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Abstract

Neural networks (NN) have become an important tool for prediction tasks – both regression and classification – in environmental

science. Since many environmental-science problems involve life-or-death decisions and policy-making, it is crucial to provide

not only predictions but also an estimate of the uncertainty in the predictions. Until recently, very few tools were available to

provide uncertainty quantification (UQ) for NN predictions. However, in recent years the computer-science field has developed

numerous UQ approaches, and several research groups are exploring how to apply these approaches in environmental science. We

provide an accessible introduction to six of these UQ approaches, then focus on tools for the next step, namely to answer the

question: Once we obtain an uncertainty estimate (using any approach), how do we know whether it is good or bad? To

answer this question, we highlight four evaluation graphics and eight evaluation scores that are well suited for evaluating and

comparing uncertainty estimates (NN-based or otherwise) for environmental-science applications. We demonstrate the UQ

approaches and UQ-evaluation methods for two real-world problems: (1) estimating vertical profiles of atmospheric dewpoint

(a regression task) and (2) predicting convection over Taiwan based on Himawari-8 satellite imagery (a classification task). We

also provide Jupyter notebooks with Python code for implementing the UQ approaches and UQ-evaluation methods discussed

herein. This article provides the environmental-science community with the knowledge and tools to start incorporating the

large number of emerging UQ methods into their research.
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ABSTRACT: Neural networks (NN) have become an important tool for prediction tasks – both

regression and classification – in environmental science. Since many environmental-science prob-

lems involve life-or-death decisions and policy-making, it is crucial to provide not only predictions

but also an estimate of the uncertainty in the predictions. Until recently, very few tools were

available to provide uncertainty quantification (UQ) for NN predictions. However, in recent years

the computer-science field has developed numerous UQ approaches, and several research groups

are exploring how to apply these approaches in environmental science. We provide an accessible

introduction to six of these UQ approaches, then focus on tools for the next step, namely to answer

the question: Once we obtain an uncertainty estimate (using any approach), how do we know

whether it is good or bad? To answer this question, we highlight four evaluation graphics and

eight evaluation scores that are well suited for evaluating and comparing uncertainty estimates

(NN-based or otherwise) for environmental-science applications. We demonstrate the UQ ap-

proaches and UQ-evaluation methods for two real-world problems: (1) estimating vertical profiles

of atmospheric dewpoint (a regression task) and (2) predicting convection over Taiwan based on

Himawari-8 satellite imagery (a classification task). We also provide Jupyter notebooks with

Python code for implementing the UQ approaches and UQ-evaluation methods discussed herein.

This article provides the environmental-science community with the knowledge and tools to start

incorporating the large number of emerging UQ methods into their research.

SIGNIFICANCE STATEMENT: Neural networks are used for many environmental-science

applications, some involving life-or-death decision-making. In recent years new methods have

been developed to provide much-needed uncertainty estimates for NN predictions. We seek

to accelerate the adoption of these methods in the environmental-science community with an

accessible introduction to (1) methods for computing uncertainty estimates in NN predictions and

(2) methods for evaluating such estimates.

1. Introduction

Neural networks (NN), a type of machine learning (ML) model, have become widely used in

environmental science, including both regression and classification tasks. Many such tasks –

predicting ocean-wave heights, rapid intensification of hurricanes, formation of tornadoes, etc. –

are crucial for decision- and policy-making. In order for people to make such important decisions,
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ML models need to provide not only the predicted outcome, but also the uncertainty in the

prediction.

Because accurate and reliable weather forecasts are important to a wide range of communities,

the meteorology community long ago recognized the importance of probabilistic predictions.

Numerical weather prediction (NWP) models are often run in ensemble mode to produce multiple

forecasts; averaging over the ensemble often improves forecast quality, but the ensemble can also

be used to quantify forecast uncertainty. To calibrate the forecast uncertainty – e.g., to correct

biases in the ensemble spread – many statistical post-processing techniques have been developed

(see Vannitsem et al. 2021 for an overview). Most of these techniques are agnostic to the underlying

models and can therefore be trivially adapted to NN models rather than NWP models.

Until recently, very few tools existed to provide uncertainty quantification (UQ) for NN predic-

tions. However, in recent years the computer-science field has made rapid advancements in this

area. The current article aims to help the environmental-science community apply UQ techniques

for NNs and relate them to pre-existing techniques for post-processing NWP ensembles.

To achieve this, we first provide a background on what types of uncertainty can be estimated

by NNs for environmental-science applications (Section 2). Next, we provide an accessible

introduction to six UQ approaches (Section 3): parametric distributional prediction (PDP), non-

parametric distributional prediction (NPDP), ensemble prediction (EP), multi-model (MM),Monte

Carlo (MC) dropout, and Bayesian neural networks (BNN). In Section 4 we discuss tools for the

next step, namely answering the question: Once we obtain an uncertainty estimate (using any

approach), how we do evaluate the quality of this estimate? We highlight four evaluation graphics

and eight evaluation scores that are well suited for environmental-science applications:

• the attributes diagram, including the mean-squared-error skill score (MSESS);

• the spread-skill plot, including the spread-skill ratio (SSRAT) and spread-skill reliability

(SSREL);

• the discard test, including the monotonicity fraction (MF) and average discard improvement

(DI);

• the probability integral transform (PIT) histogram, including the calibration deviation (PITD);

• the continuous ranked probability score (CRPS); and
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• the ignorance score (IGN).

In Sections 5 and 6 we demonstrate the UQ approaches and UQ-evaluation methods for two

real-world problems: estimating vertical profiles of atmospheric dewpoint (a regression task) and

predicting convection over Taiwan based on satellite imagery (a classification task). The first

application builds UQ into the work of Stock (2021), while the second builds UQ into the work of

Lagerquist et al. (2021). Finally, in Section 7, we provide insights gained throughout this work on

both the UQ approaches and UQ-evaluation methods.

This article is accompanied by four Jupyter notebooks for implementing both the UQ approaches

and UQ-evaluation methods discussed (https://github.com/thunderhoser/cira_uq4ml).

For classification tasks, the MC dropout notebook (classification_mc_dropout.ipynb) im-

plements the MC-dropout method, and the NPDP notebook (classification_npdp.ipynb)

implements quantile regression with a special NN architecture that prevents quantile-crossing.

Both notebooks also implement the spread-skill plot and discard test. For regression tasks, there

are two notebooks, both using six sample datasets and three UQ approaches (PDP, EP, and MC

dropout). The first (regression_multi_datasets.ipynb) allows the user to select one UQ

approach, then compares the results across the datasets, using all evaluation tools (graphics and

scores) listed above. The second (regression_multi_model.ipynb) allows the user to select a

dataset, then compares the results across three UQ approaches using all evaluation tools.

2. Background

a. Which uncertainties are we trying to capture?

The motivation for quantifying uncertainty in ML is to provide information on how much to

trust the model’s prediction. To identify what types of uncertainty we can expect an ML model to

provide, first we must look at the model structure, sources of uncertainty, and pieces of information

the model can use to quantify uncertainty (Fig. 1). In Fig. 1 the training data consist of pairs (𝑥,

𝑦true); 𝑥 is the input vector, containing predictors (or “features”), and 𝑦true is the desired output
(or “target value” or “label” or “ground truth”). During training, the ML model learns to generate

better and better predictions by minimizing a loss function, which measures the error between the

target values 𝑦true and predicted values 𝑦pred. At inference time, a deterministicMLmodel produces

one prediction per data sample 𝑥. This approach works in an idealized setting, where (1) the model

4



can perfectly learn the conditional distribution 𝑦true | 𝑥 during training; (2) this relationship does
not change between the training and inference data; and (3) the predictor distribution 𝑥 does not

change between the training and inference data.

However, the idealized setting rarely occurs, for several reasons. First, datasets include numerous

sources of uncertainty, leading to many 𝑦true possibilities for each predictor vector 𝑥; second,

different model structures may compromise model performance; third, the predictor distribution

at inference time may contain out-of-regime samples, forcing the model to extrapolate outside the

range of the training data; fourth, the relationship 𝑦true | 𝑥 might change between the training and
inference data.

Ideally, a model’s uncertainty estimates would account for contributions from all four error

sources. However, only two pieces of information are available to derive uncertainty estimates: the

data and the ML model. Thus, we task the ML model with providing an uncertainty estimate that

accounts for two error sources (Fig. 2). The first is internal variability in the data, resulting from

stochasticity in physical processes. This manifests as spread in the target value 𝑦true for a given

predictor vector 𝑥 (middle purple container in Fig. 1; left side of Fig. 2). The model can learn this

spread and quantify it for each data sample. The second source of uncertainty is out-of-regime

error; the model should produce higher uncertainty estimates for data samples x outside the range

of the training data (rightmost purple container in Fig. 1; right side of Fig. 2).

Although we want the ML model to simultaneously quantify uncertainties stemming from all

error sources, we emphasize that the first step is to reduce these errors as much as possible. This

can be done by (1) collecting data from all relevant regimes, to minimize the occurrence of out-of-

regime data samples at inference time; (2) carefully processing the data, including quality control;

and (3) optimizing the model structure to achieve the best performance possible.

b. Aleatory vs. epistemic uncertainty

In environmental science, uncertainty sources are often divided into four categories (Beucler et al.

2022): (1) stochastic uncertainty, due to internal variability such as randomness arising from the

chaotic nature of fluid flows; (2) observational uncertainty, due to measurement and representation

errors; (3) structural uncertainty, due to incorrect model structure; and (4) parametric uncertainty,

due to incorrect model parameters.
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Input Features
(x)

ML-Aleatory Uncertainty
Sources of uncertainty inherent in data 
include:
• Internal variability of physical process               

(e.g., chaotic nature of processes)
• Observation error (if data is observed)          

or Physical Model error (if data is from a 
physical model)
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• Out-of-regime error (e.g., creating 

predictions outside of training data 
regime; limitations to the dataset)

ML-Epistemic 
Uncertainty 

Estimate
Bayesian 

models only
Probabilistic 
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Derive

Calculate

Compare

Contributes

Contributes

Dataset
(x, ytrue)  

training & testing

Predict

ML
Model

(Regression or 
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Total 
Uncertainty 

Estimate

Combine

Training

Distribution Summary
(Parametric or Non-Parametric) 

or Ensemble Members

ML Output
(ypred)

Figure 1: Information flow for an ML model with UQ (i.e., one that provides both a central
prediction and uncertainty information). The uncertainty information may take one of three forms:
an ensemble of predictions (considered samples from the 𝑦pred distribution), a parametric summary
of the 𝑦pred distribution (e.g., the mean and standard deviation, assuming a normal distribution),
or a non-parametric summary of the 𝑦pred distribution (e.g., a set of quantiles). Blue containers
represent data; the red box represents the ML model; and purple containers represent model
output. To indicate how much users should trust the ML model’s prediction, UQ approaches seek
to estimate the total uncertainty present for each data sample.

Other classifications distinguish only two types of uncertainty – aleatory and epistemic – but the

line dividing the two types differs by discipline. Fig. 3 illustrates this difference for two disciplines:

mathematics versus ML. In the original math context, aleatory and epistemic uncertainty are

defined as follows:

• Aleatory comes from the Latin word alea, which refers to a game of dice. Aleatory uncertainty

in mathematics refers to the stochastic component of uncertainty that stems from randomness

in the data-generation process, such as the chaotic nature of fluid flows in the atmosphere

or random effects in an observing system. This component is also known as stochastic or
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Classic example from ML textbooks to explain 
aleatory vs. epistemic uncertainty

2

Internal 
variability
(Aleatory)

Out-of-regime 
error

(Epistemic)

Internal variability (ex. of aleatory uncertainty):
Given x, there is no unique value for y, because of 
internal variability of observed system.  
→ Even the best model cannot get it “exactly right”.

Out-of-regime error (ex. of epistemic uncertainty):
The model is trying to make predictions in an area 
where few training samples were provided 
→ Large errors (out-of-regime error)

Blue dots = training samples
Red line: model prediction

many training samples few training samples

Figure 2: Illustration of uncertainty due to internal variability vs. out-of-regime error, based on
synthetic data. The training dataset is shown as blue dots and has two issues: varying randomness
in 𝑦 (for all 𝑥) and varying sampling rate in 𝑥 (for 𝑥 > 2). Predictions from a deterministic NN are
shown in red. Similar illustrations are often shown in ML to illustrate the concepts of aleatory vs.
epistemic uncertainty. Note that this is a highly idealized example, as it neglects to illustrate other
types of aleatory and epistemic uncertainty. For this idealized example the definitions of aleatory
and epistemic uncertainty from mathematics and ML align.

irreducible uncertainty, since no deterministic model can anticipate the effect of random

processes.

