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Abstract16

Template matching has proven to be an effective method for seismic event detection, but17

is biased toward identifying events similar to previously known events, and thus is in-18

effective at discovering events with non-matching waveforms (e.g., those dissimilar to ex-19

isting catalog events). In principle, this limitation could be overcome by cross-correlating20

every segment (possible template) of a seismogram with every other segment to iden-21

tify all similar event pairs, but doing so would be computationally infeasible for long time22

series. Here we describe a method, called the ‘Matrix Profile’ (MP), a “correlate every-23

thing with everything” calculation that can be efficiently and scalably computed. The24

MP returns the maximum value of the correlation coefficient of every sub-window of con-25

tinuous data with every other sub-window, as well as the best-correlated sub-window lo-26

cation. Here we show how MP methods can obtain valuable results when applied to months27

and years of continuous seismic data in both local and global case studies. We find that28

the MP can identify many new events in Parkfield, California seismicity that are not con-29

tained in existing event catalogs and that it can efficiently find clusters of similar earth-30

quakes in global seismic data. Either used by itself, or as a starting point for subsequent31

template matching calculations, the MP is likely to provide a useful new tool for seis-32

mology research.33

Plain Language Summary34

Detecting and cataloguing earthquakes through analysis of seismic data—the shapes35

of seismic waves, recorded by seismometers—is foundational to our understanding of Earth’s36

interior structure and processes, as well as geological hazards such as earthquakes. Meth-37

ods to improve the efficiency and sensitivity of earthquake detection while maintaining38

accuracy, are critical, as seismic data volumes have grown exponentially in recent decades.39

Recently, methods that use recorded earthquakes as template patterns to identify in seis-40

mic data, have proven capable of detecting several times more earthquakes than tradi-41

tional methods. However, such methods require knowledge of the template earthquakes42

ahead of time, and are best at identifying earthquakes whose waveforms are similar to43

the templates.44

We present here a new method, called the ‘Matrix Profile’ (MP), that takes short45

windows of data from a seismic data stream, and compares them to all other parts of46

that data stream, identifying parts of the data that are highly similar. The MP effec-47
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tively identifies earthquakes, even those which are hidden within noise, does not require48

any templates to be provided upfront, and can be efficiently calculated. We demonstrate49

its success at detecting earthquakes in different types of seismic data, and provide prac-50

tical guidelines for applying the method and interpreting the results.51

1 Introduction52

Event detection from seismograms has been a key part of seismology research and53

applications for over a century. Most often the focus has been on earthquakes, but ex-54

plosions, volcanic eruptions, landslides and other sources of seismic waves can also be55

studied. At one time, this was a task largely assigned to human experts—analysts who56

specialized in manually picking the arrivals of specific seismic phases. Smaller-scale stud-57

ies and local seismic networks may still make use of such expertise but as the potential58

applications and quantity of seismic data have grown in tandem, it is often not possi-59

ble or economically viable to rely on manual picking. Thus, there is a growing and presently60

unmet need for automated methods and algorithms that can efficiently mine large data61

volumes for seismic events.62

Many automated and semi-automated seismic event detection methods have been63

developed during the last few decades (Vassallo et al., 2012). Perhaps the most common64

approach uses the ratio between the short-term average (STA) and the long-term aver-65

age (LTA) of the absolute seismogram amplitude (e.g., Allen, 1982; Earle & Shearer, 1994).66

Immediately following the arrival of seismic wave, we expect a sharp increase in the STA67

relative to the LTA, with the latter a measure of the pre-event noise in the seismogram.68

Many earthquake monitoring networks rely on the STA/LTA method, despite numer-69

ous efforts toward developing more sensitive and advanced approaches. Seismic networks70

produce catalogs that are often the basis of other products relating to seismic hazards,71

making the accuracy and reliability of catalogs crucial. Considering the power law in-72

crease of the volume of seismic data in recent years (e.g., Hutko et al., 2017), there is73

an urgent need for improved algorithms to process seismograms for event detection.74

One widely used approach for event detection is template matching (also known75

as ‘matched filtering’ in the seismological literature and ‘query search’ in the computa-76

tional data mining literature). In recent years, the seismological community has adopted77

template matching methods in order to detect smaller or more emergent events than those78
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found in standard catalogs. The method uses the waveforms of known events as tem-79

plates (‘motifs’ in the data mining literature), which are cross-correlated with contin-80

uous seismic waveforms in order to identify other similar events, indicated by peaks in81

the cross-correlation function (Shelly et al., 2006, 2007; Gibbons & Ringdal, 2006). Each82

earthquake recording represents a convolution between the earthquake source, the path83

taken by seismic waves, and the instrument that recorded it. Thus, this method is par-84

ticularly effective at identifying events with similar mechanisms and/or locations to the85

template event, and can reveal similarly shaped events with disparate amplitudes, some-86

times at or below the noise level.87

In a recent study, template matching using cataloged earthquakes as the templates88

identified over 10 times more earthquakes than were present in the original catalog (Ross89

et al., 2019). While template matching is computationally intensive, several template90

matching software packages have become available, the most advanced of which exploit91

multi-core CPU or GPU parallelism to achieve high performance (e.g., Beaucé et al., 2018;92

Chamberlain et al., 2018; Shakibay Senobari et al., 2019). These codes can calculate the93

exact cross-correlation function for multiple known templates simultaneously, with the94

amount of available RAM and number of available cores as the main factors that limit95

performance. Conceptually, template matching can only detect new events that are sim-96

ilar in shape to the templates themselves, which are known cataloged events. They are97

far less effective at detecting new events whose waveforms are dissimilar to the templates.98

Consequently, the newly detected events tend to cluser near existing events, and events99

in locations that lack previously cataloged events tend to remain sparse; the resulting100

earthquake catalogs tend to exhibit high spatial variance in terms of completeness.101

