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Abstract

Shallow cumulus clouds in the trade-wind regions cool the planet by reflecting solar radiation. The response of trade cumulus

clouds to climate change is a major uncertainty in climate projections. Trade cumulus feedbacks in climate models are governed

by changes in cloud fraction near cloud base, with high climate-sensitivity models suggesting a strong decrease in cloud-

base cloudiness due to increased lower-tropospheric mixing. Here we show that novel observations from the EUREC4A field

campaign refute this mixing-desiccation hypothesis. We find the dynamical increase of cloudiness through mixing to overwhelm

the thermodynamic control through humidity. Because mesoscale motions and the entrainment rate contribute equally to

variability in mixing, but have opposing effects on humidity, mixing does not desiccate clouds. The magnitude, variability, and

coupling of mixing and cloudiness differ drastically among climate models and with the EUREC4A observations. Models with

large trade cumulus feedbacks tend to exaggerate the dependence of cloudiness on relative humidity as opposed to mixing, and

also exaggerate variability in cloudiness. Our observational analyses render models with large positive feedbacks implausible,

and both support and explain at the process scale a weak trade cumulus feedback. Our findings thus refute an important line

of evidence for a high climate sensitivity.
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Shallow cumulus clouds in the trade-wind regions cool the planet by reflecting5

solar radiation. The response of trade cumulus clouds to climate change is6

a major uncertainty in climate projections1–4. Trade cumulus feedbacks in7

climate models are governed by changes in cloud fraction near cloud base5,6,8

with high climate-sensitivity models suggesting a strong decrease in cloud-base9

cloudiness due to increased lower-tropospheric mixing5–7. Here we show that10

novel observations from the EUREC4A field campaign8,9 refute this mixing-11

desiccation hypothesis. We find the dynamical increase of cloudiness through12

mixing to overwhelm the thermodynamic control through humidity. Because13

mesoscale motions and the entrainment rate contribute equally to variability14

in mixing, but have opposing effects on humidity, mixing does not desiccate15

clouds. The magnitude, variability, and coupling of mixing and cloudiness16

differ drastically among climate models and with the EUREC4A observations.17

Models with large trade cumulus feedbacks tend to exaggerate the dependence18

of cloudiness on relative humidity as opposed to mixing, and also exaggerate19

variability in cloudiness. Our observational analyses render models with large20

positive feedbacks implausible, and both support and explain at the process21

scale a weak trade cumulus feedback. Our findings thus refute an important22

line of evidence for a high climate sensitivity10,11.23
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Introduction24

Earth’s climate strongly depends on the abundance and behavior of its smallest clouds. Shallow25

trade-wind cumulus clouds are rooted in the turbulent sub-cloud layer and form when thermals26

rise above the lifting condensation level12. They may grow only a few 100 m high in dry en-27

vironments, or become positively buoyant and rise up to the trade-wind inversion, where they28

detrain condensate into stratiform cloud layers. Trade cumuli populate the majority of subtrop-29

ical oceans and cool the planet by reflecting the incoming solar radiation. Due to their large30

geographical extent, small errors in predicting the way trade cumuli respond to warming can31

have a large effect on the global radiative budget. This explains why shallow cumuli in the32

trades are a major source of spread in climate models’ estimates of climate sensitivity1–4.33

Cloudiness near the base of the cumulus layer makes up two-thirds of the total cloud cover in34

the trades13 and its change with warming governs the strength of the trade cumulus cloud feed-35

back in climate models5,6. Reductions in cloud-base cloudiness in climate models are tightly36

coupled with increases in lower-tropospheric mixing due to convective and large-scale circula-37

tions5–7. Based on this strong negative coupling between mixing and cloudiness, the hypothesis38

emerged that enhanced convective mixing might desiccate the lower cloud layer and reduce39

cloudiness in the trades7. This mixing-desiccation hypothesis suggests that the moisture trans-40

ported by convection from the sub-cloud layer to the trade inversion is compensated by down-41

ward mixing of drier air and evaporation of clouds near cloud base. The mechanism—which is42

expected to become more pronounced with warming due to the nonlinear Clausius-Clapeyron43

relationship—is consistent with idealized high-resolution simulations of non-precipitating trade44

cumuli14 and with the behavior of climate models that have a strongly positive trade cumulus45

feedback5,7,15. However, the mixing-desiccation hypothesis has never been tested with obser-46

vations. Using the convective mass flux at cloud base, M , as a proxy for lower-tropospheric47
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convective mixing, the hypothesis can be tested by analyzing the relationship between M and48

the mean relative humidity (R) and cloud fraction (C) at cloud base in observations, with49

C / R / M� and � < 0 suggesting the mixing-desiccation mechanism to be present in50

nature (Fig. 1a).51

The mixing-desiccation mechanism is based on a number of assumptions that might not be52

operating in nature. M is commonly defined as the product of the cloud fraction and the in-cloud53

vertical velocity, and its variability is mostly governed by the area coverage of active clouds16,17,54

defined as saturated and buoyant updrafts that ventilate the sub-cloud layer. If variability in the55

in-cloud vertical velocity near cloud-base is small, a positive relationship between C and M56

is expected (� > 0, Fig. 1b). This was demonstrated for non-precipitating trade cumuli using57

Doppler radar data17,18 and appears at odds with the mixing-desiccation hypothesis. Yet active58

clouds represent only half of the total C 19,20 and the lifetime and variability of passive clouds,59

such as the detritus of decaying clouds, might be more sensitive to R and mixing-induced drying60

of their environment than to M .61

The sub-cloud layer mass budget provides a theoretical basis for interpreting the mixing-62

desiccation mechanism. It can be expressed as a budget of the sub-cloud layer height h,63

@h

@t
+ Vh ·rh = E +W �M, (1)

where the entrainment rate, E, representing the mass source due to the entrainment of dry and64

warm cloud layer air, and the mesoscale vertical velocity, W , are balanced by the mass export65

due to the convective mass flux, M 20. Note that we define M as the (mass) specific mass flux,66

which has units of velocity (see Methods). E is the only term directly affecting the sub-cloud67

layer moisture and heat budgets21,22. If an increase in M is mostly balanced by an increase in E,68

a drying and warming of the sub-cloud layer and a reduction in R and C is expected (Fig. 1a).69

The trades, however, exhibit strong mesoscale convective organization, which is linked to the70
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presence of mesoscale circulations and substantial variability in W 20,23–25. This variability in71

W could contribute to variability in M without directly affecting R (Fig. 1b). An increase72

in M could also produce increased inversion cloudiness and thus increased total cloud cover,73

compensating the radiative effects of a potential decrease in C. The diversity of cloud types and74

the large variability in W in the trades thus call into question the mixing-desiccation mechanism75

as the dominant control of C and trade cumulus feedbacks.76

The EUREC4A (Elucidating the role of clouds-circulation coupling in climate) field cam-77

paign was conceived to test the mixing-desiccation hypothesis8,9. EUREC4A took place in78

January and February 2020 near Barbados, a region selected as a source of data because clouds79

in its vicinity are representative for the entire trade-wind belt26. During EUREC4A we made80

measurements designed to quantify the magnitude and (co-)variability of M , C, and R over one81

month, which was characterized by substantial variability in the mesoscale convective organi-82

zation27 and the large-scale circulation9 (see Methods). With the help of these measurements,83

we are able to test the mixing-desiccation hypothesis with observations for the first time.84

Observations of M , C, and R co-variations85

During EUREC4A we dropped more than 800 dropsondes from the HALO aircraft flying at86

about 10 km altitude along 1 h circles of 220 km diameter28,29. We use the dropsonde data to87

estimate M at the sub-cloud layer top as a residual of the mass budget (Eq. 1) on the 3 h-scale88

of 3 consecutive circles (see Methods). Fig. 2a shows a large day-to-day variability of M ,89

with higher values at the beginning and end of the campaign, and a campaign-mean of 17.4 ±90