• Epistemic comes from the Greek word epistēmē, which means knowledge. Epistemic uncer-

tainty in mathematics denotes all uncertainty that is not due to random processes, i.e., all

uncertainty from our lack of knowledge about the observed system. Since better knowledge –

including improvements to the model and observing system – can reduce this uncertainty, it

is also known as reducible uncertainty.

In contrast, ML approaches typically assume that (1) only the data are provided, with no information

on the data-generation process; (2) the data cannot be changed. Based on this limitation, the

ML literature draws the line between aleatory and epistemic uncertainty based on whether the

uncertainty originates from the data, regardless of whether it is due to stochastic processes or lack

of knowledge (Fig. 3). This difference between definitions can lead to great confusion. Henceforth,

we use the terms ML-aleatory and ML-epistemic to refer to the ML version of those definitions.
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3

Stochastic uncertainty 
in data

The aleatory-epistemic divide

Everything else

Math definitions

Aleatory (math)

Epistemic (math)

All uncertainty in data
(stochastic or systemic)

Everything else

Aleatory (ML)

Epistemic (ML)

ML definitions

Dividing lines are different in math vs. ML, but concepts are called the same!
Can get very confusing.

alea:  Latin word, referring to game of dice (random).
epistēmē:  Greek word, meaning knowledge (model).

Only information available in ML context is 
what arises from the data – so that 
becomes the dividing line.

Figure 3: The aleatory/epistemic divide differs among disciplines (Bevan 2022; Hüllermeier
and Waegeman 2021). In the original math definition, the dividing line is whether the origin
of uncertainty is stochastic. In the ML definition, the dividing line is whether the origin of
uncertainty is in the given dataset. This is because in many ML applications the data are the only
information available – i.e., we do not know about the data-generation process and have no ability
to improve the dataset. However, environmental science contains many examples where neither
of these conditions is true. The difference between the math and ML definitions can lead to great
confusion.

To make matters worse, the ML literature sometimes uses alternate terms – stochastic or irre-

ducible uncertainty – for the ML-aleatory definition, which is truly misleading. Hüllermeier and

Waegeman (2021) nicely illustrate the consequences of using the term irreducible for ML-aleatory

uncertainty: “This characterization, while evident at first sight, may appear somewhat blurry

upon closer inspection. What does ‘reducible’ actually mean?” The impact of changing only the

ML model is obvious: a better ML model reduces epistemic uncertainty while leaving aleatory

uncertainty unchanged, according to both the math and ML definitions. However, Hüllermeier

and Waegeman (2021) point out that a change of the dataset can have less obvious consequences.

Adding more predictors to the dataset1 – without increasing sample size – is likely to decrease

ML-aleatory uncertainty by increasing information about the system’s state, but at the same time

increasing ML-epistemic uncertainty, since the ML model might not be able to represent more

complex relationships without additional data samples. In this scenario, the supposedly irreducible

(ML-aleatory) uncertainty was reduced. How can this be? What appears to be a contradiction is

really just a demonstration of why the terms irreducible and stochastic should be avoided as aliases

for the ML-aleatory component. Finally, note that while the mathematical definition assigns any

uncertainty uniquely to either the aleatory or epistemic type for a given system (at least in theory),

1Assuming that the new predictors are not redundant with the pre-existing predictors, i.e., that the new predictors contain new information.
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the ML definition is context-dependent. As demonstrated above, ML-aleatory uncertainty can

become ML-epistemic, and vice-versa, by a change of dataset.

Why do we care about distinguishing ML-aleatory vs. ML-epistemic uncertainty? Knowing

how much of the total uncertainty is ML-aleatory vs. ML-epistemic can provide ML-developers

with valuable information on how to reduce uncertainty (Ortiz et al. 2022). If ML-aleatory

uncertainty is high, we should focus on making the dataset more information-dense, e.g., add

predictors or improve data quality. IfML-aleatory uncertainty is low andML-epistemic uncertainty

is high, we should focus on improving the model. This can be done by changing the model

structure or adding samples to the dataset; the latter reduces out-of-regime errors. Furthermore,

understanding the difference between ML-aleatory and ML-epistemic uncertainty is crucial for

understanding the limitations of UQ approaches, as many approaches cannot captureML-epistemic

uncertainty. As a general rule, non-Bayesian (max-likelihood) approaches can capture only ML-

aleatory uncertainty, while Bayesian approaches, such as MC dropout and BNNs, can capture both

types (Dürr et al. 2020). Although Bayesian approaches can capture both types of uncertainty, it is

unclear how well they do so in practice. This is a topic of active research – one more reason why

it is crucial for environmental scientists to use/develop good practices for evaluating uncertainty

estimates.

How can we disentangle ML-aleatory and ML-epistemic uncertainty? Non-Bayesian meth-

ods can capture only ML-aleatory uncertainty, negating this issue. However, Bayesian methods

can capture both ML-aleatory and ML-epistemic uncertainty. Ortiz et al. (2022) used a method to

separate total-uncertainty estimates from a BNN into ML-aleatory andML-epistemic components,

demonstrating their method for precipitation-type retrieval from satellite data. We discuss Ortiz

et al. (2022) further in Section 3f.

c. Representing and communicating uncertainty

The estimated uncertainty in the 𝑦true distribution can be represented in three different ways: the

parameters of a canonical probability distribution, such as the normal distribution; non-parametric

summary statistics (e.g., histogram bin frequencies or quantiles) of the 𝑦true distribution; or an

explicit ensemble, containing many samples from the 𝑦true distribution. In the rest of this article,
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we refer to the estimated 𝑦true distribution – regardless of which representation is used – as the

𝑦pred distribution or predicted distribution.

It is possible to convert between different representations of the 𝑦pred distribution. An ensemble

can be converted to non-parametric summary statistics via simple equations, or to parameters of a

canonical distribution via maximum-likelihood estimation. Parameters of a canonical distribution

can be converted to an ensemble via sampling2, or to non-parametric summary statistics via

closed-form equations3. It is more difficult to convert non-parametric summary statistics to other

representations, and in this article we convert non-parametric summary statistics only to parameters

of a canonical distribution, not to ensembles. Specifically, we convert quantiles to the mean and

standard deviation of a normal distribution, using Eqs. 14-15 in Wan et al. (2014).

For visualization purposes, two common measures of uncertainty are the standard deviation

and 95% confidence interval. For highly non-normal distributions, showing additional measures

– such as the skewness, a set of quantiles, or a subset of ensemble members – might also be

useful. The best ways to communicate uncertainty with different users, such as forecasters and

emergency-managers, is currently a topic of active research (Rogers et al. 2023; Serr et al. 2023;

Demuth et al. 2023).

3. Approaches for uncertainty quantification (UQ) in neural networks

We describe six popular UQ approaches: parametric distributional prediction (PDP), non-

parametric distributional prediction (NPDP), ensemble prediction (EP), multi-model (MM),Monte

Carlo (MC) dropout, and Bayesian neural networks (BNN). All six approaches can be used for

both regression and classification. Although more UQ approaches exist, most environmental-

science applications use some form or combination of the six listed. Applying these to real-world

environmental-science applications, Section 5 demonstrates PDP, EP, andMC dropout, and Section

6 demonstrates NPDP and MC dropout.

The first three approaches are non-Bayesian and are summarized in Fig. 4. These approaches

have been used extensively by the meteorology community, although mostly in a non-ML setting,

to post-process NWP ensembles. PDP assumes that the 𝑦true distribution matches a canonical

probability distributionD and estimates the parameters ofD; NPDP estimates summary statistics

2For the normal distribution, see numpy.random.normal in Python.
3For the normal distribution, scipy.stats.norm in Python.
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Figure 4: Summary schematics and key ideas for non-Bayesian UQ approaches. These
approaches have been used extensively by the meteorology community, although mostly in a

non-ML setting, to post-process NWP ensembles.

(e.g., the histogram or a set of quantiles) of the 𝑦true distribution without assuming the form of

the distribution; and EP generates many predictions to approximate the 𝑦true distribution. Because
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these approaches are non-Bayesian and single-model, they can capture only ML-aleatory, not

ML-epistemic, uncertainty.

The multi-model approach (also non-Bayesian and summarized in Fig. 4) has been used to post-

process NWP ensembles but can be used to post-process NN ensembles as well. If the individual

NNs are trained with a deterministic loss function, the multi-model ensemble cannot capture ML-

aleatory uncertainty. However, since the NNs are trained independently, the ensemble may capture

ML-epistemic uncertainty4. The multi-model approach can be used in tandem with any of the

three UQ approaches, allowing both types of uncertainty to be captured.
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Figure 5: Summary schematics and key ideas for Bayesian UQ approaches, developed by the
computer-science community specifically for NNs.

The last two approaches are Bayesian techniques developed by the computer-science community

specifically for NNs. Both of these approaches – MC dropout and BNNs – use the NN itself to

estimate ML-epistemic uncertainty, specifically by randomly selecting which model parameters

(e.g., neuron weights) to use at inference time. When the NN is trained with a deterministic

4For an out-of-regime data sample, because the NNs do not have enough training data to learn the true relationship, they are more sensitive to
randomly initialized weights. Thus, for an out-of-regime sample, the NNs should produce very different predictions, leading to a larger spread for
out-of-regime samples than for in-regime samples.
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loss function, Bayesian approaches only capture ML-epistemic uncertainty; however, Bayesian

approaches can easily be modified to incorporate any of the first three approaches, allowing them

to capture both types of uncertainty.

a. Parametric distributional prediction (PDP)

PDP involves estimating the parameters of a canonical distribution, chosen a priori by the user.

PDP can be used for both regression and classification, as long as the chosen distribution makes

sense for the problem type5. A popular choice is the normal distribution, which has two parameters:

the mean and standard deviation. In this case the NN estimates the mean and standard deviation

for each data sample, with the standard deviation representing the NN’s uncertainty.

There are two popular optimization methods for PDP. One is the maximum-likelihood approach,

where parameters are chosen to maximize the probability of the observed data given the fitted

distribution (Van Schaeybroeck and Vannitsem 2015; Bremnes 2020; Veldkamp et al. 2021; Schulz

and Lerch 2022). As an example of this method, Barnes et al. (2021) used NNs with the sinh-

arcsinh (SHASH) distribution for a problem with synthetic climate data. They adjusted the four

distribution parameters – location, scale, skewness, and tail weight – to minimize the negative-

log-likelihood loss function. Another method is to choose parameters that minimize distributional

differences, most often using a closed form of the continuous ranked probability score (CRPS;

see Section 4e). Some examples are Van Schaeybroeck and Vannitsem (2015); Rasp and Lerch

(2018); Baran and Baran (2021); Ghazvinian et al. (2021); Chapman et al. (2022); Schulz and

Lerch (2022). Studies comparing the two methods mostly favor the CRPS over the max-likelihood

approach (Van Schaeybroeck and Vannitsem 2015; Table 5 of Veldkamp et al. 2021; Table 2 of

Schulz and Lerch 2022). For Python code implementing PDP, see the regression notebooks.

Fig. 6 shows sample results for PDP with NNs, one using the normal distribution and one using

the SHASH distribution. The synthetic dataset contains one predictor 𝑥 and one target 𝑦, with

ample asymmetry and heteroskedasticity (Fig. 6a). Both NNs skillfully predict the mean, small

uncertainty for 𝑥-values with small spread, and large uncertainty for 𝑥-values with large spread

(Figs. 6b-c). For 𝑥 = 1, where the marginal distribution (𝑦 given 𝑥 = 1) is nearly normal, the two

NNs have similar performance (Fig. 6d). For 𝑥 = 3, where the marginal distribution is flatter than

5For example, the normal distribution should not be used for a classification problem, because it would allow class probabilities outside the
range [0, 1].
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A) B)
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E) F)

D)

Figure 6: Results for two NNs trained with different probability distributions. One NN uses a
normal distribution, and one uses a SHASH distribution.