Developments in the field of machine learning offer another potential means to in-102

crease the number of seismic events detected in continuous seismic waveforms. In par-103

ticular, Deep Learning (DL) approaches using Convolutional Neural Ntworks (CNNs)104

have been successfully trained to identify and pick P- and S-wave onsets (e.g., Perol et105

al., 2018; Ross et al., 2018; Dokht et al., 2019; Zhu et al., 2019). DL approach can iden-106

tify more events than were originally detected in network catalogs (Mousavi et al., 2020),107

suggesting opportunities to improve event detection. In contrast to methods such as tem-108

plate matching, DL approaches often suffer from the ‘black-box problem’ (Alzubaidi et109

al., 2021; Sarker, 2021), wherein the results lack interpretability and cannot be traced110

back to how they were obtained. Unlike other machine learning systems which make de-111
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cisions based on logical rules, DL models make decisions based on a learned represen-112

tation of the data in a neural network, which is not very interpretable for humans (Chakraborty113

et al., 2017). In fields such as healthcare and medicine where interpretability and the un-114

certainty scale (statistics of output results) are crucial, lack of interpretability can be more115

problematic (Chakraborty et al., 2017; Sarker, 2021). In seismology, reliability and un-116

certainty scaling play an important role, as the final results are sometimes used for haz-117

ard and disaster assessments. Further, DL models require considerably more training data118

than other machine learning approaches (e.g., Alzubaidi et al., 2021; Sarker, 2021): to119

ensure robustness, a large training data set must include a wide variety of representa-120

tions (classes) and numerous representative examples (templates) for each class. When121

seismic data characteristics change (e.g., network changes, noise characteristics at dif-122

ferent stations), the versatility of an existing trained model may be compromised. While123

all these issues with DL have been identified and discussed in many different fields, prag-124

matic and computationally efficient solutions remain an open research problem (Alzubaidi125

et al., 2021; Sarker, 2021).126

Another potential approach to is to identify patterns (motifs) in seismic waveforms,127

with the recognition that earthquakes are more similar to other earthquakes than they128

are to noise. In a recent series of studies, a fast motif discovery methodology was devel-129

oped that made use of ‘fingerprinting’ – converting seismic time series to small and dense130

proxies, or ‘fingerprints’ and then performing Locality-Sensitive Hashing (LSH) on them131

(e.g., Yoon et al., 2015; Bergen & Beroza, 2018). LSH is a fast approximate nearest neigh-132

bor search method that reduces the similarity search dimensions by mapping the domain133

of the similarity search to smaller domains containing similar objects with a high prob-134

ability (Indyk & Motwani, 1998; Gionis et al., 1999). Although the LSH can speed up135

similarity search, it can generate both false positive and false negative results. LSH also136

requires careful selection of a number of tuning parameters that strongly influence the137

success of the search, and whose values may vary for different regions, data sets and ap-138

plications. The tuning parameter selection process requires visual inspection and val-139

idation against the results of other methods, which we consider to be a significant draw-140

back.141

In this study we describe and illustrate an alternative method for seismic event de-142

tection, the ‘Matrix Profile’ (MP), which overcomes the shortcomings of template match-143

ing, DL approaches, and LSH. The MP offers sensitivity comparable to template match-144
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ing, but does not require or utilize a priori event templates. Further, the MP is inter-145

pretable, does not generate false positive or negative results, and relies on a single pa-146

rameter. The MP is similar to the autocorrelation method (e.g., Brown et al., 2009), which147

we further describe below, in that each sub-window of continuous waveform data becomes148

a potential template, but it has a substantially lower computational overhead enabling149

the rapid analysis of very large seismic datasets. Even for signals below the noise level,150

the MP can highlight repeated or near-repeated events in continuous data sets. Using151

data from both Parkfield, California, and global seismic network stations, we show how152

the information provided by MP processing can be used for event detection and other153

seismological applications.154

2 The Similarity Matrix and the Matrix Profile155

2.1 The Similarity Matrix156

In the absence of a priori templates, we can attempt to identify repeating patterns157

in seismic waveform data by autocorrelation, i.e., by comparing subsets of the waveform158

to other parts of the waveform. This approach was introduced by Brown et al. (2008)159

and is mainly used to search for low frequency earthquakes (Brown et al., 2009; Royer160

& Bostock, 2014). Since the autocorrelation method is computationally intensive, it has161

only been applied to short periods of continuous seismic data (e.g., one hour; Royer &162

Bostock, 2014).163

The results of such ‘all subsequences comparisons’ within a single continuous wave-164

form can be represented as a ‘Similarity Matrix’ of correlation coefficients (CCs), or any165

other similarity measure such as Euclidean distance, between all pairs of subwindows in166

a data vector. In other words, any subwindow of length m in a data set of length n (where167

n >> m) is compared with all other length-m subwindows yielding a matrix168

Mij = CC(xi, xj)m (1)

where CC indicates the correlation coefficient, and i and j are the locations of subsequences169

within the data vector x.170

The Similarity Matrix can be computed at maximal resolution by sliding the sub-171

window by a single data point, or at a lower resolution by skipping over some data points.172
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In the former case, there will be approximately n individual subwindows that will be com-173

pared with approximately n−1 other subwindows, and the resulting Similarity Matrix174

will comprise ∼ n(n − 1) CCs. While the resulting Similarity Matrix will have com-175

plete information about the self-similarity within a data vector, much of the informa-176

tion will be redundant or unimportant. For example, the similarities between parts of177

the data that only contain background seismic noise with other parts of the dataset do178

not have useful information for event detection purposes, but may comprise the major-179

ity of the computed CCs.180

Another drawback is that the Similarity Matrix grows in size with the square of181

the length of the data vector, requiring very large amounts of memory and storage ca-182

pacity, even for modest data vector lengths. For a brute force time domain method for183

computing CCs, the time complexity for computation of the similarity matrix is O(n2m)184

and the memory complexity (memory required) is O(n2). A time series data vector for185

24 hours of data from a single seismometer component sampled at 20 Hz comprises n =186

