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Abstract

Plant phenology regulates the carbon cycle and land-atmosphere coupling. Currently, climate models often disagree with

observations on the seasonal cycle of vegetation growth, partially due to how spring onset is measured and simulated. Here

we use both thermal and leaf area index (LAI) based indicators to characterize spring onset in CMIP6 models. Although the

historical timing varies considerably across models, most agree that spring has advanced in recent decades and will continue

to arrive earlier with future warming. Across the Northern Hemisphere for the periods 1950-2014, 1981-2014, and 2015-2099,

thermal-based indicators estimate spring advances of -0.7±0.2, -1.4±0.4, and -2.4±0.7 days/decade, while LAI-based indicators

estimate -0.4±0.3, -0.1±0.3, and -1±1.1 days/decade. Thereby, LAI-based indicators exhibit later spring and weaker trends

toward earlier onset, leading to index-related uncertainty being as large or larger than model uncertainty for a given index.

Reconciling index-related discrepancies is therefore critical for understanding future changes in spring onset.
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Introduction

The supplementary text includes additional details of the Coupled Model Intercomparison Project Phase 6
(CMIP6) outputs we used to calculate the spring onset indicators and the observational and remote-sensing
derived datasets we adopted to validate the model outputs.

Text S1 Additional information on the CMIP6 models

We obtained daily maximum and minimum surface air temperature (tasmax and tasmin) and leaf area index
(LAI) from participating models in the CMIP6 ensemble (https://esgf-node.llnl.gov/search/cmip6/) from
both historical simulations from the core Diagnostic, Evaluation and Characterization of Klima (DECK)
experiments and SSP5-8.5 scenario simulations from the Scenario Model Intercomparison Project. The
historical simulations run from 1850-2014 and are forced with estimates of natural (e.g., volcanic eruptions,
solar variability) and anthropogenic (e.g., greenhouse gas emissions, land-use change) climate forcing. The
Shared Socioeconomic Pathways (SSPs) present alternative scenarios of future emissions and land-use changes
estimated using integrated assessment models and run from 2015–2100 except for long-term extensions. Table
S1 lists model information for all 26 CMIP6 models used, and Table S2 describes the phenology schemes of
the models with daily LAI and prognostic phenology. Although we calculated SI-x for up to 30 members
for models with multiple ensemble members, we only included the 1st member (listed in Table S1) in the
multi-model analysis (Hagedorn et al., 2005; Lehner et al., 2020). Although members of the same model
could experience disagreements on the spring onset trends even at a hemispheric scale due to internal climate
variability (Figure S7), they agree on mean spring onset timing (Figure S2) and experience a smaller spread
of trend variability at a longer timescale (i.e., compared to the 1979-2014 means in Figure S1, the spread of
mean trends of the members from the same model is smaller over the 1950-2014 period).

When phenology is simulated prognostically through biogeochemical processes, LSMs calculate LAI based on
carbon allocation to the leaf carbon pool (e.g. Krinner et al., 2005; Lawrence et al., 2019). The start and end
of the growing season can be simulated explicitly and determined by environmental factors such as surface air
temperature, soil moisture, and daylength (Krinner et al., 2005; Lawrence et al., 2019; Sitch et al., 2003). For
instance, in the Community Land Model version 4.5 (CLM4.5, the land surface model used in CMCC-ESM2)
and the Organising Carbon and Hydrology In Dynamic Ecosystems v2.0 (ORCHIDEE v2.0, the land surface
model of IPSL-CM6A-LR), for unmanaged deciduous ecosystems, onset is explicitly regulated by a growing
degree day (GDD) threshold for seasonal deciduous plants (plus chilling in ORCHIDEE) whereas combined
thermal, chilling and water stress criteria are required for moisture-limited plants (Botta et al., 2000; Krinner
et al., 2005; Lawrence et al., 2019; White et al., 1997). Alternatively, phenology can be modeled implicitly,
where onset and offset of the growing season are not explicitly regulated and LAI follows variations in leaf
biomass (e.g., as in Surfex 8.0c, the LSM of CNRM-ESM2-1; Hamdi et al., 2014). In addition, some models
prescribe phenology to simulate the carbon cycle (e.g., as in CABLE2.4, the LSM of ACCESS-ESM1-5; Law
et al., 2017; see Tables S1-S2 for more details).
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Text S2 Observational and remote-sensing derived dataset

We adopted gridded daily temperature from both the Berkeley Earth Surface Temperature Grid-
ded Land Daily Temperature dataset (hereafter Berkeley Earth, http://berkeleyearth.org/data/)
and the Climate Prediction Center Global Daily Temperature (hereafter CPC,
https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html). The Berkeley Earth Gridded Land Daily
Temperature dataset includes daily maximum and minimum temperature at a 1° × 1° latitude-longitude
grid from 1880 to 2021. Uncertainties in gridded temperature records at a hemispheric scale are greater
prior to 1950 due to decreasing data availability and spatial coverage of weather stations, so we calculated
thermal-based indices from 1950 to 2014 to be consistent with the historical simulations. The CPC
temperatures are 0.5° × 0.5° latitude-longitude resolution daily data calculated using the CPC archive of
Global Telecommunication System daily reports and the Shepard algorithm. CPC covers 1979-2021 and we
used 1979-2014 to compare against historical simulations.

To assess simulated LAI amplitude and seasonality, we also adopted the Global LAnd Surface Satellite LAI.
This product provides eight-day composites of LAI, based on the Advanced Very High Resolution Radiometer
(AVHRR) reflectance data. We obtained the 0.5° x 0.5° dataset and aggregated the raw GLASS LAI to a 1°
x 1° latitude/longitude grid by averaging the four GLASS grid points in each model grid. We then fitted a
smoothing spline to the time series of each grid point for each year and used it to interpolate the 8-day data
to daily resolution. Finally, we calculated the day-of-year (DOY) time series of spring onset as indicated by
different LAI thresholds.