[a] Scatterplot of the data. [b] Observations and predictions from normal NN. [c] Observations
and predictions from SHASH NN. [d] Marginal distribution of observations and predictions from

both NNs for 𝑥 = 1. [e] Same but for 𝑥 = 3. [f] Same but for 𝑥 = 7.

normal but still nearly symmetric, the two NNs again have similar performance (Fig. 6e). However,

for 𝑥 = 7, where the marginal distribution is highly skewed, the SHASH NN clearly outperforms

the normal NN (Fig. 6f). This result highlights the advantage of a more flexible distribution. Figs.

6b-c also highlight the advantage of a more flexible distribution around 𝑥 = 7, where the SHASH
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NN captures the asymmetry and large spread better than the normal NN. We note that the purpose

of this comparison is not to suggest that SHASH is the best distribution for all applications or

even a particular application; rather, our purpose is to highlight the advantages of a more flexible

distribution, such as SHASH, over the normal distribution.

b. Non-parametric distributional prediction (NPDP)

Two common NPDP methods are quantized softmax (QS) and quantile regression (QR). QS

is used in several atmospheric-science applications (Wimmers et al. 2019; Scheuerer et al. 2020;

Veldkamp et al. 2021) and involves turning a regression problem into a classification problem via

the following procedure:

1. Quantize the target variable 𝑦 into 𝐾 mutually exclusive and collectively exhaustive (MECE)

bins. For example, if 𝑦 is radar reflectivity in dBZ, the bins could be < 0; [0,1); [1,2); . . .;
[74,75); and ≥ 75.

2. Each bin is considered one class, and the NN performs classification, using the softmax

activation function. Softmax (Section 6.2.2.3 of Goodfellow et al. 2016) ensures that the NN’s

𝐾 confidence scores all range from [0,1] and sum to 1.0, allowing them to be interpreted as
probabilities of the MECE classes.

QR involves directly predicting several quantiles of a probability distribution; it can be used

for both regression and classification. QR has recently gained wide popularity for NNs (Bremnes

2020; Yu et al. 2020; Schulz and Lerch 2022). The “trick” is to train the NN with the quantile loss

function:

L =


𝑞 |𝑦true− 𝑦𝑞pred | , if 𝑦true > 𝑦

𝑞

pred;

(1− 𝑞) |𝑦true− 𝑦𝑞pred | , if 𝑦true ≤ 𝑦𝑞pred.
(1)

𝑞 ∈ [0,1] is the desired quantile level, and 𝑦𝑞pred is the estimated value at quantile level 𝑞. Large
values of 𝑞 penalize underprediction (𝑦𝑞pred < 𝑦true) more than overprediction (𝑦

𝑞

pred > 𝑦true), en-

couraging the model to output large 𝑦𝑞pred. Conversely, small values of 𝑞 encourage the model to

output small 𝑦𝑞pred.

To estimate multiple quantiles, a common approach is to train a separate NN for each quantile.

However, because the different NNs are trained independently, this approach does not prevent
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quantile-crossing, where 𝑦𝑞pred decreases with 𝑞 (e.g., the 25th-percentile rainfall prediction is 30

mm but the 75th-percentile prediction is 20 mm). Two approaches have been developed to prevent

quantile-crossing with NNs. Bremnes (2020) averaged the predictions for each quantile level

over 10 NNs, each trained with different random initializations and thus converging to different

solutions. Without model-averaging, quantile-crossing occurred for 0.22% of cases; with model-

averaging, quantile-crossing never occurred in their dataset. However, the method of Bremnes

(2020) is not guaranteed to prevent crossing. Schulz and Lerch (2022) used an NN to predict

Bernstein polynomials, which were transformed to quantiles in a post-processing step. They noted

that if the Bernstein coefficients do not cross – i.e., are monotonically non-decreasing with 𝑞 –

then the 𝑦𝑞pred also do not cross. Thus, Schulz and Lerch (2022) trained the NN to predict the

increment between Bernstein coefficients for each pair of consecutive 𝑞-values, using the softplus

activation function to ensure that each increment is non-negative. We note that quantile-regression

forests (Meinshausen and Ridgeway 2006) prevent quantile-crossing by default, but the current

work focuses on NNs instead of random forests.

Our solution is similar to Schulz and Lerch (2022), except that we encode all logic directly in

the NN architecture. Thus, our NN outputs are already quantile-based estimates, with no need for

post-processing. To satisfy the monotonicity constraint – namely, that 𝑦𝑞𝑖pred ≥ 𝑦
𝑞𝑖−1
pred for quantile

levels 𝑞𝑖 > 𝑞𝑖−1 – we express 𝑦
𝑞𝑖
pred as the sum of 𝑦

𝑞𝑖−1
pred and a non-negative term. Specifically, we

implement the following equation:

𝑦
𝑞𝑖
pred = 𝑦

𝑞𝑖−1
pred +ReLU(Δ𝑦

𝑞𝑖
pred), (2)

where ReLU is the rectified linear unit (Nair and Hinton 2010), defined as ReLU(𝑤) =max(0,𝑤).
To implement Eq. 2 inside the NN, we allow the NN to estimate Δ𝑦𝑞𝑖pred freely, use a ReLU layer

to make this increment non-negative, then use an Add layer to achieve the addition on the right-

hand side. For a schematic representation of this procedure, see Fig. 17b and the accompanying

discussion in Section 6a. For Python code, see the NPDP notebook for classification.

c. Ensemble prediction

In this approach, a single NN is trained to produce an ensemble that captures the spread in 𝑦true.

Each output neuron corresponds to one ensemble member. To encourage appropriate spread in
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the ensemble, the NN must be trained with a custom loss function that minimizes distributional

differences (i.e., differences between the 𝑦true and 𝑦pred distributions). A common loss function for

this approach is the CRPS (Section 4e). For Python code that implements EP with the CRPS loss,

see the regression notebooks.

d. Multi-model approach

The multi-model approach involves training several NNs, each with the same data and structure

but a different initialization – i.e., set of random initial weights. Each NN converges to a different

solution – i.e., set of final trained weights – yielding a different prediction for the same data

sample. The ensemble size is the number of NNs.

Although quite popular in environmental science (e.g., Doblas-Reyes et al. 2005; DelSole et al.

2013; Beck et al. 2016), the multi-model approach has two major disadvantages. First, because

the NNs are trained independently and not optimized to produce good uncertainty estimates, they

often perform poorly. Second, the multi-model approach is computationally expensive, because

several NNs, instead of just one, must be trained and then loaded at inference time. We note that

any other UQ method can be combined with the multi-model approach – e.g., QR (Bremnes 2020)

or PDP (Rasp and Lerch 2018) – often leading to better results.

e. Monte Carlo (MC) dropout

Dropout regularization (or just “dropout”) was invented to prevent overfitting in NNs (Hinton

et al. 2012). During each forward pass through the NN, a random subset of neurons is dropped

out, leaving the remaining neurons to represent useful features of the predictor data. Because

the remaining neurons must still be able to represent predictor features adequately, dropout forces

all neurons to learn more independently of each other, creating a pseudo-ensemble. In common

practice, dropout is used only during training; at inference time all neurons are used, making the

NN deterministic. However, dropout can also be used at inference time, making the NN stochastic

and producing a predicted distribution by running the NNmany times, which is called MC dropout

(Gal and Ghahramani 2016).
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The main advantage of MC dropout is ease of implementation. Keras has a pre-defined Dropout

layer6, and passing the argument training=True during model construction ensures that dropout

will be used at inference time, as shown in theMC and regression notebooks. However, MC dropout

has three major disadvantages. First, sampling (i.e., running the NNmany times in inference mode)

is computationally expensive and the correct hyperparameters (which dropout rate to use in each

layer) are unclear. Second, although MC dropout captures out-of-regime uncertainty (a type of

ML-epistemic uncertainty) well, it does not capture ML-aleatory uncertainty well (Bihlo 2021;

Klotz et al. 2021; Garg et al. 2022). However, MC dropout can be combined with post-processing

methods to provide more holistic uncertainty estimates (Sato et al. 2021; Yagli et al. 2022). Third,

MC dropout often performs poorly. This is becauseMC dropout performs UQ in a post hocmanner,

using a regularization method designed to be turned off at inference time. Thus, one hopes that

the model will produce good uncertainty estimates, without directly optimizing it to do so. In fact,

we are unaware of an atmospheric-science application where MC dropout performs better than

another UQ method. However, due to its ease of implementation, MC dropout is still popular and

can easily be used as a baseline to compare against other UQ methods.

MC dropout can be used simultaneously with any of the other UQ approaches, allowing the

model to capture both ML-epistemic and ML-aleatory uncertainty. To achieve this, simply add

dropout to the desired layers in the original NN (the one that implements the second UQ approach),

passing the argument training=True to ensure that dropout will be used at inference time.

f. Bayesian neural networks (BNN)

BNNs are gaining popularity as a UQ approach, because they can capture both ML-aleatory

and ML-epistemic uncertainty; however, they are conceptually and computationally complex.

Although MC dropout is also a Bayesian method (Gal and Ghahramani 2016), BNNs are more

flexible and may provide more robust uncertainty estimates (Salama 2021; Jospin et al. 2022).

BNNs require both a functional model (a traditional NN) and a stochastic model; during training,

they use Bayesian inference to sample from the stochastic model. A traditional NN learns one

value for each model parameter, but a BNN learns a full distribution for each model parameter,

determined by fitting a canonical distribution such as the normal. When trainedwith a deterministic

6Other NN libraries, such as PyTorch, also have a Dropout layer. However, we have not experimented with dropout at inference time in these
libraries.
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loss function, BNNs capture only ML-epistemic uncertainty, like the MC-dropout approach used

in this work. However, also like MC dropout, BNNs can be combined with PDP, NPDP, or EP to

capture ML-aleatory uncertainty as well. See Fig. 5b.

For a detailed tutorial on BNNs, see Jospin et al. (2022). In the atmospheric-science literature,

Orescanin et al. (2021) andOrtiz et al. (2022) usedBNNs to classify precipitation type from satellite

data. Orescanin et al. (2021) covers a more basic implementation of BNNs; Ortiz et al. (2022)

expands on the first work by combining the BNN with PDP, allowing it to capture ML-aleatory

uncertainty, and introducing a method to separate the BNN’s total-uncertainty estimate into ML-

aleatory and ML-epistemic components. They make 25 predictions per data sample – each with a

different set of NN parameters, sampled from the fitted distribution of weights for each neuron –

yielding a 25-member ensemble. Ortiz et al. (2022) show that (1) BNNs can provide skillful mean

predictions and uncertainty estimates; (2) decomposing the uncertainty estimates allows users to

make informed decisions, not only on how to best use the model’s predictions, but also on how

to improve the whole ML pipeline, from data-collection and -processing to model-training and

hyperparameter-tuning.

Although BNNs can be powerful tools for UQ, their practical utility is still being investigated.

BNNs have more model parameters than traditional NNs – K weights per neuron for aK-parameter

canonical distribution, rather than one weight per neuron. Also, training a BNN involves Bayesian

inference, which is computationally expensive and often fails due to memory limitations (Sato et al.

2021).

4. Methods for evaluating uncertainty estimates

This section discusses graphics and scoring metrics that are useful for evaluating uncertainty

estimates. The graphics allow for deeper insight than scoring metrics (single-number summaries),

while the scores allow for easy comparison of different methods/models. One of the evaluation

graphics presented – the attributes diagram – pertains to the central (mean) prediction, while

the others pertain to uncertainty estimates. We include the attributes diagram because, even if

uncertainty is the main focus, evaluating the main predictions is important as well. If the mean

predictions are poor, then (a) the uncertainty estimates are likely to be poor as well; (b) even if the
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uncertainty estimates are skillful, they are of little use. All methods discussed in this section are

summarized in Table 1.

All evaluation methods require summary statistics from the 𝑦pred distribution: the mean, standard

deviation, cumulative distribution function (CDF) at one 𝑦true value, or probability distribution

function (PDF) at one 𝑦true value. As discussed in Section 2c, the mean and standard deviation can

easily be obtained from any 𝑦pred distribution, regardless of how it is represented. Meanwhile, the

CDF can easily be obtained from parameters of a canonical probability distribution7 or from an

ensemble8. The CDF can also be obtained from non-parametric summary statistics like quantiles,

as the quantile function is the inverse CDF. Lastly, the PDF can be easily obtained from the CDF

via differentiation.