7.5mm s�1 (mean ± standard deviation �). M shows a pronounced diurnal cycle (Extended91

Data Fig. 1), with larger values around sunrise and smaller values in the afternoon (consistent92

with20,30). The mass budget estimates are robust to changes in the estimation procedure and93

consistent with independent data (Methods and Extended Data Fig. 2).94
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The entrainment rate E is computed as the ratio of the scaled surface buoyancy flux and95

the buoyancy-jump across h (Eq. S1, Extended Data Fig. 3). E averages to 18.3 ± 6.4mm s�1
96

across the campaign (Fig. 2b) and also shows a pronounced diurnal variability (Extended Data97

Fig. 1). E is mostly controlled by variability in the surface buoyancy flux (Extended Data98

Fig. 4b). It is the strengthening of winds and surface fluxes that contributes most to the increase99

in E and M in the second half of EUREC4A. W is, with �0.9± 6.7mm s�1, on average nearly100

zero. Variability in W , however, is substantial and contributes slightly more to variability in M101

compared to E (Extended Data Fig. 4a). So while M ⇠ E holds on average, consistent with102

the mixing-desiccation hypothesis (Fig. 1a), variability in M is both controlled by E and W .103

Fig. 2c shows the novel measurements of the cloud-base cloud fraction C from combined104

horizontally-staring lidar and radar on board the ATR aircraft flying near cloud base31. C is,105

with 5.4 ± 3.1%, both small and highly variable. The variability of C on the 3 h-scale is sub-106

stantially larger than variability on synoptic and longer timescales13. The robustness of C is107

demonstrated by the internal consistency among complementary and independent measure-108

ments in terms of measurement techniques and spatial sampling31. The R at cloud base is109

robustly around 86% (Fig. 2d), except for a few outliers. Three data points with much lower R110

for ATR compared to HALO (marked with x in Fig. 2d) are excluded in the following analyses,111

as these situations were associated with air masses that were sampled differently by the two112

aircraft (see Methods and Fig. A2 in ref31).113

Despite being fundamental quantities to understand climate sensitivity, the challenging na-114

ture of observing M and C so far prevented an observational analysis of the relationship be-115

tween mixing and cloud-base cloudiness. With the EUREC4A observations presented here, we116

are now able to test the mixing-desiccation hypothesis with data.117
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Data refute mixing-desiccation hypothesis118

The cloud-base cloud fraction is hypothesized to be controlled both dynamically through M and119

thermodynamically through R. We can therefore express C as a multiple linear regression bC =120

a0 + aMfM + aR eR, where f( ) represents standardized values (e.g., fM = M/�M). Fig. 3a shows121

that the observed C and the reconstructed bC agree very well (r=0.83 [0.80, 0.91], with values122

in the square brackets representing the 25th and 75th quartile of bootstrapped correlations),123

demonstrating that M and R dominate variability in C.124

The mixing-desiccation mechanism contends that as M increases, E increases and leads to125

a reduction in R. The anti-correlation of E and R is confirmed by the observations (rE,R =126

�0.47 [-0.62, -0.32], Extended Data Fig. 4d). But W is also correlated to R (rW,R = 0.48 [0.29,127

0.62], Extended Data Fig. 4e). W does not directly affect the thermodynamic properties of the128

sub-cloud layer22, as it transports mass with the same properties of the well-mixed sub-cloud129

layer. The positive correlation between W and R is thus likely connected to a self-aggregation130

feedback leading to a net convergence of moisture into areas that are already moist25,32,33. The131

opposing correlations of E and W with R lead to a negligible anti-correlation of M and R132

(r=�0.08 [-0.26, 0.10], Fig. 3b). While this makes M and R independent predictors of C, it133

contrasts with the expected desiccation effect of increased mixing. The basic premise of the134

mixing-desiccation hypothesis thus breaks down in the presence of strong variability in W .135

Fig. 3c further shows a pronounced positive correlation between C and M (r=0.72 [0.64,136

0.81]), demonstrating that M explains more than 50% of variability in C. The EUREC4A data137

are therefore in line with a more direct relation C / M� and a � > 0 (Fig. 1b). The tight138

connection between C and M is also consistent with physical understanding represented in the139

scaling C ⇠ 2Ccore / 2M/w⇤, where Ccore is the area fraction of active cloud cores and w⇤
140

the Deardorff vertical velocity scale (see Methods and ref24). The correlation of C with R is141
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weaker (r=0.36 [0.16, 0.56], Fig. 3d). These conclusions are robust to changes in the estimation142

procedure of M and to independent estimates of C (Extended Data Fig. 5).143

The relationships exposed by the EUREC4A data are thus in opposition to the mixing-144

desiccation hypothesis, which contends that increasing mixing (larger M ) leads to a desiccation145

of the lower cloud layer (smaller R) and a reduction in cloud-base cloudiness (smaller C). We146

also find a positive relationship between C and another indicator of lower-tropospheric mix-147

ing (Extended Data Fig. 4f) and a weak positive correlation between M and the total projected148

cloud cover (Extended Data Fig. 6). Hence, the EUREC4A data emphasizes dynamic factors—149

the convective mass flux M and the mesoscale vertical velocity W—as dominant controls of C,150

rather than thermodynamic factors related to the mixing-desiccation mechanism.151

Models underestimate strong cloud-circulation coupling152

How consistent is the present generation of climate models with our observations? To assess153

how climate models represent the relationship between mixing and cloudiness, we use 10 mod-154

els from the Cloud Feedback Model Intercomparison Project CFMIP34 that provide the neces-155

sary point-wise M , C, and R output at high temporal resolution near the EUREC4A domain156

(see Methods). In contrast to the consistency among many independent EUREC4A observa-157

tions, Fig. 4a shows that the models strongly differ regarding their magnitude and variability of158

M and C. While some models predict unrealistically low M (CanAM4, MIROC6, and MPI-159

ESM), the IPSL-CM6A has a 5-times larger mean M compared to the EUREC4A observations.160

Except IPSL-CM6A, all models strongly overestimate variability in C (see also ref35), and 8 of161

10 models also overestimate the magnitude of C. This is partly due to the tendency of mod-162

els to produce stratocumulus clouds in this shallow cumulus regime36,37 (evident in the strong163

increases in C (up to 50-100%) above a critical R of about 94%, see Extended Data Fig. 7).164

In contrast, the observations indicate no occurrence of C>13% or R>94%. The models that165
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produce such more stratocumulus-like conditions with R>94% more than 15% of the time166

(Extended Data Fig. 8a) are labeled with open symbols in Fig. 4.167

Only the BCC-CSM2 model represents the pronounced positive correlation between C and168

M observed during EUREC4A at the 3 h-scale (Fig. 4b). Six of the other models have a correla-169

tion coefficient r<0.05, of which three models even show a negative correlation. The majority170

of models thus strongly underestimate the tight coupling between clouds and convection ob-171

served in EUREC4A. Instead, these six models are more in line with the mixing-desiccation172

mechanism and a � < 0 (Fig. 1a), even though this is not mediated by a pronounced negative173

correlation between M and R (Extended Data Fig. 8c). All the models also strongly underesti-174

mate variability in W (Extended Data Fig. 8b), as they do not represent the sub-grid processes175

leading to the observed variability in the mesoscale vertical velocity (e.g., shallow circulations176

driven by differential radiative cooling38 or local SST gradients39). The relationships between177

