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Abstract

Fourier spectra are powerful tools to analyse the scale behavior of turbulent flows. While such spectra are mathematically based

on regular periodic data, some state-of-the-art ocean and climate models use unstructured triangular meshes. Observational

data is often also available only in an unstructured fashion. In this study, scale analysis specifically for the output of models with

triangular meshes is discussed and the representable wavenumbers for Fourier analysis are derived. Aside from using different

interpolation methods and oversampling prior to the computation of Fourier spectra, we also consider an alternative scale

analysis based on the Walsh–Rademacher basis, i.e. indicator functions. It does not require interpolation and can be extended

to general unstructured meshes. A third approach based on smoothing filters which focus on grid scales is also discussed.

We compare these methods in the context of kinetic energy and dissipation power of a turbulent channel flow simulated with

the sea ice-ocean model FESOM2. One simulation uses a classical viscous closure, another a new backscatter closure. The

latter is dissipative on small scales, but anti-dissipative on large scales leading to more realistic flow representation. All three

methods clearly highlight the differences between the simulations as concerns the distribution of dissipation power and kinetic

energy over scales. However, the analysis based on Fourier transformation is highly sensitive to the interpolation method in

case of dissipation power, potentially leading to inaccurate representations of dissipation at different scales. This highlights the

necessity to be cautious when choosing a scale analysis method on unstructured grids.
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Abstract7

Fourier spectra are powerful tools to analyse the scale behavior of turbulent flows. While8

such spectra are mathematically based on regular periodic data, some state-of-the-art9

ocean and climate models use unstructured triangular meshes. Observational data is of-10

ten also available only in an unstructured fashion. In this study, scale analysis specif-11

ically for the output of models with triangular meshes is discussed and the representable12

wavenumbers for Fourier analysis are derived. Aside from using different interpolation13

methods and oversampling prior to the computation of Fourier spectra, we also consider14

an alternative scale analysis based on the Walsh–Rademacher basis, i.e. indicator func-15

tions. It does not require interpolation and can be extended to general unstructured meshes.16

A third approach based on smoothing filters which focus on grid scales is also discussed.17

We compare these methods in the context of kinetic energy and dissipation power18

of a turbulent channel flow simulated with the sea ice-ocean model FESOM2. One sim-19

ulation uses a classical viscous closure, another a new backscatter closure. The latter is20

dissipative on small scales, but anti-dissipative on large scales leading to more realistic21

flow representation. All three methods clearly highlight the differences between the sim-22

ulations as concerns the distribution of dissipation power and kinetic energy over scales.23

However, the analysis based on Fourier transformation is highly sensitive to the inter-24

polation method in case of dissipation power, potentially leading to inaccurate represen-25

tations of dissipation at different scales. This highlights the necessity to be cautious when26

choosing a scale analysis method on unstructured grids.27

Plain Language Summary28

To better understand the physical processes that drive and define the circulation29

in our oceans, it is necessary to analyse the temporal and spatial scales on which the-30

ses processes act. Classical methods to investigate the spatial scale behaviour is the Fourier31

analysis which splits any given data into waves of different amplitudes and wavelengths.32

Mathematically this requires data on an equidistantly spaced grid. However, many ocean33

models apply triangular or other irregular grids for their computations of oceanic flows.34

In this study, we describe the advantages and disadvantages of applying Fourier anal-35

ysis for models that use triangular meshes, with prior interpolation of data to regularly36

spaced rectangular meshes. We also introduce two other methods that can analyse the37

distribution of kinetic energy and kinetic energy dissipation across scales without inter-38
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polation. The results show that one needs to be very careful when choosing a specific39

scale analysis and, potentially, an interpolation method for triangular grids, especially40

when it comes to analysing the process of kinetic energy dissipation.41

1 Introduction42

Improving our understanding of scaling laws in geophysical fluid dynamics is of fun-43

damental importance when analysing crucial scale interactions or, in the context of model44

development, when designing parameterizations for the unresolved subgrid scales (e.g.45

Danilov et al., 2019). Scale analysis of turbulent flows is a classical approach to inves-46

tigate the dynamics simulated by numerical models (e.g. Soufflet et al., 2016; Schubert47

et al., 2020) and to compare them to observational estimates (e.g. Wang et al., 2019).48

A variety of methods is available to separate out specific scales in multiscale flows (e.g.49

Kumar & Foufoula-Georgiou, 1997) or to coarse-grain or filter the information from smaller50

scales to larger scales (e.g. Aluie et al., 2018; Aluie, 2019; Berloff, 2018; Grooms et al.,51

2021; Sadek & Aluie, 2018). These methods generally involve spatial or temporal filters52

to remove specific scales, or projectors which split the data into a hierarchy of Hilbert-53

subspaces. Such coarse-graining is less straight forward on unstructured triangular meshes,54

but can nevertheless be designed to achieve conservation of certain quantities or deriva-55

tives (Patching, 2022).56

For the distribution of energy over scales in eddy-resolving simulations, a commonly57

applied scale separation method relying on basis decomposition is Fourier analysis which58

separates the data into waves of different wavelengths. However, Fourier analysis relies59

on a set of assumptions that are not always met by model or observational data. Two60

of the most common discrepancies are the potential lack of regular, equidistant data points61

in case of unstructured data and the lack of periodicity along boundaries in case of com-62

plex domains. In this study, we will discuss some of the issues related to Fourier anal-63

ysis in the context of a model with triangular rather than rectangular spatial discretiza-64

tion. We will also introduce and discuss the possibility of an alternative analysis that65

uses the Walsh–Rademacher basis (indicator functions) instead of the Fourier basis which,66

in many respects, is more suitable for unstructured data.67

Observational data is often inherently unstructured due to the nature of local mea-68

surements. When it comes to numerical modelling, on the other hand, some models are69
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also formulated on unstructured triangular meshes and place the degrees of freedom (DoF)70

on vertices or triangles. They include, e.g., global-scale models such as FESOM (Danilov71

et al., 2017), ICON (Korn, 2017) and coastal models such as FVCOM (Chen et al., 2003),72

SCHISM (Zhang et al., 2016), or SUNTANS (Fringer et al., 2006). Concerning Fourier73

analysis, the first question that arises for such models is: Which wavenumbers can be74

represented on triangular meshes? Relying on well-known facts from solid-state physics75