We demonstrate all evaluation methods on a regression task with a synthetic dataset (Fig. 6a),

using four UQ methods that cover three UQ approaches (PDP, EP, and MC dropout). For PDP,

we use two different canonical distributions, normal and SHASH; for EP, we use the CRPS loss

function (see Section 4e for details); and for MC dropout, we use the MSE loss function. Since we

use a deterministic loss function, we do not expect MC dropout to captureML-aleatory uncertainty.

We use the same synthetic dataset to illustrate all evaluation tools except the CRPS score (Fig. 12),

where we use a dataset with a bimodal distribution to illustrate the advantages of the EP-CRPS

method. All eight metrics for all four UQ methods are summarized at the end of this section in

Table 2, and these results can be reproduced in the the regression notebook for model comparison.

7For the normal distribution, see scipy.stats.norm.cdf in Python.
8See statsmodels.distributions.empirical_distribution.ECDF in Python.
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Table 1: Evaluation methods for the mean prediction (attributes diagram) and uncertainty
estimates (all others). A check mark under “Class?” indicates whether the evaluation method can
be used for classification models, and “Reg?” indicates whether it can be used for regression
models. Evaluation graphics are in bold; evaluation scores are in italics. All methods are
demonstrated in the regression notebooks; if demonstrated in additional notebooks, these are

included in square brackets.

Method Class? Reg? What it tells us
Attributes
diagram

✓ ✓ Class: conditional bias (i.e., as a function of predicted
event probability), BSS
Reg: conditional bias, MSESS
Ideal plot follows the 1-to-1 line (no conditional bias).

Brier skill score
(BSS)

✓ Brier-score improvement over climatology. BSS > 0
means improvement; BSS = 1 means perfect model.

MSE skill score
(MSESS)

✓ See above, replacing “Brier score” with “MSE”.

Spread-skill plot ✓ ✓ RMSE ofmean prediction as a function of 𝑦pred spread
(i.e., standard deviation). Ideal plot follows the 1-to-1
line (spread = RMSE). [classification notebooks]

SS ratio
(SSRAT)

✓ ✓ Spread
RMSE averaged over dataset. Ideal value = 1.

SS reliability
(SSREL)

✓ ✓ Weighted distance between spread-skill plot and 1-to-
1 line. Ideal value = 0.

Discard test ✓ ✓ Model error vs. discard fraction. Error should de-
crease whenever discard fraction is increased. [classi-
fication notebooks]

Monotonicity
fraction (MF)

✓ ✓ How often error decreases when discard fraction is
increased. Ideal value = 1.

Discard
improvement (DI)

✓ ✓ How much error decreases on average when discard
fraction is increased. Higher values are better.

PIT histogram ✓ Distribution of PIT values. Ideal histogram is flat,
indicating a uniform distribution.

PITD ✓ PIT calibration-deviation score. Mean difference be-
tween actual bin frequency and expected bin frequency
for uniform histogram. Ideal value = 0.

CRPS ✓ ✓ Mathematically: area between predicted and observed
CDFs. Conceptually: how well 𝑦pred distribution cap-
tures 𝑦true spread. Ideal value = 0.

Ignorance
score (IGN)

✓ ✓ How much 𝑦pred distribution is concentrated in the
correct areas. Rewards narrow 𝑦pred distribution con-
taining the observation. Ideal value = 0.
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a. The attributes diagram
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Figure 7: [a] Attributes diagram for classification. The {diagonal, horizontal, vertical} grey
dashed line is the {1-to-1, no-resolution, climatology} line; the blue-shaded polygon is the

positive-skill area; and the green line is the NN’s reliability curve. Points {below, above, on} the
1-to-1 line correspond to probabilities where the NN is {overconfident, underconfident, perfectly
calibrated}. The inset histogram shows the full distribution of 𝑦pred, the NN’s mean predicted
probability. [b] Attributes diagram for regression. Reliability curves are shown for four NNs; the
MSESS for each NN is shown in the legend. The inset histogram at the top-left shows the full
distribution of 𝑦true, and the inset histogram at the bottom-right shows the full distribution of 𝑦pred;
for a perfect NN the two histograms would match. All other elements of panel b are as in panel a.

1) For classification tasks

The attributes diagram (Fig. 7a) is a reliability curve with additional elements. The reliability

curve plots model-predicted event probability9 on the 𝑥-axis versus conditional observed event

frequency on the 𝑦-axis10. Each point corresponds to one bin of event probabilities. For example,

suppose that the event is tornado occurrence; the reliability curve uses 10 probability bins, equally

spaced from 0.0 to 1.0; and one point on the curve is (0.15,0.4). Hence, in cases where the model
predicts a tornado probability between 10% and 20%, a tornado actually occurs 40% of the time.

9When ML models are used for classification, by default they produce confidence scores ranging from [0, 1], which are not true probabilities.
However, in this paper we adopt common parlance and refer to confidence scores as probabilities.

10The reliability curve uses only the central prediction – i.e., the 𝑥-coordinate is the mean of the predicted distribution, not a measure of
uncertainty. However, UQ studies commonly employ the reliability curve to evaluate the central prediction (e.g., Delle Monache et al. 2013; Jospin
et al. 2022; Chapman et al. 2022), so we include it in this paper.
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The reliability curve is used to identify conditional model bias, i.e., bias as a function of the event

probability. Labels in Fig. 7a show how to identify conditional model bias from the reliability

curve – i.e., for which event probabilities the model has positive bias (overconfident), negative bias

(underconfident), or zero bias.

The full attributes diagram is a reliability curve with four additional elements: the 1-to-1 line,

no-resolution line, climatology line, and positive-skill area. The last is a polygon defining where

the Brier skill score (BSS) is positive. The BSS is defined as BSclimo−BSBSclimo , where BS and BSclimo
are the Brier scores of the model of interest and the climatological model. The BSS ranges from

(−∞,1], and values > 0 signal an improvement over climatology. For more details on the attributes
diagram, see Hsu and Murphy (1986).

2) For regression tasks

Although the attributes diagram is typically used for classification, it can also be adapted for

regression (Fig. 7b). Letting the target variable be 𝑧, the 𝑥-axis is the predicted 𝑧-value and

the 𝑦-axis is the conditional mean observed 𝑧-value, both real numbers that in general can range

from (−∞,+∞). The positive-skill area shows where the mean squared error (MSE) skill score
(MSESS), defined analogously to the BSS, is positive. Otherwise, the two flavors of attributes

diagram can be interpreted the same way.

b. The spread-skill plot

The spread-skill plot (DelleMonache et al. 2013) is analogous to the reliability curve but evaluates

uncertainty estimates rather than mean predictions. Conceptually, the spread-skill plot answers the

question: “For a given predicted model spread, what is the actual model error?” The spread-skill

plot shows the predicted model spread (𝑥-axis) versus the actual model error (𝑦-axis), as in Fig. 8.

Specifically, the 𝑥-axis is the mean standard deviation (SD) of the model’s predicted distribution,

while the 𝑦-axis is the root mean squared error (RMSE) of the model’s mean prediction. Each

point corresponds to one bin of spread values. The two quantities are defined as follows for the 𝑘 th
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bin: 

RMSE𝑘 =
[
1
𝑁𝑘

𝑁𝑘∑
𝑖=1

(𝑦true
𝑖

− 𝑦pred
𝑖

)2
] 1
2

;

SD𝑘 = 1
𝑁𝑘

𝑁𝑘∑
𝑖=1

[
1

𝑀−1
𝑀∑
𝑗=1

(𝑦pred
𝑖

− 𝑦pred
𝑖 𝑗

)2
] 1
2

;

𝑦
pred
𝑖

= 1
𝑀

𝑀∑
𝑗=1
𝑦
pred
𝑖 𝑗

.

(3)

𝑦true
𝑖
is the observed value for the 𝑖th example; 𝑦pred

𝑖
is the mean prediction for the 𝑖th example; 𝑦pred

𝑖 𝑗

is the 𝑗 th prediction for the 𝑖th example; 𝑁𝑘 is the total number of examples in the 𝑘 th bin; and 𝑀

is the ensemble size11.
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Figure 8: Spread-skill plot. The inset histogram shows how often each spread value occurs.
Points {below, above, on} the 1-to-1 line correspond to spread values where the model is

{underconfident, overconfident, perfectly calibrated}.

Labels in Fig. 8 show how to identify conditional bias in the model’s uncertainty estimates –

i.e., for which spread values the model is underdispersive (overconfident), overdispersive (under-

confident), or perfectly calibrated (spread-skill ratio = 1). Additionally, if the spread frequency is

most-populated where the points on the spread-skill diagram lie on the 1:1 line, then the uncertainty

11As mentioned in Section 2c, for UQ approaches that do not produce an ensemble, there is still a way to compute the standard deviation of the
predicted distribution.
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estimates are useful – e.g.,the samples with the lowest (highest) spread have corresponding low

(high) error.

The quality of the spread-skill plot can be summarized by two measures: spread-skill reliability

(SSREL) and overall spread-skill ratio (SSRAT). SSREL is the weighted mean distance from the

1-to-1 line:

SSREL =
𝐾∑︁
𝑘=1

𝑁𝑘

𝑁
|RMSE𝑘 −SD𝑘 |, (4)

where 𝑁 is the total number of examples; 𝐾 is the total number of bins; and other variables are as in

Eq. 3. SSREL varies from [0,∞), and the ideal value is 0. Meanwhile, SSRAT is the spread-skill
ratio averaged over the whole dataset:

SSRAT =
SD
RMSE

, (5)

where RMSE and SD are analogous to RMSE𝑘 and SD𝑘 , respectively, but averaged over the whole

dataset instead of one bin. SSRAT varies from [0,∞), and the ideal value is 1. SSRAT > 1
indicates that the model is underconfident on average; SSRAT < 1 indicates that the model is

overconfident on average.

The spread-skill plot and both summary measures can be used for both regression and classifica-

tion. In the regression case, spread, skill, and SSREL are all in physical units. In the classification

case, spread, skill, and SSREL are in units of class probability, ranging from [0,1]. SSRAT is
always unitless.

c. The discard test

The discard test, inspired by Barnes and Barnes (2021) and similar to the filter experiment in

Fig. 8.18 of Dürr et al. (2020), compares model error versus the fraction of highest-uncertainty

cases discarded. Sample results are shown in Fig. 9.

For amodelwith useful uncertainty estimates, the error should decreasewhenever discard fraction

is increased. The quality of the discard test can be summarized by two measures: monotonicity

fraction (MF) and discard improvement (DI). The MF quantifies how often model error decreases
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Figure 9: Sample results for discard test. In this case, the error metric used is the RMSE of the
NN’s mean prediction. The legend shows the monotonicity fraction (MF) and discard

improvement (DI) for each NN.

– regardless of how much it decreases – when discard fraction is increased:

MF =
1

𝑁 𝑓 −1

𝑁 𝑓−1∑︁
𝑖=1

I(𝜖𝑖 ≥ 𝜖𝑖+1). (6)

𝑁 𝑓 is the number of discard fractions used; 𝜖𝑖 is the model error with the 𝑖th discard fraction, which

is greater than the (𝑖−1)th discard fraction; and I() is the indicator function, evaluating to 1 if the
condition is true and 0 otherwise. MF varies from [0,1], and the ideal value is 1. Meanwhile, DI
quantifies the average decrease in model error when discard fraction is increased:

MF =
1

𝑁 𝑓 −1

𝑁 𝑓−1∑︁
𝑖=1

(𝜖𝑖 − 𝜖𝑖+1). (7)

DI varies in general from (−∞,∞), and higher values are better.
Neither summary measure tells the whole story. The MF is 1.0 (the ideal value) as long as error

always decreases when the discard fraction is increased, even if the error decreases by a very small

(insignificant) amount. Also, the DI involves the mean, which is strongly influenced by outliers.

For example, in Fig. 9 the DI for MC dropout is strongly influenced by the large drop in RMSE as
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discard fraction is increased from 0.8 to 0.9. This large drop leads to a positive DI for MC dropout,

even though model error usually increases when discard fraction is increased, the opposite of the

desired effect. Thus, the MF and DI should always be used in tandem.