Supplementary Figures

Figure S1 Illustrative diagram showing how the LAI threshold-based DOY indices are computed from the

3
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simulated LAIs (panels a-g), MODIS LAI (h), and GLASS LAI (i). The diagram presents daily LAI in the
year 2010, the LAI thresholds, and LAI threshold-based day of year (DOY) at 38.5°N, 82.5°W. We define
the annual dynamical range of LAI as the difference between the annual minimum (min LAI) and maximum
LAI (max LAI). We then calculate spring onset indicators based on the day of year LAI passes the 25%,
50%, and 75% thresholds of its annual dynamical range.

Figure S2 Mean day of year (DOY) of SI-x leaf (left) and LAI25% (right) averaged across the Northern
Hemisphere (25°N-85°N) for each model member and the observational datasets. Mean SI-x leaf and LAI25%
are calculated over 1950-2014 (blue), 1981-2014 (magenta), and 2015-2099 (orange) periods and weighted by
area weight. Ensemble means averaged across the first member of each model (26 models for SI-x leaf and 7
models for LAI25%) are plotted vertically for comparison.
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Figure S3 Ensemble mean and standard deviation of the SI-x leaf index and departure of each model and
observations from the ensemble mean. Panels (1) and (2): mean (1) and standard deviation (2) of spring
onset timing as indicated by SI-x leaf across the first member of the 26 CMIP6 models during 1981-2014
in the historical simulations. Panels (3-28): differences between each model 1981-2014 mean SI-x leaf and
the ensemble mean. Panels (29-30): differences between the two observation-based mean first leaf and the
model ensemble mean.
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Figure S4 Ensemble mean and standard deviation of the leaf area index (LAI) and departure of each model
and the Global LAnd Surface Satellite (GLASS) LAI from the ensemble mean. Panels (1) and (2): mean
(1) and standard deviation (2) of mean LAI across the first member of the seven CMIP6 models during
the 1981-2014 historical period. Panels (3-9): differences between each model and the ensemble mean LAI.
Panels (10): differences between the GLASS LAI and the model ensemble mean.

Figure S5 Mean day of year (DOY) of mean LAI25% DOY (a), mean SI-x leaf DOY (b), and the difference
between the two (c) during the 1981-2014 historical period for the seven models with both daily temperature
and LAI output (1-7th rows), the ensemble mean (8th row), and observations (bottom row).
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Figure S6 Ensemble mean and standard deviation of the LAI 25% threshold DOY (LAI25%) and departure
of each model and the GLASS LAI from the ensemble mean during 1981-2014. Panels (1) and (2): mean (1)
and standard deviation (2) of LAI25% of the seven CMIP6 models during the 1981-2014 historical period.
Panels (3-9): differences between each model and the ensemble mean DOY. Panels (10): differences between
Obs-GLASS-LAI25% and the model ensemble mean.
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Figure S7 Mean trend of the SI-x leaf (left) and LAI25% (right) averaged across the Northern Hemisphere
(25°N-85°N) for each model member and the observational datasets. Mean SI-x leaf and LAI25% trends are
calculated over 1950-2014 (blue), 1981-2014 (magenta), and 2015-2099 (orange) periods and weighted by
area weight. Ensemble means averaged across the first member of each model (26 models for SI-x leaf and 7
models for LAI25%) are plotted vertically for comparison.

Figure S8 Maps showing SI-x leaf trends over the historical period (1981-2014). Grid cell with a significant
trend after adjusting for false positive is marked with a black “x”. Panel (1-26) SI-x leaf trend of the 26
CMIP6 models. Panels (27-28): Trend of observation-based first leaf estimates.
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Figure S9 Trends of LAI25% (a), SI-x leaf (b), the difference between the two (c), and correlation between
the detrended DOYs (d) during the 1981-2014 historical period for the seven models with both daily tem-
perature and LAI output (1-7th rows), the ensemble mean (8th row), and observations (last row). Grid cell
with a significant trend/correlation (p<0.05) after adjusting for false positive is marked with a black “x”.
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Figure S10 Ensemble mean and standard deviation of the SI-x leaf trend and departure of each model
from the ensemble mean. Panels (1) and (2): mean (1) and standard deviation (2) of trends in spring onset
timing as indicated by SI-x leaf across the first member of the 26 CMIP6 models during the 1981-2014
historical period. Panels (3-28): differences between each model trend and the ensemble mean. Panels
(29-30): differences between the two observation-based first leaf trends and the model ensemble mean.

Figure S11 Trends of LAI25% (a), SI-x leaf (b), difference between the two (c), and correlation between
the detrended DOYs (d) during 2015-2099 under the SSP585 scenario for the seven models with both daily
temperature and LAI output (1-7th rows) and the ensemble mean (8th row). Grid cell with a significant
trend/correlation (p<0.05) after adjusting for false positive is marked with a black “x”.
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y. Figure S12 Proportion of models with an earlier spring onset (negative trend) of LAI25% (left) and SI-x
leaf (right) during different time periods. LAI25% trends are calculated based on the seven models and SI-x
trends are averaged across all 26 models.

Figure S13 Ensemble mean correlation between SI-x leaf and LAI25% and proportion of models with a
significant positive correlation (p<0.05) during different time periods. Mean correlations (left column) are
averaged over correlations of the seven CMIP6 models with both daily temperature and LAI available. Larger
proportion of models (right column) means more models exhibit a significant positive correlation (p<0.05)
between the thermal- and LAI-based spring onset indicators.