(e.g. Kittel, 2004), one can link the representable wavenumbers to the notion of prim-76

itive translation vectors. They define a primitive mesh cell, a reciprocal lattice in wavenum-77

ber space, and the smallest resolved wavelengths. On regular triangular meshes the prim-78

itive cell is a rhombus consisting of two triangles with opposite orientation. Importantly,79

the number of triangles is approximately twice that of the mesh vertices, which creates80

an illusion that the DoF placed on triangles resolve larger wavenumbers than the DoF81

placed at vertices. It turns out that the increased number of DoF leads to modes of vari-82

ability inside of the unit cells of the respective grid (i.e. internal variability modes), leav-83

ing the representable wavenumbers without changes.84

In order to compute Fourier spectra on general (unstructured) meshes, one can-85

not rely on a regular placement of the DoF and has to interpolate to a regular quadri-86

lateral grid. This leads to some (arbitrary) sampling of original data, which generally87

does not create ambiguities for the spectra of variance which are rapidly decaying at large88

wavenumbers. However, larger uncertainties may occur for the power spectra of dissi-89

pation (due to horizontal viscosity or diffusion). Such spectra are needed, for example,90

to judge on the effective resolution, which is the smallest scale where dynamics are un-91

affected by (numerical) dissipation (Soufflet et al., 2016). They are also necessary to in-92

tercompare different types of momentum closures. The dissipation power on unstructured93

meshes is computed as a dot product between a field and its dissipation tendency which94

depends on the numerical operator that parameterizes the small scales in the momen-95

tum equation. The dissipation tendency is often noisy and has a large grid scale contri-96

bution, generally because the commonly applied harmonic or biharmonic operators em-97

phasize large wavenumbers. The placement of DoF on triangles may further emphasize98

the grid-scale variability because of the difference in the orientation of computational99

stencils for any two adjacent triangles. Interpolation can be further affected by this ge-100

ometrical mode in the placement of triangle centers as illustrated in Fig. 1. Computa-101

tions are still possible, but require care. This study will both illustrate the difficulties102
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in the computations as well as possible remedies. Alternative methods that avoid inter-103

polation will be discussed and compared to the results of traditional Fourier analysis.104

They can be seen as an extension to already existing methods such as Aluie et al. (2018);105

Grooms et al. (2021) which mostly focus on scale analysis and scale separation for struc-106

tured meshes and for scales considerably larger than the grid scale.107

We ran into issues raised above in our earlier attempt to compute spectra of dis-108

sipation power for runs with different momentum closures. Classical, purely viscous clo-109

sures such as the Leith parametrization (Leith, 1996) are designed to be entirely dissi-110

pative on all scales with an emphasis on small scale dissipation. Energy backscatter pa-111

rameterizations introduced by Jansen et al. (2015); Klöwer et al. (2018); Juricke et al.112

(2019); Juricke, Danilov, Koldunov, Oliver, and Sidorenko (2020); Juricke, Danilov, Koldunov,113

Oliver, Sein, et al. (2020), on the other hand, enable energy injection on large scales but114

dissipation on small scales. They still retain an overall dissipative nature when averaged115

across all scales. Scale analysis of dissipation power can highlight this scale dependence116

of momentum closures and is, therefore, an important diagnostic to investigate the be-117

haviour of momentum closures, especially close to the grid scale. However, as illustrated118

in this study, one can easily get a substantially distorted result if one is not careful. Prac-119

tical illustrations of these issues rely on data obtained with FESOM2 (Danilov et al., 2017)120

for the zonally reentrant channel test case of Soufflet et al. (2016) which focuses on the121

simulation of mesoscale turbulence and was run with two different momentum closures,122

one purely dissipative parametrization (follwing Leith, 1996) and one kinematic backscat-123

ter parametrization (following Juricke, Danilov, Koldunov, Oliver, Sein, et al., 2020).124

This study is structured as follows. We begin with the Fourier analysis in section125

2 which discusses wavenumbers that can be represented on triangular meshes. We will126

discuss some of the consequences for the computation of spectra on interpolated regu-127

lar grids. In section 2.4 we will provide a short description of an alternative approach128

called resize-and-average method (R-a-A) that does not rely on the Fourier basis, but129

on the Walsh–Rademacher basis instead. A third diagnostic based on applications of smooth-130

ing filters is also briefly introduced. Section 3 describes the simulations with the two dif-131

ferent momentum closures, i.e. the Leith and kinematic backscatter parametrizations,132

for which we will assess kinetic energy and dissipation power spectra. The next section133

4 applies the described methods for scale analysis to the aforementioned simulation data134
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Reciprocal lattice 
(k-space) x-space

x2

x1

k2k1

Figure 1. (Left) Regular equilateral triangular mesh with vertices (black squares) and cen-

troids (black circles). There are two types of triangles (pointing upward and downward). The

distances between centroids in the y-direction alternate between 2h/3 and 4h/3, where h is the

height (dashed lines), creating a geometrical pattern in data placed at centroids. The side length

of the equilateral triangles is a (dotted line).

(Right) Triangular mesh and its reciprocal lattice in k-space. Unit cells are shown in orange. The

first Brillouin zone is the Voronoi hexagon around an origin point of the reciprocal lattice. Small

green and blue circles correspond to zm,n and qr,s respectively. Vectors x1,x2 and k1,k2 are

defined by mesh geometry, and not by the placement of discrete degrees of freedom.

and discusses advantages and disadvantages of the diagnostics. This is followed by dis-135

cussion and conclusions in section 5.136

2 Spectra on triangular meshes137

2.1 Resolved wave numbers for a regular triangular mesh138

Consider an infinite regular triangular mesh composed of equilateral triangles. We

introduce coordinates x = (x, y) with origin at one of the mesh vertices and orient the

triangles so that all vertices are obtained from (0, 0) through the set of translations

zm,n = mx1 + nx2, x1 = a (1, 0), x2 = a (1/2,
√

3/2), (1)

where a is the triangle side length (see also Fig. 1), and m,n are integers. The vectors139

x1 and x2 are referred to as primitive translation vectors. The mesh is invariant to trans-140

lation by zm,n. A rhombus, defined by vectors x1 and x2, is a primitive unit cell of the141

triangular lattice. The selection of vectors x1 and x2 and the unit cell is not unique. For142

example, one can select x1 and x2−x1, and take a rhombus that corresponds to them.143

However, all possibilities represent the same group of translations zm,n.144
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The values of a Fourier harmonic of any scalar or vector field T = T eik·x, with

amplitude T and wave vector k = (k, l), sampled at vertices or centers of like triangles

do not change if k is replaced by k + q, where q is such that

eiq·z = 1. (2)

This implies that

q = qr,s = r k1 + sk2, (3)

where r and s are integers and the vectors k1 and k2 are such that

xi · kj = 2π δij , (4)

which gives

k1 = 2π/a (−1, 1/
√

3), k2 = 2π/a (0, 2/
√

3). (5)

The translations qr,s define the reciprocal lattice in k-space (Fig. 1).145

Because k can be determined up to the translation qr,s, it is sufficient to consider146

only k-points that are closer to the origin q0,0 than to any other qr,s. These points lie147

in the Voronoi polygon obtained by the Voronoi tesselation of the lattice {qr,s} in k-space.148

This hexagon is referred to as the first Brillouin zone and is shown in Fig. 1.149

The reciprocal lattice and the Brillouin zone are defined by the geometry of the tri-150

angular mesh and do not depend on how discrete DoF are placed, unless the DoF and151

discretization correspond to a refinement of the given triangular mesh. As a result, one152

deals with k constrained to the first Brillouin zone independent of whether the discrete153

DoF are placed on vertices or cells or edges.154

The smallest distance from q0,0 to the boundary of the first Brillouin zone is

|k|max = 2π/(
√

3a) = π/h,

i.e., the geometric resolution of the equilateral triangular mesh is defined by the height155

of triangles h. This can be compared with |k|max = π/a for the quadrilateral mesh with156

the side a.157

On triangular meshes there are nearly twice as many cells as vertices. If discrete158