The discard test and both summary measures can be used for both regression and classification.

In the regression case, 𝜖𝑖 is a regression-based error metric like RMSE; in the classification case,

𝜖𝑖 is a classification-based metric like cross-entropy.

The discard test could be very useful in an operational environment. For example, consider

results in Fig. 9 and suppose that there is an alternate prediction method to the NNs – which is true

for most NN applications to environmental science. Also, suppose that the maximum acceptable

error for this application is 1.0. Fig. 9 shows that for three of the four NNs – all except the one

using MC dropout – error < 1.0 for all discard fractions ≥ 30%. Thus, for each of these three NNs,
an operational forecaster could find the spread value matching a discard fraction of 30% – let this

be 𝑠∗ – and use the NN predictions only when spread < 𝑠∗.

We note a crucial difference between evaluation methods. The discard test is concerned only with

ranking quality. If the model correctly ranks uncertainty among all data samples, MF = 1.0 (the

ideal value), even if the model has a persistent bias – i.e., always underestimates or overestimates

uncertainty. Meanwhile, the spread-skill plot is concerned only with calibration quality or bias. If

the spread and skill are equal for all spread values, the plot follows the 1-to-1 line (ideal), even if

the model cannot accurately rank the uncertainty of its own predictions.

d. The probability integral transform (PIT) histogram

The PIT is 𝐹 (𝑦true), where 𝐹 is the CDF of the predicted distribution. In other words, the PIT
is the quantile of the predicted distribution at which the observed value occurs. A few examples

are shown in Fig. 10b. Note that the PIT is meaningful only for regression problems, not for

classification. For classification the only possible observations are 0 and 1, while predictions

(event probabilities) must range from [0,1]. Thus, 𝑦true always occurs at one extreme of the
predicted distribution, so the only possible PIT values are 0 and 1. Intermediate PIT values do not

occur, which makes for a trivial PIT histogram.

The PIT histogram plots the distribution of PIT over many data samples, with one PIT value

per sample (Fig. 10c). For a perfectly calibrated model, all PIT values occur equally often,
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so the histogram is uniform. If the histogram has a hump in the middle, there are too many

examples with intermediate PIT values (where 𝑦true occurs near the middle of the predicted

distribution) and too few examples with extreme PIT values (where 𝑦true occurs near the end of the

predicted distribution), so the extremes of the predicted distribution are on average too extreme.

In other words, the predicted distribution is on average too wide, so the model is overspread or

“underconfident”. If the histogram has humps at the ends (as for MC dropout in Fig. 10c), the

predicted distribution is on average too narrow, so the model is underspread or “overconfident”.

The PIT histogram is a generalization of the rank histogram (or “Talagrand diagram”), which is

more familiar to atmospheric scientists (Hamill 2001) and can be interpreted the same way.

PIT = 0.63 PIT = 0.63PIT=0.1

PIT=0.4

PIT=0.9

PIT=1.0

A) B)

C)

Figure 10: [a] and [b] Schematics explaining the probability integral transform (PIT). These use
the PDP_SINH model from Fig. 6, evaluated at 𝑥 = 7. [a] PDF of predicted distribution, along
with PIT values corresponding to a few possible 𝑦true values. The actual 𝑦true value has a PIT of
0.63. [b] Same but showing CDF instead of PDF. [c] Example of PIT histogram. The dashed line

represents a perfect PIT histogram.
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We note that a uniform PIT histogram is a necessary but not sufficient condition for calibrated

uncertainty. For example, see Fig. 2 of Hamill (2001), where a nearly uniform rank histogram is

produced by a combination of three miscalibrated predicted distributions: one with a positively

biased mean prediction, one with a negatively biased mean prediction, and one with zero bias in the

mean prediction but excessive spread. This example illustrates why using multiple evaluation tools

is important. Biases in the mean prediction would average to zero and therefore not be captured by

the attributes diagram, but all three miscalibrated distributions would generate excessive spread12,

which would be captured by the spread-skill plot.

The quality of the PIT histogram can be summarized by the calibration-deviation metric (PITD;

Nipen and Stull 2011):

PITD =

[
1
𝐾

𝑁𝑘∑︁
𝑘=1

(
𝑁𝑘

𝑁
− 1
𝐾

)2] 12
, (8)

where 𝐾 is the number of bins; 𝑁 is the total number of data samples; and 𝑁𝑘 is the number of

data samples in the 𝑘 th bin. PITD varies from [0,1], and the ideal value is 0.

e. The continuous ranked probability score (CRPS)

The CRPS is commonly used in atmospheric science to evaluate probabilistic forecasts, i.e.,

to compare a predicted distribution to an observation (Matheson and Winkler 1976; Hersbach

2000; Gneiting et al. 2005). The CRPS is a generalization of the mean absolute error (MAE) for

probabilistic forecasts:

CRPS(𝐹, 𝑦true) =
∫ ∞

−∞

[
𝐹 (𝑦pred) −H (𝑦pred− 𝑦true)

]2
𝑑𝑦pred, (9)

where 𝑦true is the single observed value; 𝐹 is the CDF of the predicted distribution; 𝑦pred, the

variable of integration, is one value in the predicted distribution; and H is the Heaviside step

function, evaluating to 1 if 𝑦pred ≥ 𝑦true and 0 otherwise. Thus, Eq. 9 is the error between the

predicted and observed cumulative distribution function (CDF), the second of which is a step

function (see Fig. 11).

12Drawing 𝑦pred values from the positively and negatively biased distributions would generate excessive spread, because their biases would
ensure that most 𝑦pred values are far above and below 𝑦true, respectively.
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Figure 11: Schematic representation of the CRPS. The axes show the CDF for 𝑦true, 𝑦determpred (the

single prediction from a deterministic model), and
−−−→
𝑦
prob
pred (predictions from a probabilistic model).

The CRPS for a given model is the area in the CDF plot between the 𝑦true curve and the given
model’s 𝑦pred curve. Adapted from Brey (2021).

Because the CRPS measures differences between the CDFs of 𝑦true and 𝑦pred, it can serve as a

loss function for UQ in NNs. For datasets with uncertainty due to any of the sources discussed in

Section 2a, the conditional distribution 𝑦true | ®𝑥 is no longer a point mass, so the corresponding CDF
is no longer a step function. In this case the NN can be optimized to capture the spread in 𝑦true,

i.e., to estimate the ML-aleatory uncertainty. To use the CRPS as a loss function, Gneiting and

Raftery (2007) made the necessary modifications to Eq. 9, using distribution theory and identities

from Székely and Rizzo (2005):

CRPS =
1
𝑁

𝑁∑︁
𝑖=1

|𝑦true− 𝑦𝑖pred | −
1
2
1
𝑁2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

|𝑦𝑖pred− 𝑦
𝑗

pred |, (10)

where 𝑁 is the ensemble size; 𝑦true is the single observed value; and 𝑦𝑘pred is the prediction for

the 𝑘 th ensemble member. The first term is the MAE of the mean prediction, and the second

term is half the model spread, with “spread” defined as the mean absolute pairwise difference

between ensemble members. This form of the CRPS can be used as a loss function for EP, and

there are many examples in the atmospheric-science literature (Van Schaeybroeck and Vannitsem
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2015; Scheuerer et al. 2020; Baran and Baran 2021; Dai and Hemri 2021; Ghazvinian et al. 2021;

Veldkamp et al. 2021; Chapman et al. 2022; Schulz and Lerch 2022).

MAE Model
CRPS (score) 

EP_CRPS Model
CRPS (score)

A) B)

Figure 12: Using two NNs to solve a simple problem (the relationship between target 𝑦 and
predictor 𝑥 is described in the main text). One NN is deterministic and trained with the MAE
loss; the other is probabilistic (EP) and trained with the CRPS loss. [a] Scatterplot of predictions
and observations. For the CRPS-trained model, both individual ensemble members and the mean
are shown. Note that many ensemble members are hidden below the observations at 𝑦 = 0. [b]
Marginal CDFs (𝑦 given 𝑥 = 1.5) for 𝑦true, 𝑦MAEpred (the single prediction of the MAE-trained

model), and
−−−−→
𝑦CRPSpred (the predictions of the CRPS-trained model). As explained in the caption of

Fig. 11, the CRPS for each model equals an area between two curves in this plot.

Fig. 12 demonstrates the utility of the EP-CRPS approach. We use synthetic data with one

predictor 𝑥 and one target 𝑦, with a combined exponential and point-mass distribution. In other

words, for some samples 𝑦 increases exponentially with 𝑥, and for some samples 𝑦 = 0 regardless.

Thus, for all 𝑥-values except the smallest (∼-1.8), the marginal distribution (𝑦 given 𝑥) is bimodal,
as shown in Fig. 12a. A model trained with the MAE loss function “splits the difference” between

the two modes, always predicting poorly at higher 𝑥. Conversely, a model trained with the CRPS

loss function produces ensemble members that capture both modes. Thus, the CRPS-trained

model achieves a much better CRPS (37) than the MAE-trained model (547). However, the central

prediction of the CRPS-trained model (heavy purple line in Fig. 12a) performs poorly, like the

MAE-trained model. This serves as a reminder that the value of a probabilistic model is not only

in the central prediction – one should consider the full predicted distribution. In addition to using
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the EP-CRPS approach to demonstrate the evaluation methods, we use it to solve a real-world

regression problem (Section 5).

The CRPS can also bemodified to serve as a loss function for the PDP approach to UQ. Analytical

forms of the CRPS have been derived for many canonical distributions. These include the normal

distribution (Van Schaeybroeck and Vannitsem 2015; Rasp and Lerch 2018); log-normal, truncated

log-normal, and truncated generalized extremevalue (TGEV) distributions (Baran andBaran 2021);

zero-truncated normal distribution (Chapman et al. 2022); censored, shifted gamma distribution

(CSGD;Ghazvinian et al. 2021); and truncated logistic and piecewise uniform distributions (Schulz

and Lerch 2022).

f. Ignorance score

The ignorance score (IGN) measures how much a probabilistic forecast is concentrated in the

correct areas (Good 1952; Roulston and Smith 2002; Nipen and Stull 2011). It is defined as:

IGN = − 1
𝑁

𝑁∑︁
𝑖=1
log2( 𝑓 (𝑦true𝑖 )), (11)

where 𝑓 is the PDF of the predicted distribution and 𝑦true
𝑖
is the observed value for the 𝑖th data

sample. Thus, 𝑓 (𝑦true
𝑖

) is the predicted PDF evaluated at 𝑦true
𝑖
. IGN varies from [0,∞), and the ideal

value is 0. IGN rewards correct high-confidence predictions, i.e., narrow predicted distributions

that contain the observed value.

g. Score comparisons

Table 2 shows all eight scores discussed in Section 4 for the four NNs – each with a different UQ

method – applied to the sample dataset. All four NNs produce skillful mean predictions, indicated

by an MSESS≫ 0. Also, mean predictions from the four NNs have nearly equal quality, indicated
by the narrow range for MSESS (0.843 to 0.849). However, in terms of uncertainty, MC_DROPS

clearly performs worse than the other UQ methods, achieving the worst value for all scores other

than MSESS. As expected, because this model was trained with a deterministic loss function, it

does not capture ML-aleatory uncertainty. The other three UQ methods – PDP with the normal

distribution (PDP_NORM), PDP with the SHASH distribution (PDP_SHASH), and EP with the
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CRPS loss function (EP_CRPS) – achieve similar performance. PDP_NORM is the best-ranking

method on two scores; PDP_SHASH ranks best on two scores; EP_CRPS ranks best on three

scores; and the three methods share the best ranking on one score (MF).

Table 2: Evaluation scores for various UQ methods on the synthetic dataset. For each score, the
best value is highlighted in bold.

Score PDP_NORM PDP_SHASH EP_CRPS MC_DROPS
MSESS 0.847 0.844 0.849 0.843
SSRAT 0.769 0.759 0.789 0.363
SSREL 0.079 0.110 0.114 0.993
MF 1.000 1.000 1.000 0.300
DI 0.185 0.187 0.176 0.019
PITD 0.013 0.006 0.008 0.064
CRPS 0.748 0.737 0.717 0.892
IGN 1.678 1.728 1.775 4.886

5. Demonstration of UQ and evaluation methods for a regression task

a. Predicting dewpoint profiles for severe-weather nowcasting

Vertical profiles of dewpoint are useful in predicting deep convection (i.e., thunderstorms),

which can produce severe weather. Thunderstorms pose a lightning threat and may produce heavy

rain, high winds, large hail, and tornadoes; all these phenomena threaten both lives and property.