C and R are more consistent among most models (Fig. 4b), and also more consistent with the178

observations compared to the relationships between C and M .179

In contrast with the observations, clouds as parameterized by climate models are more ther-180

modynamically than dynamically controlled. The misrepresentation of the relative sensitivity181

of C to changes in M or R by all models is encapsulated in the ratio of the standardized re-182

gression coefficients aM/aR from the regression bC = a0 + aMfM + aR eR. The model samples183

lie completely outside the EUREC4A data (Fig. 4c). All models, with one exception, substan-184

tially underestimate the value of aM/aR compared to the observations, highlighting that in the185

climate models, variability in C is primarily controlled by variations in R rather than variations186

in M . Whereas BCC-CSM2 appears credible in terms of the magnitude and relationship of C187

and M , its credibility is eroded by its unrealistic relationship between C and R (Extended Data188

Fig. 7), and thus an implausible aM/aR of �5.2. At odds with the observations, in most mod-189

els M and R are only weak predictors of C, as evident in the low coefficient of determination190
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(r2) of the multiple linear regression of bC (Extended Data Fig. 8c). The cloud parameteriza-191

tions of the models thus fail in capturing the key relationships between C and the dynamic and192

thermodynamic environment observed in nature.193

Implications for trade cumulus feedbacks194

The EUREC4A observations provide robust estimates of the mean, the variability, and the cou-195

pling of M , C, and R in contrasted trade cumulus environments. While the observed variability196

is substantial, the variability simulated by climate models is unrealistic, as are the drivers of this197

variability. The EUREC4A data thus provide a physical test of the capacity of models to repre-198

sent the interplay of the processes active in regulating trade-wind cloud amount, and may guide199

future model development. Moreover, the fact that the relationships at the 3 h process scale are200

consistent with the relationships at the monthly timescale (r�0.84, Extended Data Fig. 8e,f)201

suggests that the underlying fast physical processes that couple M , R and C in the models are202

largely invariant with the timescale. The relationships derived from the EUREC4A observations203

can therefore also be used to evaluate the credible range of trade cumulus feedbacks in the204

climate models.205

Fig. 4b demonstrates that all models with a strong trade cumulus feedback represented by a206

change in the cloud radiative effect (�CRE) with warming exceeding 0.37 W m�2 K�1 (reddish207

colors, Fig. 4c) represent the refuted mixing-desiccation mechanism with a negative (or very208

weak) correlation between M and C. Also, these four models exaggerate both the coupling209

of C to R (small aM/aR, Fig. 4c) and the variability in C (�C, Extended Data Fig. 8d). Con-210

trastingly, the models that are closer to the observations tend to have a weaker positive �CRE211

with warming. The EUREC4A observations of the physical processes that drive the short-term212

variability of C thus rule out the mechanism that leads to the largest positive trade cumulus213

feedbacks in current climate models.214
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By showing that mesoscale motions inhibit the mixing-desiccation mechanism, we refute an215

important physical hypothesis for a large trade cumulus feedback. In the spirit of the story-line216

approach for constraining equilibrium climate sensitivity10, our findings thus refute an impor-217

tant line of evidence for a strong positive cloud feedback and thus a large climate sensitivity.218

The EUREC4A observations therefore support recent satellite-derived constraints from observed219

natural variability37,40 and climate-change experiments using idealized high-resolution simula-220

tions41,42, which suggest that a weak trade cumulus feedback is more plausible than a strong221

one. Moreover, for the first time we take into account all types of clouds present in the trades,222

including the optically thinnest ones that are usually missed in satellite observations43 and con-223

sider the full spectrum of mesoscale variability that was not represented in idealized simulations224

of cloud feedbacks. We also provide an explanation for the inconsistency of models with large225

positive feedbacks: in these models, the observed tight coupling between convective mixing226

and cloudiness is absent; instead, C is primarily controlled thermodynamically by R, which227

exaggerates variability in C and feedbacks to warming. By not representing the variability in228

mesoscale circulations, the models miss an important process regulating trade cumulus clouds.229

Future research should focus on better understanding the processes controlling these mesoscale230

circulations, and how they might change in a warmer climate.231
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Fig. 1 | Illustration of two mechanisms for the coupling of mixing and cloudiness. a, The
mixing-dessication mechanism contends that E increases in response to an increase in M , which
leads to a reduction in R and cloud-base cloudiness C, and a relationship C / R / M� with
� < 0. b, The mesoscale motion control of cloudiness instead suggests that M is equally
controlled by both E and W , such that M is uncorrelated to R and � > 0.

Fig. 2 |Timeseries of mixing and cloudiness during EUREC4A. Measurements of a, M , b,
E and W , c, C, and d, R, with filled symbols representing the 3 h-scale and open symbols the
1 h-scale. The vertical bars in a-c show the estimation uncertainty at the 3 h-scale (see Methods
Sec. ’Uncertainty estimation’). The R in d is shown for both the HALO (blue) and ATR (green)
aircraft, with the x markers representing the data points that are excluded in the correlations
due to inconsistent sampling of the mesoscale cloud patterns between the two aircraft. The
campaign mean±1� is shown on the left side of each panel.

Fig. 3 |Relationships among M , R, and C. The relationships between a, the observed C and
the reconstructed bC from the regression bC = a0 + aMfM + aR eR, b, M and R, c, M and C,
and d, R and C are shown at the 3 h-scale. The error bars represent the estimation uncertainty
for M and C, and the sampling uncertainty for R (see Methods). The dotted line in a is the
1:1 line. The size of the markers in b represents C. The shading in c represents the scaling for
C / 2M/w⇤ using the mean±2� of the velocity scale w⇤. The grey x markers represent data
that are excluded in the correlations due to inconsistent sampling between the two aircraft (see
Fig. 2d and Methods).
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Fig. 4| Relationships in climate models and link to trade cumulus feedback. a, Mean±�/2
of M and C, b, correlation coefficients r between M and C (rM,C) and R and C (rR,C), and c,
ratio of the standardized multiple linear regression coefficients aM/aR and the thermodynamic
component of the trade cumulus radiative feedback. The models are colored in bins of feedback
strength. Open symbols refer to models with frequent stratocumulus (defined as having R>94%
more than 15% of the time, see Extended Data Fig. 8a). The grey shading represents the 25th
to 75th quartile and the grey bars the 95%-CI of bootstrapped observational values. For plotting
purposes, a shows the mean M̄ -30 for IPSL-CM6A, and c shows the ratio aM/aR+3 for BCC-
CSM2. In c, the upper end of the observational 95%-CI (at 6.75) is cropped.
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Methods327

EUREC4A field campaign328

We use data from the EUREC4A field campaign, which took place in January and February329

2020 and was anchored in Barbados8,9. We focus on measurements made by the HALO29
330

and ATR aircraft31, which flew coordinated patterns in the ca. 220 km diameter EUREC4A331

circle centered at 13.3�N, 57.7�W. The HALO aircraft flew three circles at 10.2 km alti-332

tude in 200 min (ca. 60 min per circle plus 15 min break between circles) and launched333

dropsondes every 30� of heading (ca. 12 sondes per circle) to characterize the large-scale334

environment28. At the same time, the ATR aircraft flew 2–3 50 min rectangle-patterns in-335

side the circle near cloud base and measured the cloud fraction with horizontally-staring336

cloud radar and backscatter lidar, and with several in-situ probes and sensors31. Obser-337

vations from the Barbados Cloud Observatory (BCO)15, and the R/V Meteor44 provide338

additional context at the western and eastern boundaries of the EUREC4A circle.339

A typical flight day of HALO comprised two sets of three consecutive circles lasting about340

3 h and comprising 30-36 sondes (sometimes defined as circling9,22,29). The 3 h-circle sets341

are separated by a 1.5 h break to refuel the ATR. The circle patterns were flown from342

