Modeling wildfire activity in the western United States with
machine learning

Jatan Buch!, A. Park Williams?, Caroline S Juang', Winslow D. Hansen?®, and Pierre
Gentine*

Lamont-Doherty Earth Observatory of Columbia University
2University of California, Los Angeles

3Cary Institute of Ecosystem Studies

4Columbia University

November 26, 2022

Abstract

The annual area burned due to wildfires in the western United States (WUS) increased by more than 300% between 1984
and 2020. However, accounting for the nonlinear, spatially heterogeneous interactions between climate, vegetation, and human
predictors driving the trends in fire frequency and sizes at different spatial scales remains a challenging problem for statistical
fire models. Here we introduce a novel stochastic machine learning (ML) framework to model observed fire frequencies and
sizes in 12 km x 12 km grid cells across the WUS. This framework is implemented using Mixture Density Networks trained on
a wide suite of input predictors. The modeled WUS fire frequency corresponds well with observations at both monthly (r=
0.94) and annual (r= 0.85) timescales, as do the monthly (r= 0.90) and annual (r= 0.88) area burned. Moreover, the annual
time series of both fire variables exhibit strong correlations (r >= 0.6) in 16 out of 18 ecoregions. Our ML model captures
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ecoregions. Evaluating predictor importance with Shapley additive explanations, we find that fire month vapor pressure deficit
(VPD) is the dominant driver of fire frequencies and sizes across the WUS, followed by 1000-hour dead fuel moisture (FM1000),
total monthly precipitation (Prec), mean daily maximum temperature (Tmax), and fraction of grassland cover in a grid cell.
Our findings serve as a promising use case of ML techniques for wildfire prediction in particular and extreme event modeling
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Abstract

The annual area burned due to wildfires in the western United States (WUS) increased
by more than 300% between 1984 and 2020. However, accounting for the nonlinear, spa-
tially heterogeneous interactions between climate, vegetation, and human predictors driv-
ing the trends in fire frequency and sizes at different spatial scales remains a challeng-
ing problem for statistical fire models. Here we introduce a novel stochastic machine learn-
ing (ML) framework to model observed fire frequencies and sizes in 12kmx12km grid
cells across the WUS. This framework is implemented using Mixture Density Networks
trained on a wide suite of input predictors. The modeled WUS fire frequency corresponds
well with observations at both monthly (r = 0.94) and annual (r = 0.85) timescales, as
do the monthly (r = 0.90) and annual (r = 0.88) area burned. Moreover, the annual time
series of both fire variables exhibit strong correlations (r > 0.6) in 16 out of 18 ecore-
gions. Our ML model captures the interannual variability and the distinct multidecade
increases in annual area burned for both forested and non-forested ecoregions. Evalu-
ating predictor importance with Shapley additive explanations, we find that fire month
vapor pressure deficit (VPD) is the dominant driver of fire frequencies and sizes across
the WUS, followed by 1000-hour dead fuel moisture (FM1000), total monthly precipi-
tation (Prec), mean daily maximum temperature (Tmax), and fraction of grassland cover
in a grid cell. Our findings serve as a promising use case of ML techniques for wildfire
prediction in particular and extreme event modeling more broadly.

Plain Language Summary

The past four decades have seen a large increase in annual area burned by wild-
fires over the western United States (WUS), resulting in catastrophic impacts to nat-
ural and human ecosystems, and requiring a six fold increase in firefighting costs. This
increase is driven by the occurrence of larger and more severe fires promoted by warmer
and drier conditions with distinct temporal variability across various regions. In this pa-
per, we leverage machine learning techniques to construct a statistical model of grid-scale
fire frequencies and sizes as a nonlinear, spatially varying function of climate, vegetation,
and human predictors. A major advantage of our approach is the robust quantification
of uncertainty in our predictions, which is a vital ingredient of resource allocation plans
for fuel treatment and fire containment. The relative importance of fire drivers at dif-
ferent spatial scales indicates strong correlations with extreme heat and drought-like con-
ditions at weekly to seasonal scales, signaling an increased susceptibility of fire regimes
across the WUS to anthropogenic climate change.

1 Introduction

Wildfire is an important biophysical process that structures natural and anthro-
pogenic systems, and is, in turn, affected by climate, vegetation, and humans (Bowman
et al., 2009; Krawchuk et al., 2009). The relative strength of each driver and the inter-
actions between them, however, vary across multiple spatial and temporal scales. For
instance, sediment charcoal records indicate that while global biomass burning, a proxy
for total area burned, responded strongly to warming and drought in the past, these re-
lationships weakened beginning in the late 1800s in many regions due to changes in land
use as well as more active fire management (Marlon et al., 2008). Modern satellite ob-
servations between 1998 and 2015 (Giglio et al., 2013), on the other hand, indicate di-
vergent trends along tree cover gradients (Andela et al., 2017); although the decreased
fire activity in grasslands and shrublands contributed to the overall decline in global burned
area, forest area burned increased across the globe (Zheng et al., 2021). In fact, for re-
gions like the western United States (WUS), there was a 2 300% increase in the total
area burned between 1984 and 2020, promoted by high flammability of fuels induced by
more frequent hot temperature extremes, rising atmospheric aridity, and prolonged drought-



like conditions (Dennison et al., 2014; Abatzoglou & Williams, 2016; Zhuang et al., 2021;
Kuhn-Régnier et al., 2021). The effect of recent warming and drought on area burned

is also exacerbated due to the fuels accumulated in many areas as a result of century-
long fire suppression efforts (Marlon et al., 2012; Parks et al., 2015). Incidences of large
and severe fires often result in severe environmental and social impacts, such as: poor
air quality (O’Dell et al., 2019; Xie et al., 2022), negative health effects from smoke ex-
posure (Burke et al., 2022), enhanced streamflow (Williams et al., 2022), increased flood
and debris risk (Jong-Levinger et al., 2022), major vegetation shifts in ecosystems (Coop
et al., 2020), and mass displacement of human populations (Jia et al., 2020). Moreover,
to manage these fires, federal firefighting expenditures in the United States soared from
~ $0.5 billion in the late 1980s to an average of ~ $3 billion between 2016 and 2021.!
Thus, understanding the complex, multiscale interactions between climate, vegetation,
and human drivers of wildfire activity is of vital scientific and social importance.

Individual wildfire events in the WUS are caused by the coincidence of fire conducive
hot and arid weather in presence of adequate vegetation and sources of ignition (Parisien
& Moritz, 2009; Williams & Abatzoglou, 2016). However, the influence of specific cli-
matic conditions such as high temperatures and low precipitation may vary spatially due
to the fuel moisture content, biomass distribution, and local topography in flammability-
limited regions such as forests (Westerling, 2016), and temporally through the response
of vegetation growth to antecedent conditions in fuel-limited regions such as grasslands
and shrublands (Swetnam & Betancourt, 1998). Meanwhile, the larger WUS fires typ-
ically burn over a period of several weeks or more, so the climatic effect on total area
burned is regulated by short-term fire weather conditions such as prolonged tempera-
ture and aridity extremes (Gutierrez et al., 2021; Juang et al., 2022), sustained intense
wind events over multiple days (Potter & McEvoy, 2021), or even the continuity provided
by fuels within a landscape’s heterogeneous vegetation structure (Rollins et al., 2002).
Although difficult to model precisely, fire regimes across the WUS are also affected by
the spatial variability of lightning strikes (Romps et al., 2014; Kalashnikov et al., 2022)
and stochastic human ignition patterns (Balch et al., 2017; Keeley & Syphard, 2018; Kee-
ley et al., 2021). When aggregated over multiple wildfire events, the observed trends in
fire frequency and total area burned carry imprints of the nonlinear, spatially heteroge-
neous, temporally integrated interactions between climate, vegetation, human, and to-
pographic variables. Physical models of wildfire activity in the WUS, consequently, re-
quire a wide suite of input predictors over multiple spatiotemporal scales to accurately
represent the various dynamical processes that promote or inhibit fire ignitions and growth.

Here we focus on statistical models for two important fire variables, frequency and
area burned. Broadly, these models infer the empirical relationships between observed
wildfire activity at a given spatiotemporal scale and its various climate, vegetation, and
human drivers. To account for the multiple degrees of freedom characteristic to the prob-
lem, regression based models tend to study the mean state relationship between wild-
fire activity and its drivers by averaging all variables along spatial (Abatzoglou & Williams,
2016) or temporal dimensions (Parisien & Moritz, 2009; Parisien et al., 2012). Despite
being instrumental in clarifying the role of different fire drivers on large spatiotempo-
ral scales, these, and similar, analyses are unable to model fire activity at smaller scales
that are important for allocating fire suppression and rescue resources or identifying re-
gions for preventive fuel treatment. On the other hand, other efforts based on classical
(Westerling et al., 2011) and Bayesian (Joseph et al., 2019) statistical methods as well
as machine learning (ML) approaches (Coffield et al., 2019; Jain et al., 2020; Wang &
Wang, 2020; Wang et al., 2021; Joshi & Sukumar, 2021; Kuhn-Régnier et al., 2021; Kondy-
latos et al., 2022) have modeled grid-scale fire activity across various spatial extents. Be-
sides representation of finer-scale processes, another key advantage of the grid-scale anal-

I https://www.nifc.gov/fire-information/statistics/suppression-costs



yses over the mean state approach is their ability to determine the hierarchy of impor-
tant wildfire drivers at various spatiotemporal scales.