24 × 60 × 60 × 20 = 1, 728, 000 data points. The corresponding similarity matrix will187

have n2 ≈ 2.986×1012 elements, and assuming it is stored as single precision floating188

point numbers, will require 4 × 2.986 × 1012 ≈ 1.194 × 1013 bytes of storage, equiv-189

alent to ∼ 11, 200 GB of RAM. Thus, computing the Similarity Matrix for a time se-190

ries longer than just a few hours rapidly becomes impractical, despite the success of sim-191

ilar approaches at detecting new events (e.g., Brown et al., 2009).192

Clearly, the Similarity Matrix and related methods have the capability to identify193

events for which we have no prior templates. The probability of detecting more events194

will only increase with the length of the time series being analyzed, but without some195

means of reducing the volume of the output, the approach cannot scale. The Matrix Pro-196

file, a product derived from the Similarity Matrix, which returns self-similarity informa-197

tion about a time series in a much more efficient format, overcomes many of these lim-198

itations.199

2.2 The Matrix Profile200

The Matrix Profile (hereafter, ‘MP’) is an approach developed in the computer sci-201

ence community in recent years to extract exact self-similarity information from a time202

series in an efficient manner (e.g., Yeh et al., 2016; Zhu et al., 2016). All of the subse-203
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quence comparisons necessary to assemble the full Similarity Matrix are evaluated, but204

to minimize storage requirements, only the maximum CC value for each subsequence is205

retained, along with indexing information which indicates the position of the most sim-206

ilar subsequence. Using this method, the subwindow is shifted by a single data point for207

each subsequence comparison. The immediate vicinity of the subsequence – points in the208

time series that are less than one subsequence length away – are excluded from the re-209

sults, as we would expect them to be very similar. The name ‘Matrix Profile’ originates210

in the idea that this output is a derived product, i.e., a ‘profile’, of the full Similarity Ma-211

trix – the row vector that one would obtain by searching for the maximum value of each212

column of the Similarity Matrix, excluding the diagonal and its immediate neighbors.213

The main advantage of the MP compared to the Similarity Matrix is storage ef-214

ficiency, as both intermediate and final outputs have a linear, rather than quadratic, stor-215

age requirement. SCAlable Matrix Profile (SCAMP; Zimmerman et al., 2019) is the fastest216

algorithm to compute the MP, and can be deployed at the data center scale (multi-node217

CPU or GPU). Using SCAMP, MP values can be computed using CC (hereafter r value),218

which is the same similarity measure used for standard template matching studies.219

In essence, the MP indicates the extent to which each subsequence in a larger time220

series is repeated at least once. Here we explore several applications of this feature in221

seismology, as it can be a high-quality indicator to distinguish meaningful seismic events222

from noise and to identify pairs or clusters of repeating events. We demonstrate in sev-223

eral examples below how the MP can be used to mine seismic data to detect new and224

undiscovered events.225

3 The 2004 Parkfield earthquake and aftershocks226

For a local-scale dataset, we use data from the Parkfield region in central Califor-227

nia, one of the best instrumented places in the world due to the Parkfield Earthquake228

Prediction Experiment (Bakun & Lindh, 1985). Specifically, we use data from the Park-229

field High Resolution Seismic Network (HRSN), a dense array of borehole seismometers,230

due to their high sensitivity and low noise levels. We band-pass filter the data between231

2 and 8 Hz, a frequency range suitable for detecting both local earthquakes and low fre-232

quency earthquakes (LFEs) and resample the waveforms to 20 Hz. We set the MP query233

length at 100 samples, equivalent to 5 seconds of data—sufficiently small to detect events234
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with magnitudes below zero as well as low-frequency earthquakes (Shelly et al., 2009),235

but also capable of detecting aftershocks up to Mw ∼ 5.0. We computed MP results236

for two different time periods:237

1. We use 90 days of continuous HRSN data from stations LCCB, SMNB, and VARB238

and one Northern California network station (PGH) from 2004-08-25 to 2004-11-239

22. This includes about 1 month before the 09-28 M6 Parkfield mainshock and240

the first two months of aftershocks. The experiments were conducted on a system241

with two NVIDIA P100 GPUs and took approximately 12 hours for each station242

for 155,520,000 samples.243

2. We use 580 days of horizontal component seismic data from HRSN station VCAB244

starting on 2003-11-30, thus including about 9 months of Parkfield aftershocks.245

For this data set, the experiment took 375.6 GPU hours on 40 NVIDIA V100 GPUs246

on an AWS EC2 spot instance fleet. Spot jobs for this particular data set took247

2.5 days, since the instances at the time were in high demand. When instances248

were not in high demand, the spot job time was around 10 hours for a similar ex-249

periment (Zimmerman et al., 2019). In order to allow for further exploration, we250

have placed this data set in a public repository (https://github.com/Naderss/251

MP4Seismo).252

Figure 1 shows an example of the MP output for Parkfield station SMNB. At each253

time point ti, the maximum value of the correlation coefficient (r) is returned for the cross-254

correlation of the window from ti to ti+m (where m = 100 for 5 s of data) with the en-255

tire time series (excluding times near ti to avoid the peak in r at zero lag), together with256

the location (index) of the starting point for the window that gives the maximum cor-257

relation. The top panel of Figure 1 shows the r values, the middle panel is the filtered258

seismogram, and the bottom panel shows the index values for r ≥ 0.7. The predicted259

P arrival times from 4 events in the Parkfield template-matched catalog of Neves et al.260

(2023) are shown as the vertical blue tick marks. Notice that the MP r values rise at the261

time of each event, indicating that the time series is correlated with some other part of262

the time series at those times. Often these index values change depending upon the ex-263

act location of the template window, indicating that there are multiple locations within264

the time series that are well-correlated with the template event.265
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Figure 1. Matrix Profile (MP) output for 130 s of data from Parkfield station SMNB (start-
ing at 2004-10-01 11:37:42, about 3 days after the M6 mainshock). (a) The MP correlation
coefficient (r), showing the maximum correlation of a sliding 5 s-window with the rest of the se-
lected 90-day-long seismogram. (b) The SMNB seismogram during the same time period. (c) The
MP index values, showing when in the 90-day period (see y-axis) the maximum correlation with
the sliding window in (a) occurred. The horizontal dashed line in (a) shows a reference r value of
0.7. The vertical tic marks at the top of panel (b) show the predicted P-wave arrival times and
magnitudes of four events from the template-matched earthquake catalog of Neves et al. (2023).
The horizontal line to the right of (c) indicates the time of window (a) within the full 90 days of
data.