January 22 to February 15 with different starting times between 04:30 and 19:30 local343

time (LT) to sample the diurnal cycle. Four additional single dropsonde circles are also344

used, three of which were flown by the P3 aircraft45 during nighttime (starting at 00:15 LT345

on February 9 and 10, and at 01:30 LT on February 11). In total, the dataset comprises 73346

circles (1 h-scale) and 24 sets of three consecutive circles (3 h-scale), for which 16 have347

coincident ATR data. We assume that HALO and ATR sample comparable conditions on348

the 3 h-scale. This is confirmed by the similar cloud-base R of the aircraft during most349

flights (Fig. 2d), except for the first 3 h-circle set on February 2 and the second 3 h-circle350
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set on February 7 and 13 where the spatial scale of the cloud organization was larger than351

the scale of the domain sampled by the ATR. These three 3 h-circle sets are marked in the352

figures and excluded from the calculated correlations.353

The spatial scale of the observations represents the lower end of Orlanski’s46 meso-↵354

scale and is comparable in size to a climate model grid box. The 200–300 km scale is355

the relevant scale of the cloud processes for a trade cumulus ensemble and also the scale356

that convective parameterizations target. It lies in between the O(1 km) scale of individual357

clouds and the synoptic scale of O(1000 km), and is associated with the emergence of the358

prominent trade cumulus cloud organization patterns47. As the airmasses are advected by359

about 30 km per hour (at the campaign-mean wind speed of ⇠9 m s�1 at 1 km height), the360

spatial sampling of the 220 km diameter circle does not differ substantially between the 1 h361

and 3 h timescales, which motivates our nomenclature focus on the time rather than space362

scale. Using the measurements, model and reanalysis data we would not expect our results363

to change substantially if the analysis domain were increased or reduced by a factor of364

two or more (see Methods subsection ’Mass flux estimation’ for a discussion of the scale365

sensitivity of the results).366

The Barbados region was chosen as location of EUREC4A because shallow trade cumulus367

clouds are the dominant cloud type in the area during winter13. Furthermore, clouds in the368

Barbados region are similar to clouds across the trade-wind regions in both observations369

and models26. The mean meteorological conditions during the EUREC4A campaign, as370

sampled by the dropsondes, also correspond well to the average January-February condi-371

tions from 12 years of data from the ERA-Interim reanalysis48 (their Fig. 5), albeit with372

a 10% larger 850 hPa relative humidity during EUREC4A (the EUREC4A dropsondes also373

have an ⇠8 % larger relative humidity compared to the 2013-2022 average in ERA5, not374

shown). Also, all the four prominent patterns of mesoscale cloud organization47 were375
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present during the campaign27. The conclusions drawn from the EUREC4A data are thus376

relevant across the tropics and for climate timescales.377

Observations378

For estimating the cloud-base mass flux M , R, and many other variables, we use drop-379

sonde data from the JOANNE dataset28, namely Level-3 (gridded quality-checked son-380

des) and Level-4 (circle products) vertical profiles of thermodynamic quantities, wind,381

and mesoscale vertical velocity, W . The HALO dropsondes are corrected for a dry bias by382

multiplying the relative humidity with 1.0628.383

For the cloud-base cloud fraction C, we use the BASTALIAS lidar-radar synergy prod-384

uct31, which includes both cloud and drizzle (but not rain) and constitutes an upper bound385

on C. We also test the relationships for three additional estimates of C:386

• the non-drizzling cloud product from the radar-lidar synergy (Conly), which excludes387

drizzle and constitutes a lower bound on C388

• in situ estimates from a microphysical probe defined based on thresholds of liquid389

water content plus particle size (Cpma)390

• in situ high-frequency (25 Hz) humidity sensor, with cloud defined as relative hu-391

midity �98% (Cturb)392

The in situ sensors measure the along-track C, while the lidar-radar synergy samples393

clouds inside the rectangle at a distance up to 8 km from the aircraft31. Despite pronounced394

differences in the measurement principles and sampling, Fig. 18 of ref31 demonstrates the395

internal consistency and robustness among the independent C estimates. The ATR tur-396

bulence measurements also include measurements of vertical up- and downdraft veloci-397

ties49, from which an in-cloud mass flux Mturb is computed by multiplying Cturb with the398

in-cloud vertical velocity.399
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Additional HALO aircraft measurements used are total projected cloud cover (CC) esti-400

mates from the differential absorption lidar WALES, the hyperspectral imager specMACS,401

and the cloud radar HAMP29. From these cloud masks we derive the CC along the 1 h cir-402

cle. For specMACS and HAMP, the cloud detection is ambiguous and we consider both403

the probably cloudy and the most likely cloudy flags in our CC estimates.404

We also use ceilometer and cloud radar data from the BCO and the R/V Meteor to test405

the robustness of the sub-cloud layer height definition (not shown). Radar cloud fraction406

profiles are obtained by correcting the hydrometeor fraction profiles with ceilometer data407

during periods of rain (see ref30 for a description of the correction applied). The BCO408

cloud radar data also demonstrates that missing the level of maximum cloud-base cloud409

fraction in 3 h averages by e.g. 60 m does not affect the variability of C (correlations410

of r=0.99 and r=0.93 with the maximum C when 60 m above and below the peak level,411

respectively), and only marginally affects its magnitude (18% and 33% smaller relative to412

the maximum C for being 60 m above or below the peak level, respectively). So only if the413

ATR flight level deviated from the height of maximum cloudiness in ways that co-varied414

with M would we expect such a height difference to influence our analysis. As the ATR415

aircraft usually flew a bit above h (Extended Data Fig. 3a), and because it sampled much416

more clouds in 3 h compared to the stationary BCO, a potential influence of missing the417

peak level is deemed not to bias our findings.418

Surface buoyancy flux419

To estimate the surface buoyancy flux (w0✓0v
��
s
, needed to compute M ), we use dropsonde420

humidity, temperature, and wind data at 20 m height, and apply the Coupled Ocean-421

Atmosphere Response Experiment (COARE) bulk flux algorithm version 3.650,51. For422

the sea-surface temperature (SST), we extrapolate the 2 m depth SST of the R/V Meteor423

(thermosalinograph primary backboard temperature), or alternatively from the AutoNaut424
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Caravela52, to the dropsonde location based on a fixed zonal and meridional SST gradi-425

ent of �0.14K/degree. A gradient of �0.14K/degree corresponds to the median zonal426

and meridional gradient (�0.145K/degree and �0.135K/degree, respectively) across the427

EUREC4A circle over the period from January 19 to February 15 in the ERA5 reanal-428

ysis53 and in two satellite SST products (from the Advanced Baseline Imager on board429

the Geostationary Operational Environmental Satellite, GOES-16 ABI, and the Collecte430

Localisation Satellites, CLS).431

The sonde-derived surface buoyancy flux on the 3 h-scale compares favorably to bulk432

fluxes from the R/V Meteor mast, with a correlation coefficient r=0.83 and a mean off-433

set of 0.1% relative to R/V Meteor. The sonde-derived flux has a comparable magnitude434

to the flux measured at the R/V Ron Brown54 further upstream, and is also well-correlated435

(r=0.81) with ERA5. The ERA5 fluxes, however, overestimate the surface buoyancy flux436

compared to the sonde-derived flux by 25%, which is mostly due to the overestimation437

of the sensible heat flux by 64% relative to the observations (9.8 W m�2 and 6.0 W m�2
438

for ERA5 and dropsondes, respectively). A strong overestimation of the sensible heat439

flux compared to buoy measurements in the region is also present in the predecessor440