In this paper, we introduce a ML model to estimate the probability distributions
of monthly fire frequencies and sizes in 12kmx12km grid cells across the WUS based
on data from 1984 to 2020. Our ML model consists of a mixture density network (MDN)
constructed by appending a custom loss function (Ebert-Uphoff et al., 2021) to a neu-
ral network. We adopt the MDNs to determine the parametric distributions of fire fre-
quencies and sizes using a combination of static and dynamic climate, vegetation, hu-
man, and topographic predictors. We then simulate fire frequencies for each grid cell as
well as sizes for grid cells with non-zero frequencies. Our results are visualized and dis-
cussed at broader spatial scales of ecoregions for ease of comparison with results from
previous analyses.

Our modeling approach builds upon and extends previous methods in four impor-
tant ways: a) unlike other ML methods based on gradient boosted trees or quantile re-
gression, our use of parametric distributions, especially for individual fire sizes, provides
a straightforward way to implement uncertainty quantification for our predictions; b) we
account for the spatiotemporal variability of the predictors and their nonlinear interac-
tions; ¢) our model includes fire frequencies and locations while simulating the total area
burned, thus enabling projections of total area burned for different idealized future sce-
narios of fuel flammability, human ignition patterns, and fuel treatment; d) the combined
frequency and size ML framework serves as a single model across the entire WUS and
does not require separate training for predicting fire activity in each constituent region.

2 Data
2.1 Study Ecoregions and Divisions

Our study region consists of all 12kmx12km grid cells in the continental US west
of 103° W longitude. We visualized the results of our analysis at the Bailey’s Level 111
(L3) ecoregion (Bailey, 1996) scale for clarity and ease of comparison, especially in terms
of interannual variability, with prior results in the literature (Abatzoglou et al., 2017;
Williams et al., 2019; Joseph et al., 2019). Moreover, in several analyses (Littell et al.,
2009; Parisien & Moritz, 2009; Dennison et al., 2014), organizing the study region in terms
of ecoregions or ecoprovinces has been useful in identifying the broad contours of climate-
fire relationships. We define an “Ecoregion” to be constituted by one or more similar L3
ecoregions to ensure sufficient statistics (refer to Table S1 for more details), considering
a total of 18 Ecoregions across the western United States for this study. Further, we fol-
low (Brey et al., 2018) and organize our Ecoregions in terms of three broad ecological
“Divisions” that are characterized by their primary vegetation types, namely Forests,
Deserts, and Plains. Note that all three Division types consist of a combination of both
forested and non-forested areas albeit in different proportions.

2.2 Wildfire Activity

We focus on two primary fire variables in this analysis: occurrences and sizes. Both
these variables are available in the Western US MTBS-Interagency (WUMI) wildfire dataset
(Juang et al., 2022) that contains 18646 fire locations and burned areas from 1984 to 2020.
The recently released WUMI dataset (accessed Sep 12, 2022) is a collection of unique
fires > 4km? from the Monitoring Trends in Burn Severity (MTBS) program (Eidenshink
et al., 2007) and fires > 1 km? from the following federal agencies: California Depart-
ment of Forestry and Fire Protection (CalFire), US Fish and Wildlife Service (FWS),

US Forest Service (FS), Bureau of Indian Affairs (BIA), Bureau of Land Management
(BLM), Bureau of Reclamation (BOR), and the National Park Service (NPS). Notably,
the WUMI dataset underrepresents fires < 4 km? from 2018-2020, especially in non-forested
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Figure 1. Wildfire activity in the western United States (WUS) from 1984 to 2020. Left: lo-
cations of fire centroids (black dots) across the WUS with the spatial extent of three ecological
Divisions characterized by their primary vegetation type — Forests (green), Deserts (yellow), and
Plains (gray). Right: Observed annual fire frequencies (blue) and annual area burned (AAB)
(red) for each Division. The black curves indicate the statistically significant trends for each

AAB (solid) and annual frequency (dashed) time series.

areas outside of California because of missing post-2017 data from the BLM, BIA, BOR,
and NPS.2 Although fires smaller than 4km? have a negligible contribution to the to-
tal area burned, they constitute ~ 50% of all fires in our study domain. Thus, the ar-
tificially low frequency of smaller fires in 2018-2020 as represented in the current version
of the WUMI database likely hinders with accuracy with which our current modeling
effort can simulate the probability of small fires.

In Fig. 1, we map all WUMI fire locations as well as plot time series of annual fre-
quency and annual area burned (AAB) time series for the Forests, Deserts, and Plains
Divisions along with their statistically significant trends. The AAB trends are evaluated
using a least squares linear regression fit to the log transformed area burned time series
as in Williams et al. (2019).

2.3 Input Predictors

We consider four broad classes of input predictors — three dynamic plus one static
— aggregated to the 12kmx12km grid scale: climate and fire weather, vegetation, human-
related (henceforth human), and topographic. At this spatial scale, a vast majority of
fires (~ 97%) have sizes smaller than the size of the grid cell. Choosing a finer resolu-
tion would require explicitly modeling the spatial autocorrelation between the burned
area in neighboring grid cells, whereas a coarser resolution results in lower accuracy while
correlating fire properties to its environmental variables.

2 https://famit.nwcg.gov/applications/FireAndWeatherData/ZipFiles; accessed Sep 24, 2022



We select six primary climate and fire weather predictors: temperature, precipi-
tation, vapor pressure deficit (VPD), snow water equivalent (SWE), wind speed, and light-
ning. Monthly climate grids for mean daily maximum temperature (Tmax), daily min-
imum temperature (Tmin), and precipitation total (Prec) are taken from National Oceanic
and Atmospheric Administration’s (NOAA) Climgrid dataset (Vose et al., 2014); addi-
tionally, gridded dew point temperatures for computing VPD are adapted from PRISM
(Daly et al., 2004). We consider two additional fire danger predictors which have been
shown to significantly correlate with fire activity (Abatzoglou & Kolden, 2013): 1,000-
hr fuel moisture (FM1000), and the Fosberg Fire Weather Index (FFWTI) (Fosberg, 1978);
these were both derived from specific combinations of the primary predictors with daily
meteorological grids from gridMET (Abatzoglou, 2013). Furthermore, we use daily scale
data from the UCLA ERA5-WREF reanalysis (Rahimi et al., 2022) to calculate the monthly
maximum X-day mean of daily maximum and minimum temperature (Tmaxx, TminX)s
where X € {3,7}. Similar X-day extreme predictors are also derived for VPD, FFWI,
and wind speed. The monthly mean and maximum daily SWE variables come from the
gridded National Snow and Ice Data Center (NSIDC) dataset (Zeng et al., 2018, 2019).
Antecedent conditions often exhibit significant correlations with fire activity through dry-
ing of soils and fuels as well as promoting fuel growth over multiple months (Westerling
et al., 2006; Wang & Wang, 2020; Abolafia-Rosenzweig et al., 2022). Thus, for a given
fire month m, we include temperature, precipitation, VPD, and SWE based predictors
that are running averages of monthly mean values from month m — 1 to m — ¢, where
t € {2,3,4}. We also include the mean annual precipitation for each of the two years prior
to the fire year (AntPreciag1 and AntPreci,g2) as additional predictors to probe long drought
legacy effects (Bastos et al., 2020; Wu et al., 2022). An important source of ignitions over
a large area of the WUS is lightning, most frequently as part of summer thunderstorms.
We use the Vaisala National Lighning Detection Network (NLDN) lightning strike den-
sity data (Wacker & Orville, 1999; Orville & Huffines, 2001) aggregated to monthly scale
with coverage from 1987 to 2020. For all months between December 1983 and January
1987, we assume monthly climatological means for the missing lightning data.

We leverage land type data from the National Land Cover Dataset (NLCD) (Yang
et al., 2018) for deriving annual scale vegetation predictors. Since the NLCD classifies
land cover type (e.g., evergreen forest, cropland etc.) across the US at a 30m spatial res-
olution, we calculate the fraction of each 12x12km grid cell occupied by a given NLCD
land-cover classification. The NLCD is not an annual product and provides maps of land-
cover classification for: 1992, 2001, 2004, 2006, 2008, 2011, 2013, 2016, and 2019. For
years between two NLCD years, the landcover in each grid cell is linearly interpolated
between the NLCD years, whereas for years before or after 1992-2019, landcover is as-
sumed to be the same as the nearest NLCD year. We adopt three predictors: Grassland,
Shrubland, and Forest, each of which represents the fraction of landcover in a grid cell
covered by the respective vegetation type. Besides the fraction of landcover, we include
a more direct representation of fuel abundance through the aboveground biomass map
from (Spawn et al., 2020). Although the biomass map (Biomass) is available for only one
year, 2010, we justify its inclusion by positing that the spatial variability of vegetation
across the WUS is more dominant than the temporal variability of the vegetation in a
majority of grid cells. Thus, for all modeling purposes, we treat Biomass as a static pre-
dictor. In future work, it will be ideal to include simulated vegetation biomass maps (e.g.,
(Hansen et al., 2022)) in a coupled framework within the wildfire model.