There is an apparent event at about 115 s in Figure 1 (seen in both the seismogram266

and the MP r values) that is not listed in either the NCSN or Neves et al. (2023) cat-267

alogs even though it is comparable in amplitude to the known event at about 25 s. This268

event could also have been detected using an STA/LTA filter but the MP output has the269

advantage of showing that the pulse is correlated with other signals in the data, which270

allows for additional processing options. This is illustrated in Figure 2, which shows MP271

results near a M 0.9 NCSN catalog earthquake (2004-10-02 11:01). For the value of ti272

shown as the left red vertical tick mark in panel (a), the corresponding index value is273

shown as the triangle in panel (c), indicating the best waveform match occurs about 18274

days later (2004-10-20). MP results for this index time are shown in panels (d)–(f). The275

time series from panel (a) is plotted in blue in order to compare with the correlated time276

series at the later time. The waveforms are nearly identical, as might be expected given277

the high r value (0.9627) of the correlation. Notice that the high correlation continues278

into the earthquake coda, beyond the time window used in the MP calculation to iden-279

tify the correlated event.280
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Figure 2. An example of how similar earthquakes can be extracted from MP output. (a) MP
r values for about 21 s of data from Parkfield station SMNB (starting at 2004-10-02 11:01:18,
about 4 days after the M6 mainshock), which includes an NCSN catalog earthquake of M 0.9.
The vertical red tick marks show the specific 5-s window we use to extract the index value used
in panels d–f. (b) The SMNB seismogram during the same time period. (c) The MP index val-
ues, showing when in the 90-day period (see y-axis) the maximum correlation with the sliding
window in panel (a) occurred. The triangle (and arrow labeled with 2) indicates the index value
at the start of the time window shown in panel a and used for panels d–f for Event 2. Panels
(d) – (f) are similar to panels a–c, but show the results at the time defined by the index value in
panel c, which resolves an earthquake on 2004-10-20 (Event 2) that is very similar to the 2004-
10-02 event (Event 1). For comparison, the seismogram from panel a is plotted in red in panel
e, showing that it is nearly identical to the later record (plotted in black). Panels (g) – (h) are
similar to panels e–f, but show the results at the time defined by the index value marked by the
arrow and number 3 in panel a, which point to another similar earthquake occurring on 2004-11-
05 (Event 3).
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This figure illustrates several properties of the MP results for the Parkfield data.281

As is known from previous studies of repeating earthquakes (e.g., Nadeau et al., 1995;282

Nadeau & Johnson, 1998; K. H. Chen et al., 2010) and template-matched catalogs (Peng283

& Zhao, 2009; Meng et al., 2013; Neves et al., 2023), there are many earthquake pairs284

in the Parkfield seismicity with very similar waveforms. Often, multiple matching events285

can be extracted from the MP results from a single starting event. For example, if we286

move the time window in panel (a) to the left, then the maximum correlation (r = 0.9618)287

is found for a different matching event, which occurred on 2004-11-05. The waveform match288

to the panel (a) event is shown in panel (h). As shown in panel (f), additional similar289

events can be obtained by checking the index values from the MP results for the match-290

ing events. In this way, a cluster of similar events can be obtained, even if the MP re-291

sults do not directly connect every pair of events in the cluster.292

Often the actual peak (maximum) in the MP r values occurs at the start of a much293

broader plateau with nearly constant r. This can occur when the leading edge of the cross-294

correlation window crosses the first arrival (usually the P-wave). The first few cycles of295

the P-wave arrival can be very similar for earthquake pairs that are not so well corre-296

lated when more of the wavetrain is included in the cross-correlation window. Thus more297

reliable results for identifying truly similar events are obtained from later parts of the298

MP plateau, which represent cross-correlations that include substantial parts of the earth-299

quake signal, not just the initial arrivals. During these times, the index values tend to300

be relatively stable for several tenths of seconds or longer, whereas greater variability in301

the index values in typically seen when only the initial part of the P-wave is included302

in the cross-correlation window.303

3.1 Extracting Parkfield similar event clusters from MP results304

The MP returns an enormous amount of information about correlated waveforms305

throughout a time series, which can be used in a variety of ways. For our Parkfield data,306

one goal is to identify clusters of similar earthquakes, which could then be compared to307

existing earthquake catalogs. After some experimentation, we adopted the following ap-308

proach:309

1. We define a minimum correlation coefficient, rmin and consider only MP results310

with r ≥ rmin. We tried rmin values of 0.99, 0.95, and 0.90. As might be expected,311
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larger values of rmin lead to more highly correlated waveforms, but return smaller312

numbers of similar events.313

2. Beginning with the first point (t = 0 and proceeding through the time series one314

point at a time, we save times, tpeak, from the MP r peaks that define similar wave-315

forms that meet the following criteria: (a) there are at least 40 points (2 s) with316

r ≥ rmin before tpeak, (b) the next r value is less than the current r value or the317

index value changes to a point at least 10 s away from the current index value,318

(c) there are no existing saved tpeak values in which the current time is within 10 s319

of tpeak and the corresponding index values are also within 10 s.320

3. This list of times (points in the MP time series) defines a series of similar event321

pairs. We begin by defining each of these pairs as a cluster of two events. We then322

iteratively combine clusters in which the time of either event is within 3 s of the323

time of either of the events in the other cluster and continue iterating until no more324

clusters are combined. In this process, we also use the relative timing information325

to compute time shifts for the events within each cluster to align the waveforms.326

Figure 3 shows one of the similar event clusters extracted from the SMNB time se-327

ries using rmin = 0.95. In this case, one M 0.9 event was in the NCSN catalog and one328

smaller event was included in the Neves et al. (2023) catalog, but there are 5 additional329

events not contained in these catalogs. Note that the small bump in the 2004-10-02 event330

at about 0.7 s is not seen for the other earthquakes, an indication this is likely a small331

precursory event. This inference is only made possible by inspecting the group of sim-332

ilar events rather than the 2004-10-02 event by itself. MP methods provide an efficient333

way to extract these similar events.334

Most of the similar event clusters that we have identified in the Parkfield MP re-335

sults contain events that are already in existing catalogs but also often contain additional336

events. Presumably these events could have been found using template matching (but337

perhaps did not meet signal-to-noise or other requirements). However, we also find ex-338

amples of similar clusters in which none of the events are in existing catalogs, as shown339

in Figure 4 from MP results for station VARB using rmin = 0.95. None of these 7 events340

are in the NCSN or Neves et al. (2023) catalogs and thus would be very difficult to iden-341

tify without using MP, which does not require any pre-defined template events.342
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   104828998
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   125693042
2004 11  5 17 44 12