Supplementary Tables
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Table S1 Information on the 26 CMIP6 models

Models Run/member used in the analysis Horizontal resolution (latxlon) Atmospheric model Ocean model Land model Prognostic phenology and carbon cycle Reference

ACCESS-CM2 r1i1p1f1 1.88 x 1.25 MetUM-HadGEM3-GA7.1 ACCESS-OM2 (GFDL-MOM5) CABLE2.5 no Bi et al., 2012
ACCESS-ESM1-5 r1i1p1f1 1.88 x 1.24 HadGAM2 ACCESS-OM2 (MOM5) CABLE2.4 prescribed phenology but prognostic carbon cycle Law et al., 2017
AWI-CM-1-1-MR r1i1p1f1 0.94 x 0.94 ECHAM6.3.04p1 FESOM 1.4 JSBACH 3.20 no Semmler et al., 2020
BCC-CSM2-MR r1i1p1f1 1.13 x 1.13 BCC AGCM3 MR MOM4 BCC AVIM2 no Wu et al., 2019
CMCC-ESM2 r1i1p1f1 1.25 x 0.94 CAM5.3 NEMO3.6 CLM4.5 BGC yes Lovato et al., 2022
CNRM-CM6-1 r1i1p1f2 1.41 x 1.41 Arpege 6.3 Surfex 8.0c no Voldoire et al., 2019
CNRM-CM6-1-HR r1i1p1f2 0.50 x 0.50 Arpege 6.4 Surfex 8.0c no Voldoire et al., 2019
CNRM-ESM2-1 r1i1p1f2 1.41 x 1.41 Arpege 6.5 Nemo 3.6 Surfex 8.0c yes Séférian et al., 2019
CanESM5 r1i1p1f1 2.81 x 2.81 CanAM5 NEMO3.4.1 CLASS3.6/CTEM1.2 yes Swart et al., 2019
EC-Earth3-CC r1i1p1f1 0.70 x 0.70 IFS cy36r4 NEMO3.6 HTESSEL and LPJ-GUESS v4 yes Döscher et al., 2021
FGOALS-g3 r1i1p1f1 2.00 x 2.25 GAMIL2 LICOM3.0 CLM4.0 none He et al., 2019
GFDL-ESM4 r1i1p1f1 1.25 x 2.00 GFDL-AM4.1 GFDL-OM4p5 (GFDL-MOM6) GFDL-LM4.1 yes Held et al., 2019
INM-CM4-8 r1i1p1f1 2.00 x 1.50 INM-AM4-8 INM-OM5 INM-LND1 yes Volodin et al., 2018
INM-CM5-0 r1i1p1f1 2.00 x 1.50 INM-AM5-0 INM-OM5 INM-LND1 yes Volodin et al., 2018
IPSL-CM6A-LR r1i1p1f1 2.50 x 1.26 LMDZ (NPv6) NEMO-OPA ORCHIDEE (v2.0) yes Boucher et al., 2020
KACE-1-0-G r1i1p1f1 1.88 x 2.50 MetUM-HadGEM3-GA7.1 MOM4p1 JULES-HadGEM3-GL7.1 Lee et al., 2020
KIOST-ESM r1i1p1f1 1.88 x 1.88 GFDL-AM2.0 GFDL-MOM5.0 NCAR-CLM4 yes Pak et al., 2021
MIROC-ES2L r1i1000p1f2 2.81 x 2.81 CCSR AGCM COCO4.9 MATSIRO6.0+VISIT-e ver.1.0 yes Tatebe et al., 2019
MIROC6 r1i1p1f1 1.41 x 2.81 CCSR AGCM COCO4.9 MATSIRO6.0 no Hajima et al., 2020
MPI-ESM1-2-HR r1i1p1f1 0.94 x 1.88 ECHAM6.3 MPIOM1.63 JSBACH3.20 yes Gutjahr et al., 2019
MPI-ESM1-2-LR r1i1p1f1 1.88 x 3.75 ECHAM6.3 MPIOM1.63 JSBACH3.20 yes Mauritsen et al., 2019
MRI-ESM2-0 r1i1p1f1 1.13 x 2.25 MRI-AGCM3.5 MRI.COM4.4 HAL 1.0 yes Yukimoto et al., 2019
NESM3 r1i1p1f1 1.88 x 3.75 ECHAM v6.3 NEMO v3.4 JSBACH v3.1 yes Cao et al., 2018
NorESM2-MM r1i1p1f1 1.25 x 1.88 CAM-OSLO (CAM6-Nor) MICOM CLM5 yes Seland et al., 2020
TaiESM1 r1i1p1f1 1.25 x 0.94 TaiAM1 POP2 CLM4.0 yes Lee et al., 2020
UKESM1-0-LL r1i1p1f2 1.88 x 2.50 MetUM-HadGEM3-GA7.1 NEMO-HadGEM3-GO6.0 JULES-ES-1.0 yes Sellar et al., 2019

Table S2 Information of spring onset triggers and/or leaf phenology in the land surface models in the seven
CMIP6 models with a prognostic carbon cycle and daily LAI outputs

Models Land model Phenology/Spring onset

ACCESS-ESM1-5 CABLE2.4 The phenology phase is
prescribed by latitude and
vegetation type and based on
remote sensing data.

12
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Models Land model Phenology/Spring onset

CMCC-ESM2 CLM4.5 BGC Spring onset of deciduous plant
functional types (PFT) depends
on environmental factors:
growing degree day (GDD)
accumulation for seasonal
deciduous PFTs; GDD, chilling,
and soil moisture
accumulation for stress
deciduous PFTs (GDD exceeds
a critical threshold if chilling
exceeds 15 days; soil water
potential exceeds the critical
threshold for more than 15
days; daylength is over 6 hours).

CNRM-ESM2-1 Surfex 8.0c Phenology is modeled
implicitly: LAI follows the
variations of leaf biomass.

EC-Earth3-CC HTESSEL and LPJ-GUESS v4 Spring onset is based on a
simple temperature model
(TAS>5); grasses can shed their
leaves under conditions of
severe water stress.

IPSL-CM6A-LR ORCHIDEE (v2.0) Spring onset of deciduous PFTs
depends on environmental factors:
GDD and chilling requirements
for cold deciduous PFTs while
GDD, chilling, and soil water
criteria for stress deciduous PFTs.

KIOST-ESM Land Model version 3.0 (LM3.0) Phenology is governed by
monthly environmental triggers:
onset is triggered when mean
monthly canopy air
temperature is above 10°C and
the mean monthly
plant-available soil water in the
root zone is more than 10% of
its maximum possible value.

MIROC-ES2L MATSIRO6.0+VISIT-e ver.1.0 Leaf onset is based on
cumulative temperature (no
explicit water effect).