DoF are placed on cells, an obvious question is how the increased number of DoF can159

be reconciled with the statement that the wave vector is constrained in the same way160

to the first Brillouin zone as for the vertex placement. The answer is that the increased161
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number of DoF in this or similar cases creates additional modes of variability inside the162

unit cells, as explained, e.g., in Danilov and Kutsenko (2019). The origin of the mode163

is related to the difference in the orientation of the stencil of the nearest neighbors. For164

a triangle pointing upward in the plane of Fig. 1 the stencil of three nearest neighbors165

points downward, and vice versa. Consequently, discrete operators have different rep-166

resentation on u and d triangles, and different truncation errors, hence a mode of vari-167

ability between the nearest triangles. As a rule, this mode of variability is well controlled168

in the existing numerical codes (see, e.g., the discussion of viscous operators in Juricke,169

Danilov, Koldunov, Oliver, Sein, et al. (2020) for FESOM), but can contribute to the170

apparent grid-scale patterns seen in the dissipation tendency (see section 4.1.2).171

2.2 Fourier spectra of interpolated fields172

Triangular meshes used in practice are generally non-uniform. The most common173

way to compute spectra in this situation is to interpolate the fields onto a regular quadri-174

lateral mesh, then sample and apply the discrete Fourier transform in the standard way.175

The theoretical consideration above gives an argument on the resolution of the sampling176

mesh (finer than π/kmax). Due to interpolation, some variance can be lost on small scales.177

Consider, for definiteness, a scalar discrete field φc known on mesh cells. When com-

puting spectra of vector fields, such as kinetic energy spectra, the expressions stated here

apply component-wise in the respective dot products. We write c ∈ T to denote the

cell index and T to denote the set of mesh triangles. If φmn is the result of interpola-

tion of the cell-based φc to some regular grid, with 1 ≤ m ≤ M and 1 ≤ n ≤ N , cov-

ering the domain of interest, to compute the power spectrum of φ, one needs to ensure

variance preservation in the sense

1

MN

M,N∑
m,n=1

φ2
mn ≈

∑
c∈T φ

2
c |Ac|∑

c∈T |Ac|
(6)

(we assume zero area mean for simplicity). Here, |Ac| denotes the area of cell c.178

This is easy to achieve if φc is a primitive variable (velocity, temperature or salin-179

ity) with commonly available linear or cubic spline interpolation because such fields are180

commonly smooth. They are generally known in a finite-volume sense as mean over the181

respective control volumes. The nearest point interpolation method to a sufficiently fine182

mesh tends to respect this sense, yet emphasizes discontinuities in interpolated data, which183

leads to an artificial spectral pile-up at small scales. Linear and cubic interpolation meth-184

–8–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

ods are free from such a drawback, but treat the finite-volume data as point values. Al-185

though this is appropriate for smooth fields, it leads to artifacts in the case of spectra186

of horizontal dissipation power as discussed later.187

To compute dissipation power spectra, one has to interpolate both φc and the dis-

sipation tendency, which is either due to the horizontal diffusion or horizontal viscosity,

apply the Fourier transform to both, and compute their inner product. The dissipation

tendency on cells will be written as (Lφ)c, where L is a discrete Laplacian operator in

the simplest case. On regular meshes, one can use a discrete analog the divergence the-

orem in the form ∫
Ω

φ∆φdV = −
∫

Ω

|∇φ|2 dV +

∫
∂Ω

φn ·∇φdS, (7)

where the second integral is over the boundary ∂Ω of the integration domain Ω and is188

negligible if the domain is large enough. As a result, one can compute a power spectrum189

of ∇φ instead of computing the cross-spectrum. While discrete analogs of similar trans-190

formations are maintained on unstructured meshes, they are not always straightforward191

(see Juricke et al., 2019, for FESOM operators), and may be not available in model out-192

put.193

In applications, the field φc is generally smooth while (Lφ)c often has a noticeable194

grid-scale component. Indeed, if the power spectrum of φ scales as k−α, the envelope of195

the Fourier transformed φk scales as k−(α+1)/2. The dissipation tendency scales as k−(α+1)/2+2
196

for the harmonic operator L and as k−(α+1)/2+4 for the biharmonic one. Thus, when α =197

3, the envelope of the Fourier transform of the dissipation tendency is flat even for a har-198

monic operator. This amplification of small scales is common to all discretizations, and199

explains why the pattern of Lφ can look noisy. For cell-based quantities on triangular200

meshes there is one more factor, namely the difference of L on u and d triangles. Here,201

the internal degree of freedom is another source of small-scale noise not present in the202

case of vertex-based quantities on triangular meshes or in the case of cell-based quan-203

tities on quadrilateral meshes.204

Because of the grid-scale pattern, even oversampling may fail to ensure that Lφ is

properly sampled. Writing (Lφ)mn to denote the interpolation of the cell-based quan-

tity (Lφ)c to the sampling grid, we need to achieve

1

MN

M,N∑
m,n

φmn (Lφ)mn ≈
∑
c∈T φc (Lφ)c |Ac|∑

c∈T |Ac|
. (8)
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This approximation is prone to fail, depending on the method of interpolation. For FE-205

SOM2, we will show in section 4.1.2 that scale analysis of kinetic energy dissipation is206

very sensitive to the specific choice of interpolation onto a regular grid, especially for sim-207

ulations that use the backscatter parameterization (Juricke, Danilov, Koldunov, Oliver,208

Sein, et al., 2020). For those simulations, dissipation spectral density is negative in the209

vicinity of kmax, but can be positive at smaller wavenumbers. The total dissipation power210

is negative, but this picture is easily distorted through interpolation. The accuracy in211

representing the dissipation power by the interpolated field (such that equation (8) ap-212

proximately holds) may serve as a check for the appropriateness of interpolation. Fur-213

thermore, angular averaging of two-dimensional spectra, collapsing them to one-dimensional214

spectra helps to reduce the side effects of interpolation errors.215

2.3 On 1D spectra216

1D spectra are a convenient characteristic in test cases that use periodic bound-217

ary conditions in one direction (e.g., zonally-reentrant channels). Data are taken along218

zonal lines, and no windowing is needed. The spectra computed at different meridional219

locations are then averaged. On regular equilateral triangular meshes such lines are drawn220

through centroids of u or d triangles. Since the distance between the nearest data point221

is a, not all wave numbers are resolved (π/a instead of π/h). Taking data points along222

a zigzag line passing through centroids of u and d triangles is potentially resolving higher223

wavenumbers, but may create aliasing. If one interpolates to a regular set of points along224

a zonal line, the result will depend on the line (and interpolation method). If the line225

is drawn through the centers of triangles, only the data at these centers will be used for226

linear interpolation. Spectral density at wavenumbers larger than π/a will still be un-227

certain.228

There is a simple, fundamental reason why especially one-dimensional spectra of

dissipation are questionable: In the continuous 2D case for L = ∆,

φ∆φ = ∇ · (φ∇φ)− |∇φ|2, (9)

so that the first (flux divergence) term on the right-hand side does not contribute to 2D229

spectra (being the divergence of the product), leading to a negative-definite spectral den-230

sity. However, it will always contribute to 1D spectra of dissipation, and may even give231
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a dominant contribution. Averaging of 1D spectra over the other direction will not nec-232

essarily fully eliminate this contribution, leading to an unpredictable result.233