Currently, human forecasters rely on observations from radiosonde launches, which are spatially

and temporally sparse, and simulations from numerical weather prediction (NWP) models. Stock

(2021) used ML techniques to improve dewpoint vertical profiles, combining information from

NWP models and satellite data, which are spatially and temporally denser than radiosonde data.

Here we extend that work by adding UQ.

Specifically, we use a 1-dimensional U-net architecture, adapted from Stock (2021), to predict

dewpoint at 256 vertical levels. The predictors are a first-guess dewpoint profile from the Rapid

Refresh NWPmodel (RAP; Benjamin et al. 2016), a temperature profile from the RAP, and satellite

data from the Geostationary Operational Environmental Satellite (GOES)-16 Advanced Baseline
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Imager (Schmit et al. 2017). The targets (ground truth) are dewpoint profiles from radiosonde

observations (RAOB) over the central United States between Jan 1 2017 and Aug 31 2020. We use

75% of the data for training, 10% for validation, and 15% for testing. The model and experimental

setup are described fully in Stock (2021); the model structure and the UQ methods we applied are

shown in Fig. 13.
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Figure 13: U-net architecture for predicting dewpoint profiles. The initial RAP profile includes
two variables – temperature and dewpoint – and is input to the beginning of the U-net (i.e., the
first D-block layer). GOES data are included at the bottleneck layer, where they are concatenated
with features extracted from RAP profiles by the D-block. The output is the best-guess dewpoint
profile, combining RAP and GOES data. Uncertainty is estimated at each layer in this profile.

Adapted from Stock (2021), which did not include uncertainty estimates.

We train U-net models with four UQ methods (purple box in Fig. 13). The first two use PDP to

predict normal (PDP_NORM) and SHASH (PDP_SHASH) distributions; the third uses EP with

the CRPS loss function and 60 ensemble members (EP_CRPS); the last uses MC dropout with the

MSE loss function (MC_DROPS), 60 ensemble members, and a dropout rate of 0.1 for all D-blocks

and U-blocks. In earlier work (not shown) we experimented with varying the dropout rate from

0.01 to 0.5, as well as including vs. not including dropout in the D-blocks. These variations had

minimal impact on the results shown.

b. UQ results and discussion

Case studies

Fig. 14 shows three case studies for the PDP_NORM model, including both mean predictions

and uncertainty estimates. As shown in panels a-c, the PDP_NORM model reasonably captures

the 𝑦true spread. Specifically, the 95% confidence interval contains the observed value 𝑦true about
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95% of the time. Also, the model’s uncertainty usually increases with error in the mean prediction,

suggesting that uncertainty and error are highly correlated (thus, we expect results of the discard

test to be favorable). Beyond individual case studies, we have plotted a composite (Fig. 14d) by

averaging over all the testing samples. Here we note that (1) the mean 𝑦true and 𝑦pred profiles

are almost exactly the same, indicating that there is almost zero bias in the PDP_NORM model’s

mean predictions; (2) model uncertainty is lowest near the surface and highest in the mid to upper

troposphere, around 300-500 mb.

A) B)

C) D)

Figure 14: Case studies for PDP_NORM model for predicting dewpoint profiles. In each panel,
the observed profile 𝑦true is shown in black, while the mean prediction and uncertainty estimate
(properties of the 𝑦pred distribution) are shown in blue and gray, respectively. [a], [b], and [c]
Individual case studies. Here, the uncertainty estimate shown is the 95% confidence interval. [d]
Composite over all testing samples. Here, the uncertainty estimate shown is the mean of the

predicted standard deviations.

35



UQ-evaluation graphics

Evaluation graphics for all four UQ methods are shown in Fig. 15. Starting with the mean

predictions, the attributes diagram (Fig. 15a) shows that each U-net model – regardless of which

UQ method it uses – has well calibrated mean predictions, with the curve nearly following the

1-to-1 line. All models have an RMSE of ∼5 ◦C, and MSESS of 0.98, for the mean predictions.

The largest conditional bias is a slight negative bias (∼-2 ◦C) for the lowest dewpoint predictions

by PDP_SHASH. This bias likely occurs because the lowest dewpoints are underrepresented in the

training data (i.e., rare events), as shown in the inset histogram. The remainder of this subsection

focuses on evaluating uncertainty estimates, instead of the mean predictions.

The spread-skill plot (Fig. 15b) shows that for the vast majority of data points (those with 𝑦pred
spread below ∼8 ◦C), the PDP and EP approaches produce well calibrated uncertainty estimates,

with the curve nearly following the 1-to-1 line. For the few data points with 𝑦pred spread > 8 ◦C, the

PDP and EP approaches are underconfident; EP is the most underconfident. However, because EP

samples directly from the 𝑦pred distribution – rather than creating the 𝑦pred distribution from just a

few estimated parameters – EP can produce more complicated distributions. For example, EP can

capture rare events where the 𝑦true distribution is likely to resemble an extreme-value distribution

instead of the typical canonical distributions assumed by PDP.

Although the flexibility of the EP approach is an advantage, it can complicate UQ evaluation,

because for highly non-normal distributions the standard deviation is a misleading measure of

spread. Instead of using the standard deviation to quantify 𝑦pred spread, it might bemore appropriate

to use the full histogram or PDF of the ensemble members. Allen et al. (2022) introduced the

weighted PIT histogram, which is useful for rare events because it allows for regime-specific UQ

evaluation (i.e., assessing forecast calibration as a function of the observed value). However, it is

unclear how best to incorporate a histogram or PDF into an evaluation method like the spread-skill

plot, so we leave this suggestion for future work.

Meanwhile, the MC-dropout approach is very overconfident and rarely produces 𝑦pred spread

above ∼3 ◦C (Fig. 15b). This result is not surprising, since MC dropout with a deterministic loss

function (here, the MSE) cannot capture ML-aleatory uncertainty. This highlights the need to use

a probabilistic loss function with MC dropout.
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Figure 15: Evaluation graphics for dewpoint prediction, showing U-nets trained with four
different UQ methods: two PDP approaches (PDP_NORM and PDP_SHASH), an EP approach
(EP_CRPS), and an MC-dropout approach (MC_DROPS). [a] Attributes diagram. The legend
shows (RMSE,MSESS) for each model. [b] Spread-skill plot, including the SSRAT and SSREL
for each model. [c] Discard test, including the MF and DI for each model. [d] PIT histogram,

including the PITD for each model.

The discard test (Fig. 15c) shows that, for all four UQ methods, error (RMSE of the mean

prediction) decreases whenever discard fraction is increased – i.e., whenever high-uncertainty

cases are removed. In other words, all four models have an MF of 1.0. However, error decreases

more sharply with discard fraction for the PDP and EP approaches (leading to DI ≥ 0.33) than for
MC dropout (leading to DI = 0.09). These results highlight the importance of using both the MF

and DI to summarize results of the discard test.

Finally, the PIT histogram (Fig. 15d) shows that the PDP and EP approaches produce well

calibrated uncertainty estimates, with a nearly flat histogram and low PITD score. The PDP
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models have a slight hump in the middle of the histogram, indicating slight underconfidence

(consistent with the spread-skill plot in Fig. 15b), while the EP model has a slight hump at the left

edge of the histogram, indicating a slight overprediction bias (which cannot be seen in any of the

other graphics in Fig. 15). Meanwhile, the MC-dropout model has large humps at both edges of

the histogram, indicating that it is very overconfident (consistent with the spread-skill plot).

UQ-evaluation scores

Table 3 shows all eight scores discussed in Section 4, plus the RMSE, for all four UQ methods

on the dewpoint task. Qualitatively, results for this real-world task are nearly identical to results

on the synthetic dataset (Table 2). Specifically, (1) mean predictions from the four models have

nearly equal skill, with similar RMSE and MSESS values; (2) MC dropout produces the worst UQ

estimates, as expected with a deterministic loss function; (3) uncertainty estimates from the PDP

and EP approaches have nearly equal skill, although the EP_CRPS model achieves the best score

(six times) more often than the PDP_SHASH model (five times).

Table 3: Evaluation scores for the dewpoint task, with the best value for each score highlighted in
bold.

Score PDP_NORM PDP_SHASH EP_CRPS MC_DROPS
RMSE 4.97 5.16 4.89 4.92
MSESS 0.98 0.98 0.98 0.98
SSRAT 0.91 0.98 0.88 0.17
SSREL 0.31 0.22 0.33 4.09
MF 1.00 1.00 1.00 1.00
DI 0.35 0.36 0.33 0.09
PITD 0.014 0.011 0.008 0.142
CRPS 2.52 2.62 2.38 3.07
IGN 4.36 4.40 4.15 8.81
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6. Demonstration of UQ and evaluation methods for a classification task

In this section we introduce the classification task (predicting convection), apply MC dropout

and quantile regression to obtain uncertainty estimates, then evaluate the uncertainty estimates and

show case studies.

a. Predicting convection from satellite imagery

Figure 16: Input data for predicting convection at 2200 UTC 2 Jun 2017. Shown are three of the
seven predictors: band 8 (6.25 𝜇m), band 11 (8.6 𝜇m), and band 16 (13.3 𝜇m). [a-c] Predictors at
lag time of 40 minutes; [d-f] predictors at lag time of 20 minutes; [g-i] predictors at lag time of 0
minutes. All predictors use the colour bar next to panel i. [j] Composite (column-maximum)
radar reflectivity. [k] Convection mask, the target variable. The black dots are pixels with true
convection. Grey circles in panels j-k show the 100-km range ring around each radar.
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We adapt the work of Lagerquist et al. (2021, henceforth L21) to include uncertainty. The task

is to predict the occurrence of thunderstorms (henceforth, “convection”) at 1-hour lead time at

each pixel in a grid. As predictors, we use gridded brightness temperatures from the Himawari-8

satellite at seven wavelengths and three lag times (0, 20, and 40 minutes before the forecast-issue

time 𝑡0), as shown in Fig. 16. The target is a binary convection mask at 𝑡0 + 1 hour, created
by applying an algorithm called Storm-labeling in 3 Dimensions (SL3D; Starzec et al. 2017) to

radar data. Both the predictor and target variables are on a latitude-longitude grid with 0.0125◦

(∼1.25-km) spacing. We train and evaluate the NNs only at pixels within 100 km of the nearest
radar (grey circles in Figs. 16j-k), where radar coverage is sufficient to detect convection. See L21

for complete details.

OurNNarchitecture is aU-net specially designed to predict gridded variables – here, the presence

of convection at 𝑡0 +1 hour. Details on our particular architecture are in L21. The U-net in L21 is
deterministic; in this paper we use either MC dropout or QR to make the U-net probabilistic. For

MC dropout, we use the architecture in Fig. 17a. For QR, we replace the single output layer in Fig.

17a with 𝑁 +1 output layers, where 𝑁 is the number of quantile levels estimated (Fig. 17b). We
use Eq. 2 to prevent quantile-crossing, as represented schematically in the rightmost column of

Fig. 17b.13 Hyperparameters not shown in Fig. 17 include batch normalization (we perform batch

normalization after each ReLU activation) and the training procedure (we train for 1000 epochs

with the Adam optimizer, an initial learning rate of 0.001, early stopping if validation loss has not

improved over 30 epochs, and a 40% reduction in learning rate if validation loss has not improved

over 10 epochs). These decisions are justified in Table S1 of L21.

Because convection is a rare event (occurring at only 0.75% of pixels), we need to use an

aggressive loss function (one that rewards true positives more than true negatives). Traditional

loss functions, like the traditional quantile loss (Eq. 1), which reward true positives and true

negatives equally, would result in a model that almost never predicts convection. Thus, we use a

hybrid between the fractions skill score and traditional quantile loss, which we call the “aggressive

quantile loss”. See the Appendix for details.

