of ocean
 and atmosphere in the tropical north atlantic using caravela, a novel uncrewed surface
 vessel. *Weather* **76**, 200–204 (2021).
- [53] Hersbach, H. *et al.* The era5 global reanalysis. *Quart. J. Roy. Meteor. Soc.* 146, 1999–2049
 (2020).
- ⁷⁹⁸ [54] Quinn, P. K. *et al.* Measurements from the rv *Ronald H. Brown* and related platforms as
 ⁷⁹⁹ part of the atlantic tradewind ocean-atmosphere mesoscale interaction campaign (atomic).
 ⁸⁰⁰ *Earth Syst. Sci. Data* 13, 1759–1790 (2021).
- [55] Bigorre, S. P. & Plueddemann, A. J. The annual cycle of air-sea fluxes in the northwest
 tropical atlantic. *Frontiers in Marine Science* 7 (2021).
- ⁸⁰³ [56] Touzé-Peiffer, L., Vogel, R. & Rochetin, N. Cold pools observed during eurec4a: detection
 ⁸⁰⁴ and characterization from atmospheric soundings. *J. Appl. Meteor. Climatol.* (2022).
- ⁸⁰⁵ [57] Lilly, D. K. Models of cloud-topped mixed layers under a strong inversion. ⁸⁰⁶ *Quart. J. Roy. Meteor. Soc.* **94**, 292–309 (1968).
- [58] Stull, R. B. The energetics of entrainment across a density interface. J. Atmos. Sci. 33,
 1260–1267 (1976).

- [59] Ghate, V. P., Miller, M. A. & DiPretore, L. Vertical velocity structure of marine boundary 809 layer trade wind cumulus clouds. J. Geophys. Res. Atmos. 116 (2011). 810 [60] Stephan, C. C. & Mariaccia, A. The signature of the tropospheric gravity wave background 811 in observed mesoscale motion. Weather Clim. Dynam. 2, 359-372 (2021). 812 [61] Naumann, A. K., Stevens, B. & Hohenegger, C. A moist conceptual model for the bound-813 ary layer structure and radiatively driven shallow circulations in the trades. J. Atmos. Sci. 814 76, 1289 – 1306 (2019). 815 [62] Vial, J., Vogel, R. & Schulz, H. On the daily cycle of mesoscale cloud organization in the 816 winter trades. Quart. J. Roy. Meteor. Soc. 147, 2850–2873 (2021). 817 [63] Savazzi, A. C. M., Nuijens, L., Sandu, I., George, G. & Bechtold, P. The representation of 818 winds in the lower troposphere in ecmwf forecasts and reanalyses during the eurec4a field 819 campaign. Atmos. Chem. Phys. Disc. 2022, 1–29 (2022). 820
- [64] Canut, G., Couvreux, F., Lothon, M., Pino, D. & Saïd, F. Observations and large-eddy
 simulations of entrainment in the sheared sahelian boundary layer. *Boundary Layer Mete- orol.* 142, 79–101 (2012).
- [65] Brient, F. & Bony, S. Interpretation of the positive low-cloud feedback predicted by a
 climate model under global warming. *Clim. Dyn.* 40, 2415–2431 (2013).
- [66] Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of cmip5 and the experiment
 design. *Bull. Amer. Meteor. Soc.* 93, 485 498 (2012).
- [67] von Salzen, K. *et al.* The canadian fourth generation atmospheric global climate model
 (canam4). part i: Representation of physical processes. *Atmosphere-Ocean* 51, 104–125
 (2013).

- [68] Stevens, B. *et al.* Atmospheric component of the mpi-m earth system model: Echam6.
 J. Adv. Model. Earth Syst. 5, 146–172 (2013).
- [69] Hourdin, F. *et al.* Impact of the lmdz atmospheric grid configuration on the climate and
 sensitivity of the ipsl-cm5a coupled model. *Clim. Dyn.* 40, 2167–2192 (2013).
- [70] Martin, T. H. D. T. G. M. *et al.* The hadgem2 family of met office unified model climate
 configurations. *Geosci. Model Dev.* 4, 723–757 (2011).
- [71] Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (cmip6)
- experimental design and organization. *Geosci. Model Dev.* **9**, 1937–1958 (2016).
- ⁸³⁹ [72] Wu, T. *et al.* The beijing climate center climate system model (bcc-csm): the main ⁸⁴⁰ progress from cmip5 to cmip6. *Geosci. Model Dev.* **12**, 1573–1600 (2019).
- ⁸⁴¹ [73] Voldoire, A. *et al.* Evaluation of cmip6 deck experiments with cnrm-cm6-1.
 ⁸⁴² J. Adv. Model. Earth Syst. 11, 2177–2213 (2019).
- [74] Hourdin, F. *et al.* Lmdz6a: The atmospheric component of the ipsl climate model with
 improved and better tuned physics. *J. Adv. Model. Earth Syst.* 12, e2019MS001892 (2020).
- [75] Tatebe, H. *et al.* Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in miroc6. *Geosci. Model Dev.* 12, 2727–2765 (2019).
- [76] Yukimoto, S. *et al.* The meteorological research institute earth system model version 2.0,
 mri-esm2.0: Description and basic evaluation of the physical component. *J. Meteorol. Soc. Japan Ser. II* advpub (2019).
- [77] Walters, D. *et al.* The met office unified model global atmosphere 6.0/6.1 and jules global
 land 6.0/6.1 configurations. *Geosci. Model Dev.* 10, 1487–1520 (2017).