In our experience, meridionally averaged 1D spectra are highly sensitive to the choice234

of interpolation method and the location of the interpolation grid, especially for dissi-235

pation power spectra which are relatively flat. We found that interpolation such as lin-236

ear or cubic may actually lead to considerably distorted line structures on the interpo-237

lated grid, depending on the orientation of the triangles. Consequently, the result for cu-238

bic and linear interpolation and zonal 1D dissipation power spectra turns out to be fun-239

damentally wrong (not shown), as the linear and cubic interpolations smooth out the240

small scales and project them onto much large scales in the zonal direction. Even by av-241

eraging in the meridional direction, this error is not alleviated and, instead, we produce242

spectra that show substantially distorted dissipation powers on large scales. Kinetic en-243

ergy spectra, one the other hand, are not much affected by this due to the rapidly de-244

caying high wavenumber contribution and can also be computed using 1D spectra av-245

eraged in the meridional direction. While we will not discuss one-dimensional line spec-246

tra any further, we would like to highlight that these details and consequences need to247

be kept in mind when considering 1D spectra on interpolated meshes.248

2.4 Scale analysis based on characteristic functions249

In this section and section 2.5, we present two alternative approaches to scale anal-250

ysis that avoid interpolation and preserve the finite-volume sense in which the data is251

represented in the model. The first method is called resize-and-average method (R-a-252

A) and we will present it in its original and a modified version. In the following, we de-253

scribe the general concept relying on averaging operators on successively smaller sub-254

domains of the model domain using the Walsh–Rademacher basis, i.e., a basis generated255

by indicator functions of cells of the triangular grid. A detailed mathematical analysis256

of this method is provided in Kutsenko et al. (2022).257

We identify the data on cells, φc, with the piecewise-constant function

φ(x) =
∑
c∈T

φc χAc
(x), (10)

where χAc(x) is the indicator function of mesh cell Ac, so that φ(x) = φc for x within258

Ac. Generally, the Ac may be triangles or unions of triangles.259
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Now consider a submesh S with elements Bc composed of unions of several neigh-

boring Ac, i.e.,

Bc =
⋃
c′∈Tc

Ac′ (11)

for c ∈ S, where T = ∪c∈STc is a partition of the initial mesh. The initial mesh T

generates the Hilbert space

LT = span{χAc
: c ∈ T }. (12)

The coarser sub-mesh generates the Hilbert subspace

LS = span{χBc
: c ∈ S}. (13)

The orthogonal projector onto LS is given by

(PSφ)(x) =
∑
c∈S
|Bc|−1

(∑
c′∈Tc

φc′ |Ac′ |
)
χBc(x). (14)

This gives a decomposition, orthogonal with respect to the standard L2 inner product

〈φ, ψ〉 =

∫
φ(x)ψ(x) dx, (15)

of the space LT into the coarse subspace LS with a remainder denoted by LT /S

LT = LS ⊕ LT /S . (16)

A field φ then decomposes into the orthogonal sum

φ = PT φ = PSφ+ PT /Sφ, (17)

so that

〈φ, ψ〉 = 〈PT φ,PT ψ〉+ 〈PT /Sφ,PT /Sψ〉, (18)

where the contribution of the remainder subspace is given by

〈PT /Sφ,PT /Sψ〉 = 〈φ, ψ〉 − 〈PT φ,PT ψ〉

=
∑
c∈T

φc ψc |Ac| −
∑
c∈S
|Bc|−1

(∑
c′∈Tc

φc′ |Ac′ |
)(∑

c′∈Tc
ψc′ |Ac′ |

)
. (19)

Through subsequent coarsening, we can construct a hierachy of subspaces, with the orig-260

inal mesh T at the small-scale end going to larger and larger scales.261

To compute a spectrum using this construction, we proceed as follows. Consider

a sufficiently large square box B1 with side length L, covering some part of the compu-

tational mesh in which the dynamics are sufficiently homogeneous in a statistical sense.
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As the coarsest mesh, denoted T 1, we take the union of those triangles from T whose

centroids lie inside B1. Now introduce a sequence of child bounding boxes obtained by

splitting the box B1 into equal-sized smaller boxes. The smaller boxes will be denoted

as Bnm, where the index n indicates that the length of the side of the respective box is

L/n, and m is the shortcut for a pair of indices m = (mx,my), 1 ≤ mx,my ≤ n, de-

scribing the position of Bnm within B1. For each child box, we look for a subset T nm of

T 1 including the indices of triangles with centers within Bnm. For every fixed n, {T nm}

is a partition of T 1, and we set

T n =
⋃
m

T nm. (20)

We stop at n = N such that all T nm include not more than one triangle. Subsequent262

refinement will be excessive.263

When n1 is a divisor of n2, the subspaces associated with T n1 and T n2 are orthog-264

onal so that the norm of the projection to LT n2/cTn1 is a measure of the contribution265

from the scale range [L/n1, L/n2) to the total energy.266

There is some arbitrariness in this construction as the areas occupied by triangles267

belonging to different T nm are not equal. The relative differences will be small when n268

is small, but may be large for n ≈ N . It is possible to get an estimate on the result-269

ing uncertainty by slightly displacing the box B1 and repeating computations. The ad-270

vantage of this method is that it works for structured as well as unstructured meshes.271

Here, to obtain a finer separation at smaller scales, we chose n1 = n and n2 =

n+ 1, define the scale points

`n =
L

n
, (21)

the spectral energy density of the field φ,

E(`n) = 〈PT nu− PT n+1u,PT nu− PT n+1u〉, (22)

and the spectral dissipation power density

Edis(`n) = 〈PT nu− PT n+1u,PT nLu− PT n+1Lu〉. (23)

Fig. 8 shows examples of an energy spectrum (`n, E(`n)), left, and a dissipation power272

spectrum (`n, Edis(`n)), right.273

In the orthogonal case, when n1 divides n2,

〈PT n2u− PT n1u,PT n2u− PT n1u〉 = 〈PT n2u,PT n2u〉 − 〈PT n1u,PT n1u〉, (24)
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and

〈PT n2u− PT n1u,PT n2Lu− PT n1Lu〉 = 〈PT n2u,PT n2Lu〉 − 〈PT n1u,PT n1Lu〉. (25)

When n1 = n and n2 = n + 1 and these identities no longer hold, experiments show274

that the left-hand expressions in (24) and (25) are less noisy than the respective right-275

hand expression, which motivates their choice for the diagnostics (22) and (23). A the-276

oretical justification for this choice and a mathematical analysis along the lines of Kutsenko277

et al. (2022) of this modified extended version of the R-a-A method is open and a topic278

of current research.279

2.5 Scala analysis via discrete spatial filtering280

The second method, which is in some respect related to the R-a-A method, is based281

on the use of spatial filters. It also has conceptual overlap with, e.g., Sadek and Aluie282

(2018); Grooms et al. (2021), but differs in the fact that it uses the natural discrete fil-283

ter operation used in FESOM2.284

More specifically, we apply several cycles of a smoothing filter that was also used

by Juricke et al. (2019) and Juricke, Danilov, Koldunov, Oliver, Sein, et al. (2020) to en-

hance the spatial scale of the backscatter term of their backscatter parametrization. It

projects via an area weighted average the field under consideration ac, which is stored

on cell centroids, first from the cell centroids to the vertices using the operator X

(Xa)v =
∑
c∈C(v)

ac (|Ac|/3)
/ ∑
c∈C(v)