Combining the following NLCD land cover types that reflect the presence of ur-
ban areas: “Developed High”, “Developed Low”, “Developed Medium”, and “Developed
Open” we construct a single, annual scale human predictor, Urban. For more granular
information of human settlements, we include predictors for human population (Popden-
sity), defined in terms of distance from the nearest area with population density greater
than 10 people per square kilometer, and mean housing density (Housedensity). These
predictors are adapted to annual timescales using data for three years: 1990, 2000, and



2010 from the SILVIS dataset (Radeloff et al., 2005) following the same interpolation pro-
cedure that we used for NLCD predictors. Other static human predictors include: mean
number of camp grounds (Camp_num), mean distance to nearest camp grounds (Camp_dist),
and the distance to nearest highway (Road_dist) derived from publicly available datasets.
Lastly, to incorporate the effect of topography on fire activity (Holsinger et al., 2016; Har-
ris & Taylor, 2017), we include two static variables: mean slope (Slope) and mean south-
facing degree of slope (Southness). Altogether we include a total of 51 potential predic-

tors, and summarize their names, identifiers, temporal scale, and sources in Table S2.

Before analyzing the data with a statistical model, we perform an additional pre-
processing step. To account for spatiotemporal heterogenity of the WUS ecological land-
scape, we “standardize”, i.e subtract the mean and divide by the standard deviation, all
input predictors. Dynamic predictors, including all climate and most vegetation vari-
ables, at each location are standardized in time, whereas the static predictors are stan-
dardized across the entire spatial domain.

3 Methods

3.1 Theory

Mixture distribution

Figure 2. Schematic diagram of a Mixture Density Network (MDN) illustrating the input
(blue), hidden (green), and output (purple) layers. While a fully connected neural network is
implemented in practice, only a partial connected one is shown here for clarity; the solid black
line on the left denotes the direction from the input to the output layer, whereas the dotted black
lines represent additional nodes and layers in the network. Also shown above the output layer are

the parameters for a two component mixture distribution of the form given in Eq. 1.

Our main goal is to develop a statistical model for fire frequency and sizes as a func-
tion of input predictors described in the previous section. Specifically, we want our model

3 https://www.naturalearthdata.com/downloads/10m-cultural-vectors/roads/; http://www

.uscampgrounds . info/takeit.html



to: a) capture the nonlinear, spatially heterogeneous interactions among the climate, veg-
etation, human, and topographic variables that influence wildfire activity; b) rely on phys-
ical variables and be independent of location and time of year; ¢) be based on paramet-
ric distributions that may be sampled to generate uncertainty estimates of the modeled
values. We build upon previous efforts (Westerling et al., 2011; Joseph et al., 2019; Wang
et al., 2021) by constructing a model that combines the flexibility of machine learning
techniques with the robustness of parametric distributions.

We use two mixture density networks (MDNs) to separately model the conditional
probability (henceforth conditional for brevity) distributions for fire frequency and area
burned on a monthly time scale. A MDN is a fully connected, feedforward neural net-
work whose output layer consists of parameters of a mixture model (Bishop, 1994). In
other words, we use a neural network with multiple hidden layers, illustrated in Fig. 2,
to map the nonlinear functional relationship between different predictor variables and
output data onto the parameters of a mixture of standard statistical distributions. A mix-
ture distribution is a useful tool for representing the probability distribution of outputs
with multiple modes or peaks. Thus, given observed data Y, we learn the functional map-
ping between input predictors X and output parameters v by minimizing a loss func-
tion of the general form,

N M M
LYIXp € m) =33 1 (X) pu(Val 0 (X)) D 7w =1 (1)

n=1m=1 m=1

where M and N denote the number of mixture components and data points respectively,
and each mixture component consists of a conditional distribution p,,(6,,) as well as a
weight parameter m,,. To ensure that the resultant mixture distribution is normalized,
we constrain the sum of all individual weight parameters to be 1.

We use the monthly fire counts (including zeros) in each grid cell across the WUS
as the data for our fire frequency model. In total, we consider data in about ~ 10 mil-
lion grid cells out of which only 17489 correspond to observed fires. Common choices of
parametric distributions for representing count data include: binomial, Poisson, and neg-
ative binomial distributions. All of these distributions are often also used in conjunction
with another distribution, as part of a zero-inflated mixture model, that accounts for the
additional zeros in the data coming from an independent process such as fire suppres-
sion. In this analysis, for each space-time grid cell (henceforth grid cell), n, we use a zero-
inflated Poisson lognormal distribution (ZIPD) to model the observed fire frequencies
fn as a function of the input predictors X,

(X, 1 —n(X,)) Pois(fn| u(Xn),0(Xy)), , fn=0;
LU X ) — { (Xn) +( .( ) Pois(fn| p(Xy),6(Xn)) @
(1 = m(Xn)) Pois(fu] p(Xn), 6(Xn)) » Jn >0,

where 7 is the probability of an independent process that generates zeros, and the rate
parameter of the Poisson (Pois) distribution is drawn from a lognormal distribution with
mean j and variance §2. There are two major challenges to this approach for modeling
fire frequencies: a) a large proportion of grid cells contain no fires, resulting in a signif-
icant data imbalance problem, b) minimizing the risk of missing fires in our predictions,
we tend to overpredict fires in grid cells that saw no fires, leading to a high false pos-

itive rate. To address point a), we experiment with both downsampling, i.e. consider-

ing only a random subset of all available grid cells with no fires similar in size to the num-
ber of observed fires, and upsampling, i.e. generating multiple duplicate samples of the
observed fires to match the size of grid cells with no fires, to address this imbalance in

our analysis. On the other hand, to fix the effects of a high false positive rate due to the
large number of non-fire grid cells, we use a spline regression model for calibrating the
mean and variance of the predicted frequencies to those of the observed data at the Ecore-
gional scale. Finally, we aggregate the predicted fire frequencies across all grid cells within



an Ecoregion and compute the mean and variance of the fire frequency, F, for a given

month, [, as follows,
FI|X Z EL‘, L (7, ;1,5) ‘X'fL]a

ne L3 (3)
Var[F'|X] = Z Vargn(ﬁ,,;,g)[ W X0,

ne L3
where Ez (y[] and Varg, ()[] indicate the expected value, or mean, and variance with
respect to the conditional frequency distribution given by Eq. 2, and the hats denote the
distribution parameters fixed to their optimal values determined by training the MDN.
The expected value and variance are evaluated using Monte Carlo (MC) simulations of
the frequency distribution at monthly and annual timescales.

Meanwhile, as shown previously (Schoenberg et al., 2003; Littell et al., 2009; Li &
Banerjee, 2021), wildfire sizes across several spatial scales follow a probability distribu-
tion with large tails, or equivalently an extreme value distribution, such that a major-
ity of fires are small but the total area burned is dominated by a small number of large
fires. In this analysis, we consider three extreme value mixture distributions for fire sizes:
Generalized Pareto distribution (GPD), Lognormal distribution, and a composite Lognormal-
Generalized Pareto distribution (Lognormal-GPD) (Scollnik, 2007). The Lognormal-GPD
is included to account for the possibility that the fire sizes follow a hybrid distribution
with a pronounced hump as well as a significant tail, which are the features of the Log-
normal distribution and GPD respectively. We consider 9953 fires from the WUMI dataset
with sizes greater than a threshold of 4 km? for the GPD and Lognormal-GPD fire size
models, whereas we consider all fires for the Lognormal case as it does not require a thresh-
old for extreme events. Due to our fixed choice of the grid for input predictors, a ma-
jority of the fires have burned areas that are spread across two or more grid cells. This
raises the question: which values of the input variables should we consider as predictors
for our model? Approximating each fire as a circle with area equal to its size, we con-
sider the “effective” input predictors for a given fire to be the average of inputs over all
grid cells intersected by the fire’s perimeter weighted by the fraction of burned area in
each grid cell. We model each fire j as independent draws from a conditional mixture
distribution (Carreau & Bengio, 2007) of the general form,

£(Aj| 3T 91702 = w Z 7Tm pm A |0m 1( ) 9m,2(Xj))a (4)

where (61, 603) are the parameters of a heavy tailed distribution determined by the MDN
for each fire. For the GPD, (61, 63) represent the scale and concentration parameters,
whereas for the Lognormal case they represent the mean and standard deviation of the
distribution’s natural logarithm. We include a weight factor w(A;), that is inversely pro-
portional to the frequency of size A; in the training data, to account for data imbalance
due to the relative disparity in the number of small and large fires.

The conditional distributions of monthly and annual area burned (MAB and AAB
respectively) are obtained by aggregating the distribution of fire sizes for each grid cell
in an Ecoregion with a fire. We compute the mean and variance for the fire size distri-
butions using MC simulations and formulas similar to the ones described in Eq. 3. We
interpret the expressions for MAB and AAB as follows: assuming that the mean size of
all fires at a given spatiotemporal scale [ are identical and denoted by A, the mean to-
tal area burned A4; is simply given by E[4;|X;] = E[F}|X;] x A. Phrased differently,
the expected area burned at a given spatiotemporal scale is linearly proportional to the
mean fire frequency, E[F}|X;] with a constant coefficient A. We note, in practice, that
since the mean fire size of the GPD model is similar for most fires, the mean fire frequency
also plays an important role in determining the mean MAB or AAB.

Following Iglesias et al. (2022), we assume that A, the mean size of an individual
fire, as well as the total size distribution, could be time-dependent, or nonstationary, in



general. We allow for an enhancement or weakening in the response of fire sizes to one

or more predictors by including a nonstationary response in the size model. In partic-

ular, we use the entire training dataset to construct two models: one model with a reweighted
GPD loss function (GPD-Ext) for the time period with larger fire sizes, and the other

one for the remaining years with an unweighted loss function (GPD). We stitch these

models together with a breakpoint to construct the combined GPD MDN model.