ERA-interim reanalysis55. Overall, the good correspondence of our sonde-derived surface441

buoyancy flux with the independent data lends credibility to our estimation procedure. The442

sonde-derived surface buoyancy flux is also used to compute the Deardorff sub-cloud layer443

vertical velocity scale w⇤ = (h g
✓v
w0✓0v

��
s
)1/3 shown in Fig. 3c, where g is the gravitational444

acceleration.445

Mass flux estimation446

Vogel et al.20 developed a method to estimate the shallow-convective mass flux at the sub-447

cloud layer top as a residual of the sub-cloud layer mass budget, and tested it in real-case448

large-eddy simulations (LES) over the tropical Atlantic. Here the method is applied to449
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EUREC4A observations, in parallel with Albright et al.22 who close the sub-cloud layer450

moisture and heat budgets and provide an independent constraint on the entrainment rate451

E. Except for the surface-buoyancy flux estimate (see the previous section), all data for452

the budgets come entirely from the dropsondes.453

Eq. 1 expresses the budget of the sub-cloud layer height h per unit area and constant454

density. @h
@t represents the temporal fluctuation of h and Vh ·rh its horizontal advection,455

E is the entrainment rate, W the mesoscale vertical velocity (positive upwards), and M456

the convective mass flux at h.457

The sub-cloud layer height h is defined as the height where the virtual potential tempera-458

ture (✓v) first exceeds its density-weighted mean from 100 m up to h by a fixed threshold459

✏ = 0.2K22,56. Extended Data Fig. 3a confirms that our h is usually close to the ATR460

flight altitude, and h is also well within the range of independent BCO and R/V Meteor461

observations of the maximum radar cloud-base cloud fraction and the peak frequency of462

the first ceilometer cloud-base height (not shown). This confirms that our h agrees well463

with the level of maximum near-base cloud fraction, which was set as the target height for464

the ATR flight level and thus for evaluating the mass budget31.465

The entrainment rate E represents the deepening of h due to small-scale mixing at the466

sub-cloud layer top. We use a modified version of the classical flux-jump model57,58 that467

accounts for the finite thickness of the transition layer, the ⇠150 m thick stable layer sep-468

arating the mixed layer from the cloud layer (see ref22 for details). The buoyancy flux at h469

is modeled as a fixed fraction Ae of the surface buoyancy flux, w0✓0v
��
s
, where Ae is the ef-470

fective entrainment efficiency. The buoyancy-jump at the sub-cloud layer top is computed471

as �✓v = �✓ + 0.61(✓�q + q�✓), with �✓ = C✓(✓h+ � ✓) and �q = Cq(qh+ � q). q472

is the specific humidity, Cq and C✓ are scaling coefficients accounting for uncertainty in473

the depth over which the jumps are computed, the subscript h+ refers to the value of q or474
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✓ above h (computed as the average from h to h + 100m), and q and ✓ are averages from475

50 m to the mixed-layer top (defined as the height of maximum relative humidity below476

900 m). Finally, E is computed as477

E =
Ae w0✓0v

��
s

�✓v
(S1)

The uncertain parameters Ae, Cq and C✓ are estimated through a joint Bayesian inversion478

to close the moisture and heat budgets by ref22, yielding maximum-likelihood estimates479

of Ae = 0.43± 0.06 (mean±1�), Cq = 1.26± 0.34, and C✓ = 1.15± 0.31.480

The mesoscale vertical velocity W at h is computed by vertically integrating the diver-481

gence of the horizontal wind field measured by the dropsondes23 from the surface up to h.482

W is at the lower end of the meso-↵ scale of ref46, what climate modelers often associate483

with the large-scale. The terms h, E and W are computed at the 1 h-scale of a single circle484

and then aggregated to the 3 h-scale (three circles).485

The temporal fluctuation of h is estimated as the linear regression slope of h computed486

from the 30-36 soundings available per 3 h-circle set. Similarly, the horizontal advection of487

h is estimated as the sum of the linear regressions of the eastward (@h/@x) and northward488

(@h/@y) gradients of the individual h, multiplied by the wind speed at the 3 h-mean h.489

Both @h/@t and Vh ·rh are only available on the 3 h-scale.490

The default M shown in the paper is the equilibrium mass flux M = E + W , which491

reproduces well the mass flux diagnosed directly from cloud-core area fraction and vertical492

velocity in LES20. This equilibrium M is also available on the 1 h-scale of an individual493

circle. Taking into account @h/@t and Vh · rh in the mass flux estimate leads to M 0 =494

M �
@h
@t � Vh · rh, which shows very similar characteristics compared to M (Extended495

Data Fig. 3). This is mainly because both the advection (�1.3±2.7mm s�1) and temporal496

fluctuation (0.5± 6.8mm s�1) terms are on average about zero, and the advection term is497
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also nearly invariant. The inclusion of advection and @h
@t in M 0 slightly enhances variability498

on the diurnal timescale (Extended Data Fig. 1a).499

Cold pools formed by evaporating precipitation destroy the structure of the sub-cloud layer500

and make the estimation of h less robust. We thus exclude soundings that fall into cold501

pools in the analysis using the criterion of h < 400m developed by ref56 based on the502

EUREC4A soundings. The influence of these and other assumptions on the magnitude and503

variability of M are discussed in the Methods subsection ’Robustness of observational504

estimates’. Also note that our M is defined as the (mass) specific mass flux and has units505

of velocity. It differs from the more familiar mass flux (in units of kg m�2 s�1) by the air506

density, which is usually assumed to be constant18,59, and which is justified here given the507

small density variations across the measurements (mean±� of 1.104±0.0077 kg m�3, i.e.508

less than 0.7% of the mean).509

While the 1 h-scale variability of M can be substantial (e.g., 2nd 3 h-circle sets on Jan 26510

and Feb 13, Fig. 2), the median estimation uncertainty is only 20% at the 3 h-scale (see511

section below). Also, M has a similar magnitude and reassuring correlation (r=0.77) to512

the independent Mturb estimate from in-situ turbulence measurements on the ATR aircraft513

(Extended Data Fig. 2d).514

The mass budget terms show different degrees of scale sensitivity (see also discussion515

in ref20). Extended Data Fig. 2c and 4a show that the correlation between W and M is516

slightly larger at the 1h-scale compared to the 3h-scale (rW ,M 3h=0.60 and rW ,M 1h=0.67),517

while they are essentially the same for E and M (rE,M 3h=0.54 and rE,M 1h=0.55). The518

scale sensitivity of the W variance is in line with radiosonde data from the EUREC4A519

ship array, which show that the divergence amplitudes at equivalent radii of 100–300 km520

scale inversely with radius60 (as in ERA5 and ICON, consistent with ref23). In ERA5,521

the scale sensitivity of the surface buoyancy flux, which contributes most to variability in522
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E (Extended Data Fig. 4b), is much smaller compared to the scale sensitivity of W (not523

shown). This is likely because variability in the surface buoyancy flux is mostly controlled524

by the surface wind speed (Extended Data Fig. 4h) and radiative cooling61, both of which525

are large-scale. The surface wind speed has autocorrelation coefficients of 0.74 for a two526

day and 0.48 for an eight day lag (Fig. 3d of ref22). Although weaker compared to the527

synoptic variability, the surface wind also has a distinct diurnal cycle62,63, which causes a528

diurnal cycle of the surface buoyancy flux (Extended Data Fig. 1c and ref20). Some of the529

diurnal variability in E is thus lost for longer temporal averaging. Also, the variability in530

the temporal fluctuation and horizontal advection of h (eq. 1) decreases on larger scales20.531

In summary, M variability decreases on larger averaging scales. The scale sensitivity of W532

is larger compared to E, such that the contribution of W to M variability tends to become533

smaller compared to the contribution of E on much larger scales.534

As noted above, E describes the net effect of local processes and must be inferred from535

the statistics of other quantities (i.e., the mean sub-cloud layer growth rate, or the dilu-536

tion of sub-cloud layer properties). This raises the question if the E estimate itself might537

depend on the mesoscale environment and therefore introduce spurious co-variabilities538

between M , W , and C. The Bayesian estimation of the uncertain parameter estimates Ae,539