(|Ac|/3) , (26)

where C(v) is the set of cells containing vertex v. After that, the new quantity bv defined

on vertices is then averaged back to the centroids using the operator C

(Cb)c =
1

3

∑
v∈V(c)

bv , (27)

where V(c) is the set of vertices of cell c (see Juricke, Danilov, Koldunov, Oliver, Sein,285

et al., 2020, for more details). In this way, nearest neighbor averaging enhances the scale286

of the fields and filters out smaller scales. However, while the combined smoothing fil-287

ter F = CX is the same as the one used in the computational design of the viscous clo-288

sure and it conserves globally integrated quantities, the smoothed fields are not orthog-289

onal to each other, i.e. larger scales are consecutively mixed with each iteration of the290

filter. Nevertheless, when one is specifically interested in the grid scale behaviour and291
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differences therein between different momentum closures, this method is quite useful when292

only few iterations are applied, as it focuses first on the smallest resolved scales. Fur-293

thermore, it allows to investigate the spatial structure of dissipation power for a single294

time instance, rather than relying on spatial and temporal averaging as is the case for295

Fourier analysis. This method was already used by Juricke, Danilov, Koldunov, Oliver,296

Sein, et al. (2020, their Fig. 4 and 5) and we add this diagnostic here for completeness.297

3 Data setup298

We use data generated by the ocean model FESOM2 in a channel setup described299

in Soufflet et al. (2016) with periodic boundaries in the east-west direction and fixed bound-300

aries in the North and South. The domain has a zonal length of 500 km and a merid-301

ional length of 2000 km. The grid spacing, i.e., the edge length a of a triangular cell, is302

20 km. Despite the ability of FESOM2 to locally refine the grid, we employ a regular tri-303

angular grid in this study (see Fig. 1) as it corresponds to the idealized setup also used304

by Juricke, Danilov, Koldunov, Oliver, Sein, et al. (2020).305

Following the discussion in section 2, the smallest resolved wavelengths correspond-306

ing to wavenumbers π/h and π/a for a maximum channel length of
√

(5002 + 20002)307

are approximately 34.64 km and 40 km. However, the highest wavenumber that can be308

ideally represented is along a zigzag line in the zonal direction between meridionally slightly309

shifted centroids (see Fig. 1). In that case, the controids are in zonal direction only a/2310

apart and the corresponding maximum wavenumber and minimal wavelength are 2π/a311

and 20 km, respectively. However, as mentioned in section 2, part of the information for312

these higher wavenumbers beyond π/h and up to 2π/a may already be a reflection of313

the spectrum from second and higher Brillouin zones and may be part of the internal314

mode of variability inside the unit cell, i.e. inside a rhombus consisting of two triangles315

of opposite orientation. We nevertheless plot the Fourier spectra up to these high wavenum-316

bers in section 4.1 to discuss the behaviour at the grid scale.317

In the channel simulations, a South-North temperature gradient is reinforced through318

relaxation of the mean density profile, with warm temperatures in the South and cooler319

temperatures in the North. A mean current runs from West to East and mesoscale tur-320

bulence develops in the middle of the channel (see Fig. 2). Simulations with different vis-321

cosity closures are available, using classical viscous closures such as Leith (1996), as well322
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as recently developed backscatter closures, following, for example, the kinematic backscat-323

ter of Juricke, Danilov, Koldunov, Oliver, Sein, et al. (2020). In this study, we will fo-324

cus on these two simulations, i.e. one with a Leith viscosity closure (LEITH) and one325

with kinematic backscatter (KBACK). The data was generated in the context of the re-326

cent study by Juricke, Danilov, Koldunov, Oliver, Sein, et al. (2020) where a kinematic327

backscatter parametrization was introduced – see the detailed discussion therein. We chose328

these two simulations as they are expected to behave fundamentally different when it329

comes to dissipation power spectra. While LEITH is purely dissipative on all scales (when330

taking into account the entire simulation domain), KBACK is expected to anti-dissipate331

on large scales and dissipate on small scales. Averaged over all scales, it is still dissipa-332

tive. As we intend to investigate the detailed differences in dissipation behavior of var-333

ious momentum closures in future studies, these two simulations serve as a testbed to334

assess the merits of the different scale analysis methods.335

Given the data on the triangular grid, we employ several interpolation methods be-336

fore computing classical 2D energy spectra. The interpolation methods between the tri-337

angular and the rectangular mesh vary in both the chosen interpolation scheme (near-338

est neighbor, linear, cubic) and the resolution of the interpolated grid (0.09◦ = 10 km,339

0.045◦ = 5 km, 0.01◦ ≈ 1.1 km). The details of these choices will be discussed in the340

results section below. The final spectra are always computed as an average of daily spec-341

tra for 9 years of simulation after the initialization year, i.e., we neglect the first year af-342

ter initialization from the mean state as the turbulence needs time to develop. To ini-343

tiate the development of turbulence, a small perturbation is applied to the originally bal-344

anced mean state. Furthermore, in the spectra discussed below, we only show results for345

wavenumbers up to the grid resolution of a = 20 km. As we substantially oversample346

in the case of the interpolation grids with higher resolution, e.g. at 0.01◦ ≈ 1.1 km, the347

highest wavenumbers above a wavelength of the nominal grid resolution of 2h ≈ 34.64 km348

partly correspond to a reflection of the spectrum. They contain some of the information349

from the resolved spectrum due to the reflection as well as the effects of the interpola-350

tion method. However, the even higher wavenumber part of the spectrum (which cor-351

responds to oversampling of the interpolated grid) especially for lower wavelengths than352

a = 20 km does generally not contribute much and is therefore not considered further.353
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Figure 2. A daily mean of surface (left) temperature [◦C] and (right) relative vorticity [1/s]

from the LEITH simulation at 20 km resolution, illustrating the eastward flow and enhanced

turbulence in the center of the channel.

4 Results354

4.1 Fourier scale analysis355

We investigate the properties of Fourier spectral analysis obtained via equidistant356

sampling of interpolated data. Interpolation is done via nearest-neighbor, linear spline357

interpolation, or cubic spline interpolation. Sampling rates range from 2 times the tri-358

angular grid resolution a = 20 km (i.e. 10 km) to 18 times the grid scale (i.e. around359

1.1 km). Even though the data is not strictly periodic in the meridional direction, tur-360

bulence is mostly restricted to the center of the channel and velocities are close to zero361

near the northern and southern boundaries. We verified that the use of a Hanning win-362
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dow to periodize the data did not change the results; all results shown are computed with-363

out windowing.364

Spectra are shown as a function of inverse wavelength, obtained by summation over365

a wave number shell of width one in integer wavenumbers.366

4.1.1 Kinetic energy spectra367

As a first sanity check to assess the accuracy of the interpolation with respect to368

the area-averaged kinetic energy, we compute the ratio between the right and left-hand369

side of equation 6, i.e., the ratio of total kinetic energy on the original vs. the interpo-370

lated grid. Deviations from 1 correspond to an error in total area-averaged kinetic en-371

ergy through interpolation.372

Figure 3. Ratio of average KE averaged for one year on original triangular vs interpolated

grid for (left) the LEITH simulation and (right) the KBACK simulation and various interpolation

methods and interpolation grid resolutions. The boxes extend from the lower to upper quartile

values generated by 9 interpolations with different origins to assess the sensitivity to the horizon-

tal starting point of the interpolation. The upper whiskers end below Q3 + 1.5(Q3 - Q1) and the

lower whiskers end above Q1 - 1.5(Q3 - Q1) with Q3 and Q1 the third and first quartile.