In order to isolate the role of frequency in the total area burned, we first derive the
AAB using the combined GPD MDN model evaluated with observed fire frequencies and
values of input predictors corresponding to the observed locations of fires given in the
WUMI dataset. We also explore three further variations for the WUS AAB time series:
one, using modeled frequencies for each Ecoregion from the frequency MDN model with
observed fire locations; second, with observed frequencies but input predictors correspond-
ing to model fire locations predicted by the frequency MDN; and third, with both fire
frequencies and locations drawn from the frequency MDN model. Since our modeled fre-
quencies also include smaller fires, we apply an additional time-dependent scaling fac-
tor to account for the relative abundance of large fires (> 4km?) while deriving the area
burned with modeled frequencies.

Lastly, to obtain percentiles of the burned area distribution we require the full prob-
ability density function defined over all grid cells with fires,

PAANXNY = payxg o #pa x5 Parxe = LIAGIXG, f] > 0075, 01,5.05,5). (5)

where * denotes the convolution operator, and N' are the number of fires at a given spa-
tiotemporal scale. Rather than solving this expression analytically (Nadarajah et al., 2018),
we sample it with MC simulations and report the 0.5, 50" and 99.5*" percentiles of

the monthly and annual area burned at the WUS and Divisional scales.

3.2 Implementation

We implement our MDNs using the Keras interface for TensorFlow library ver-
sion 2.7.0.* During training, we allow our neural network to have the following tunable
hyperparameters: number of hidden layers, n;; number of neurons per layer, n,.; and
the number of mixture components, n.. We use the relevant distributions available in
the TensorFlow Probability library version 0.15.0 for designing custom loss functions
for both the frequency and size data.

For model training, we hold out 1 contiguous year (which we take to be 2020, un-
less specified otherwise) of fires and input predictors as test data, and split the monthly
data from the remaining 36 years 70% to 30%, chosen randomly, between training and
validation data. The out-of-sample validation data is useful for evaluating model per-
formance, which we measure through several metrics defined in the section below.

We train our model for up to 500 epochs using the Adam optimizer with learning
rate, 1r_rate = 10™%, to learn the optimal distribution parameters for each model. Since
a typical MDN with several hidden layers consists of ~ O(1000) hidden weights and bi-
ases, it is plausible that the model overfits the training data; we address this issue by
applying three regularization steps: early stopping of the training process when the model
performance does not improve for 10 epochs; L2 regularization, which constrains the squared
sum of all the network weights; and a Dropout layer which randomly sets a fraction, dr_frac,
of inputs to 0 to improve co-learning of the remaining weights. Based on numerical ex-
periments in the pre-training phase, we fix the L2 regularization rate to be reg_rate =
1073, and the dropout fraction to be dr_frac = 0.4. Altogether, the regularization pro-
cedure reduces overfitting and improves generalization for the MDN.

4 Our code is publicly available here: https://github.com/jtbuch/ml-fires

—10—



3.3 Metrics

We define metrics for two broad purposes: enabling model selection and measur-
ing model performance. For the former, a straightforward choice is the value of the loss
function, given in Eq. 1, averaged across all batches and epochs: reducing the loss im-
proves the model.? Since we are predicting a mixture distribution rather than a point
estimate of the output, we use a variation of the Kullback-Leibler (KL) divergence to
measure the distance between distributions,

D1, (CyllC) = Z log <C¢(yyn||;€n))> ; Accuracy = 100 x (1 — Dig,(Cy[|C0)),  (6)

where Cy, is the cumulative distribution function (CDF') of fire frequencies or sizes pre-
dicted by the MDN, and C is the empirical CDF estimated from data. Unlike the ra-
tios of the probability density functions used in calculating the classic KL divergence,

we adopt a ratio of the CDFs which is an equivalent estimator in the asymptotic limit
(Perez-Cruz, 2008). We also perform leave-one-out cross validation (LOO-CV) to approx-
imate the model’s generalization error. Specifically, we create subsets of fires by exclud-
ing the fires that occurred in 1 contiguous year for all years in our study period and re-
port the validation accuracy averaged over all such subsets as the LOO-CV score.

Having selected a model, we characterize its performance by measuring, statisti-
cally, how well or poorly the modeled time series fits the observed data. We use the Pear-
son’s correlation coefficient, r, to gauge the proportion of variance in the observed data
explained by the predicted time series. Moreover, to account for the point-wise uncer-
tainty that we obtain from our MC simulations, we use the chi-squared statistic,

X2 _ Z (Yn ;23911)27 (7)

n €St n

as a measure of the goodness-of-fit for all frequencies or area burned at a particular spa-
tiotemporal scale, Syp. To ensure uniformity of scale, we report the reduced chi-squared
statistic, x2, which is the chi-squared value defined above divided by the degrees of free-
dom. In our case, the degrees of freedom are simply given by the number of years with
non-zero values minus the number of parameters.

3.4 Predictor importance

We estimate the sensitivity of model output to input predictors using the SHap-
ley Additive exPlanation (SHAP) technique (Lundberg & Lee, 2017). SHAP values are
a recent approach (see Wang et al. (2021) for an application to fire modeling) to char-
acterize the marginal contribution of each input predictor on individual predictions by
using a game-theoretic approach to account for the contributions of all possible coali-
tions of the remaining predictors. This is in contrast to the traditional predictor impor-
tance techniques which only rely on a fixed coalition of predictors to assess the contri-
bution of an individual variable, and are therefore susceptible to correlations between
input predictors. We implement the SHAP technique in our analysis by adapting the
KernelExplainer method from the shap python package.b

A SHAP value s for an input predictor p can be interpreted as follows: p contributes
s additional units to the model output determined by combining the mean baseline value
along with the contributions of all other predictors. To estimate the sensitivity of our

5 Since our model size is small, we ignore the effects of model complexity that may be included through

metrics such as the Akaike Information Criterion (AIC).
6 https://github.com/slundberg/shap
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Fire variable MDN type (ng,npe,me) Loss  Accuracy LOO-CV score

Freamonc ZIPD (Upsampled)  (2,16,2) 329 87.53 % 75.75 %
dUCNEY 7IPD (Downsampled) (2, 16,2) 0.85 95.67% 94.18 %
GPD (3,8,2) 422 91.71% 90.60 %

Size Lognormal distribution (3,8,2) 445 9139 % 86.92 %
Lognormal-GPD (2,16,4) 436 87.15% 85.49 %

Table 1. Summary of the mixture density network (MDN) architecture and performance
metrics used for modeling fire frequencies and sizes. ni, nne, and n. refer to the number of hid-
den layers, neurons per layer, and the number of mixture components respectively. The loss is
dimensionless for the frequency MDN whereas the loss for size MDN has units of inverse area
burned, or km~2. Both the loss and accuracy metrics are reported for validation data, whereas
the leave-one-out cross validation (LOO-CV) score is the validation accuracy averaged over differ-
ent subsets of fire years, where each subset is obtained by excluding all fires in a randomly chosen
year. Lower values of loss as well as higher values of accuracy and LOO-CV score indicate better

model performance.

model outputs to various predictors in a particular Ecoregion, we first randomly choose

a subset of grid cells within that Ecoregion with no observed frequencies, or background
points, to compute our mean baseline SHAP value. Then combining a fraction of the back-
ground points with grid cells that have observed fires in a fixed ratio to create a pool of
test points, we evaluate the SHAP values for all predictors relative to the mean base-

line value at each test point. The choice of the ratio does not affect our results as long

as the number of background points constitute a minority fraction of the test points. For
the results shown in the following section, we use a 1:3 ratio of background to test points
for each Ecoregion to ensure sufficient statistics. In total, we evaluate the SHAP values

for all input predictors at ~ 20,000 test points across the WUS.

We visualize our results using two types of plots: a summary plot that shows the
SHAP values of the leading input predictors at each test point colored by the predictor
value alongside the partial dependence plots of two important predictors, and a global
feature importance plot of the leading predictors ordered according to their mean ab-
solute SHAP values, or S, for each Ecoregion. We also assess the interaction effect be-
tween predictors by applying a color gradient of one predictor’s values to all test points
in the partial dependence plots of the other. However, since all test points do not ex-
plicitly include information about vegetation transitions under climatic perturbations
in the respective grid cell or the effect of repeated fire burns, the indicated predictor im-
portance and partial dependence plots are valid only under the assumption of a station-
ary relationship between the input predictors and fire sizes.

4 Results and Discussion
4.1 Model Selection

The first step in our model selection process is determining the optimal hyperpa-
rameter configuration for each loss function. We train the frequency and size MDNs on
a subset (~ 40%) of the overall training data over a grid of hyperparamater configura-
tions. In particular, for both the frequency MDNs as well as the Lognormal-GPD size
MDN, we fix the number of components, n. = 2, while varying the number of hidden
layers, n;, the number of neurons per layer, n,e; for the rest of the cases, we vary n. as
well. The model performance is evaluated using the three metrics defined above: aver-
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age loss, maximum accuracy, and the LOO-CV score computed over all the epochs. The
optimal configuration for a MDN type is defined as the one with the lowest loss and the
highest validation accuracy. Since our choice of validation data as a random subset of
the training data (as opposed to selecting data for consecutive years) already serves as
a form of cross-validation, the LOO-CV score may be interpreted as a measure of the
model’s mean performance across different initial conditions as it is computed with dif-
ferent subsets of validation data. The second step is reducing the number of predictor
variables by iteratively dropping all predictors that do not improve overall model per-
formance and are highly correlated (r > 0.5) with other predictors. We include all fire
month and static predictors in this step, using the iterative procedure to identify the most
important antecedent and extreme weather permutations of each relevant climate vari-
able. After this step we are able to narrow our predictor basis from 51 to 28 variables.