Hosted file

essoar.10512515.1.docx available at https://authorea.com/users/542218/articles/604950-

growing-uncertainty-in-projected-spring-onset-variability-in-the-northern-hemisphere

13

https://authorea.com/users/542218/articles/604950-growing-uncertainty-in-projected-spring-onset-variability-in-the-northern-hemisphere
https://authorea.com/users/542218/articles/604950-growing-uncertainty-in-projected-spring-onset-variability-in-the-northern-hemisphere


Authors: Xiaolu Li[1], Toby Ault[1], Colin P. Evans[1], Flavio Lehner[1, 2],
Carlos M. Carrillo[1], Alison Donnelly[3], Theresa Crimmins[4], Amanda S.
Gallinat[3], Mark D. Schwartz[3]

1 Department of Earth and Atmospheric Sciences, Cornell University, Ithaca,
NY 14850, USA
2 Climate and Global Dynamics Laboratory, National Center for Atmospheric
Research, Boulder, CO 80302, USA
3 Department of Geography, University of Wisconsin-Milwaukee, Milwaukee,
WI 53201, USA
4 USA National Phenology Network, School of Natural Resources and the En-
vironment, University of Arizona, Tucson, AZ 85721, USA

Corresponding author: Xiaolu Li (xl552@cornell.edu)

Key Points:

• Divergence between thermal- and growth-based spring onset indicators
grows with time as global temperatures increase.

• Thermal-based indicators estimate spring advances of -0.7, -1.4, and -2.4
days/decade in 1950-2014, 1981-2014, and 2015-2099.

• Vegetation growth-based indicators exhibit later spring, weaker trends
toward earlier spring onset, and larger disagreements among models.

Abstract

Plant phenology regulates the carbon cycle and land-atmosphere coupling. Cur-
rently, climate models often disagree with observations on the seasonal cycle
of vegetation growth, partially due to how spring onset is measured and sim-
ulated. Here we use both thermal and leaf area index (LAI) based indicators
to characterize spring onset in CMIP6 models. Although the historical timing
varies considerably across models, most agree that spring has advanced in re-
cent decades and will continue to arrive earlier with future warming. Across
the Northern Hemisphere for the periods 1950-2014, 1981-2014, and 2015-2099,
thermal-based indicators estimate spring advances of -0.7±0.2, -1.4±0.4, and
-2.4±0.7 days/decade, while LAI-based indicators estimate -0.4±0.3, -0.1±0.3,
and -1±1.1 days/decade. Thereby, LAI-based indicators exhibit later spring
and weaker trends toward earlier onset, leading to index-related uncertainty
being as large or larger than model uncertainty for a given index. Reconciling
index-related discrepancies is therefore critical for understanding future changes
in spring onset.

Plain Language Summary

The timing of spring onset as indicated by green-up affects plants, bird and in-
sect populations, rivers, and agriculture. However, state-of-the-art land surface
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models disagree with satellite-derived records on the seasonal cycles of vegeta-
tion growth, making it difficult to accurately predict green-up, its response to
climate, and the ecological consequences. Here we calculate two sets of spring
onset indicators using climate model outputs to characterize spring onset varia-
tions and trends in the recent past and future. We find spring has been advanc-
ing in recent decades and will continue to arrive earlier with future warming.
Thermal-based indicators show that spring onset advances by -0.7, -1.4, and
-2.4 days/decade in the Northern Hemisphere during 1950-2014, 1981-2014, and
2015-2099, respectively. This result suggests that spring onset today is on av-
erage four days earlier than spring onset 30 years ago and this rate will nearly
double in the future. However, compared to meteorological-based indicators,
vegetation growth-based indicators exhibit later spring and weaker trends to-
ward earlier onset. Therefore, how we define and measure spring onset as well
as the models we use to predict changes in the environmental factors influence
future changes in spring onset.

1 Introduction

Understanding spring plant phenology is essential as it modulates ecosystem
functions, the terrestrial carbon cycle, and land-atmosphere coupling (Morisette
et al., 2009; Renner & Zohner, 2018; Richardson et al., 2013). In temperate and
boreal regions, plant phenology modifies the terrestrial carbon cycle by govern-
ing growing season onset and duration (Morisette et al., 2009; Richardson et al.,
2009, 2010). In addition, plant phenophase changes regulate land-atmosphere
energy and momentum exchanges (Richardson et al., 2013; Schwartz, 1992),
and therefore influence land-atmosphere coupling strength, as demonstrated by
both observations (Berg et al., 2016; Findell et al., 2015; Green et al., 2017)
and model experiments (Guillevic et al., 2002; Levis & Bonan, 2004; Lorenz
et al., 2013; Puma et al., 2013; Xu et al., 2020). Human-induced changes in
temperature and precipitation will likely modify plant phenology in the future,
which in turn will affect carbon sequestration and energy exchanges between
the biosphere and the atmosphere (Morisette et al., 2009; Richardson et al.,
2013). Therefore, understanding and evaluating phenology variabilities at high
temporal resolution is critical for accurate climate projections.

Two approaches have been widely adopted to simulate how spring onset re-
sponds to climate variability and long-term warming. Firstly, indicator models
of the start of spring, like the spring indices, have been extensively used to
characterize trends and variability of spring onset and identify the influence of
abiotic factors (Ault, Zurita-Milla, et al., 2015; Chuine et al., 1998; Jolly et al.,
2005; Schwartz et al., 2006). Because these indicator models are offline (i.e.,
not coupled to meteorological variables) and focus on specific growth stages
(e.g., leaf out, blooming) instead of carbon allocation during vegetation growth,
their computational cost is much less than in the second approach -- land sur-
face models (LSM), and are more complex and finely tuned to specific species
or plant functional types (PFT) than phenology schemes in LSMs (Krinner et
al., 2005; Milly et al., 2014; Sitch et al., 2003). In addition, as they only rely
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on meteorological variables and can be applied and compared uniformly across
models, indicator models have been adopted to estimate projected spring onset
variability (Allstadt et al., 2015; Zhu et al., 2019). However, as temperature
increases, the relative importance of meteorological and biotic factors in regulat-
ing spring onset timing may change (Flynn & Wolkovich, 2018; Fu et al., 2015;
Laube et al., 2014; Park et al., 2021; Parmesan, 2007; Renner & Zohner, 2018),
increasing uncertainty in how natural and managed ecosystems will adapt to
climate change.