   133851377
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Figure 3. Seven earthquakes with similar waveforms obtained from MP results from 90 days
of data from Parkfield station SMNB. Seismogram sample number and data/time for the plotted
start times are shown to the left. Seismograms are self-scaled to the same maximum amplitude.
Predicted P arrival times for a M 0.9 NCSN catalog earthquake and a M 0.0 earthquake from the
template-matched catalog of Neves et al. (2023) are shown as red and blue ticks, respectively.
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    93952071
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2004 10 24 17 15 26

   105639394
2004 10 25  3 12 49

Figure 4. Seven earthquakes with similar waveforms obtained from MP results from 90 days
of data from Parkfield station VARB. Seismogram sample number and data/time for the plotted
start times are shown to the left. Seismograms are self-scaled to the same maximum amplitude.
None of these earthquakes are included in the NCSN catalog or the template-matched catalog of
Neves et al. (2023).
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Our Parkfield MP results mainly yield earthquake-like signals but also can extract343

seismometer calibration pulses and other artificial signals. One of the more interesting344

signals that MP identifies is tremor, which is known to occur in the Parkfield region (e.g.,345

Nadeau & Dolenc, 2005; Nadeau & Guilhem, 2009; Shelly, 2009; Shelly & Hardebeck,346

2010a; Shelly, 2017). Figure 5 shows MP output for station VARB at the time of a tremor-347

like event. Notice that the MP r value rises more slowly than in the earthquake exam-348

ples of Figures 1 and 2, reflecting the emergent and “ringy” nature of the tremor signal.349

Figure 6 shows a set of tremor events from 2004-10-21 to 2004-11-16 that our cluster ex-350

traction procedure obtained from the VARB MP results with rmin = 0.90 and Figure 7351

shows a different set of tremor events (mostly occurring on 2004-07-18) obtained from352

the VCAB MP results with rmin = 0.95. Because the tremor signal is nearly monochro-353

matic, high correlation values are obtained over a 5-s window even when the signals are354

not “similar” in the traditional sense. In this case, the optimal time shifts are not well-355

defined as can be seen in the shifting positions of the tremor envelopes in Figure 7.356

3.2 Parkfield discussion357

Parkfield is one of the most well-studied regions of active seismicity in the world358

and has been the target of many previous studies, making it a good test case for the ap-359

plication of the MP in seismology. We find that MP calculations can readily extract groups360

of similar earthquakes, many of which are not contained in existing catalogs. Fully ex-361

ploiting the power of our Parkfield MP results is beyond the scope of this paper, but it362

seems very likely that one could obtain more complete catalogs of similar events, which363

would benefit analyses that are based on properties of these events, such as changes in364

their repeat times (e.g., K. H. Chen et al., 2010). Studies that utilize repetitive earth-365

quakes, such as locating faults and determining their geometries at depth, studying time-366

dependent fault slip, analyzing changes in crustal velocity structures over time, or un-367

derstanding earthquake physics in general (Vidale et al., 1994; Anooshehpoor & Brune,368

2001; T. Chen & Lapusta, 2009; Khoshmanesh et al., 2015), would be affected directly369

or indirectly by this. A more detailed analysis of our Parkfield MP results would involve370

integrating the results from different stations into a single catalog of similar events and371

locating and assigning magnitudes to any newly identified events. If desired, the MP-372

identified event times could be used to perform additional cross-correlation calculations373

to obtain a more complete measure of the similarity of all event pairs within each clus-374
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Figure 5. An example of how tremor can be extracted from the Parkfield MP output. (a)
MP r values for 25 s of data from Parkfield station VARB (starting at 2004-10-30 01:33:36). The
vertical red tic marks show the specific 5-s window we use to extract the index value used in
panels d–f. (b) The VARB seismogram during the same time period. (c) The MP index values,
showing when in the 90-day period (see y-axis) the maximum correlation with the sliding window
in panel a occurred. The triangle indicates the index value at the start of the time window shown
in panel a and used for panels d–f. Panels (d) – (f) are similar to panels a–c, but show the results
at the time defined by the index value in panel c, which resolves another tremor-like pulse on
2004-11-08. For comparison, the seismogram from panel a is plotted in red in panel e.
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Figure 6. Examples of tremor recorded by Parkfield station VARB, as grouped into an event
cluster using the MP output. Date/times and sample numbers are shown to the left for the start
of each time window. Seismograms are self-scaled to the same maximum amplitude.
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Figure 7. Examples of tremor recorded by Parkfield station VCAB, as grouped into an event
cluster using the MP output. Date/times and sample numbers are shown to the left for the start
of each time window. Seismograms are self-scaled to the same maximum amplitude.
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ter, differential amplitude information, and more precise cross-correlation timing (i.e.,375

subsample accuracy).376

We have not yet explored the limits of how low a value of rmin will still yield use-377

ful results. The number of similar waveform pairs increases enormously for smaller val-378

ues of rmin, but even at rmin = 0.8 the vast majority of the MP peaks appear to repre-379

sent real geophysical signals and not simply random noise fluctuations. However, poor380

signal-to-noise in the associated seismograms hampers identification and timing of phase381

arrivals. In such cases, it may be possible to stack event waveforms from the same sim-382

ilar event cluster in order to reduce the noise levels and facilitate phase picking, but we383

defer trying this idea to future work.384

4 Application to global teleseismic events385

To demonstrate the capability of the MP method to detect teleseismic events, we386

select 20 Global Seismic Network stations (ASL/USGS, 1988), broadly distributed across387

the globe. For each, we download vertical component (VHZ) data at a standard sam-388

ple rate of 1 Hz, and band-pass filter the data from 20 sec to 500 seconds, filling any data389

gaps with random noise using uniformly distributed random numbers. We resample the390

data to a 4-s sample interval, for which 12 years of data (2007–2018) represents ∼157391

million data points. We set the MP query length at 150 samples, equivalent to 600 s (10392

minutes) of data. Using two P100 GPUs, it took around 2 hours for each station to com-393

pute the MP for this data set.394

Figure 8 shows MP results from station ESK in Scotland for a pair of M ∼ 5.2395

earthquakes occurring in central America in 2007 and 2017 at an epicentral distance of396