Cq, and C✓ is a priori independent of M and W . Also, the synoptic variability during540

EUREC4A can be well explained by keeping them constant22. Ref22 also explored to what541

extent other factors correlated with residuals in their Bayesian fits and found no evidence542

of a systematic effect of other factors, including windspeed and shear64. As discussed543

above, the variability in E tends to be less scale-sensitive than W , and mostly controlled544

by larger-scale factors like the surface wind speed (through the surface buoyancy flux,545

Extended Data Fig. 4b,h). Furthermore, E and W are anticorrelated (rE,W=�0.35, Ex-546

tended Data Fig. 4g). So both statistically from the anticorrelation and physically through547
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the scale argument, we believe that our parameterization of E does not induce spurious548

co-variability.549

Uncertainty estimation550

For the M , R, and C estimates, we distinguish two sources of uncertainty: sampling un-551

certainty and estimation (or retrieval) uncertainty. For all terms, the sampling uncertainty552

is computed at the 3 h-scale as the standard error, SE = �/
p
n, of the three individual553

1 h circle values (each representing ⇠50 min of flight or up to 12 sondes), where � is the554

standard deviation and n the number of circles.555

The estimation uncertainty is computed differently for every term according to the under-556

lying assumptions and choices. For R, the manufacturer stated uncertainty (i.e., repeata-557

bility) is 2% and some additional uncertainty stems from the correction of the dry bias of558

the HALO dropsondes (see ref28). Because this uncertainty is the same for all data points,559

the estimation uncertainty of R is not shown in the figures. For C, the estimation uncer-560

tainty is computed for every 3 h-circle set as the SE of the four different estimates of C,561

namely C itself, Conly, Cturb, and Cpma. The uncertainty estimate therefore represents un-562

certainty in measurement principles and spatial sampling31. Additional uncertainties of the563

individual C estimates (e.g. due to the choice of thresholds) are neglected, as sensitivity564

tests suggest they are smaller than the uncertainty among the different C estimates31.565

For W , the advection term Vh · rh, and the temporal fluctuation @h/@t, the estimation566

uncertainty is taken as the SE of the respective regression used to compute the term. Be-567

cause @h/@t is computed from individual sondes, it contains both temporal and spatial568

variability of h on the 3 h-scale and its SE is inflated.569

The estimation uncertainty of the surface buoyancy flux is a combination of uncertainty570

in the underlying SSTs and in the COARE bulk flux algorithm. We estimate the uncer-571

tainty in the underlying SSTs by computing the SE of five different versions of the flux572
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(three with different fixed SST gradients (the default median value and the median±IQR,573

i.e. �0.14K/degree, �0.21K/degree, and �0.07K/degree), one with a temporally varying574

gradient (not shown), and one with a different baseline SST (from the AutoNaut Car-575

avela52 instead of the R/V Meteor)), and add a 5% uncertainty of the COARE algorithm576

given in ref50 as the 1 h–uncertainty in the 0-10 m s�1 wind speed range. For Ae and �✓v,577

we use the relative uncertainties of the Bayesian inversion as the estimation uncertainty578

(i.e. �(Ae)/Ae for Ae, and the average of �(Cq)/Cq and �(C✓)/C✓ for �✓v).579

Uncertainties in the three individual terms of E are propagated by adding their fractional580

uncertainties in quadrature to yield the estimation uncertainty of E. In the same spirit,581

the estimation uncertainty is propagated from the 1 h-scale to the 3 h-scale, and from the582

individual terms of Eq. 1 to M .583

The uncertainties of the correlations and the multiple linear regression are estimated with584

bootstrapping (10,000 repetitions). We communicate these uncertainties by mentioning585

the 25th and 75th quartiles in the text, and by displaying both the quartiles and the 2.5%586

and 97.5% quantiles (representing the 95% confidence interval, CI) in Fig. 4 and Extended587

Data Fig. 8. Apart from the uncertainty quantification described here, we assess the robust-588

ness of the M and C observations to several other choices and assumptions in the Methods589

subsection ’Robustness of observational estimates’.590

Other mixing indicators591

Other proxies for lower-tropospheric mixing were used in previous studies5,7,65 that can be592

estimated from the dropsonde data and compared to the variability in C. Here we compute593

the boundary-layer vertical advection (BVA) diagnostic from ref65 defined as BVA =594

R Zmin

0 W (z)@MSE
@z ⇢dz, where MSE is the moist static energy, Zmin the level of minimum595

MSE that marks the top of the trade-wind layer (on average at 2900 m), and ⇢ the density.596

Note that a lower (more negative) BVA value indicates stronger mixing.597
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Ref65 found a pronounced positive relationship between changes in BVA and changes598

in C from a series of single-column model experiments with the IPSL-CM5A model,599

which is characterized by a strong positive low-cloud feedback and the presence of the600

mixing-desiccation mechanism (Fig. 4). Extended Data Fig. 4f shows a pronounced neg-601

ative correlation between BVA and M in the EUREC4A data, indicating good agreement602

in their complementary definitions of mixing. Smaller BVA (stronger mixing) is also as-603

sociated with larger C (not shown), which is at odds with the IPSL-CM5A model. The604

absolute correlation between BVA and C (r=0.34), however, is considerably smaller than605

the correlation between M and C (r=0.72).606

General circulation models607

The cloud fraction, net mass flux (upward and downward), and relative humidity at cloud608

base are calculated for 10 Coupled Model Intercomparison Project (CMIP) models:609

• 4 from the fifth phase, CMIP566: CanAM467, MPI-ESM-LR68, IPSL-CM5A-LR69,610

HadGEM2-A70, and611

• 6 from the sixth phase, CMIP671: BCC-CSM2-MR72, CNRM-CM6-173, IPSL-612

CM6A-LR74, MIROC675, MRI-ESM2-076, HadGEM3-GC31-LL77,613

using the sub-hourly vertical profiles at selected sites (named cfSites in CMIP5 and CFsubhr614

in CMIP6) provided by CFMIP34. Note that the M from the models is not computed using615

Eq. 1, but is defined according to the respective convective parameterization scheme of616

the models (see references above). We use the atmosphere-only amip configuration from617

1979-2008, selecting data from December, January, February, and March to be broadly618

consistent with the winter conditions sampled during EUREC4A. For each model, between619

2–6 sites are available in the north Atlantic trades between 60-50�W and 12-16�N, namely620

the BOMEX, NTAS, EUREC4A, BCO, and RICO sites. All profiles with clouds above621
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600 hPa (about 4.2 km) are dropped to ensure a focus on shallow convection. We verified622

that in terms of the large-scale environment, the cfSites fall into the climatological trade623

cumulus regime as defined by ref40.624

The cloud base level is defined as the level of maximum cloud fraction between 870-625

970 hPa (between about 400-1300 m). If the maximum cloud fraction is smaller than626

0.25% for a given profile, the cloud-base level is taken at the climatological level of max-627

imum cloud fraction. The hourly cloud-base data are aggregated to a 3 h-timescale, which628

corresponds to the 3 h-scale of the EUREC4A data, as well as a monthly timescale. The629

values computed are insensitive to (a) averaging across the sites before aggregating to the630

3 h-timescale, (b) removing the site near the Northwest Tropical Atlantic Station buoy up-631

stream of the EUREC4A circle (near 51�W and 15�N), (c) focusing only on January and632

February, and (d) excluding nighttime values outside the hours sampled during EUREC4A633

(not shown).634

We use the thermodynamic component of the change in the cloud radiative effect at the top635

of the atmosphere (�CRE) with warming under given dynamical conditions to quantify636

the strength of the trade cumulus radiative feedback. Ref2 showed that the �CRE with637

warming is a good approximation of the cloud feedback computed with radiative kernels78.638

The CRE is defined as the difference between all-sky (all, including clouds) and clear-sky639