The optimal hyperparameters and performance metrics for each MDN are outlined
in Table 1. For the fire frequency model, we indicate results for the ZIPD MDN trained
with upsampled and downsampled data separately. We find that the downsampled ZIPD
MDN performs slightly better than its upsampled counterpart, despite the latter using
more data (see Chatterji et al. (2022) for a discussion of an analogous problem in the
ML literature). Among the size models, we find that the GPD MDN has the best per-
formance and prefers only two components, while the optimal Lognormal distribution
MDN configuration contains four components albeit with a higher loss and lower val-
idation accuracy. The optimal Lognormal-GPD MDN has an intermediate performance
relative to those of the GPD and Lognormal distributions. We also calculated the LOO-
CV score with 3 contiguous years of data held out and find that there is only a marginal
decline in model performance, highlighting the robustness of our ML models. In the fol-
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Figure 3. Observed (blue) and modeled (orange) fire frequencies across the western United

States at monthly and annual time scales from 1984 to 2020. Orange shaded regions indicate 20
uncertainty intervals for the mean fire frequency aggregated over the Monte Carlo (MC) simula-
tions for all grid cells. The mean number of modeled fires over the study period as well as its 20
uncertainty interval are indicated at the top of the lower panel. Also shown within each subplot

is the Pearson correlation coefficient () between the observed and modeled time series.
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lowing sections, unless stated otherwise, we refer to the downsampled ZIPD and GPD
MDNs as the frequency MDN and size MDN respectively.

4.2 Fire Frequency

We use a MDN trained on downsampled training data to determine the parame-
ters of the ZIPD for fire frequencies in each grid cell across the WUS from 1984 to 2020.
MC simulations of the parametric frequency distributions for all grid cells are aggregated
to compute the mean fire frequency and its 20 uncertainty intervals over monthly and
annual time scales. These are plotted for the entire study domain in Fig. 3 as well as in-
dividual Ecoregions selected on the basis of total fire counts and their quality of fit in
Figs. 4 and 5. The frequencies are plotted for both monthly and annual timescales and
are contrasted with the observed values at the respective spatial scale. We note that the
observed fire frequency between 2018 and 2020 could increase after including several miss-
ing smaller fires in the WUMI dataset, which may also potentially affect our modeled
frequencies. We evaluated the goodness-of-fit between our predictions and observations
at the annual timescale through the Pearson’s correlation coefficient and the reduced chi-
squared statistic shown in Table 2 for all the WUS Ecoregions.

Frequency Size

Division Ecoregion r X2 r X2
Sierra Nevada 0.70 | 20.98 | 0.60 | 0.84

California (CA) North Coast 0.68 | 107.75 | 0.58 | 1.52
CA Central Coast 0.46 | 75.64 | 0.60 | 1.17

CA South Coast 0.61 | 40.91 | 0.66 | 1.70

Forests Pacific Northwest Mountains 0.70 9.63 0.81 | 0.66
Northern Rockies 0.89 | 11.28 | 0.93 | 0.34

Middle Rockies 0.85 | 25.69 | 0.84 | 1.30

Southern Rockies 0.82 | 10.20 | 0.79 | 0.81

Arizona/New Mexico Mountains | 0.72 | 45.57 | 0.63 | 1.18

American (AM) Semidesert 0.88 | 15.80 | 0.95 | 0.77
Intermountain (IM) Semidesert | 0.66 | 36.52 | 0.90 | 0.43

IM Desert 0.80 | 34.99 | 0.92 | 0.39

Deserts Chihuahuan (CH) Desert 0.62 | 68.93 | 091 | 0.52
Columbia Plateau 0.78 | 14.79 | 0.77 | 0.56

Colorado Plateau 0.71 | 12.10 | 0.72 | 0.39

Southwestern (SW) Tablelands | 0.67 | 15.88 | 0.94 | 0.71

Plains Northern Great Plains 0.87 5.75 0.93 | 0.43
High Plains 0.65 8.73 0.94 | 0.57

Table 2. Goodness-of-fit metrics in terms of Pearson’s correlation (r) and the reduced chi-
squared statistic (x2) between the observed and modeled time series for both frequencies and
area burned at an annual time scale. Both r and x2 are dimensionless metrics; higher values of
r and lower values of x2 indicate a better fit. Results are shown for each Ecoregion organized by

their ecological Division.

An upshot of our likelihood-based MDN model is the availability of uncertainty es-
timates (Riley & Thompson, 2016) for the predicted fire frequencies. Since our frequen-
cies are modeled as a Poisson distribution, we expect their standard deviation to scale
as ~ /N for N fire counts. Thus, the relatively narrow 95% error band shown for both
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for the mean regional fire frequency aggregated over the Monte Carlo (MC) simulations for all

constituent grid cells. Also shown is the Pearson correlation coefficient (r) between the observed

and modeled fire frequency time series for each Ecoregion.

the WUS and regional frequency plots comes with an important caveat: we only esti-
mate the statistical uncertainty for our results while ignoring the (possibly dominant)
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Figure 5. Asin Fig. 4, but with different WUS Ecoregions.

contribution to the model uncertainty from sources such as climate-vegetation linkages
(Kitzberger et al., 2017; Zhou et al., 2019; Bastos et al., 2020; Tschumi et al., 2022).

At the WUS level, our mean modeled frequencies are in good agreement with the
total number of observed fires, exhibiting high correlations at both monthly (r = 0.94)
and annual (r = 0.85) timescales. Our model also successfully captures the interannual
variability and monthly extremes across most of the Ecoregions. In particular, the mod-
eled annual frequencies for Sierra Nevada, Pacific Northwest Mountains, Northern, Mid-
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dle, and Southern Rockies among the Forests Division; American Semidesert, Intermoun-
tain (IM) Desert, Columbia and Colorado Plateaus among the Deserts Division; and the
Northern Great Plains are strong correlated (r > 0.7) with the observed frequencies.

Broadly, the trends in fire frequencies can be characterized as a competition be-
tween three independent drivers. One, an increasing trend in climate dryness (Seager et
al., 2015; Abatzoglou & Williams, 2016), which is correlated with regional water balance
and hence fuel flammability; two, better communication of fire risk resulting in fewer ac-
cidental ignitions (Keeley & Syphard, 2018) and enhanced preparedness levels; and three,
increased human fire suppression efforts through improvements in fire prevention and
containment techniques. While the WUMI dataset indicates moderate increases in the
annual number of wildfires > 1km? in areas defined as forest by NLCD, this is almost
fully compensated by a reduction in frequency of fires in non-forested areas. As a result,
there is no clear trend in the observed fire frequency for the WUS. On the other hand,
our modeled frequencies indicate a mildly increasing trend at the overall WUS scale as
well as for several Ecoregions such as PNW Mountains, Columbia Plateau, and IM Desert.
A potential contributing factor to this variability could be the high sensitivity of fire fre-
quencies to hot and dry conditions in our model combined with the inadequate repre-
sentation of human action. The latter is important especially since human predictors such
as population and housing density can have a dual effect on fire frequencies: proximity
to urban settlements increases the probability of ignitions and access to suppression re-
sources, whereas reductions in fuel continuity due to development and land management
drastically reduce the probability that an individual ignition grows into a large wildfire
(Knorr et al., 2014; Andela et al., 2017).

Since our model is trained on data over the whole WUS, its performance, on av-
erage, is better over Ecoregions with larger number of fires, such as the Middle Rock-
ies and IM Semidesert. On the other hand, our model performs quite poorly for regions
with a low number of total fires, where it is more likely to exhibit large interannual vari-
ations over a baseline of very few to no fires. This behavior is evident in the plot for CH
Desert in Fig. 5 as well as the low 7 and high x2 values in Table 2 for Ecoregions such
as CA North Coast, SW Tablelands, CH Desert, and High Plains.
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Figure 6. SHapley Additive exPlanation (SHAP) analysis of the fire frequency MDN model
outputs across the western United States. Left: Input predictors sorted in descending order of
their mean SHAP values aggregated over the entire study period. Each colored point along the
z-axis represents an individual prediction with the color corresponding to high (yellow) or low
(indigo) values of the respective input predictor. Middle and Right: Partial dependence plots
for two important predictors shown on the z-axis, colored corresponding to high (yellow) or low
(indigo) values of the mean daily maximum temperature, Tmax. The colorbar (far right) is nor-

malized in terms of standard deviations (os) for all relevant values across the three panels.
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Figure 7. SHapley Additive exPlanation (SHAP) analysis of the fire frequency MDN model
outputs for different western United States’ Divisions: (top) Forests, (middle) Deserts, and (bot-
tom) Plains. Left column: Input predictors sorted in descending order of their mean SHAP values
aggregated over the entire study period. Each colored point along the z-axis represents an in-
dividual prediction with the color corresponding to high (yellow) or low (indigo) values of the
respective input predictor. Middle, Right: Partial dependence plots for two important predictors
shown on the z-axis, colored corresponding to high (yellow) or low (indigo) values of the mean
daily maximum temperature, Tmax (top and middle panel), and high (indigo) or low (yellow)
values of the 1000-hr dead fuel moisture, FM1000 (bottom panel). The colorbar (far right) is

normalized in terms of standard deviations (os) for all relevant values across the three panels.