13For a regression problem, Eq. 2 alone is sufficient. For a classification problem like this one, quantile-based estimates 𝑦̂𝑖 must range from
[0, 1], allowing them to be interpreted as probabilities. This is why, as shown in Fig. 17b, we apply the sigmoid activation function to the output
of Eq. 2.
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Figure 17: U-net architecture for predicting convection from satellite imagery, using either [a]
MC dropout or [b] quantile regression to estimate uncertainty. In each set of feature maps, the
numbers are dimensions: 𝑁rows×𝑁columns×𝑁channels. The 21 input channels are the raw predictor
variables, i.e., gridded brightness temperatures at 7 wavelengths and 3 lag times. In panel a, the
last 3 convolutional layers are marked with dashed lines (either orange or black), indicating that
these layers may include MC dropout. In panel b, to be brief, we assume that there are only 3
quantile levels to estimate. When there are more quantile levels (which is the case for every U-net
involved in this study), the pattern on the right side of panel b repeats. Specifically, estimates for
quantile level 𝑞𝑖 are created by applying 1-by-1 convolution with ReLU to the feature maps

marked “205 × 205 × 2,” adding the result to pre-sigmoid estimates for quantile level 𝑞𝑖−1, then
applying the sigmoid activation function. The sigmoid activation function constrains the final
estimates to the range [0,1], so that they may be interpreted as probabilities of convection.
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b. UQ results and discussion

For MC dropout we tune three hyperparameters, specifically dropout rates for the last three layers

(Table 4). For QR we tune two hyperparameters: the set of quantile levels and the weight 𝑤 in Eq.

A2, which affects the importance of deterministic vs. probabilistic predictions in the loss function

(Table 4). Details are in Section 1 of the online Supplement. We run the MC-dropout models 100

times in inference mode, yielding an ensemble size of 100. We use the validation data to select

hyperparameters and the independent testing data to show results for the selected models.

Table 4: Experimental hyperparameters for classification task (nowcasting convection). Both
hyperparameter experiments use the grid-search algorithm (Section 11.4.3 of Goodfellow et al.
2016). Thus, we train 125 NNs with MC dropout (5 dropout rates for third-last layer × 5 rates for
second-last layer × 5 rates for last layer) and 90 NNs with QR (9 sets of quantile levels × 10
weights. Exact quantile levels used (rather than just the number of quantiles) are shown in Table

S1 of the online Supplement.

MC-dropout experiment
Hyperparameter Values attempted

Dropout rate for third-last layer 0.000, 0.125, 0.250, 0.375, 0.500
Dropout rate for second-last layer See above
Dropout rate for last layer See above

QR experiment
Hyperparameter Values attempted

Number of quantile levels 17, 18, 19, 22, 26, 30, 38, 53, 101
Loss-function weight (Eq. A2) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Monte Carlo dropout

As discussed in the online Supplement, as dropout rates increase, the uncertainty estimates

improve but the mean predictions deteriorate. Hence, there is a trade-off between the quality of

probabilistic and deterministic predictions. We believe that this trade-off exists for two reasons.

First, MC dropout leads to overconfident models14, so the easiest way for an MC-dropout model to

improve uncertainty estimates is to produce higher spread. However, second, since MC dropout

is a post hoc method not optimized to produce good uncertainty estimates, higher spread typically

14By examining the spread-skill plots for all 125 models, we confirmed that they are all overconfident.
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means lower skill (worse mean predictions). In our judgement (based on subjectively combining

evaluation scores shown in the online Supplement), the best model has a dropout rate of 0.250 for

the last layer, 0.125 for the second-last, and 0.375 for the third-last.

Figure 18: [a] Spread-skill plot and [b] discard test, measured on testing data, when using MC
dropout to predict convection. [c] Spread-skill plot and [d] discard test, measured on testing data,
when using quantile regression to predict convection. “SSREL” is spread-skill reliability, and
“MF” is monotonicity fraction. The histogram in the spread-skill plot shows the percentage of

testing examples in each bin of spread values; the bins have a spacing of 0.01.

Fig. 18a shows the spread-skill plot for this model. The model is overconfident (underspread) for

all bins; this problem is typical for MC dropout, including atmospheric-science applications (Scher
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and Messori 2021; Clare et al. 2021; Garg et al. 2022). Also, the model rarely produces spread

values > 0.04, as shown in the histogram in Fig. 18a. The skewed histogram is explained by the

inset in Fig. 18a: model spread increases with convection frequency (the mean target value), and

since convection is a rare event, we should therefore expect high model spread to be a rare event.

Fig. 18b shows the discard test for the best model. Model error decreases almost every time the

discard fraction is increased (18 of 19 times), yielding an MF of 94.74%. Thus, the ranking quality

of the model’s uncertainty estimates is high. As shown in the inset of Fig. 18b, event frequency

decreases from 0.8% for all data samples to 0.2% for those not including the 10% with highest

uncertainty. In other words, most convection is associated with very high uncertainty, consistent

with the inset of Fig. 18a.

Figure 19: Case study for MC-dropout model, during Tropical Depression Luis. All data
(predictions, radar reflectivity, and convection mask) are valid at 0830 UTC 23 Aug 2018. The
predictions were made with 1-hour lead time (initialized at 0730 UTC). [a] Mean convection
probability; [b] standard deviation of convective probability; [c] median convection probability;
[d] 75th-percentile convection probability; [e] 97.5th-percentile convection probability; [f]
composite (column-maximum) radar reflectivity; [g] true convection mask, with black dots

showing convective pixels. “S” indicates an area of strong convection west of the center of Luis,
while “W” indicates an area of weak convection east of the center.

Fig. 19 shows a case study created by applying the best model to one time step in the testing data,

during Tropical Depression Luis. Fig. 19 summarizes the predicted distribution with five numbers:
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the mean, standard deviation, and three percentiles of convection probability. We do not show

percentiles below the 50th, because estimates corresponding to these percentiles are usually very

small; most of the variation in the predicted distribution is between the 50th and 97.5th percentiles.

The case shown in Fig. 19 features two large areas of convection: strong (“S”) and weak (“W”).

We make the following observations. First, in terms of the mean and any percentile, the model

produces higher probabilities for strong convection than for weak convection (panels a and c-e),

which is a desired property. Second, the model is more uncertain for strong convection than for

weak convection (panel b). This is not a desired property, because weak convection (borderline

cases) is more difficult to identify and should have higher uncertainty. Third, the probability

maps contain checkerboard artifacts (Fig. 19a-c); these are caused by using dropout in the last

layer, which sets some probabilities to zero. Fourth, the overconfidence (underspread) problem

with MC dropout is obvious in area W, where there is almost no difference between the 50th- and

97.5th-percentile estimates (Fig. 19c-e).

Quantile regression (QR)

As discussed in the online Supplement, results of the hyperparameter experiment are noisy. In our

judgement (based on subjectively combining evaluation scores shown in the online Supplement)

the best model has 17 quantile levels and a weight of 6 (𝑤 = 6 in Eq. A2). To compute the model

spread, defined as the standard deviation of the predicted distribution, we use Eq. 15 of Wan et al.

(2014).

The spread-skill plot for the best model shows that it is almost perfectly calibrated when the

𝑦pred distribution has spread ≤ 0.06 and underconfident (overspread) when 𝑦pred spread > 0.06
(Fig. 18c). However, spread rarely exceeds 0.06 (only for 22.7% of examples, as shown by the

histogram), so the model is generally well calibrated. The spread-skill plots reveal two advantages

of the QR model (Fig. 18c) over the MC-dropout model (Fig. 18a). First, the QR model is

better-calibrated overall, which manifests in a substantially lower SSREL (0.027 versus 0.037); the

difference is significant at the 95% confidence level15. Second, the QR model’s spread histogram

is less skewed, i.e., the QR model produces high spread values (> 0.04) more often. However,

the QR model is not much better-calibrated at these high spread values. As mentioned above,

the overconfidence problem for MC dropout (which occurs for all 125 models we trained) is well

15Determined by a one-sided paired bootstrap test with 1000 iterations.
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documented in the literature. However, to our knowledge, the underconfidence problem for QR

(which occurs for all 90 models we trained) has not been noted previously. Hence, this may be a

problem with QR in general or specific to our application.

Fig. 18d shows the discard test for the best QRmodel. The error decreases every time the discard

fraction is increased, yielding an MF of 100%, compared to 94.74% for the MC-dropout model.

Also, error decreases more sharply with discard fraction for the QRmodel than for the MC-dropout

model (Fig. 18b), leading to a higher DI score (0.0033 vs. 0.0030).

Figure 20: Same as Fig. 19 but for QR model.

Fig. 20 shows a case study for the best QR model, at the same time step as the MC-dropout case

study (Fig. 19). We make the following observations. First, like the MC-dropout model, the QR

model produces higher probabilities for stronger convection16 (Figs. 20a,c,d). Second, according

to the standard deviation (Fig. 20b), the QRmodel is more uncertain for the strong convection than

the weak convection – a disadvantage shared by the MC-dropout model. The third observation

counteracts the second: the standard deviation is not the full story on uncertainty, and sometimes

it is necessary to look at the full predicted distribution. The MC-dropout model has almost no

difference between the 50th- and 97.5th-percentile estimates in area W (Fig. 19c-e), consistent with

16However, at the 97.5th percentile of the predicted distribution, the convection probability is ∼100% at all pixels (Fig. 20e), regardless of
whether the pixel contains strong or weak or no convection.
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the low standard deviations (Fig. 19b). However, the QR model has large differences between the

50th- and 97.5th-percentile estimates in area W (Fig. 20c-e), despite the standard deviations here

being smaller than elsewhere in the domain (Fig. 20b). Fourth, the overall underconfidence of

the QR model – shown in Fig. 18c – is manifested in the case study, where the 97.5th-percentile

estimate is essentially 100% everywhere in the domain (Fig. 20e). For an additional case study

during the winter, see Section 2 of the online Supplement.

This section details many advantages of the QR model over the MC-dropout model. However,

note that the MC-dropout model has a substantially lower CRPS (0.020 vs. 0.034). This highlights

that single-number summaries are not the full story and should be accompanied by a detailed

investigation, including standard evaluation graphics and case studies.

7. Discussion and Conclusions

Uncertainty quantification (UQ) is a key tool for understandingMLmodels. For applications that

involve critical decision-making, UQ is invaluable for assessing the trustworthiness of the model.

Recent years have seen a surge in research on UQ methods for ML, especially neural networks

(NN). However, as more UQmethods are developed and applied in domains such as environmental

science, it is essential for domain scientists to understand the UQ approaches and how to evaluate

them – i.e., how to determine whether the uncertainty estimates are good. If uncertainty estimates

are poor, they can easily increase trust in an ML model without increasing the model’s actual

trustworthiness.

To this end, we have summarized six popular UQ approaches, four UQ-evaluation graphics, and

eight UQ-evaluation scores (single-number summaries) – with the goal of making all these tools

accessible to the environmental-science community. We have included sample Python code imple-

menting most of the UQ approaches, and all of the UQ-evaluation methods, for NNs. Lastly, we

have applied several UQ approaches and UQ-evaluation methods to two real-world applications in

atmospheric science: predicting dewpoint profiles (a regression task) and nowcasting the locations

of convection (a classification task).

To summarize our findings on UQ-evaluation methods:

• The attributes diagram provides an excellent way to evaluate the central predictions, revealing

where the predictions are performing poorly and indicating biases.
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• The spread-skill plot comprehensively describes how the model error compares to the model

uncertainty prediction, indicating (1) if the uncertainty estimates are well calibrated or con-

ditionally biased (i.e., under- or overconfident); (2) how often the model performs well (or

poorly).

• Both the spread-skill plot and PIT histogram display uncertainty calibration. The spread-skill

plot can identify under/overconfidence as a function of model spread, while the PIT histogram

cannot. The PIT histogram can identify under/overprediction (whether 𝑦true falls too often

near the top/bottom of the 𝑦pred distribution, respectively), while the spread-skill plot cannot.

• The discard test shows whether error is correlated with the uncertainty, quickly identifying

if model performance improves by removing the cases with the highest uncertainty. In an

operational setting, information conveyed by the discard test can be very useful. For example,

if users have a threshold for maximum acceptable error (which is not available in real time),

they can set a corresponding threshold on model spread (which is available in real time).