Simulating plant phenology using LSMs is another approach for predicting phe-
nology changes in the future and their influences on the Earth system. State-of-
the-art LSMs adopt environmental conditions (i.e., temperature, soil moisture,
etc.) to simulate plant phenology prognostically (e.g. Krinner et al., 2005; Ole-
son et al., 2013), but large discrepancies are present in both the amplitude of
leaf area index (LAI) and land surface phenology simulated by climate models
and derived from satellite imagery (Mahowald et al., 2016; Park & Jeong, 2021;
Peano et al., 2019; Richardson et al., 2012; Song et al., 2021), potentially induc-
ing large influences on land surface states including surface temperature(Lorenz
et al., 2013; Xu et al., 2020). In addition, although plant phenology is often sim-
ulated at a daily or higher temporal resolution (Krinner et al., 2005; Oleson et
al., 2013; Sitch et al., 2003), model output is often documented at a coarser res-
olution and therefore most evaluations are based on monthly averages, adding
to uncertainties and undermining the trends (Park & Jeong, 2021; Peano et al.,
2019; Song et al., 2021). Meanwhile, not all climate models simulate plant phe-
nology and the carbon cycle prognostically, posing additional uncertainties in
future projections of land-atmosphere interactions and terrestrial carbon cycles.

Here we adopt both a suite of thermal-based indicators -- the extended spring
indices models (SI-x; Schwartz, 1997; Schwartz et al., 2006; Schwartz & Reiter,
2000) -- and plant phenology from the Coupled Model Intercomparison Project
Phase 6 (CMIP6; Eyring et al., 2016) to characterize the timing and variation
of spring onset in CMIP6 simulations. While both indicators are widely used
to infer changes in seasonal transitions and plant phenology, they are yet to be
compared in the instrumental period and future projections. We aim to assess
the historical and projected variabilities and uncertainties of spring onset timing
in the Northern Hemisphere, which play an important role in modulating both
the carbon cycle and land-atmosphere interactions.

2 Data and Methods

2.1 CMIP6 models

We obtained daily maximum and minimum surface air temperature and leaf
area index (LAI) from participating models in the CMIP6 ensemble from both
historical and SSP5-8.5 scenario simulations (Eyring et al., 2016; O’Neill et al.,
2016; see Text S1 for details). To estimate changes in the timing of spring
onset under the most pessimistic conditions, we adopted the SSP5-8.5 scenario
(hereafter SSP585) which estimates a +8.5 W/m2 increase in radiative forcing
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and represents a high-emission, high-end forcing pathway (O’Neill et al., 2016).
We used 1950-2099 daily maximum and minimum surface air temperature from
all 26 models with both historical and SSP585 daily temperature data available
(Table S1). Seven models also have prognostic carbon cycle and daily LAI
available (Table S2 and Text S1). For models with leap years, we removed
temperature and LAI data for Feb 29th to form a consistent comparison among
models. We used bilinear interpolation to adapt all model outputs to a 1° × 1°
latitude-longitude resolution.

2.2 The extended spring indices model

The extended spring indices (SI-x) and their predecessors, the original SI were
developed from historical records of lilac and honeysuckle phenology, and have
been extensively used as proxies for certain groups of species, as well as to as-
sess the impact of abiotic changes on spring onset (Ault, Schwartz, et al., 2015;
Gerst et al., 2020; Schwartz, 1997; Schwartz et al., 2006, 2013; Schwartz &
Marotz, 1986; Schwartz & Reiter, 2000). SI-x uses daily minimum and maxi-
mum temperatures and latitude to estimate the timing of spring foliage (first
leaf, hereafter SI-x leaf) and blooming (first bloom) for plants with temperature-
responsive phenology. It has also been extended to warmer locations that may
not meet the chill requirements of the original SI (Schwartz et al., 2013). Here
we calculated SI-x leaf for all 26 models at 1° × 1° resolution from 1950-2099 and
the observations from 1950-2014 (Berkeley Earth, see Text S2) and 1979-2014
(CPC, Text S2).

2.3 LAI threshold-based DOY

We also calculated spring onset indicators based on the day of year LAI reaches
pre-defined thresholds of its annual dynamical range. The dynamical range of
LAI is defined as the difference between minimum (winter) and maximum (sum-
mer) LAI each year. We focused on the 25%, 50%, and 75% thresholds of the
annual dynamical range of LAI (Figure S1). Using threshold-based indicators
reduces the influence of land-use change as well as differences in peak LAI from
one year to the next (White et al., 1997). Similar methods have been adopted
to determine the start of the growing season from monthly records (Peano et
al., 2019; Richardson et al., 2012; Song et al., 2021), and with daily LAI we
were able to achieve more precise timing and compare it with DOY records
from thermal-based indicator models. We focused on SI-x leaf and LAI25%
(i.e., the early spring events) in the analysis as we are interested in the trends
and variability of the full possible ranges of spring onset.

2.4 Statistical method

We calculated linear trends of the indices over different time windows and used
a one-tailed 5% significance level to evaluate the importance of all analyzed
trends. When calculating correlations between the indicators, we first removed
the linear trend and then calculated correlation coefficients of the detrended time
series. The significance of the trends and correlations have been adjusted for
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false discovery by recalculating the significance level to control the expectation
of falsely rejected hypotheses (Benjamini & Hochberg, 1995).