We find that the ratio is close to one in all cases (Fig. 3). It is largely independent373

of the sampling ratio and only weakly dependent on the method of interpolation, with374

nearest-neighbor doing best, and linear interpolation the worst with a maximum error375

of around 5.5 %. Furthermore, the method seems to be more or less independent from376

the choice of simulation, i.e. whether we compute KE spectra for LEITH or KBACK,377

with slightly larger values and therefore differences for KBACK (about +0.01, i.e. +1%).378
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Finally, slightly varying offsets of the original starting point for the interpolation (as il-379

lustrated by the boxes and whiskers in Fig. 3) only lead to a noticeable variance in the380

ratios for the lowest resolution interpolation (i.e. 0.09◦ = 10 km).381

Thus, on this measure, all methods are qualitatively suitable, even though quan-382

titative differences already emerge. Whether the deviations from ratio 1 are acceptable383

is difficult to say, as the judgement also depends on the scales on which the differences384

eventually occur. If only the smallest scales are affected, moderate deviations may still385

be reasonable for kinetic energy as the small scales close to the grid scale in a model sim-386

ulation are least reliable when it comes to their physical realism.387

To further assess this question, we turn to actual spectra, choosing the highest over-388

sampling ratio to be on the safe side for representing grid-scale features. First, we ob-389

serve that the spectrum for LEITH has overall less KE on all scales when compared to390

KBACK (Fig. 4). This is in line with the discussion of Juricke, Danilov, Koldunov, Oliver,391

Sein, et al. (2020) who developed kinetic energy backscatter for precisely the reason to392

reduce overdissipation and loss of KE in the KBACK simulation. This leads to a lift of393

kinetic energy levels especially for small wavenumbers by kinetic energy injection at scales394

sufficiently removed from the grid scale.395

Figure 4. Kinetic energy spectra for simulations with Leith (orange) and kinematic

backscatter (blue) momentum closures for (a) nearest neighbor, (b) linear and (c) cubic inter-

polated data to a 1.1 km grid, averaged for 9 years of simulation.
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The choice of interpolation methods does not affect the large scales, but leads to396

substantial differences near the grid scale. This can be explained by the spectral slope397

of KE in our simulations, with expected power laws of slope between −5/3 and −3. Thus,398

an interpolation that acts discontinuously on the data, like nearest-neighbor interpola-399

tion, creates spurious contribution to the energy near the grid scale even though it re-400

mains closest to the finite-volume interpretation of the data. Continuous or smooth in-401

terpolation, on the other hand, will not change scaling laws near the grid scale. Conse-402

quently, linear or cubic interpolation retain the smoothness of the field while still stay-403

ing close – in an area averaged sense – to the original data. We conclude that especially404

cubic interpolation is here a sensible choice, as it provides a smooth high wavenumber405

spectrum as well as a close ratio representation between energy on the original and in-406

terpolated grid (see Fig. 3).407

Even though the choice of interpolation method is not critical for KE spectra, it408

will be crucial for quantities that have steeper or more shallow spectral slope. The shal-409

low case is the main concern in this paper, and is discussed in detail in section 4.1.2. On410

the other hand, when computing spectra of quanitites that have less variation associated411

with high wavenumbers, the choice of a smooth interpolation method will be crucial. For412

example, the spectral slope of sea surface height is, according to theory, between (−5/3)−413

2 = −11/3 and −3 − 2 = −5 (e.g. Wang et al., 2019). Any roughening of the high414

wavenumber part of the flow due to the interpolation can show up as a strong peak at415

high wavenumbers that is emphasized by the logarithmic scaling and the fact that only416

little variations are associated with small scales, so that relative changes here turn out417

to be large. The use of nearest-neighbor interpolation would create the impression of a418

build-up of power close to the cut-off scale of the grid, when they are actually an imprint419

of the discontinuity of the field in the finite volume representation. Such a build-up may420

be interpreted as a numerical instability, grid noise or insufficient damping of unrealis-421

tic small scale grid artifacts rather than an artifact of the interpolation method or the422

grid discretization itself. Such considerations are especially important if one tries to in-423

vestigate the effective resolution of a numerical model (see also Soufflet et al., 2016), i.e.,424

the minimal resolution at which the model still performs reasonably close to reality. One425

way to define such a minimal resolution is the wavenumber at which the modelled spec-426

tral slope significantly diverges from the expected theoretical and/or observational slope427

of an idealized or even global simulation. Therefore, one needs to be careful when inter-428
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preting the high wavenumber end of an interpolated spectrum for data with steep spec-429

tral slopes and should be aware of the consequences of the choice of interpolation method.430

The resolution of the interpolated grid does not change the qualitative picture much.431

Using a lower resolution for the interpolation grid does change the high wavenumber rep-432

resentation slightly (not shown), but the overall shape of the spectrum and the quali-433

tative difference between LEITH and KBACK is not affected. Such a low level sensitiv-434

ity to both interpolation method and resolution of interpolation grid suggests a robust435

result for the KE spectra. Furthermore, slightly shifting the offset of the interpolation436

grid, i.e. varying the position of the first grid point and consequently the entire inter-437

polated grid, does also not lead to large changes in the KE spectrum. Only the high wavenum-438

bers, which are affected by the interpolation method as well, are also affected by these439

slight positional changes of the grid, and the effect is only notable for coarse interpola-440

tion grids such as 0.09◦ = 10 km (not shown).441

Finally, the spectra on the oversampled grid exhibit a partial reflection about the442

nominal resolution at 2h ≈ 34.64 km. This is especially dominant for nearest-neighbor443

interpolation where a clear peak occurs at 2h, after which the spectrum falls off again.444

Therefore, a meaningful interpretation of the data is only possible up to a wavelength445

of 2h as discussed in section 2.446

4.1.2 Dissipation power spectra447

Dissipation tendencies emphasize, by design, small scales. Consequently, spectra448

of dissipation power – as a product of velocities and dissipation tendencies - are relatively449

shallow. Further, dissipation power can be positive or negative. For both of these rea-450

sons, dissipation power spectra are displayed on a linear scale.451

The methodology is very similar to the KE case. We check that the ratio between452

the average dissipation power on the triangular grid and the average dissipation power453

of the sampled interpolated field is close to 1. Fig. 5 shows that only nearest-neighbor454

interpolation passes this test reaching ratios close to 1. All other interpolation schemes455

are off by at least 30 % up to as much as a factor of almost 7. In those cases the inter-456

polated data is not at all representative of the original data and the results are very sen-457

sitive to the viscosity operator used in the respective simulations, with substantially larger458

ratios for KBACK.459
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Figure 5. Same as Fig. 3 but for total dissipation power. Note the different y-axis scaling

in the left and right panel. For the KBACK simulation with the linear and cubic interpolations,

only 95% of the days have been used to compute the ratios. Using 100% of the days would in-

crease the spread between different horizontal starting points even more due to some days where

the interpolated results are very close to zero or may even switch sign. Removing 5% of the data

does not affect the main interpretation of the results.