The SHAP values for individual predictors of the frequency MDN as well as the
partial dependence plots for two important predictors, VPD (S = 0.042) and FM1000
(S =0.030), with a color gradient corresponding to Tmax values are plotted for the WUS
in Fig. 6. Here, S denotes the mean absolute SHAP values of each predictor. Similar plots
at the Divisional level for Forests, Deserts, and Plains are shown in Fig. 7. We also in-
clude the mean SHAP plots for each of the 18 Ecoregions considered in our analysis in
Figs. S2 and S3. The main drivers of fire frequencies at all spatial scales are climate pre-
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dictors correlated with hot and arid fire weather conditions. Thus, high VPD is the lead-
ing predictor for most Ecoregions, most frequently combined with low fuel moisture in
large diameter fuels, FM1000. Other important predictors include Tmax, Prec, and Slope,
such that high daily maximum temperatures, lower fire month precipitation total, and
higher mean slope all contribute to higher fire frequency on average.

Among the other subdominant predictors, antecedent climate conditions play a vary-
ing role across different Divisions. Antecedent snowpack estimated using 3 month av-
erage SWE, AvgSWE, , is an important predictor especially in the Rocky Mountains
Ecoregions (S = 0.023), with lower SWE in 3-4 antecedent months leading to higher pre-
dicted frequencies in the fire month. Increases in modeled fire frequencies for several Ecore-
gions in Deserts and Plains are also driven by antecedent conditions at both the seasonal
and annual timescales through lower values of AntPrecsm, and higher values of AntPreciy,
predictors. The latter result corroborates previous analyses (Crimmins et al., 2004; Abat-
zoglou et al., 2017) which have highlighted the role of high prior year precipitation in
promoting fuel growth within arid regions where vegetation is often too limiting to al-
low for large fires. The spatial variability in vegetation predictors, however, is of low im-
portance for most Ecoregions. Interestingly, for similar dryness levels, our model sim-
ulates more fires for sites with lower values of Biomass relative to sites with higher Biomass
in Forests; meanwhile, higher fraction of grassland results in a higher fire frequency across
all three Divisions. Our model considers lightning strike density as an important pre-
dictor across several Ecoregions, most notably over the CA North (S = 0.021) and South
(S = 0.024) Coasts, PNW Mountains (S = 0.021), and Middle Rockies (S = 0.019). Hu-
man predictors, on the other hand, are not among the top 10 predictors for any Ecore-
gion and therefore of little overall relevance to the frequency model.

We visualize the response of fire frequencies to individual predictors through the
partial dependence plots in Figs. 6 and 7. SHAP values for all four variables shown in
the plots: VPD, FM1000, Prec, and AntPrecsy,, exhibit near-linear relationships above
a threshold with their respective predictor values. The color gradient of all test points
in Forests and Deserts shows that VPD and FM1000 are strongly correlated with Tmax,
while also highlighting the interaction effect between Tmax and Prec. In Plains, instead
of Tmax, we consider the interaction effect of FM1000 on VPD and AntPreczm,, to ex-
plore the influence of antecedent and fire month predictors on fuel moisture. FM1000
values exhibit a strong interaction effect with antecedent precipitation in our model, but
not with fire month VPD since fuel moisture shows significant correlations with atmo-
spheric aridity. In other words, SHAP values for our frequency model vary with Prec and
AntPrecgy,, predictors only for sites with high values of Tmax and low values of FM1000.

4.3 Fire Size

We use MDNs trained on fires > 4 km? to determine the parameters of the com-
bined GPD and GPD-Ext (henceforth combined GPD) distribution of individual fire sizes.
MC simulations of the parametric size distributions for all observed fires from 1984 to
2020 are aggregated to compute the mean of the monthly and annual area burned (MAB
and AAB respectively) and their 1o uncertainty intervals. The total MAB and AAB sim-
ulated using the combined GPD model with a breakpoint after 2004 are plotted for the
entire WUS in Fig. 8 and separately at the Ecoregion level in Figs. 9 and 10. The goodness-
of-fit metrics, namely Pearson’s correlation and reduced chi-squared statistic, between
the predicted and observed sizes for each Ecoregion are summarized in Table 2. We plot
the SHAP values for individual predictors at test points across the WUS in Fig. 12, along-
side partial dependence plots for two important fire size predictors, VPD and Grassland,
with a color gradient corresponding to Tmax values. These plots are constructed using
a procedure similar to the one described in the previous section for fire frequencies. We
also show the partial dependence plots at the Division level are in Fig. 13 and plot the
mean SHAP values for individual Ecoregions in Figs. S7 and S8.
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Figure 8. Observed (red) and mean modeled (teal) area burned across the western United
States at monthly (MAB) and annual (AAB) time scales from 1984 to 2020. The teal shaded
regions indicate 1o uncertainty intervals for the mean area burned aggregated over the Monte
Carlo (MC) simulations from the combined GPD model for all observed fires. The mean total
area burned over the study period as well as its 1o uncertainty interval are indicated at the top
of the lower panel. Also shown within each subplot is the Pearson correlation coefficient between

the observed and modeled burned area time series.

The introduction of a time-dependent response and a breakpoint after 2004 in our
modeling is justified through the following analysis. As indicated by Fig. 8, there is a
rising trend in the AAB for the WUS with significantly more large MAB months ~ 2000
onward than in 1984-1999. Moreover, as shown by Juang et al. (2022), this increase in
AAB is driven by the exponential response of fire size to atmospheric aridity and not due
to increasing fire frequency. We confirm their result by noting that the complementary
cumulative distribution function (CCDF) of observed fire sizes between 1984-2004 is markedly
different from the CCDF for sizes observed between 2005-2020 as plotted in Figs. S4 and
S5. In fact, as shown in Fig. S4 (right panel), the CCDF of the combined GPD model
is in much better agreement with the observed CCDF than the CCDFs of either model
individually (Fig. S4; left and middle panels). After varying the breakpoint for differ-
ent years between 2000 and 2006, we find that a breakpoint after 2004 results in the best
fit to the observed area burned. Thus, we successfully model the shift to larger fire sizes
observed after 2004 by including an additional GPD distribution with fatter tails.

We emphasize that the improved agreement between the CCDFs of observed and
modeled sizes is not merely an artifact of the breakpoint procedure; in fact the choice
of the distribution plays a critical role. Specifically, we verify this by repeating our anal-
ysis with the Lognormal distribution, which has thinner tails than the GPD. In Fig. S5,
we demonstrate that the CCDF of the reweighted Lognormal MDN (Lognorm-Ext) un-
derestimates large portions of the observed sizes’ CCDF while being able to account for
only the most extreme fires. Consequently, the combined distribution (Lognorm-Comb)
is an inadequate model for the observed fire sizes over the study period.

The choice of fire frequencies — either observed or modeled — and the stochastic-
ity in fire locations affects both the interannual variability and total area burned of the
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Figure 9. Observed (red) and mean modeled (teal) monthly (MAB) and annual area burned
(AAB) from 1984 to 2020 for the Ecoregions shown in Fig. 4. The teal shaded regions within
each subplot indicate 1o uncertainty intervals for the mean regional area burned aggregated over
the Monte Carlo (MC) simulations from the combined GPD model for all observed fires. Also
shown is the Pearson correlation coefficient (r) between the observed and modeled area burned

time series for each Ecoregion.

modeled AAB time series. Contrasting the results shown in Fig. 8 and Fig. S6, we note
that the AAB using modeled frequencies and observed locations results in a moderate
decrease in the total area burned along with a marginal improvement in the correlation
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Figure 10. Asin Fig. 9, but with different WUS Ecoregions.

with the observed AAB. Further, simulating fire sizes with model locations leads to a
significant rise in the total area burned irrespective of the frequency source, although the
AAB time series with observed frequencies has a notably weaker correlation (r = 0.77)
compared to the case with modeled frequencies (r = 0.91). We explain this behavior with
respect to both fire locations and frequencies. First, the frequency MDN tends to locate
fires in grid cells with extreme values of input predictors such as VPD and Prec, lead-
ing to simulated fire sizes larger than those at observed fire locations; important fire pre-
dictors at the latter, especially before 2004, having high (or low), but not extreme, val-
ues. Second, as shown in Fig. 3, the modeled frequencies are consistently lower than the
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observed ones between 1993 and 2001 leading to a lower simulated area burned relative
to the case with observed frequencies for the same source of fire locations. At the same
time, the anomalously high modeled frequency for 2020 leads to improved correlations
for the modeled AAB time series irrespective of the choice of fire locations. As a cross-
check, we compute the correlation coefficient for the two AAB time series simulated with
observed locations and the observed AAB between 1984 and 2019, and find that the sim-
ulation with observed frequencies has a higher correlation (r = 0.93) than the one with
modeled frequencies (r = 0.89). We do not find a similar improvement in the correla-
tions of the two AAB time series simulated with model locations. These results serve as
an important lesson for modeling fire activity: improved correlations of model predictions
with observed data may not always be a good indicator of improved model accuracy.

Using the combined GPD MDN model, our modeled MAB (r = 0.90) and AAB
(r = 0.88) time series are very good fits to the observed area burned, within the 1o un-
certainty interval, when considering the entire WUS. Our model performs well across most
of the WUS with AAB predictions for 15 out of the 18 Ecoregions exhibiting strong cor-
relations (r > 0.7) with the observed area burned. Moreover, as shown in Figs. 9 and 10,
the trends in the modeled AAB time series successfully emulate the distinct multidecade
increases in observed AAB over both forested and non-forested Ecoregions.