3 Results

3.1 Spring onset timing

Spring onset timing has advanced in recent decades in both observations and
model simulations and will shift earlier under the SSP585 scenario (Figures 1-3).
Over 1950-2014 in the Northern Hemisphere (NH), CMIP6 ensemble mean of 26
models indicates 117.0±6.0 days to first leaf (hereafter CMIP6-leaf), later than
SI-x leaf based on Berkeley Earth (hereafter Obs-Berkeley-leaf, 107.3±2.2 days;
Figure S2a). These numbers advance by approximately one day during 1981-
2014. Over the historical period, the spread of spring onset timing in CMIP6
encompasses the interannual variability of observation-based SI-x (Figure 1a).
Under the SSP585 scenario in 2015-2099, CMIP6-leaf advances to 104.5±8.6
days. The largest disagreement of mean onset dates between CMIP6 models is
present in Western NA, Northern Russia, and over the Tibetan Plateau during
the historical period, and this spatial pattern persists into the SSP585 period
(Figures 2hj and S3).
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Figure 1 Anomalies in the day of year (DOY) spring onset is predicted. (a): SI-
x leaf indices calculated from the 26 CMIP6 models and the Berkeley Earth and
CPC gridded daily temperature datasets averaged across the Northern Hemi-
sphere (25°N-85°N) and adjusted for area weight. DOY anomalies are calculated
by subtracting the 1981-2010 mean of each model/observation. (b): Day-of-year
(DOY) anomalies of the LAI 25% threshold DOYs calculated from the seven
CMIP6 models and the GLASS and MODIS LAI averaged across the North-
ern Hemisphere (25°N-85°N). DOY anomalies are calculated by subtracting the
2001-2014 mean of each model/observation and adjusting for area weight. (c):
box plots showing the spread of SI-x leaf and LAI 25% DOYs derived from
CMIP6 models during each decade. For each box plot, the centerline denotes
the median of the DOYs, box limits show the upper and lower quartiles (25%
and 75%), and whiskers indicate the 5% and 95% values.

Models experience considerable differences in simulated plant phenology (Fig-
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ure S1), mean LAI values (Figure S4), and mean LAI threshold-based spring
onset timing (Figures S1, S2cd, S5a). Compared to GLASS LAI (described in
Text S2), ensemble mean overestimates LAI values in Eastern Asia and west-
ern Canada and underestimates LAI in Southern Russia (Figure S4). Large
disagreements exist among the models in Canada, Northern Europe, and East
Asia. These regions continue experiencing large differences among model LAIs
in SSP585, along with Eastern US.

The start of spring as indicated by LAI 25% threshold DOYs are much later
in the models than in GLASS LAI or those indicated by SI-x leaf (Figures
2, S2, S5). Across the NH, mean LAI 25% DOY based on simulated LAIs
(hereafter CMIP6-LAI25%) is 137.7±19.7 during 1981-2014, 20 days later than
in GLASS LAI (hereafter Obs-GLASS-LAI25%, 117.9±2.6). CMIP6-LAI25%
advances to 134.9±24.4 in 2015-2099 (Figure S2cd). In every period, CMIP6-
LAI25% is later than both CMIP6-leaf and Obs-GLASS-LAI25% (Figures 2cf
and S2) and exhibits larger inter-model variability than CMIP6-leaf (Figure
1c, 2g-j). The timing also varies considerably across models (Figures 1b, S2cd,
S5a). The largest disagreement among models is present south of 40°N while
large differences between CMIP6-LAI25% and Obs-GLASS-LAI25% are also
present in the Tibetan Plateau, Russia, and Northern Europe. Overall, models
estimate later spring onset over high-latitude (north of 55°N) and high-altitude
regions (Figure S6).

7



Figure 2 Ensemble mean and standard deviation of the spring onset indicators
during the historical and SSP585 periods. (abde): ensemble mean DOY, (cf):
difference in mean DOY, and standard deviation of LAI 25% threshold DOY
(CMIP6-LAI25%, gi) and SI-x leaf (CMIP6-leaf, hj) during the historical (1950-
2014) and SSP585 (2015-2099) periods. CMIP6-LAI25% is calculated based on
the seven models and SI-x leaf is averaged across 26 models. Numbers indicate
DOYs in (a), (b), (d), and (e), DOY differences (unit: day) in (c) and (f), and
DOY standard deviation (unit: day) in (g)-(j).

Differences in mean spring onset timing vary across models and regions (Fig-
ures 2 and S5) but increase through time. Difference between CMIP6-leaf and
CMIP6-LAI25% is 22 days during 1981-2014 and increases to 30 days under the
SSP585 scenario (Figure S2). Across the seven models that provide daily temper-
ature and LAI output, LAI25% is later than SI-x leaf at lower latitudes, though
EC-Earth3-CC displays uniformly earlier spring in LAI25% and MIROC-ES2L
has earlier LAI indicated spring onset at lower latitudes. Obs-GLASS-LAI25%
indicates earlier spring than Obs-Berkeley-leaf in higher latitude and higher el-
evation regions while model simulations show a reduced advancement in spring
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onset (Figure S5c). This pattern persists into the 2015-2099 period with a larger
difference between the two sets of indicators. Across the NH, CMIP6-LAI25%
exhibits a later spring onset than CMIP6-leaf, with a smaller delay at higher
latitudes and higher elevations and a consistent spatial pattern during different
simulation periods (Figure 2cf).

3.2 Trends in the start of spring

Long-term trends in the start of spring, as measured by SI-x leaf trends over
1950-2014, exhibit overall agreement between observations and the ensemble
mean but vary considerably across models (Figures 3bh, S7ab, S8). During
1950-2014 in the NH, the ensemble mean trend of CMIP6-leaf is -0.72±0.21
day/decade, whereas mean Obs-Berkeley-leaf trend is -0.85 day/decade (Figure
S7ab). The magnitude of the trends increases during the more recent period
(1981-2014), with CMIP6-leaf mean trends of -1.44±0.4 days/decade, slightly
greater than Obs-Berkeley-leaf (-1.28 days/decade) and CPC (Obs-CPC-leaf, -
1.21 days/decade). The magnitude of trends increases by ~0.9 day/decade under
SSP585. During 2015-2099, CMIP6-leaf exhibits an ensemble mean trend of -
2.39±0.71 days/decade. However, the trends vary considerably across models
and even among different members of the same model (Figures 3ej, S7ab).
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Fig. 3 Ensemble mean and standard deviation of spring onset trends. (abde):
ensemble mean trends, (cf): difference in mean trends, and standard deviation
between ensemble members of LAI 25% threshold DOY (CMIP6-LAI25%, gi)
and SI-x leaf (CMIP6-leaf, hj) during the historical (1950-2014) and SSP585
(2015-2099) periods (unit: day/decade). CMIP6-LAI25% trends are based on
the seven models and SI-x leaf trends are averaged across 26 models.