[78] Soden, B. J. & Held, I. M. An assessment of climate feedbacks in coupled ocean–
atmosphere models. J. Climate 19, 3354 – 3360 (2006).

Acknowledgments: We thank all the scientists, engineers, technicians, and pilots who made the 854 EUREC⁴A data collection possible (see ref⁹ for the complete list). We acknowledge Julien De-855 lanoë and Patrick Chazette for making the horizontal radar-lidar cloud measurements on board 856 the ATR possible, Marie Lothon, Pierre-Etienne Brilouet and the SAFIRE team for making the 857 turbulent measurements and ATR flights possible, Martin Wirth and Silke Gross for producing 858 sub-cloud layer height retrievals from the WALES lidar onboard HALO, Chris Fairall and Eliz-859 abeth Thompson for insights regarding SSTs and surface fluxes, Elizabeth Siddle for sharing the 860 Autonaut Caravela data, Imke Schirmacher for comparison with her R/V Meteor surface flux es-861 timates, Johannes Röttenbacher for making R/V Meteor data available, and Cathy Hohenegger 862 for feedback on the manuscript. We thank three reviewers for their feedback. The EUREC⁴A 863 field campaign was funded by multiple international organizations⁹. The French team and ATR 864 operations were funded by an ERC Advanced Grant (EUREC4A grant no 694768) backed by 865 some H2020 funding (CONSTRAIN grant no 820829), and the German team and HALO opera-866 tions were funded by the Max Planck Society (MPG), the German Research Foundation (DFG), 867 the German Meteorological Weather Service (DWD) and the German Aerospace Center (DLR). 868 Author contributions: R.V., S.B., and B.S conceived the study, which was the primary ob-869 jective of the EUREC⁴A campaign; R.V. performed the analyses and wrote the paper; J.V. pro-870 cessed the CFMIP output and helped define model diagnostics relevant to cloud feedbacks; 871 A.L.A. helped with the entrainment rate estimate and the analysis of CFMIP model outputs; 872 S.B. diagnosed the cloud fraction and mass flux estimates from ATR observations; G.G. con-873 tributed additional JOANNE dropsonde and ERA5 products, and B.S. produced Fig. 1. All 874 authors contributed to interpreting the results and writing the paper. 875

876 **Competing interests:** The authors declare no competing interests.

Additional information

- ⁸⁷⁸ **Correspondence and requests for materials** should be addressed to Raphaela Vogel.
- 879 **Peer review information** We thank three anonymous reviewers for their contribution to the
- peer review of this work. Peer reviewer reports are available. Reprints and permissions infor-
- **mation** is available at http://www.nature.com/reprints.

Extended Data Fig. 1 | **Diurnal cycles of key terms. a**, M and M', **b**, E and W, **c**, surface buoyancy flux, and **d**, C versus local time both at the 3h-scale (filled) and 1h-scale (open circles). The vertical bars show the estimation uncertainty at the 3h-scale (see Methods Sec. 'Uncertainty estimation'). The correlation coefficients given in the legends represent the correlation between the individual terms and the time at the 3h-scale ('r') and the 1h-scale ('r.1h' in brackets).

Extended Data Fig. 2 | Influence of estimation procedure and parameter choices on mass budget estimates. Campaign mean and standard deviation of **a**, M and **b**, E, **c**, correlation coefficients between M and E ($\mathbf{r}_{M,E}$) and M and W ($\mathbf{r}_{M,W}$), and **d**, correlation and mean difference between M and M_{turb} from ATR turbulence measurements, for different configurations of the mass budget. Open symbols in **a** and **d** show the total M'. The dashed lines in **b** show the mean and standard deviation of E from ref²², and the zero line in **d**. See the Methods subsection 'Robustness of observational estimates' for details.