Our model has mixed skill in predicting large MAB and AAB during the study pe-
riod. For example, our model is able to simulate the full range of AAB variability in the
Northern Rockies, Northern Great Plains (Fig. 9; top and middle left panels), and Amer-
ican Semidesert (Fig. 10; middle right panel), but it fails to capture the largest AAB be-
tween 1984 and 2019 in Middle Rockies, IM Semidesert (Fig. 9; top and middle right pan-
els), and PNW Mountains (Fig. 10; top right panel). This tendency holds even after reweight-
ing the size distribution for post-2004 fires. In particular, the total AAB during the year
2020 deserves further scrutiny. The modeled AAB significantly underestimates the ob-
served 2020 AAB in Fig. 8, predicting only about half of the observed value. We see sim-
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Figure 11. Boxplots of predicted annual area burned (AAB) for two extreme fire years, 2012
and 2020, for the entire western United States (WUS) (teal) and three Divisions organized by
their primary vegetation types: Forests (green), Deserts (yellow), and Plains (gray). The lower
and upper whiskers of each boxplot indicate the 0.5 and 99.5*" percentile of the predicted AAB
distribution, whereas the black line represents its median value. Also shown for reference are the
observed AAB for both 2012 (red diamond) and 2020 (indigo traingle).
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ilar behavior at the Ecoregional level in Columbia Plateau (Fig. 9; middle left panel),
Sierra Nevada, and Southern Rockies (Fig. 10; top and middle left panels).

With these results, we can make a stronger assessment about our modeling frame-
work: first, for almost all years in our study period, the mean of the aggregate area burned
distribution is a good approximation for the observed time series, so the only challeng-
ing part is determining the time dependence of the mean sizes of individual fires; and
second, while the discrepancy between modeled and observed area burned in 2020 high-
lights a clear limitation of our model, can we use still use it to make meaningful predic-
tions for anomalous extreme fire years?

In Fig. 11, we show the total modeled AAB for two extreme fire years with the largest
area burned, 2012 and 2020, at both the WUS and Divisional scales. We find that the
observed AAB for 2012 is in the ~ 80" percentile of the predicted WUS AAB, driven
primarily by the large AAB in Deserts. However, for 2020, the observed > 99.5'" per-
centile Forests AAB resulted in the total WUS AAB to be in the 99.5*® percentile of our
model predictions. Contrasted with previous extreme fire years, 2012 and 2017 (see Fig.
S9), the observed 2020 AAB is: a) in very high percentiles of the modeled AAB simu-
lated with observed frequencies, implying that the observed fire sizes for 2020 were much
greater than those in the 1984-2019 period that our model is trained on; b) driven by
anomalously high AAB in the Forests Division, and is a striking example of an extreme
fire year driven by large fires in flammability-limited areas rather than fuel-limited ones.

Among the 10 input predictors of fire size shown in descending order of importance
in Fig. 12, the SHAP technique selects VPD (S = 3.95), Grassland (S = 2.60), and FM1000
(S = 2.34) as the three most important predictors at the WUS level. Again, S refers to
the mean absolute SHAP value for each predictor. These are also among the top pre-
dictors at the Divisional scale as shown in Fig. 13, with Grassland being more impor-
tant than FM1000 in Deserts (S = 2.75) and Plains (S = 3.33). Broadly, SHAP values
for all predictors besides FM1000, Prec, and AntPrecs, have a positive relationship
with higher predictor values. Another important predictor at the WUS and Forests level
is Slope (S = 2.43): its SHAP values indicate that fire size is promoted by large topo-
graphic slope, which is consistent with previous findings (Andrews, 2018). Assessing the
predictor importance at the Ecoregion level, as illustrated in Fig. S7 and S8, we find that
climate and fire weather predictors are dominant drivers across Forests, whereas Grass-
land plays a larger role in Deserts and Plains. The importance of grassland cover could
also signal the role of invasive grass species (Knapp, 1998; Balch et al., 2013) in driv-
ing large area burned within our model. Thus, vegetation plays a much more important
role in simulating area burned for the size model as compared to the frequency model.
This is also true for most Ecoregions in Forests Division, where the spatial distribution
of aboveground biomass serves as an important secondary predictor. The mean abso-
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Figure 12. As in Fig. 6, but for the fire size MDN model.
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Figure 13. SHapley Additive exPlanation (SHAP) analysis of the fire size MDN model out-
puts for different western United States’ Divisions: (top) Forests, (middle) Deserts, and (bottom)
Plains. Left column: Input predictors sorted in descending order of their mean SHAP values
aggregated over the entire study period. Each colored point along the z-axis represents an in-
dividual prediction with the color corresponding to high (yellow) or low (indigo) values of the
respective input predictor. Middle, Right: Partial dependence plots for two important predictors
shown on the z-axis, colored corresponding to high (yellow) or low (indigo) values of the mean
daily maximum temperature, Tmax (all panels). The colorbar (far right) is normalized in terms

of standard deviations (os) for all relevant values across the three panels.

lute SHAP values suggest that weekly scale extreme weather predictors such as FFWI™a3
are also important predictors in several Ecoregions. We interpret the response of fire sizes
simulated by our model to the climate at different temporal scales as follows: monthly

to seasonal scale hot and arid weather create favorable conditions for fire spread, while
the growth of large fires is facilitated by weekly scale extreme fire weather (Jacobson et
al., 2022). The SHAP plot for Popdensity in Deserts (S = 1.54) and Plains (S = 1.32)
indicates that higher predictor values result in simulation of larger fire sizes. This could
be because increased distance from populated areas is correlated with a decrease in ac-
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cessibility for fire suppression efforts, and therefore higher occurrences of larger fires in
the observed record.

We also retrain our fire size model with two different variations of the input pre-
dictors selected for the main analysis: first with relative humidity (RH), average RH over
3 antecedent months (AvgRH,_ ), and 3 day minimum RH (RH™"3) instead of VPD
and its corresponding permutations; and second including all VPD and RH predictors.
There are no significant differences in the correlations between the simulated and observed
WUS AAB time series in either case, but the SHAP summary plots shown in Fig. S10
provide valuable insights. In the first case where VPD is not considered as a potential
predictor, RH (S = 1.67) replaces VPD as the leading fire size driver across the WUS,
and AvgRH, o (S = 1.00) is more important relative to other antecedent climate pre-
dictor. When allowing both VPD and RH to serve as predictors, VPD (S = 3.58) has
higher predictive power than RH (S = 1.95) in our model at both the WUS and Forests
Divisional scales. The fact that the decision of including VPD, RH, or both does not sub-
stantially affect model performance does not mean that this decision is unimportant. As
Brey et al. (2021) point out, VPD is projected to continue rising dramatically while pro-
jected RH decreases are more moderate. In this paper we prioritize the model that uses
VPD, because VPD is more directly representative of the atmosphere’s evaporative de-
mand (Anderson, 1936; Monteith, 1965).

Lastly, we show the responses of fire sizes to individual predictor values for all test
points at the WUS and Divisional level in Figs. 12 and 13 respectively. We find that fire
sizes simulated by our model respond, above a threshold, exponentially to increases in
VPD and decreases in FM1000 at all spatial scales, although the response is notably stronger
in Forests. This result is consistent with the findings of Juang et al. (2022) who showed
that the exponential response of fire sizes to increasing aridity appears to arise from the
fact that large fires have much greater capacity for area growth than smaller fires. Mean-
while, we do not find any significant interactions between Tmax and VPD as well as FM1000;
Grassland shows a weak interaction effect with Tmax, such that sites with the same frac-
tion of grassland cover yield larger sizes at higher mean daily maximum temperatures.

4.4 Outlook

We have developed a novel stochastic ML framework for modeling fire activity across
different WUS Ecoregions. Although the fire frequency and area burned time series sim-
ulated using this framework are in good agreement with observations at multiple spa-
tial and temporal scales, there are several areas of improvement across three intercon-
nected themes: modeling approach and architecture, vegetation, and other potential pre-
dictors. We discuss each one of these themes in detail below.

e Modeling: A limitation of the frequency model is that we are, effectively, estimat-
ing a joint distribution between ignitions and fire likelihood. In other words, we
are using data for observed fires, which occur randomly, to learn the relationships
between different predictors that contribute to fire conducive conditions. However,
such an approach may introduce a bias in ignition-limited regions that could have
large fire-prone areas with no fire occurrences (Parisien & Moritz, 2009). One way
to improve our framework would be to model ignitions using spatial stochastic pro-
cesses, or to compute fire probabilities using a presence-only approach (Chen et
al., 2021). We also expect that further improvements to the WUMI dataset, es-
pecially for smaller fires, would improve the accuracy of our modeled frequency
time series. For the fire size model, we combined two GPD distributions with a
breakpoint after 2004 to obtain a distribution that best fit the cumulative distri-
bution of observed fire sizes. Rather than introduce a breakpoint by hand, in fu-
ture work we intend to explore and model the mechanisms that may have led to
such a distribution shift. At the computational level, we plan on incorporating a
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recurrent ML, component in the current neural network architecture in order to
model the nonstationary fire size responses over multiple timescales. An exten-
sion would be to expand the parametric size distribution by including a smooth,
differentiable form of the Lognormal-GPD with an arbitrary threshold parame-
ter. Using such a hybrid distribution would ensure that our model has more flex-
ibility in simulating a large number of small fires from a distribution with finite
mean and variance as well as a small number of larger fires from a distribution with
finite mean but infinite variance (Cohen & Xu, 2015). To improve model inter-
pretability and avoid post hoc evaluations of feature importance such as SHAP
(Hooker et al., 2021), a more robust alternative would be to build an interpretable
ML model from the bottom up as outlined in (Alvarez-Melis & Jaakkola, 2018).