The spatial pattern of spring advancement exhibits large variations among mod-
els and between the ensemble mean and observations. Both Obs-Berkeley-leaf
and Obs-CPC-leaf exhibit relatively large advancement in the Tibetan Plateau,
North Russia, and Southern Europe during 1981-2014 (Figure S8), and trends
in central and north Asia are statistically significant in Obs-CPC-leaf. This
pattern is not present in CMIP6-leaf or any individual model-based SI-x. More-
over, models exhibit significant trends in very few regions (e.g., Eastern NA and
Europe in EC-Earth-3-CC and mid-to-high latitude regions in Asia in GFDL-
ESM4). The greatest earlier trend in the ensemble mean is in Southern Eu-
rope, Eastern US, and the eastern and southern parts of the Rocky Mountains
(Figure 3be), but these regions also exhibit large disagreements across models
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(Figures 3hj, S8, S9b). When compared to observations, CMIP6-leaf tends to
overestimate warming in NA, particularly Western Canada and Eastern US, and
underestimate warming in central and north Asia (Figure S10). During 2015-
2099, most models exhibit significant earlier spring across the NH (Figures S11b,
S12f) and the greatest earlier trend is present in regions along the Pacific coast
of NA, in central NA, Europe, and mid-latitude regions of Asia (Figure 3e).
Though models mostly agree that spring is starting earlier under the historical
and future scenarios (Figures S9b, S11b, S12bdf), large disagreements among
models are also present, with ACCESS-CM2, CMCC-ESM2, CNRM-CM6-1,
CNRM-CM6-1-HR, EC-Earth3-CC, IPSL-CM6A-LR, TaiESM1, and UKESM1-
0-LL experiencing a much larger earlier trend while FGOALS-g3, KIOST-ESM,
MRI-ESM2-0, and NESM3 exhibiting a much smaller trend (Figures S8, S10).
Compared to the historical period, both the trends and variability of CMIP6-leaf
increase in 2015-2099 (Figure 3behj).

Trends of CMIP6-LAI25% vary considerably geographically and across models,
but also display an overall earlier spring onset and increasing variability over the
NH (Figures 3adgi, S7cd, S9a, S11a, S12ace). During 1950-2014, the mean NH
trends of CMIP6-LAI25% is -0.41±0.31 day/decade, ~0.3 day/decade smaller
than those indicated by CMIP6-leaf (Figure S7). During 1981-2014, trends of
both CMIP6-LAI25% (-0.05±0.29) and Obs-GLASS-LAI25% (-0.01) are close
to 0, likely due to the delayed start of spring in areas south of 40°N and Southern
Europe (Figures S9a, S11a). The trends change to -0.97±1.06 days/decade dur-
ing 2015-2099 under the SSP585 scenario, ~1.4 days/decade fewer than trends
estimated from CMIP6-leaf (Figure S7). During 1950-2014, the largest trends
are present along 60°N in Eurasia and Eastern NA, though trends vary across
models in Southern Europe and south of 40°N (Figure 3g). Though CMIP6-
LAI25% mean trends are negative (i.e., becomes earlier) in the US, northern
Canada, and southern Russia and positive in southern Europe, Obs-GLASS-
LAI25% trends in these regions are of smaller amplitude, and sometimes in the
opposite direction (Figure S9a). Over the 2015-2099 period, the trend is much
stronger in mid-to-high latitude (north of 45°N) and high-altitude regions (Fig-
ures 3d, S11a, S12e). In southern Europe and the US, the models diverge in
LAI25% responses with large positive trends (delay in spring onset) in CMCC-
ESM2, negative trends in EC-Earth3-CC, IPSL-CM6A-LR, and MIROC-ES2L,
and contrasting trends in CNRM-ESM2-1.

Although the timing indicated by LAI25% and SI-x leaf vary across models,
variabilities and trends derived from the two sets of indicators exhibit relatively
good agreement, especially during longer temporal periods and in mid-to-high
latitude regions (Figures 3cf, S5c, S9cd, S11cd). During 1981-2014, Obs-GLASS-
LAI25% exhibits weaker trends in spring onset timing than Obs-Berkeley-leaf
at higher latitudes (north of 50°N) and stronger trends at low latitudes (south
of 30°N). This latitudinal pattern is also present in most of the models (except
KIOST-ESM) with some variations (Figure S9c). Similar agreement of spring
onset trends at mid-to-high latitudes are also present in the ensemble means
based on all available models (Figures 3, S13). Although trends of CMIP6-leaf
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increase faster than CMIP6-LAI25%, their variabilities are coherent and the
difference in their trends is still relatively small and spatially uniform at mid-
to-high latitudes (Figures 3, S7, S9, S11, S12, S13). Across the NH, the spread
among different indicators is smaller at higher latitudes with the smallest spread
present between 55.5°N-84.5°N. However, differences between LAI- and thermal-
based indicators increase in the SSP585 scenario across different latitudes, and
CMIP6-LAI25% can even be delayed at lower latitudes. At mid-to-high latitudes
(north of 40°N except southern Europe), both observations and models exhibit
positive and significant correlations between SI-x leaf and LAI25%, except for
ACCESS-ESM1-5 in the future scenario and CMCC-ESM2 and KIOST-ESM in
some moisture-limited regions (Figures S9d, S11d). Overall, models exhibit an
NH mean correlation of 0.47±0.22 during the historical period and 0.43±0.23
under SSP585 between the two sets of indicators.