The reason for this is that the dissipation tendencies used for the computation of460

dissipation power have a large grid scale contribution and need to be interpreted in the461

discontinuous finite volume sense. In the finite volume model FESOM2 the data is al-462

ways associated to a volume or, at a certain vertical level, to a triangular area. Linear463

or cubic interpolation, on the other hand, assume that the data is only associated to a464

specific point and that a smooth curve exists between two neighboring points, which the465

interpolation tries to estimate. This smoothing leads to a loss of information on fine scales466

and, as these are important for dissipation tendencies, a loss of information in an over-467

all sense. This problem is also not alleviated when moving to finer interpolation reso-468

lution, as the conceptual difference in the interpretation of the finite volume data remains469

the same.470

The effect of interpolation is obvious when looking at actual fields (Fig. 6). Inter-471

polation smoothes grid scale fluctuations of dissipation power, but emphasizes row-wise472

alternating patterns in the meridional direction due to the orientation of the triangles.473

This issue persists even at a high oversampling ratio, with patterns that depend strongly474

on the orientation and structure of the grid. It explains how small scale fluctuations project475

onto large scale structures due to interpolation artifacts. Only nearest-neighbor inter-476
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polation retains grid scale fluctuations in both directions, especially for the dissipation477

tendency contribution, as it actually views the data as discontinuous by construction.478

Figure 6. A daily mean of dissipation power for KBACK: a) on the original triangular grid

interpreted in the finite volume sense; after interpolation to a 10 km×10 km and 1.1 km×1.1 km

grid using nearest neighbor (b and e), linear (c and f) and cubic (d and g) interpolation, respec-

tively. The grid scale structure is only retained by the nearest neighbor interpolation while linear

and cubic interpolation lead to smoothing, especially in the zonal direction.

Even though linear and cubic interpolation fail even the first sanity check, it is in-479

structive to look at actual dissipation power spectra for all three interpolation methods480

(Fig. 7). All three methods show that LEITH is dissipative on all scales, while KBACK481

dissipates on small scales but injects energy on large scale. For Leith, most of the en-482

ergy is dissipated on large scales due to the fact that most of the kinetic energy can be483

found at large scales (see Fig. 4) and due to the insufficient scale separation between the484

injection and dissipation scales in these simulations at eddy-permitting resolution. The485

dissipation operator, while predominantly operating on small scales, is therefore also in-486

terfering with the large scales which leads to pronounced dissipation at large scales (see,487

e.g., Soufflet et al., 2016; Juricke et al., 2019). However, only nearest-neighbor interpo-488

lation is able to show that there is significant dissipation near the grid scale for both LEITH489

and KBACK. Worse, linear or cubic interpolated spectra give the impression that the490
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dissipation power in KBACK is predominantly positive, which is physically wrong and491

numerically impossible.492

Figure 7. As 4 but for dissipation power spectra.

This example illustrates quite nicely, how an inconsistent interpolation of the data493

can lead to a quite different and even opposing interpretation of the data. While kinetic494

energy is expected to be a physically smooth field, such that cubic or linear interpola-495

tion are acceptable choices, dissipation power is, numerically, a discontinuous field and496

should be viewed in the finite volume framework of the model discretization.497

4.2 Resize-and-average method498

The spectra obtained via the R-a-A method are qualitatively similar to the Fourier499

spectra (compare Fig. 8 with Fig. 4 and 7). The results show clearly the distribution of500

(anti-)dissipation across scales for the backscatter vs. the Leith viscosity and the higher501

levels of KE for KBACK.502

Note that the spectra obtained by Fourier and the modified R-a-A methods are not503

directly comparable in terms of exact values for specific scales. For example, on equi-504

lateral square meshes of the size 100×100, if the spectral slope in the Fourier basis is505

−5/3 = −1.66, then the R-a-A method gives −1.44. For rectangular or triangular meshes506

of different sizes the R-a-A method may further deviate from the results of Fourier anal-507
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Figure 8. Energy and dissipation power spectra computed by the modified resize-and-average

method, see (22) and (23). Blue points correspond to backscatter parametrization, red points to

the Leith parametrization.

ysis based on interpolated fields. All these aspects are discussed in detail in Kutsenko508

et al. (2022), where the exact correspondence between values computed by Fourier and509

R-a-A methods is presented. We note that the original R-a-A method determines the510

energy density for a specific subset of scales k ∼ 2n, n ∈ N (see Kutsenko et al., 2022).511

The modified R-a-A can recover energy densities for all k ∼ n. However, the difference512

between the slopes in the modified R-a-A and Fourier methods is more noticeable than513

in the original R-a-A. For the spectral slope k−3
F in the Fourier basis, the modified R-514

a-A gives a two times smaller slope as determined via preliminary idealized tests (not515

shown). The theoretical underpinning of the modified R-a-A is a topic of ongoing research.516

One should refrain from directly comparing the scale diagnostics based on Fourier517

and R-a-A analysis. It is more reasonable to compare the results made by the same method518

for different simulations. In that case, the qualitative characteristics appearing in spec-519

tral diagnostics of LEITH and KBACK are the same for both methods. Another signif-520

icant difference between Fourier and R-a-A diagnostics lies in the interpretation of scales521

and actual amplitudes. In particular, the resolution x in the original R-a-A method is522

about twice smaller than the corresponding wavelength in the Fourier method, as we com-523

pare indicator functions with sine and cosine functions. Unsurprisingly, it diverges from524

Fourier analysis quantitatively, as it relies on scale averaging rather than trigonometric525

separation of the flow.526
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The R-and-A method can be readily applied to any type of unstructured data and527

does not suffer from the interpolation issue we faced for dissipation power as it always528

interprets the data in a finite volume sense. But one needs to be aware of the grid res-529

olution to estimate the maximum resolved wavenumber. Analysing grid scales becomes530

difficult, as the averaging operation is most effective for subsets with sufficiently many531

samples inside.532

4.3 Spectra via discrete spatial filtering533

We applied the smoothing filter method of section 2.5 specifically to dissipation power534

to look at the grid scale differences between LEITH and KBACK (Figs. 9 and 10). We535

first look at the original field and compare it to the local distribution of dissipation power536

after applying several smoothing filters C and X to see the instantaneous spatial distri-537

bution of dissipation on larger scales (Fig. 9). While the original field is strongly influ-538

enced by the grid scale structure of the data, consecutive smoothing cycles reduce the539

effect of the grid scales and highlight the differential behavior of LEITH compared to540

KBACK on larger scales. While LEITH remains dissipative on large scales with nega-541

tive contributions dominating the dissipation power, KBACK switches sign from mostly542

negative to positive after applying the filters. This illustrates that backscatter tends to543

dissipate at small scales, while it injects energy at large scales. Furthermore, it demon-544

strates the sensitivity of overall dissipation to just one single smoothing cycle and, there-545

fore, the importance to retain small scales when using interpolation for the Fourier anal-546

ysis. The smoothing filter diagnostic also does not only provide an area averaged pic-547

ture, but highlights the instantaneous regions of strong dissipation or backscatter.548

Averaging over the entire model domain for each smoothing cycle and then tak-549

ing the differences of consecutive smoothing cycles confirms this impression (Fig. 10).550

While LEITH stays dissipative for all differences, i.e. for all scale ranges, KBACK ac-551

tually switches from negative to positive already after only one smoothing cycles (Fig. 10).552

This provides a qualitative illustration of the grid scale behavior of these two methods.553