78 degrees. Notice the very similar surface waves, as shown by the red and black lines397

in panel (e), with the waveform similarity including the body waves in front of the Rayleigh398

wave arrival and the surface-wave coda. The MP indices for the 2007 event consistently399

point to the 2017 event, but the MP indices for the 2017 event point to several events,400

not simply the 2007 event. This index information can be used to extract similar event401

clusters. We follow the same approach described in the Parkfield section, requiring in402

the global case that 50 points (200 s) of MP r values exceed rmin before each saved tpeak403

value and that saved tpeak values corresponding to nearly the same MP index be at least404
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30 s apart. We used a maximum allowed separation time of 250 s to join events between405

clusters.406

Figure 9 shows the similar event cluster that contains the two events shown in Fig-407

ure 8. All seven events are contained in the ANSS catalog (US Geological Survey, 2017)408

and range from magnitude 4.9 to 6.0. In contrast to our Parkfield results, our initial anal-409

ysis of similar event clusters obtained from the ESK MP results using rmin does not iden-410

tify any events not already in existing catalogs. It is possible that new events could be411

identified if we examine lower values of rmin, but we defer this to future work. However,412

the MP results are nonetheless useful because they efficiently identify groups of similar413

events that are suited for more detailed processing. For example, waveform cross-correlation414

could be used to improve their location accuracy (e.g., Waldhauser & Schaff, 2007) or415

they could be used to examine possible temporal variations along seismic ray paths, such416

as the PKP paths from earthquake doublets used to examine inner-core differential ro-417

tation (e.g., Zhang et al., 2005; Tkalvcic et al., 2013; Yang & Song, 2020; Pang & Koper,418

2022).419

4.1 Detection of unusual teleseismic events420

In our global event detection experiment (Section 4), we expect significant move-421

out of peaks in the MP between stations at different distances for the onsets of the same422

event. In order to account for these variable arrival times, we perform a alignment pro-423

cedure prior to stacking the MPs for all stations (e.g., Shearer, 1994; Ekstöm, 2006). In424

essence, our method, which we call ‘move-max’ (moveout for maximum cross-correlation)425

uses a grid search and a local velocity model to find potential source location(s) and their426

corresponding time shifts that result in a maximum value of the stacked MP. A snap-427

shot of four days of stacked MPs for 12 stations is shown in Figure 10. In this figure, it428

can be seen that each stacked MP peak is associated with a specific teleseismic event.429

Notably, among the detected events we identify the 2018 Mayotte seismovolcanic event430

– a very long-period seismic event that was not originally detected by seismic networks431

due to its emergent onset, but repeated several times in the subsequent months (Lemoine432

et al., 2020). As we can see in Figure 10, the stacked MP for the Mayotte event has a433

clear peak, showing the utility of the method for identifying unusual seismic events.434
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Figure 8. An example of how similar teleseismic earthquake pairs can be extracted from MP
output. (a) MP r values for about 2500 s of data from station ESK in Scotland (starting at 2007-
03-31 05:28:48), which includes an ANSS catalog earthquake of M 5.1. The red tic marks show
the specific 600-s window we use to extract the index value used in the other panels. (b) The
ESK seismogram (filtered to periods of 20 to 500 s) during the same time period. (c) The MP
index values, showing when in a 12-year period (see y-axis) the maximum correlation with the
sliding window in panel (a) occurred. The triangle indicates the index value at the start of the
time window shown in panel a. Panels (d) – (f) are similar to (a) – (c), but show the results at
the time defined by the index value in panel c, which resolves a M 5.3 earthquake on 2004-11-05
that is very similar to the 2004-10-02 event. For comparison, the seismogram from panel a is
plotted in red in panel e, showing that it is nearly identical to the later record (plotted in black).
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Figure 9. Seven earthquakes with similar waveforms obtained from MP results from 12 years
of data from station ESK. Seismogram sample number and data/time for the plotted start times
are shown to the left. Seismograms are self-scaled to the same maximum amplitude. All of these
earthquakes are in the ANSS catalog and there predicted Rayleigh wave arrivals time are shown
as the vertical tic marks, labeled with magnitude, catalog source depth (km), and epicentral dis-
tance (degrees).
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Mw 6.7 Svalbard
A cluster of global events

Mayotte event Mw 6.7 N Atlantic Ocean

Figure 10. Teleseismic event detection using the matrix profile (MP) method. Shown are
stacked MPs from 19 Global Seismic Network stations from a four day period in November 2018.
Each MP is calculated from 12 years of data at 0.25 Hz sample rates and band-pass filtered be-
tween 20 and 500 second periods. We then apply a move-max filter similar to the method used
by Shearer (1994) and Ekstöm (2006) to account for moveout of different seismic sources, and
stack them. The MP stack increases when a large teleseismic event occurs (including catalogued
and uncatalogued events). Dashed red and solid black vertical lines indicate the origin times of
global catalogued events with magnitude below and above 5.5, respectively.

In practice, for novel event detection we need to deal with the large number of peaks435

associated with regular events (e.g., earthquakes). A user should first eliminate the sec-436

tion of data created by regular catalogued events in order to search for novel events among437

those resulting from MP thresholding. There may also be some peaks that correspond438

to regular earthquakes with smaller magnitudes that go undetected by traditional meth-439

ods of event detection, but could be identified by template matching. As a result, the440

process of removing known events from MP detected events in order to search for novel441

events might become time-consuming. A modified version of MP was recently developed442

by Mercer et al. (2022) which checks for novelty when calculating MP by concatenat-443

ing continuous waveforms from known templates. The output of this algorithm is a ‘con-444

trast profile’, which is useful for novel seismic event detection as both the catalogued events445

and the template-matched events of the catalog automatically are covered (i.e., do not446

result in a peak in the MP; Mercer et al., 2022).447
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5 Practical considerations for seismology448

In terms of principle and framework, the MP works in the same manner as stan-449

dard template matching for seismic data. Preprocessing and experimental setup are there-450

fore similar to those involved in template matching. Here, however, we emphasize some451

of the most important technical details regarding the setting up of MP experiments.452

5.1 Selecting the subsequence length453

Unlike other methods that have multiple tunable parameters, the MP method only454

has one parameter, the subsequence length. Our choice of subsequence length can be guided455

by some general principles – for example, maximizing the difference between the back-456

ground noise MP value (BNMP) and the peak MP values for the events of interest. If457

the subsequence length is long then the sliding window will include any noise before or458

after the event and that can lower the CC between similar events substantially. Conversely459

if we use a very short subsequence length the BNMP value increases as the probability460

that two random noise sections with fewer data points matches with each other increases.461