» Vegetation: A major area of desired improvement for our model is the represen-
tation as well as the dynamic structure of vegetation predictors. This could be done
in several different ways. First, by including finer scale vegetation characteristics
through a combination of integrated data products, such as Effective Vegetation
Type (EVT) (Rollins, 2009) or Normalized Difference Vegetation Index (NDVTI)
(Didan, 2015), and outputs from physically parameterized models (Hansen et al.,
2022). These predictors would be helpful in informing the model about the type
and spatial distribution of different live and dead fuels. Second, for predictions
of future fire activity over longer time scales, it would be important to account
for the nonstationarity of the climate-vegetation relationship, a pivotal factor in
determining the spatially heterogeneous shifts in vegetation patterns (Higuera et
al., 2009; Bradstock, 2010; Hansen et al., 2018). We may already be seeing evi-
dence of this effect in our analysis: recent increases in aridity coupled with tran-
sitions in vegetation patterns could have precipitated a shift in the fire regimes
across the WUS and promoted larger and more severe fires in the past two decades.
Third, besides climate induced shifts, vegetation patterns are also affected by hu-
man and natural disturbances such as changes in land use (Klein Goldewijk & Ra-
mankutty, 2004), tree mortality (Williams et al., 2013), insect range expansions
as well as infestations (Pureswaran et al., 2018), and fire itself (Parks et al., 2018).
Importantly, multiple studies have shown that fire-induced fuel limitations are ex-
pected to slow, but not abate the continued heat- and drought-induced increases
in annual area burned across the WUS over the next few decades (Hurteau et al.,
2019; Abatzoglou, Battisti, et al., 2021). Thus, coupling the current stochastic ML
model framework with a dynamic model for a variety of vegetation types and dif-
ferent human intervention scenarios is a promising research direction.

« Other predictors: Several potentially relevant land-surface predictors were not con-
sidered here since their records are not available over the full duration of our study
period. For instance, recent work has highlighted the role of remotely sensed soil
moisture (Rigden et al., 2020) and the sensitivity of live fuel moisture content to
atmospheric aridity (Rao et al., 2022) in regulating wildfire ignitions and area burned
respectively. Reliable measurements over the WUS for both these predictors are
only available after 2015. Meanwhile, human influence on individual fire sizes could
be affected by synchronous fire activity over several regions. Abatzoglou, Juang,
et al. (2021) approximate this effect by concurrent fire danger days, a metric that
measures the strain on available resources for suppressing new ignitions as well
as containment of ongoing fires. We intend to explore the role of additional land-
surface and human action predictors in forthcoming analyses.

5 Conclusions

Disentangling the various climate, vegetation, and human drivers of wildfire fre-
quency and sizes in the western United States is critical for developing accurate seasonal
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as well as longer term forecasts of fire activity. In this paper, we introduced a novel stochas-
tic ML framework for estimating the parametric distributions of observed fire frequen-

cies and sizes in 12km x 12km grid cells observed on a monthly time scale. The para-
metric distributions were sampled using Monte Carlo simulations to obtain the monthly
and annual frequencies and area burned for several Ecoregions across the WUS. We im-
prove upon previous regression-based and ML approaches in several concrete ways; in
particular, our model: relies only on the spatiotemporal variability of predictors and not

on location or time based predictors (e.g., latitude or month), captures the nonlinear in-
teractions among different predictors at multiple spatial scales, and provides robust un-
certainty estimates for our results.

Our main results are as follows: a) the time series for both modeled frequencies and
area burned are in good statistical agreement with the observed data over monthly and
annual timescales at spatial scales from Ecoregions to the whole WUS; b) the modeled
area burned successfully accounts for the interannual variability and multidecadal trends
in the observed area burned in both forested and nonforested regions; ¢) for anomalous
extreme fire years such as 2020, the stochastic model is useful for estimating the upper
percentiles, 4.e. 951, 99*" . of the total annual area burned distribution; d) the cumu-
lative observed fire size distribution is best fit by a combined GPD model with finite mean
but infinite variance, which has important consequences for how resources are allocated
for fuel treatment and fire containment.

We used the SHAP technique to evaluate the predictor importance for the frequency
and size models at the Ecoregional, Divisional, and WUS scales. While VPD is the lead-
ing predictor at both smaller and larger scales, the order of subleading fire month pre-
dictors — precipitation total, mean daily maximum and minimum temperatures, mois-
ture in large diameter dead fuels — as well as the fraction of grassland cover, aboveground
biomass, and topography varies across Ecoregions, indicating that our model is able to
generalize well across spatially heterogeneous climate, vegetation, and human gradients.
Furthermore, we visualized the different functional relationships between predictor val-
ues and wildfire activity with potential interaction effects through partial dependence
plots for several important predictors. Besides fire month variables, we find that increased
fire frequencies in our model are driven by a set of antecedent predictors acting at two
distinct timescales across Forests, Deserts, and Plains: a seasonal (3-4 months) scale as-
sociated with snow or precipitation drought, and a cumulative longer term (1-2 years)
scale correlated with wetter conditions that promote fuel growth. Modeled fire sizes, on
the other hand, are mostly sensitive to seasonal scale antecedent conditions.

Future research directions will focus on expanding this model framework to include:
a stochastic model for human ignitions, nonstationary relationships between predictors
and fire activity, fire-fuel feedback over different climate and vegetation gradients, as well
as additional finer scale moisture and human action predictors.
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Figure S1. Observed monthly fire frequencies (blue) and monthly area burned (MAB) (red)

for each of the ecological Divisions: Forests (top panel), Deserts (middle), and Plains (botom).
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Figure S2. Mean SHAP values for the top 8 input predictors per Ecoregion of our ZIPD
frequency MDN. These include all the CA Ecoregions: Sierra Nevada, North, Central, and South

Coasts; Pacific NW Mountains; Columbia Plateau; and North, Middle, and Southern Rockies.
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As in Fig. S2, but for the remaining WUS Ecoregions: American (AM) and
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and IM Deserts; Northern Great and High Plains; Colorado (CO) Plateau; and Southwestern
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Figure S4. Complementary cumulative distribution function (CCDF) of the fire size MDN
for three different cases. Left: CCDFs of the unweighted GPD MDN simulations (green) are
plotted with those of observed (red) fire sizes (> 4km?) from 1984-2004 (dotted) and 2005-
2020 (dashed). Middle: CCDFs of the unweighted GPD MDN (green, dotted) and weighted
GPD (GPD-Ext) MDN simulations (green, dashed) with MDNs trained on data from 1984-2020
but plotted alongside the CCDFs of observed sizes from 1984-2004 and 2005-2020 respectively;
also shown are the CCDF's for observed sizes following the legend in the previous panel. Right:
CCDFs of the unweighted (green, dotted), weighted (green, dashed), and combined (green, solid)
GPD MDN simulations alongside the CCDF of observed (red, solid) sizes from 1984-2020; the

breakpoint for the combined GPD predictions is set after 2004.
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Figure S5. As in Fig. S4, but with a lognormal loss function for the MDN. Note: unlike the

GPD, the lognormal distribution does not require a threshold on the fire sizes.
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Figure S6. Cumulative observed (red) and modeled (teal) annual area burned (AAB) across
the western United States from 1984 to 2020 for different combinations of fire frequencies and
locations. The upper and lower panels show the AAB derived using modeled frequencies from
the ZIPD MDN for each Ecoregion along with fire sizes simulated from the combined GPD model
evaluated at observed and model fire locations respectively; whereas the middle panel shows the
AAB computed as above except with observed frequencies and model locations. The teal shaded
regions indicate 1o uncertainty intervals for the modeled area burned aggregated over the Monte
Carlo (MC) simulations of all constituent fires. The mean total area burned over the study period

as well as its 1o uncertainty interval are indicated at the top of each panel.
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Figure S7. Mean SHAP values for the top 8 input predictors per ecoregion of the GPD size
MDN. These include all the CA Ecoregions: Sierra Nevada, North, Central, and South Coasts;

Pacific NW Mountains; Columbia Plateau; and North, Middle, and Southern Rockies.
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Figure S8.  As in Fig. S7, but for the remaining WUS Ecoregions: American (AM) and
Intermountain (IM) Semideserts, Arizona/New Mexico (AZ/NM) Mountains; Chihuahuan (CH)
and IM Deserts; Northern Great and High Plains; Colorado (CO) Plateau; and Southwestern

Tablelands.
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Figure S9. Boxplots of modeled annual area burned (AAB) for two extreme fire years, 2017
and 2020, for the entire western United States (WUS) (teal) and three Divisions organized by
their primary vegetation types: Forests (green), Deserts (yellow), and Plains (gray). The lower
and upper whiskers of each boxplot indicate the 0.5 and 99.5'" percentile of the predicted
AAB distribution, whereas the horizontal black line represents its median value. Also shown for

reference are the observed AAB for both 2017 (red diamond) and 2020 (indigo traingle).
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Figure S10. SHapley Additive exPlanation (SHAP) analysis of the fire size MDN model
outputs for different sets of input predictors. Left column: SHAP summary plots with relative
humidity (RH) and average RH over 3 antecedent months (AvgRH,, ) predictors instead of
their VPD counterparts for the entire WUS (top panel) and Forest Division (bottom). Right
column: SHAP summary plots with both VPD and RH predictors as well as their antecedent
counterparts for the entire WUS (top panel) and Forest Division (bottom). Each colored point
along the z-axis represents an individual prediction with the color corresponding to high (yellow)

or low (indigo) values of the respective input predictor.
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