(clr, clouds assumed to be transparent to radiation) net downward radiative fluxes, CRE640

= Rall � Rclr = (LWclr � LWall) + (SWall � SWclr) = CRELW + CRESW, with R being641

the total radiative flux, and LW and SW its longwave and shortwave components. The642

radiative fluxes are defined positive downward. The �CRE with warming is then simply643

the difference in CRE between the warmer amip4K (4 K uniform increase in SST) and the644

amip (control) simulations, normalized by the 4 K temperature difference (i.e., �CRE/�Ts645

= (CREamip4K - CREamip) / 4K). To restrict the feedback estimation to the trade cumulus646
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regime, we focus on ocean-only grid points between 35�S to 35�N, and use the regime647

partitioning of ref40 with trade cumulus regimes in each simulation (amip or amip4K)648

defined as having a climatological annual mean estimated inversion strength smaller than649

1 K and a vertical velocity at 700 hPa between 0–15 hPa d�1.650

Robustness of observational estimates651

Applying the mass budget formulation to the EUREC4A dropsonde data involves several652

choices for definitions and thresholds. These choices are guided by constraints from inde-653

pendent data and from closure of the moisture and heat budgets in ref22, which provides654

justification for the default configuration described in the Methods subsection ’Mass flux655

estimation’. Nevertheless, it is important to assess and understand the sensitivity of the656

mass budget estimates and the key relationships to different estimation choices.657

We focus first on the influence of different definitions of the sub-cloud layer height h658

and the entrainment rate E on the mean and standard deviation (�) of M and E, the re-659

spective correlations of M with E and W , and the correlation and mean difference to the660

independent Mturb estimate from turbulence measurements onboard the ATR aircraft (see661

Extended Data Fig. 2). For the h definition, we compare our default h to an alternative662

definition, h.parcel, which defines h as the level of neutral buoyancy of a surface-lifted663

parcel (with density-weighted ✓v averaged from 30–80 m) plus 0.2 K ✓v-excess. Using664

h.parcel leads to a 16 m shallower mean h compared to the default. The slightly shallower665

h decreases �✓v (the denominator of the E formulation in Eq. S1) from 0.36 K to 0.34 K,666

which slightly increases E and M by ⇠ 1.5mm s�1. While W is unaffected by this small667

change in h, the resulting M has a slightly reduced correlation to the independent Mturb668

compared to the default M (r=0.69 vs. r=0.77). The same chain of arguments holds for669

increasing and decreasing the threshold ✏ in the h definition by ±0.05K. With ✏ = 0.25K670

instead of 0.2 K (case h.eps=0.25), h increases by 31 m, and through the larger �✓v de-671
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creases E and M by ⇠3.3 mm s�1. Due to the presence of a thin transition layer22, the672

response to ✏ ± 0.05K is nonlinear and a reduction of ✏ to 0.15K (h.eps=0.15) leads to673

a disproportionately smaller �✓v and ⇠6 mm s�1 larger E and M . The 35 m shallower674

mean h with ✏ = 0.15K also strongly increases �E, which increases the correlation be-675

tween E and M at the expense of a decreased correlation between the unaffected W and676

M (Extended Data Fig. 2c).677

The next set of choices regard the entrainment rate estimate. We test the influence of678

the different surface buoyancy flux estimates from ERA5 and R/V Meteor. As the ERA5679

flux is 25% larger than the other fluxes, we scale it to have same mean as the dropsonde-680

derived flux (case sbf=ERA5.sc). For sbf=ERA5.sc, the variability in E and M are substan-681

tially larger compared to the default dropsonde flux, increasing their correlation. For case682

sbf=Meteor, the differences to the default estimates is smaller (Extended Data Fig. 2a,b)683

and the correlation with Mturb slightly larger than in the other configurations. The esti-684

mates are also unaffected by changing the three coefficients Ae, Cq, and C✓ estimated by685

Bayesian inversion in ref22 to close the moisture and energy budgets during EUREC4A686

when cold pool soundings (defined as having h < 400m following ref56) are excluded687

(diffEpars). We further compare four different ways of computing �✓v. Computing the688

value at h+ as averages from h to h + 50 or h + 150m (instead of to h + 100m) has a689

similar (but more linear) influence as increasing ✏± 0.05K (see discussion above). Using690

two different heights for averaging ✓v across the mixed layer (up to h in tvbar=h and up691

to the level where q first falls below its mean by a threshold of 0.3 g kg�1 in tvbar=qgrad)692

hardly influences the estimates.693

Lastly, we show the influence of computing the mass budget including the cold pool694

soundings for two sets of surface buoyancy flux estimates, case withCP for the default695

dropsonde-derived flux and withCP sbf=ERA5.sc for the scaled ERA5 flux. In both cases,696
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the mean and � of both M and E are increased when cold pools are included (matching697

the mean E of ref22 who included cold pools). However, especially for the default surface698

fluxes (case withCP), the correlation with Mturb is strongly reduced.699

Extended Data Fig. 2a,d also show the influence of selected choices on the total mass flux700

M 0, which includes the contribution of the temporal fluctuation and horizontal advection701

of h. Because these additional terms are on average nearly zero (Extended Data Fig. 3c),702

their inclusion does not affect M . �M instead increases by ⇠1.5 mm s�1 due to the pro-703

nounced variability in the temporal fluctuation term. As this term is not very robust, we use704

the more reliable equilibrium M as our best estimate. The equilibrium M is also robust at705

the 1 h-scale of an individual circle (case 1h-scale).706

Overall, Extended Data Fig. 2 makes us very confident in the robustness of our mass707

budget estimates because they only show a modest sensitivity to the various choices, and708

because we can explain these sensitivities physically. Also, the independent ATR Mturb709

estimates (Extended Data Fig. 2d) and the additional constraints on E from our comple-710

mentary analyses of the moisture and heat budgets in ref22 (dashed lines in Extended Data711

Fig. 2b) lend further credibility to our default estimation choices.712

Next, we focus on the sensitivity of the key relationships between M , C, and R to a se-713

lected set of plausible estimation choices of M and the different C estimates from the ATR714

aircraft. Extended Data Fig. 5a shows that the positive correlation between M and C is sig-715

nificant for all parameter choices, and both the equilibrium M and total M 0. Furthermore,716

also the negligible correlation between M and R is very robust.717

Extended Data Fig. 5b further confirms that the default M also has strong correlations718

with the three independent estimates of C from the ATR aircraft. The same is true for719

the other estimation choices of M , with a small overall range of correlations of 0.52 <720

rM,C < 0.73. Correlations between C and R are more variable between the different C721
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estimates and range from 0.12 < rR,C < 0.63. It’s not surprising that the Conly estimate722

that neglects contributions from drizzle has the strongest correlation with R, as it mostly723

features passive clouds that are more affected by ambient humidity than the more active724

clouds that also include drizzle. Note that there is also a slight dependency of r(R,C) on the725

M estimates, as the cases h.parcel and h.eps=0.25 result in different h and thus different726

heights where R is evaluated.727

The bottom panels of Extended Data Fig. 5 also confirm the robustness of the correlation728

coefficient of the multiple linear regression bC = a0 + aMfM + aR eR and the ratio of the729

standardized regression coefficients aM/aR to the M estimation choices (Extended Data730