Both of these issues are encountered when regular template matching is used to deter-462

mine the template length, and they are usually remedied by choosing a length that in-463

cludes most of the signal for smaller targeted events (e.g., Ross et al., 2019). As a re-464

sult of the same underlying reason, we recommend (and use) a subsequence length be-465

tween 50 and 100 percent of the shortest expected signal duration.466

For our large experiment on the Parkfield data set, we set the subsequence length467

to 5 seconds (100 data points at our 20 Hz sample rate). In determining this length, we468

considered the duration of small local events below magnitude zero as well as the du-469

ration of LFEs observed at nearby stations (Shelly et al., 2009; Shelly & Hardebeck, 2010b).470

We observe that the BNMP range is about 0.55 to 0.7, compared with MP values above471

0.9 for background seismicity and aftershocks of the 2004 Parkfield earthquake (Figure 1472

and Section 5.4), providing sufficient contrast to enable event detection.473

5.2 Selecting sample rate and band-pass frequency range474

As with most seismic data mining algorithms, lowering the sample rate, and there-475

fore reducing the number of data points, can significantly reduce the run time for cal-476

culating the MP. Therefore in order to calculate the MP efficiently, we recommend (and477
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use) downsampling of the data to the Nyquist frequency of the highest frequency fea-478

ture that we are interested in. For example, if we are mining seismic data to search for479

events below 10 Hz (e.g., local events with M ∼ 1 or LFEs), the sample rate can be480

set to 20 Hz. In the case of the Parkfield experiment, our target subsequence duration481

was 5 seconds and our filter band was 2–8 Hz, and therefore we downsampled the data482

from 40 Hz (original sample rate) to 20 Hz.483

Figure 11. Effect of bandpass filters and microseisms on the matrix profile (MP). MPs shown
here are calculated for 4 hours of local seismic data from station PGH, from Parkfield, CA, using
frequency bands of (from top to bottom) 0.1–1 Hz, 0.5–5 Hz and 2–10 Hz, and a sample rate of
20 Hz. Red and green lines indicate the NCSN catalog events (at hypocentral distances <70 km
from the station) origin time and the P arrival phase, if available, respectively.

Similar to most other seismic data mining applications, selecting an appropriate484

frequency band-pass filter is a routine and important preprocessing step before apply-485

ing the MP method. It is trivial to select a frequency range in which the frequency con-486

tent of the target events is higher than the background noise. For example, 1–15 Hz is487

commonly used for local earthquake detection (e.g., Schaff & Waldhauser, 2005) and for488

LFE detection 2–8 HZ has been used in previous studies (e.g., Shelly et al., 2009). In489

terms of template matching of local events, the choice of bandpass appears to vary be-490

tween groups based on expert opinion or preference. (Peng & Zhao, 2009), for example,491

used 2-4 HZ whereas (Ross et al., 2019) used 2-15 HZ. To the best of our knowledge, the492

effects of the bandpass filter on template matching results have not been extensively stud-493

ied. As a result of the MP, we are able to discover the dynamic correlation between noise494
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and noise, and between noise and event signals, and therefore can provide guidance in495

choosing the appropriate bandpass for cross-correlation analysis.496

This is illustrated in Figure 11. In the lower frequency bands (top and middle pan-497

els), which overlap with the microseismic band, background noise MP (BNMP) values498

are consistently high (0.80–0.95), indicating that the background noise is repeating and499

dominating the MP – indicating that both waveforms are affected by microseisms. In-500

terestingly, in these cases, the MP values at the arrival times of seismic phases are lower,501

particularly in the 0.5–5 Hz case. This indicates that the presence of coherent seismic502

radiation from earthquakes in that frequency range disrupts the microseisms, and leads503

to temporarily less similar waveform subsequences. The 2–10 Hz frequency range (bot-504

tom panel), is optimal for capturing local earthquakes and excluding microseisms; the505

BNMP is low (∼ 0.5) and significantly higher MP peaks (≥ 0.75) coincide with most of506

the catalog events, as well as highlighting a few possible uncatalogued events – showing507

that the MP is sensitive to local events even when a short waveform is examined. As a508

result of this, many true events can be misidentified or noise sections can be viewed as509

true events if the data are not bandpassed carefully for template matching purposes.510

5.3 Selecting the time series length511

The main reason for the success of the MP and other similarity search-based meth-512

ods in seismic event detection is that events with similar locations have similar waveforms—513

the source-receiver path having the strongest influence on the recorded signal. The like-514

lihood of the MP method identifying a good match, even to an event in a location where515

seismicity is infrequent, increases as the length of the time series, and thus the number516

of recorded events, increases. Aside from the cost of computation, the only disadvantage517

of including more data in the MP calculation is the possibility that individual sections518

of background noise may find a better match, thereby increasing the level of the BNMP519

as a whole (Figure 12). The experiment for station VARB at Parkfield demonstrates,520

however, that the MPs for background noise and for seismic events have a high enough521

contrast for event detection, showing that increasing the length of the data time series522

does does not create a practical issue for event detection.523

Figure 12 illustrates the detection capability of the MP with respect to data length.524

In this figure, we find that the background noise MP (BNMP) increases with the time525
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Figure 12. Effect of waveform time series length on the matrix profile (MP). Shown are ex-
amples of the MP calculated using (from top to bottom) 0.5 hours, 1 hour, 6 hours and 3 months
of 20 Hz waveform data (station PGH, Parkfield, CA, bandpass filtered between 2 and 8 Hz). Up
to one hour of the MP is shown, starting at 2004/10/14, 08:00:00 UTC. In this one hour period,
four events (C1–C4) were reported in the NCSN catalog within 300 km of the station, but only
one of them had a P arrival phase reported at this station. These events were small, and at a
range of hypocentral distances (C1: ML1.17, 70 km, C2: ML1.30, 6 km C3: ML0.93, 24 km, C4:
ML1.21, 61 km).