4 Discussion and conclusion

Our results show good agreement between SI-x leaf calculated from simulated
and observed temperatures, but considerable differences are present between
model-simulated and observed LAI25% and between LAI25% and SI-x leaf es-
timated from models. Our results also confirm the later start of the growing
season in models presented by previous studies (Park & Jeong, 2021; Peano et
al., 2019; Song et al., 2021) and reveal even greater differences in mean DOYs
and trends between thermal- and LAI-based indicators projected into the fu-
ture. Although part of this difference may be due to soil moisture limited plant
functional types (PFT) at lower latitudes (Table S2), our results show LAI25%
exhibits a less negative trend (i.e., a delayed start of spring) than SI-x leaf at all
latitudes, though the indicators are positively correlated (Figures 2, S13). Leaf
development in LSMs depends both on spring onset timing and carbon alloca-
tion to leaves, so LAI threshold-based indicators reflect the combined influences
of biotic and abiotic factors, while SI-x mostly follows environmental impacts.
Therefore, SI-x shows the full potential range of temperature-induced spring on-
set variability while LAI is more restrained by environmental and biotic factors
and may therefore be less sensitive to temperature changes. However, the large
differences in spring onset timing and trends imply that plant phenology may
experience index-related variability and uncertainty as large as or larger than
model uncertainty for a given index.

The timing of spring onset has been advancing over the Northern Hemisphere,
and the pace is likely to accelerate in the future. Although the start of spring
trends in the most recent decade exhibit large uncertainty (Wang et al., 2019),
both observations and satellite remote sensing records suggest a long-term ad-
vancing trend of spring onset timing (Ault, Schwartz, et al., 2015; Cook et al.,
2012; Parmesan & Yohe, 2003; Root et al., 2003; White et al., 2009). We
have similarly found earlier spring onset during 1950-2014 in both thermal-
and LAI-based indicators which have also been accelerating at mid-to-high lat-
itudes. While thermal-based indicators have been widely adopted to assess
future changes in spring onset timing (Allstadt et al., 2015; Zhu et al., 2019),
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other environmental factors (e.g., chilling, soil moisture, photoperiod) also in-
fluence the start of spring (Flynn & Wolkovich, 2018; Fu et al., 2015; Laube et
al., 2014). In addition, changing environments may favor some species and trig-
ger further changes in ecosystem structure and composition (Renner & Zohner,
2018; Wang et al., 2016). Meanwhile, frost risk may also vary as climatic condi-
tions change (Park et al., 2021; Rigby & Porporato, 2008; Zohner et al., 2017),
posing additional uncertainty to how natural and managed ecosystems adapt
to climate change. Therefore, it is critical to evaluate trends and variability of
spring onset in climate models using both meteorological- and vegetation-based
indicators and update our predictions as we improve our forecasting approaches.

Agreement between thermal- and LAI-based indicators depends on the phenol-
ogy schemes adopted in the climate models (Figures S9, S11, Table S2), and the
disagreements may further increase the uncertainty in temperature and spring
onset projections. LAI- and thermal-based indicators show stronger agreement
when phenology is prognostically simulated at higher temporal resolution (i.e.,
daily or finer). Though temperature dominates spring onset timing of LAI25%
at higher latitudes, phenology schemes with only temperature criteria have a
higher correlation with SI-x leaf at lower latitudes than phenology schemes with
both temperature and soil moisture switches or implicit phenology. As soil mois-
ture and precipitation can be important in triggering spring onset in moisture-
limited environments (Dahlin et al., 2015, 2017), the relative importance of tem-
perature may be overestimated in temperature-dominated phenology schemes,
though trends of LAI25% still indicate less advancement in spring onset than
SI-x leaf in these models. As changes in phenology and growing season length
modulate surface temperature (Lorenz et al., 2013; Xu et al., 2020), these dis-
agreements between thermal- and vegetation-based indicators may undermine
the credibility of temperature projections and further increase the uncertainty
in spring onset timing.

Although models vary considerably in mean onset dates and spring onset trends,
the ensemble mean trends are generally good indicators of long-term changes
in spring onset timing. Ensemble means of thermal-based indicators agree with
observations in both mean dates (Figure S3) and trends (Figures S8, S10). Al-
though CMIP6-LAI25% are later than Obs-GLASS-LAI25% (Figure S5), ensem-
ble mean LAIs (Figure S4) and trends (Figure S9a) exhibit similar magnitude
and spatial patterns to GLASS estimates, especially in mid-to-high latitude
regions. Ensemble means have proven to be good estimates of meteorological
observations (Hagedorn et al., 2005; Palmer et al., 2005) and are widely used for
future predictions (Almazroui et al., 2020; Cook et al., 2020). Here we show that
the CMIP6 ensemble mean can also be applied to predict spring onset timing.
Moreover, because LAI is generally less documented at a high temporal resolu-
tion and sometimes prescribed in climate models (e.g. as in CNRM-CM6-1, LAI
is prescribed although daily LAI is documented) and LAI- and thermal-based
indicators are positively and significantly correlated and largely consistent in
their trend differences in mid-to-high latitude regions (Figures S9d, S11d, S12),
thermal-based indicators like SI-x can be used to estimate trends and variabili-
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ties of LAI seasonal cycles at mid-to-high latitudes.

Plant phenology regulates the terrestrial carbon cycle and land-atmosphere cou-
pling in Earth system models as it influences critical processes such as photo-
synthesis, respiration, evaporation, and transpiration, yet our results show large
disagreements in both the timing and trends of spring onset among models and
between models and observations. As LAI-based indicators exhibit later onset
and weaker trends than thermal-based indicators, the bias between LAI- and
thermal-based spring onset timing may continue to increase in the future, result-
ing in greater uncertainties in projected spring onset timing. In certain cases,
this index-based uncertainty can be larger than inter-model uncertainty for a
given index. Indicator models can provide inference on spring onset trends and
variability and help isolate the influence of climate factors, but larger uncertain-
ties are present under a warmer climate due to phenology responses to other
abiotic and biotic factors. Therefore, studies interested in projected changes
in spring phenology should consider variabilities in both meteorological- and
vegetation-based indicators, and future work should focus on understanding
LAI variability and improving phenology representation in climate models.
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