Fig. 5c) and the different C estimates (Extended Data Fig. 5d). There is no configuration731

with aM/aR < 1, indicating that C is always more strongly coupled to M than to R in the732

observations. Slightly larger values of aM/aR and smaller correlations are evident for the733

total M 0.734

Also, the standard deviation of C (�C) is very similar for the different C estimates that735

include drizzle (between 2.1–3.7%, with 3.1% being the �C of the default BASTALIAS736

lidar-radar synergy product), and only slightly lower for the Conly estimate (1.6%) when737

using the full sample. Variability is slightly reduced in the smaller sample that overlaps738

with the HALO flights, because it excludes two night flights with larger cloudiness and739

two flights in dry environments with very small cloudiness (�C of 1.7–2.4% for the C740

estimates that include drizzle).741

Overall, Extended Data Fig. 5 thus demonstrates the insensitivity of the observed rela-742

tionships to a wide range of configurations. We therefore conclude that the relationships743

between mixing and cloudiness observed during EUREC4A are very robust.744
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Data availability745

All data used in this study are published in the EUREC4A database of AERIS746

(https://eurec4a.aeris-data.fr/, last access: 28 July 2022). We use v2.0.0 of the747

JOANNE dropsonde data28 (https://doi.org/10.25326/246). The specific ATR748

datasets31 used are the BASTALIAS product (https://doi.org/10.25326/316),749

the turbulence measurements49 (https://doi.org/10.25326/128), and the PMA750

CloudComposite dataset (https://doi.org/10.25326/237). The specific HALO751

datasets29 used are cloud masks derived from WALES cloud-top height estimates752

(https://doi.org/10.25326/216), HAMP cloud radar (https://doi.org/10.25326/222),753

and specMACS (https://doi.org/10.25326/166), and the flight segmentation prod-754

uct (https://doi.org/10.5281/zenodo.4900003). From the BCO15, we used ceilometer755

(https://doi.org/10.25326/367) and cloud radar data (https://doi.org/10.25326/55). From756

the R/V Meteor44, we used standard dship meteorological data for the EUREC4A757

Meteor cruise M161 (retrieved from http://dship.bsh.de/, last access: 28 June758

2022), surface heat fluxes (https://doi.org/10.25326/312), ceilometer measurements759

(https://doi.org/10.25326/53), and cloud radar data (v1.1, https://doi.org/10.25326/164).760

We further used data from AutoNaut Caravela52 (https://doi.org/10.25326/366), and761

10 min air-sea flux data (v1.3, https://doi.org/10.25921/etxb-ht19) from the R/V Brown54.762

Also, we used CLS Daily High Resolution Sea Surface Temperature maps (retriev-763

able through the AERIS operational center https://observations.ipsl.fr/aeris/eurec4a-764

data/SATELLITES/CLS/SST/, last access: 28 June 2022, or directly from765

https://datastore.cls.fr/catalogues/sea-surface-temperature-infra-red-high-resolution-766

daily), GOES-16 ABI SSTs from the ABI G16-STAR-L3C-v2.7 product767

(https://doi.org/10.25921/rtf0-q898), and ERA553 reanalysis data. The CMIP5 and768
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CMIP6 climate model output are available for download at https://esgf-node.llnl.gov.769

Code availability770

The scripts used for the analyses and other supporting information that may be useful for771

reproducing this study can be obtained from https://doi.org/10.5281/zenodo.7032765.772
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Extended Data Fig. 1 |Diurnal cycles of key terms. a, M and M 0, b, E and W , c, surface
buoyancy flux, and d, C versus local time both at the 3 h-scale (filled) and 1 h-scale (open
circles). The vertical bars show the estimation uncertainty at the 3 h-scale (see Methods Sec.
’Uncertainty estimation’). The correlation coefficients given in the legends represent the corre-
lation between the individual terms and the time at the 3 h-scale (’r’) and the 1 h-scale (’r.1h’ in
brackets).

Extended Data Fig. 2 | Influence of estimation procedure and parameter choices on mass
budget estimates. Campaign mean and standard deviation of a, M and b, E, c, correlation co-
efficients between M and E (rM,E) and M and W (rM,W), and d, correlation and mean difference
between M and Mturb from ATR turbulence measurements, for different configurations of the
mass budget. Open symbols in a and d show the total M 0. The dashed lines in b show the mean
and standard deviation of E from ref22, and the zero line in d. See the Methods subsection
’Robustness of observational estimates’ for details.

Extended Data Fig. 3 |Timeseries of other mass budget terms. Shown are a, h and the flight
level of the ATR aircraft, b, the equilibrium M , the total M 0, and the Mturb from ATR turbulence
measurements, c, the temporal fluctuation and advection terms, d, the surface buoyancy flux,
and e, the �✓v. The vertical bars show the estimation uncertainty at the 3 h-scale (see Methods
Sec. ’Uncertainty estimation’), and the small open circles show the 1 h-scale. The x markers in
a-b indicate the data that are excluded in the correlations due to inconsistent sampling between
the two aircraft. The campaign mean±1� is shown on the left side of each panel.
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Extended Data Fig. 4 |Relationships of other key terms. a, E and W versus M , b, surface
buoyancy flux versus E, c, �✓v versus E, d, R versus E, e, R versus W , f, BVA mixing
indicator versus M , g, E versus W , and h, 10 m wind speed versus surface buoyancy flux. a-c,f-
h show both the 3 h-scale (filled) and 1 h-scale (open circles, with the corresponding correlation
coefficient denoted as ’r.1h’). A dotted 1:1 line is shown in a and g. In d-e, the error bars
represent the estimation uncertainty for E and W , and the sampling uncertainty for R (see
Methods). The correlations in d-e are given both for the sample with consistent sampling among
the HALO and ATR aircraft (blue points, as used for the correlations in Fig. 2&3), and for the
entire sample of the HALO aircraft (including the grey points that represent the three data points
marked with x in Fig. 3, and 8 other data points when ATR was not flying. The corresponding
correlation coefficient is denoted as ’r.all’).

Extended Data Fig. 5 | Influence of different M and C estimates on key relationships. Cor-
relation coefficients r of a, M and C (rM,C) and M and R (rM,R) and b, M and C (rM,C) and R

and C (rR,C). c-d, correlations of the reconstructed bC = a0 + aMfM + aR eR and the observed C
(rbC,C), as well as the ratio of the standardized regression coefficients aM/aR. a and c also show
the relationships for the total M 0 (open symbols), whereas b and d show the relationships for
different estimates of C (different symbols). See details in Methods subsection ’Robustness of
observational estimates’.

Extended Data Fig. 6 |Relationship of M with three estimates of the total projected cloud
cover (CC). CC from a, WALES backscatter lidar, b, hyperspectral imager specMACS, and c,
HAMP cloud radar on board HALO. The error bars represent the sampling uncertainty (for the
CC estimates) and the estimation uncertainty (for M , see Methods Sec. ’Uncertainty estima-
tion’).

Extended Data Fig. 7 | Individual relationships of C, M and R for climate models. Re-
lationships among individual 3 h C and M (1st and 3rd column) and C and R (2nd and 4th
column) for all ten climate models. The red and blue points represent the median and mean of
the respective variables, and the red lines extend from the 25th to the 75th quartile. The grey
vertical line in the R panels shows the 94% R-threshold.
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Extended Data Fig. 8 |Comparison of other variables and relationships in climate models
against the EUREC4A data. a, mean R and fraction of stratocumulus-like conditions with
R>94%, b, standard deviation of R and W (�R and �W), c, r2 of multiple linear regression
bC = a0 + aMfM + aR eR and correlation coefficient of M and R, d, standard deviation of C
(�C) and thermodynamic component of the cloud feedback �CRE/�Ts, as well as the 3 h and
monthly correlations of e, M and C, and f, R and C. e-f also show the inter-model correlation
coefficients of the respective variables and the 1:1 line (dotted). As in Fig. 4, the models are
colored in bins of feedback strength, and open symbols indicate models with frequent stratocu-
mulus (defined as having R>94% more than 15% of the time). The observational uncertainty
range is shown in grey, with the shading representing the 25th to 75th quartile and the grey bars
the 95%-CI of bootstrapped values. HadGEM2-A is not shown in b due to the absence of W
output.
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