series length. An MP peak can be seen coinciding with event C2 in all cases, although526

the strength of the peak is only significantly above the BNMP level (i.e., > 0.8) for MP527

durations 1 hour or longer. Event C3 is only detected in the 3 month-long MP, suggest-528

ing that an event with a similar location and waveform to C3 only occurred in that longer529

period. Events C1 and C4 are very distant; neither visual inspection nor MP values in-530

dicate a phase arrival at the station (see Figure S1). Three additional peaks (U1–U3)531

above 0.8 are visible in the MP for the 3 month case; U3 is also present in the one-hour532

and six-hour cases, and its MP peak rises in concert with the C2 peak, suggesting that533

it may represent an uncatalogued event located near the C2 event. Overall we see that534

even though the BNMP increases when more data is included, there is a higher prob-535

ability of detecting more events with longer time series.536

Thus, finding the optimal time series length for the MP method depends on the537

event density in time and space, background noise and available computational resources.538

As mentioned in Section 3 above, using two NVIDIA P100 GPU cards it is possible to539

calculate MP for several months of local network data (at 20 Hz sampling) in a feasi-540

ble run time (i.e., hours; Zimmerman et al., 2019).541
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Figure 13. The distribution of continuous matrix profile (MP) values for 20 days before
(2004/09/03–2004/09/23; blue) and 20 days after (2004/10/01–2004/10/21; orange) the Parkfield
mainshock. Areas of overlap between the two distributions show as brown.

5.4 Selecting a matrix profile threshold for event detection542

Choosing an appropriate MP threshold (rmin)for seismic event detection depends543

on multiple factors – for example, the type of data being used (e.g., global, regional, lo-544

cal, lab experiments), the quality of the data, its noise characteristics, and the desired545

sensitivity. As with the other factors affecting the design of the MP computations, the546

value and variability of the BNMP is a central consideration. Here we suggest some strate-547

gies to choose a threshold.548

1. If some a priori knowledge exists for the target seismic events such as an earth-549

quake catalog, one can observe the behavior of the MP before, during and after550

the events of interest and adjust the threshold accordingly. For example for the551

Parkfield earthquake aftershocks, the MP between events is in the range 0.55 to552

0.70 (i.e., the BNMP level), but during the onset of events rises to above 0.9, re-553

turning gradually to the background level during the coda. In this case a relaxed554

threshold could be set around 0.8 and a more conservative threshold could be set555

around 0.9.556

2. A more formal way of defining the detection threshold might be to assume that557

the majority of the seismic data consists of ambient noise. The assumption might558
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fail in the cases of particularly energetic early aftershock sequences or seismic swarms,559

but is valid in most cases (Yanovskaya & Koroleva, 2011). If we plot the histogram560

of the MP values, the great majority of the population should be around BNMP561

values, although we typically observe a slight skew towards higher values, perhaps562

reflecting some degree of correlation in the noise. However we also observe a sec-563

ond mode in the distribution corresponding to even higher MP values for repeated564

or near-repeated events (Figure 13). Thus, we can define a threshold based on the565

boundary between these two clusters. In Figure 13 we can see that for the Park-566

field experiment this boundary approximately falls around 0.85.567

5.5 Clustering and associating matrix profiles from multiple stations568

Combining results from multiple stations will improve the reliability of MP data569

products. The observation of a rise in the MP at several stations with reasonable lag time570

and/or moveout with distance can be used to eliminate false detections from station glitches571

or calibration pulses. It is straightforward to stack the MP values for several stations,572

however the variable lag time to the earthquake onset causes misalignment of the MP573

peaks. As long as the event durations at the stations are not longer than possible lag574

times, this does not present a serious problem. However where we expect a long lag time,575

such as for teleseismic events at GSN stations, or a very short event duration, such as576

for events close to the lower detection limit in a local network, we need to align the MPs577

from stations to account for moveout. For instance, MPs from multiple stations were stacked578

to obtain the results in Section 4.1.579

6 Future work580

Here, we aim to present the concept of MP to the seismology community and il-581

lustrate its capabilities with a few key examples. In this study, we demonstrated that582

MP can be used to detect events or clusters of similar events that do not appear in tem-583

plate matching catalogs. This concept is novel and new, and by taking advantage of the584

sensitivity of the method, a number of existing studies can be revisited using the MP585

approach. In this regard, studies related to foreshocks, aftershocks, swarms, volcanic erup-586

tions, among others, may be included. According to our preliminary investigation, MP587

can provide accurate detection of seismic events, phase picking, and magnitude estima-588

tion of seismic events. As MP is able to detect signals that are below the noise level, it589
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is challenging to compare the MP results with those of other methods or to those of hu-590

man experts, since MP’s accuracy is essentially greater than those of other methods. As591

a result, investigating the superiority of MP in comparison with other methods requires592

the careful development of an experimental setup and benchmarks, as well as the pos-593

sible use of synthetic tests, which is within the scope of our future research.594

7 Conclusions595

We demonstrate that a recently developed method called the matrix profile (MP)596

is capable of detecting seismic events with a high degree of sensitivity. In terms of sen-597

sitivity, our method is comparable to autocorrelation, but is more computationally ef-598

ficient. As well as utilizing the MP cross-correlation coefficient values to detect seismic599

events, the MP’s index can also be used to retrieve similar events at the same time, thereby600

eliminating the need for template matching of new detected events. We can use the MP601

method to detect not only small regular earthquakes that are hidden in noise, but also602

novel events such as clusters of repeated events, tremor, and global slow earthquakes.603

The code needed to compute the MP efficiently is available for download on Github (https://604

github.com/zpzim/SCAMP) and guidelines for pre- and post-processing and interpreta-605

tion of the MP are provided in this paper. This article is accompanied by a repository606

of calculated MPs for our experiments in the Parkfield region and a global teleseismic607

data set (https://github.com/Naderss/MP4Seismo). We also plan to maintain and up-608

date it with newly calculated MPs in the future.609

8 Data Availability statement610

The seismic data for the Parkfield and the Global study is downloaded from the611

Incorporated Research Institutions for Seismology Data Management Center (IRIS-DMC)612

using the IRISFETCH MATLAB software that can be downloaded from http://ds.iris613

.edu/ds/nodes/dmc/software/downloads/irisFetch.m. Seismic data have been pre-614

processed with MATLAB signal processing software. Matrix Profiles are generated by615

SCAMP software (https://github.com/zpzim/SCAMP). The computed MPs are stored616

and publicly available at http://github.com/Naderss/MP4Seismo.617
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