However, one can also see that after several smoothing cycles, the dissipation power for554

both simulations asymptotically tends to zero for large scales. This is due to the fact that555

the smoothing operation is not orthogonal and therefore does not clearly separate scales.556

After each iteration of the smoothing filter, more and more large scales are mixed into557

the small scales and are removed. This is why we can, with the current choice of smooth-558
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e) LEITH h) KBACKf) KBACK g) LEITH

Figure 9. A daily mean of dissipation power on (a+b) the original data, (c+d) after apply-

ing the smoothing filter X to velocity and dissipation tendency component before evaluating the

scalar product, (e+f) after applying F = CX, and (g+h) after applying XCX for (a+c+e+g)

LEITH and (b+d+f+h) KBACK.

ing filter, only apply the filter method to directly compare two sets of simulations on the559

same mesh. Further extension in the spirit of the previous section with the orthogonal560

Walsh–Rademacher basis can be developed from here on. However, we want to stress that561

the main goal of this specific method is the clear focus on the model grid scale in the con-562

text of effective resolution (Soufflet et al., 2016), while the other R-a-A method predom-563

inantly focuses on slightly larger up to the largest scales.564
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Figure 10. Scale distribution of dissipation power based on globally averaged difference be-

tween consecutive smoothing cycles of F = CX (such that data is always placed on centroids) (a)

including the original data point without smoothing (i.e. 0 smoothing cycles) and (b) without the

original data point.

5 Conclusion565

In this study we investigated several different methods with which to do scale anal-566

ysis of kinetic energy and dissipation power on the triangular quasi B-grid of the FE-567

SOM2 model. Due to the triangular structure and the placement on centroids, the amount568

of velocity points is about twice the amount of scalar points. In the specific idealized struc-569

tured triangular grid we consider in this first study, there are two sets of translationally570

invariant triangle types, one with upward and one with downward pointing triangles. Con-571

sequently, a classical spectral Fourier analysis as a simple 2D spectrum is not fully suf-572

ficient. We are effectively dealing with an external mode of variability defined by a rhom-573

bus as a unit cell and an internal mode controlled by the two triangles with opposite ori-574

entation that make up the rhombus.575

As alternative pathways to the relatively elaborate full diagnostic of two separate576

spectra necessary to describe both modes of variability, we present different methods:577

1) a spectral analysis on interpolated fields; 2) an alternative scale analysis based on sub-578
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domain averaging; 3) a small scale analysis based on successive applications of smooth-579

ing filters.580

We apply the methods to two sets of data based on a zonally periodic channel for581

simulations of a primitive equation flow on an equilateral triangular grid with FESOM2.582

The first data set uses a classical viscous closure. The second one uses a kinematic backscat-583

ter closure introduced by Juricke, Danilov, Koldunov, Oliver, Sein, et al. (2020).584

For the first method, i.e. 2D spectral analysis on interpolated fields, one needs to585

choose both the resolution of the interpolated grid as well as the interpolation method.586

Oversampling with a finer interpolation grid is necessary to capture the structure of the587

original triangular grid up its nominal resolution.588

Regarding the interpolation method, the result is, depending on the investigated589

field, sensitive to the actual choice. As a first sanity check, one can compute the ratio590

between the total area-weighted field on the original grid and on the interpolated grid.591

If these two differ by more than a few percent, the respective interpolation method should592

not be used. While this first test suggests that all three tested interpolation methods -593

nearest neighbor, linear and cubic splines - can be used for kinetic energy, only nearest594

neighbor interpolation should be considered for dissipation power. This is related to the595

smoothness of the respective fields and the interpretation of the model data. While ki-596

netic energy should be a physically smooth field, dissipation power is, due to its relation597

to numerical dissipation tendencies, a very small scale, discontinuous field in the finite598

volume discretization of FESOM2. Consequently, oversampling via nearest neighbor in-599

terpolation stays close to the original data. This is also visible in the actual spectra for600

all three methods. The dissipation power spectra is most sensibly represented by near-601

est neighbor interpolation, while it leads for linear and cubic interpolation to wrong re-602

sults for KBACK and LEITH, most noticeable, however, for the data of KBACK. In those603

simulations, all three methods suggest energy injection at large scales and energy dis-604

sipation at small scales, as expected. However, only nearest neighbor interpolation shows605

sufficient dissipation at small scales, while linear and cubic interpolation actually sug-606

gest too little dissipation at small scales and overall.607

Looking at kinetic energy spectra, the three different interpolation methods pro-608

vide very similar results. The kinetic energy backscatter simulation has more energy on609

all scales compared to the classical viscous closure. Differences between the three inter-610
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polation methods only appear close to the maximum resolved wavenumber. Here, lin-611

ear and cubic retain a negative slope, while nearest neighbor emphasises the small scales612

and therefore leads to a small build-up of energy near the grid scale. This build-up is613

visible due to the small amount of total energy at small scales, so that a small increase614

in energy at those scales leads to a magnified signal in the spectrum. All three interpo-615

lation methods provide reasonable spectra, and their difference lies in the interpretation616

of the data as either a sampling of a naturally smooth field (linear or cubic) or the dis-617

continuous interpretation of the finite volume discretization (nearest neighbor). Conse-618

quently, the high wavenumber end of the kinetic energy spectrum should be interpreted619

with caution.620

As our second method, the alternative R-a-A scale analysis based on subdomain621

averaging introduced by Kutsenko et al. (2022) is not directly comparable with Fourier622

analysis in a quantitative sense. But it reproduces both the general shape of the kinetic623

energy and the dissipation power spectrum found with the Fourier spectral method on624

interpolated grids. The big advantage with this averaging method is that it does not de-625

pend on the regularity of the mesh and can be easily extended to fully unstructured meshes.626

Such meshes and data will be investigated in more detail in follow-up studies. However,627

scales and amplitudes are not directly comparable between a Fourier spectrum and the628

R-a-A scale analysis, as, for example, the scales for R-a-A correspond to scales of at least629

twice the size in the Fourier analysis. The R-a-A method, however, does not directly al-630

low to investigate grid scale behaviour with high accuracy, as the elements of each sub-631

domain become fewer and fewer close to the grid scale.632

To analyze grid scale behaviour in a local sense and especially for dissipation power,633

the third and final method presented here utilizes a smoothing operator acting on the634

grid scale, with successive iterations of the filter removing the contribution from small635

scales. However, as this operator does not divide the domain into orthogonal subsets (con-636

trary to the R-a-A method), successive applications of the filter tend to mix scale con-637

tributions. This does not present a substantial issue, though, if only grid scales are of638

interest, for which a few smoothing cycles are already sufficient.639

In general, the methods described and tested in this study tend to complement each640

other. Due the complex structure of the grid, the violation of translational invariance641

of the triangular cells and a unit cell being defined by two triangular cells and therefore642
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creating an internal mode of variability, we cannot expect to get a good description of643

the scale behavior of the flow with just one diagnostic. We need to rely on the combi-644

nation of different diagnostics. As a note of caution, one should be aware that interpo-645

lation can lead to inaccurate or simply wrong results for spectra, depending on the fields646

under consideration. In follow up studies, we will apply selected methods to both reg-647

ular and fully unstructured grids and use them to more closely investigate aspects of dif-648

ferent momentum closures and flow simulations.649
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