• The evaluation scores provide a quick way to compare results between models; however,

the graphics allow for deeper insight. We suggest using them together, because they provide

complementary information. For example, in our real-world convection application, the often-

used CRPS suggested that MC dropout was a better UQ method than quantile regression, but

all graphics suggested the opposite.

• We caution that evaluation methods using a single number to quantify model spread – like

the standard deviation, which is always used in the spread-skill plot and typically used for the

discard test – may bemisleading for highly non-normal distributions. UQ-evaluation methods

could possibly be altered to include more holistic information, such as the full histogram or

PDF, but we leave these suggestions for future work.

• Case studies are useful not only to understand a model’s behavior in a way that cannot

be conveyed by averaging over a large dataset, but also to examine the shape of the 𝑦pred
distribution.

Applying the UQ approaches to real-world atmospheric-science problems yielded the following

findings.
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• The PDP, NPDP, and EP approaches perform well on average but are underconfident for

high-error cases.

• PDP and EP perform very similarly for the regression task, producing well calibrated uncer-

tainty estimates.

• The PDP approach with a normal distribution is the easiest to implement, and it provided

similar enough estimates (even with asymmetric spread in 𝑦true) to other approaches to justify

its use.

• For applications with complicated 𝑦true spread (e.g., highly non-normal distributions or pre-

dicting rare/extreme events), EP is a better approach a priori, because it is more flexible and

can theoretically match any type of distribution.

• QR, although typically used for regression tasks, can be useful for classification tasks. Com-

pared to MC dropout on the convection application, QR produces a better spread-skill plot, a

better discard test, and more useful uncertainty estimates in the case studies shown. However,

for all 90 models, each with different hyperparameters, we noted that QR is underconfident.

To our knowledge this underconfidence problem is not documented in the literature, so it could

be a general problem with QR or one specific to our convection application.

• MC dropout is consistently the worst-performing approach, providing overconfident uncer-

tainty estimates. This is a well known problem in the literature; it arises because, when

trained with a deterministic loss function (the standard approach), MC dropout only captures

ML-epistemic uncertainty. However, due to its ease of implementation, we believe that MC

dropout should still be used as a baseline against which to compare more sophisticated UQ

methods. If trained with a probabilistic loss function, MC dropout can theoretically capture

ML-aleatory uncertainty as well.

Uncertainty estimation is a prevalent topic across a broad range of communities; however, unfor-

tunately the definitions of aleatory and epistemic uncertainty are inconsistent between disciplines,

so as we incorporate UQ into environmental-science applications, we need to be exact in our use of

these terms. This work focuses on capturing ML-aleatory uncertainty, which is directly calculable

from the data. However, total uncertainty also includes the ML-epistemic component, and the
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best way to calculate this is still a topic of active research. For example, how does one choose

testing data with enough out-of-regime samples to robustly estimate ML-epistemic uncertainty? In

future work we will implement BNNs, which can capture both types of uncertainty when combined

with another UQ approach. With the recent surge in UQ approaches and evaluation techniques,

the challenge is shifting from UQ implementation and evaluation to ensuring their proper use,

including how to effectively interpret and communicate the information that they provide.
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APPENDIX

Aggressive quantile loss for predicting convection

The fractions skill score (FSS; Roberts and Lean 2008) rewards true positives more than true

negatives, making it well suited for rare-event prediction. The U-net for QR (Fig. 17b) has 𝑁 +1
outputs, where 𝑁 is the number of quantile levels estimated. The last output is the deterministic

prediction, and its loss function is the pixelwise FSS (i.e., FSS without a neighbourhood filter).

The 𝑖th output (𝑖 ≤ 𝑁) is the estimate for quantile level 𝑞𝑖, and its loss function is a hybrid between
the traditional quantile loss (Eq. 1) and the pixelwise FSS:

L =


(1− 𝑞𝑖)

(𝑦true−𝑦
𝑞𝑖
pred)

2

𝑦true2+𝑦
𝑞𝑖
pred

2 , 𝑦true ≤ 𝑦𝑞𝑖pred;

𝑞𝑖
(𝑦true−𝑦

𝑞𝑖
pred)

2

𝑦true2+𝑦
𝑞𝑖
pred

2 , 𝑦true > 𝑦
𝑞𝑖
pred.

(A1)

𝑦true is the true value from the convection mask, and 𝑦
𝑞𝑖
pred ∈ [0,1] is the estimate for quantile level

𝑞𝑖. You might ask: why use the FSS without a neighbourhood filter? After all, a key benefit of

the FSS is that it uses a neighbourhood filter to solve the double-penalty problem, where a model

is punished too harshly for a small (e.g., 1-pixel) offset between the predicted and observed event.

The answer is that (a) convection is a rare event, occurring at only 0.75% of pixels on average;

(b) to obtain a U-net that predicts substantial probabilities for a rare event, it is necessary to use

a loss function that rewards true positives more than true negatives; (c) the FSS, even without a

neighbourhood filter, has this desired property; (d) including a filter in the loss function requires

the inclusion of a filter in the UQ evaluation metrics, which is more complication than we wanted.

We call the loss function in Eq. A1 the “aggressive quantile loss”.

To compute the total loss for the 𝑖th output (𝑖 ≤ 𝑁), we average Eq. A1 over all pixels and valid
times, yielding L𝑖. To compute the total loss for the U-net, we use the equation:

Lmodel = 𝑤Ldeterministic +
1
𝑁

𝑁∑︁
𝑖=1

L𝑖, (A2)

where Ldeterministic is the loss for the deterministic prediction (pixelwise FSS) and 𝑤𝑔𝑒1 is a user-
selected weight. When there are many quantile levels (i.e., 𝑁 is large), this weight is needed
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to emphasize the deterministic predictions, ensuring that both deterministic and probabilistic

predictions are skillful.
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Supplemental Material:1

Creating and evaluating uncertainty estimates with neural networks for2

environmental-science applications3

1. Hyperparameter experiments for classification task4

To reiterate, the classification task is predicting convection from satellite imagery. We perform5

one hyperparameter experiment per UQ method used for this task: MC dropout and QR.6

a. Monte Carlo dropout7

We attempt five dropout rates per layer (0, 0.125, 0.25, 0.375, 0.5) and use a grid search to8

attempt all 53 = 125 possible combinations. To limit the size of the hyperparameter experiment,9

we do not attempt dropout for shallower layers (before the last three). All other hyperparameters,10

which we do not tune for this paper, are documented in L21. As in L21, we use the year 2016 for11

training, 2017 for validation, and 2018 for testing. We run the U-nets 100 times with MC dropout,12

yielding 100 estimates in each predicted distribution (i.e., for each pixel at each valid time). To13

evaluate deterministic predictions (the mean of the distribution), we use the pixelwise FSS; to14

evaluate probabilistic predictions (the full distribution), we use SSREL (Eq. 4 in main body) and15

monotonicity fraction from the discard test (MF; Eq. 6 in main body).16

Figs. S1-S3 show all three scores, computed on the validation data, for all 125 models. From17

these figures we make three general conclusions. First, MF improves (increases) as dropout rate18

for the last layer increases. Second, SSREL improves (decreases) as dropout rates for the last19

two layers increase. Third, FSS deteriorates (decreases) as dropout rates for the last two layers20

increase. Hence, there is a trade-off between the quality of probabilistic predictions (measured by21

MF and SSREL) and deterministic predictions (measured by FSS). Based on Supplemental Figs.22

S1-S3, we judge that the best model has a dropout rate of 0.250 for the last layer, 0.125 for the23

second-last, and 0.375 for the third-last. This model achieves the 35th-best FSS (0.222), 44th-best24

SSREL (0.037), and 65th-best MF (0.895).25

1



Figure S1: Pixelwise (1-by-1) fractions skill score (FSS), measured on validation data, when
using MC dropout to predict convection. Each panel corresponds to a different dropout rate for the
last layer, which is one hyperparameter in the experiment. The other hyperparameters are dropout

rate for the second-last layer (x-axis in each panel) and third-last layer (y-axis in each panel).
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Figure S2: Spread-skill reliability (SSREL), measured on validation data, when using MC
dropout to predict convection. Formatting is the same as in Figure S1.
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Figure S3: Monotonicity fraction, measured by running discard test on validation data, for models
that use MC dropout to predict convection. Formatting is the same as in Figure S1.
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b. Quantile regression (QR)26

We attempt nine sets of quantile levels (Table S1) and ten weights (1, 2, 3, 4, 5, 6, 7, 8, 9, or 10)27

and use a grid search to attempt all 9×10 = 90 possible combinations. These weights (w in Eq. A228

of the Appendix) affect the importance of deterministic vs. probabilistic predictions (i.e., the mean29

prediction vs. quantile-based estimates) in the loss function. For all other hyperparameters, we30

use the settings documented in L21, including no dropout. To compute the model spread, defined31

as the standard deviation of the ypred distribution, we use Eq. 15 of Wan et al. (2014). As for32

the MC-dropout experiment, we use FSS to evaluate deterministic predictions, SSREL and MF to33

evaluate probabilistic predictions.34

Table S1: Sets of quantile levels used in hyperparameter experiment. Every set also includes six
special quantiles: 0.025 and 0.975 (used to compute the 95% confidence interval), 0.25 and 0.50

and 0.75 (used to compute the interquartile range and mean), and 0.99 (used to compute the
psuedo-maximum, which is more robust than the actual maximum). These special quantiles are
not listed in the table. “Increment” is the increment between successive quantile levels that are
not in the special set; ”Total number” is the number of quantile levels, including those in the

special set.

Increment Quantile levels Total number
0.01 0.01, 0.02, 0.03, . . ., 0.99 101
0.02 0.01, 0.03, 0.05, . . ., 0.99 53
0.03 0.01, 0.04, 0.07, . . ., 0.97 38
0.04 0.01, 0.05, 0.09, . . ., 0.97 30
0.05 0.01, 0.06, 0.11, . . ., 0.96 26
0.06 0.01, 0.07, 0.13, . . ., 0.97 22
0.07 0.01, 0.08, 0.15, . . ., 0.99 19
0.08 0.01, 0.09, 0.17, . . ., 0.97 18
0.09 0.01, 0.10, 0.19, . . ., 0.91 17

Figs. S4-S6 show all three scores computed on the validation data, for all 90 models. All three35

figures are noisy, indicating little correlation between predictive quality and the hyperparameters.36

In our judgement, the best model is that with 17 quantile levels and a weight of 6 (w = 6 in Eq.37

A2 of the Appendix), which achieves the 3rd-best FSS (0.264), the 7th-best SSREL (0.025), and a38

perfect MF (1.0).39

5



Figure S4: Pixelwise (1-by-1) fractions skill score (FSS), measured on validation data, when
using QR to predict convection. The x-axis is the number of quantiles, and the y-axis is the weight
used to emphasize the deterministic prediction in the loss function (w in Eq. A2 of the Appendix).
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Figure S5: Spread-skill reliability (SSREL), measured on validation data, when using QR to
predict convection. Formatting is the same as in Fig. S4.
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Figure S6: Monotonicity fraction, measured by running discard test on validation data, for models
that use QR to predict convection. Formatting is the same as in Fig. S4.
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2. Extra case study for classification task40

Figure S7: Winter case study for QR model. All data (predictions, radar reflectivity, and
convection mask) are valid at 2230 UTC 25 Jan 2018. The predictions were made with 1-hour

lead time, thus initialized at 2130 UTC. All formatting is discussed in the caption of Fig. 19 in the
main body.

Fig. S7 shows a winter case for the QR model only1. There is only one thunderstorm in41

the domain and some scattered non-convective precipitation, mainly north and west of the one42

thunderstorm. This case illustrates two properties of the QR model. First, for the mean prediction43

(Fig. S7a) and lower percentiles of the ypred distribution (Fig. S7c-d), the model can produce very44

low probabilities over large areas. In other words, the model has sharpness at both low and high45

probabilities (the latter is shown in Fig. 20 in the main body, particularly panel e). The second46

property is a caveat to the first: at higher percentiles like the 97.5th (Fig. S7e), the QR model47

still produces very high probabilities, even in areas that are obviously2 non-convective, due to the48

aforementioned overspread problem.49

1The same case for the MC-dropout model is trivial, as the MC-dropout model produces almost no probabilities > 0.05, even at the 97.5th

percentile.
2Based on visual analysis of the predictors (satellite brightness temperatures), not shown here.
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