Extended Data Fig. 3 | Timeseries of other mass budget terms. Shown are **a**, h and the flight level of the ATR aircraft, **b**, the equilibrium M, the total M', and the M_{turb} from ATR turbulence measurements, **c**, the temporal fluctuation and advection terms, **d**, the surface buoyancy flux, and **e**, the $\Delta\theta_v$. The vertical bars show the estimation uncertainty at the 3 h-scale (see Methods Sec. 'Uncertainty estimation'), and the small open circles show the 1 h-scale. The x markers in **a-b** indicate the data that are excluded in the correlations due to inconsistent sampling between the two aircraft. The campaign mean $\pm 1\sigma$ is shown on the left side of each panel.

Extended Data Fig. 4 | Relationships of other key terms. a, E and W versus M, b, surface buoyancy flux versus E, c, $\Delta \theta_v$ versus E, d, \mathcal{R} versus E, e, \mathcal{R} versus W, f, BVA mixing indicator versus M, g, E versus W, and h, 10 m wind speed versus surface buoyancy flux. a-c,fh show both the 3 h-scale (filled) and 1 h-scale (open circles, with the corresponding correlation coefficient denoted as 'r.1h'). A dotted 1:1 line is shown in a and g. In d-e, the error bars represent the estimation uncertainty for E and W, and the sampling uncertainty for \mathcal{R} (see Methods). The correlations in d-e are given both for the sample with consistent sampling among the HALO and ATR aircraft (blue points, as used for the correlations in Fig. 2&3), and for the entire sample of the HALO aircraft (including the grey points that represent the three data points marked with x in Fig. 3, and 8 other data points when ATR was not flying. The corresponding correlation coefficient is denoted as 'r.all').

Extended Data Fig. 5 | Influence of different M and C estimates on key relationships. Correlation coefficients r of **a**, M and C ($\mathbf{r}_{M,C}$) and M and \mathcal{R} ($\mathbf{r}_{M,\mathcal{R}}$) and **b**, M and C ($\mathbf{r}_{M,C}$) and \mathcal{R} and C ($\mathbf{r}_{R,C}$). **c-d**, correlations of the reconstructed $\widehat{C} = a_0 + a_M \widetilde{M} + a_R \widetilde{\mathcal{R}}$ and the observed C ($\mathbf{r}_{\widehat{C},C}$), as well as the ratio of the standardized regression coefficients a_M/a_R . **a** and **c** also show the relationships for the total M' (open symbols), whereas **b** and **d** show the relationships for different estimates of C (different symbols). See details in Methods subsection 'Robustness of observational estimates'.

Extended Data Fig. 6 | Relationship of M with three estimates of the total projected cloud cover (CC). CC from a, WALES backscatter lidar, b, hyperspectral imager specMACS, and c, HAMP cloud radar on board HALO. The error bars represent the sampling uncertainty (for the CC estimates) and the estimation uncertainty (for M, see Methods Sec. 'Uncertainty estimation').

Extended Data Fig. 7 | Individual relationships of C, M and \mathcal{R} for climate models. Relationships among individual 3 h C and M (1st and 3rd column) and C and \mathcal{R} (2nd and 4th column) for all ten climate models. The red and blue points represent the median and mean of the respective variables, and the red lines extend from the 25th to the 75th quartile. The grey vertical line in the \mathcal{R} panels shows the 94% \mathcal{R} -threshold.

Extended Data Fig. 8 | Comparison of other variables and relationships in climate models against the EUREC⁴A data. a, mean \mathcal{R} and fraction of *stratocumulus-like* conditions with $\mathcal{R}>94\%$, b, standard deviation of \mathcal{R} and W ($\sigma_{\mathcal{R}}$ and σ_{W}), c, r² of multiple linear regression $\widehat{C} = a_0 + a_M \widetilde{M} + a_{\mathcal{R}} \widetilde{\mathcal{R}}$ and correlation coefficient of M and \mathcal{R} , d, standard deviation of C(σ_{C}) and thermodynamic component of the cloud feedback $\Delta CRE/\Delta T_s$, as well as the 3 h and monthly correlations of e, M and C, and f, \mathcal{R} and C. e-f also show the inter-model correlation coefficients of the respective variables and the 1:1 line (dotted). As in Fig. 4, the models are colored in bins of feedback strength, and open symbols indicate models with frequent stratocumulus (defined as having $\mathcal{R}>94\%$ more than 15% of the time). The observational uncertainty range is shown in grey, with the shading representing the 25th to 75th quartile and the grey bars the 95%-CI of bootstrapped values. HadGEM2-A is not shown in **b** due to the absence of Woutput.

a Mixing-desiccation mechanism (β <0)

b Mesoscale motion control (β >0)

