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Abstract

Recently, runoff simulations in small, headwater basins have been improved by methodological advances such as deep learning

(DL). Hydrologic routing modules are typically needed to simulate flows in stem rivers downstream of large, heterogeneous

basins, but obtaining suitable parameterization for them has previously been difficult. It is unclear if downstream daily

discharge contains enough information to constrain spatially-distributed parameterization. Building on recent advances in

differentiable modeling principles, here we propose a differentiable, learnable physics-based routing model. It mimics the

classical Muskingum-Cunge routing model but embeds a neural network (NN) to provide parameterizations for Manning’s

roughness coefficient (n) and channel geometries. The embedded NN, which uses (imperfect) DL-simulated runoffs as the

forcing data and reach-scale attributes as inputs, was trained solely on downstream hydrographs. Our synthetic experiments

show that while channel geometries cannot be identified, we can learn a parameterization scheme for n that captures the overall

spatial pattern. Training on short real-world data showed that we could obtain highly accurate routing results for both the

training and inner, untrained gages. For larger basins, our results are better than a DL model assuming homogeneity or the sum

of runoff from subbasins. The parameterization learned from a short training period gave high performance in other periods,

despite significant bias in runoff. This is the first time an interpretable, physics-based model is learned on the river network to

infer spatially-distributed parameters. The trained n parameterization can be coupled to traditional runoff models and ported

to traditional programming environments.
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Abstract 13 
Recently, runoff simulations in small, headwater basins have been improved by methodological 14 
advances such as deep learning (DL). Hydrologic routing modules are typically needed to 15 
simulate flows in stem rivers downstream of large, heterogeneous basins, but obtaining suitable 16 
parameterization for them has previously been difficult. It is unclear if daily downstream 17 
discharge contains enough information to constrain spatially-distributed parameterization. We 18 
propose a differentiable, learnable physics-based routing model based on recent advances in 19 
differentiable modeling principles. It mimics the classical Muskingum-Cunge routing model but 20 
embeds a neural network (NN) to provide parameterizations for Manning’s roughness n and 21 
channel geometries. The embedded NN, which uses (imperfect) DL-simulated runoffs as the 22 
forcing data and reach-scale attributes as inputs, was trained solely on downstream 23 
hydrographs. Our synthetic experiments show that while channel geometries cannot be 24 
identified, we can learn a parameterization scheme for n that captures the overall spatial 25 
pattern. Training on short real-world data showed that we could obtain highly accurate routing 26 
results for the training and inner, untrained gages. Our results for larger basins (>2,000 km2) are 27 
better than a DL model assuming homogeneity or the sum of runoff from subbasins. The n 28 
parameterization learned from a short training period gave a high performance in other periods, 29 
despite significant bias in the runoff. This is the first time an interpretable, physics-based model 30 
is learned on the river network to infer spatially-distributed parameters. The trained n 31 
parameterization can be coupled to traditional runoff models and ported to traditional 32 
programming environments.  33 
 34 
Main points: 35 

1. A differentiable routing model can learn routing parameterization from discharge to 36 
support long-term flow simulation in large rivers. 37 

2. Our synthetic case retrieved the assumed roughness coefficients while the real case 38 
produced estimates consistent with our understanding. 39 

3. For basins >2,000 km2, our framework outperforms deep learning models that assume 40 
homogeneity, despite bias in the runoff forcings.  41 
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1. Introduction 42 
 43 
Riverine floods are intrinsically linked with stream channel characteristics and pose a major risk 44 

to human safety and infrastructure  (Douben, 2006; François et al., 2019; IPCC, 2012; Koks & 45 

Thissen, 2016). Riverine floods along large stem rivers occur when the peak flow rate exceeds 46 

the stem river conveyance capacity. The timing of flood convergence and thus peak flood rates 47 

are influenced by the channel’s geometries and flow resistance properties (Candela et al., 2005; 48 

Kalyanapu et al., 2009). In recent years, we witnessed many deadly riverine floods, e.g., in the 49 

Mississippi River, USA (Rice, 2019),  India (France-Presse, 2022), while such disasters are 50 

expected to rise significantly under projected future climates (Dottori et al., 2018; Prein et al., 51 

2017; Winsemius et al., 2016). The ability to better account for flood convergence and 52 

streamflow processes is urgently needed to help us better inform society of stem river flood 53 

magnitudes and timing, which can save lives and mitigate damages. Besides their importance 54 

on floods, river channel characteristics and flow velocity also have major implications for aquatic 55 

ecosystems (Ghanem et al., 1996; Leclerc et al., 1995; Papaioannou et al., 2020).  56 

 57 

In hydrologic modeling, routing describes how the stream network receives and conveys runoff 58 

from basins while accounting for mass balances and the speed of flood wave propagation 59 

(Mays, 2010). Some routing modules are based on the principles of continuity and assume 60 

constitutive discharge-flow area or discharge-flow velocity relationships. For example, the 61 

widely-applied Muskingum-Cunge (MC) (Cunge, 1969) routing method is a center-in-space 62 

center-in-time finite difference solution to the continuity equation, assuming a prismatic flood 63 

wave as the constitutive relationship. In some other cases, the momentum equation is solved in 64 

conjunction with the continuity equation (Ji et al., 2019) with a range of simplifying assumptions, 65 

e.g., ignoring inertia (Shen & Phanikumar, 2010), ignoring both inertia and pressure gradient 66 

(only slope remaining) (Mizukami et al., 2016), with sometimes additional formulations to handle 67 

effects scale, e.g., Li et al. (2013). These models have parameters that need to be determined 68 

from lookup tables or calibration. 69 

 70 

While routing parameters often rank among the important ones for discharge simulation 71 

(Khorashadi Zadeh et al., 2017; L. Liu et al., 2022), it has been difficult to parameterize them at 72 

large scales, especially in a way to both sensibly represent basin-internal spatial heterogeneity 73 

and adapt to discharge data. Using traditional roughness values tabulated for various land 74 

covers (Arcement & Schneider, 1989) requires in-situ scouting, e.g., to determine if channels 75 
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have pools, weeds, grass, etc., which is currently impractical for large-scale applications. 76 

Without scouting, available land cover data are only available for the floodplain and not for the 77 

main channel, which contains the water for the majority of the time and can have distinctly 78 

different characteristics from the floodplain. Many calibration exercises, e.g. (Khorashadi Zadeh 79 

et al., 2017; L. Liu et al., 2022; Mizukami et al., 2016), used only one set of parameters for an 80 

entire basin, neglecting fine-scale spatial heterogeneity in river-reach characteristics. Some 81 

studies have employed Manning’s roughness, n (a coefficient representing a channel’s 82 

resistance to flow), as a linear function of river depth or other characteristics (Getirana et al., 83 

2012; H.-Y. Li et al., 2022), but it is unclear if these relationships could optimally absorb 84 

information from available data. We may be able to find more fine-grained relationships given 85 

recent progress in differentiable programming, to be discussed below. 86 

 87 

While the accuracy of basin rainfall-runoff models has improved substantially in recent years 88 

with machine learning (ML) (Adnan et al., 2021; Feng et al., 2020; Kratzert et al., 2019; Sun et 89 

al., 2022; Xiang et al., 2020), process-based models, or models with ML components (Feng, 90 

Beck, et al., 2022; Feng, Liu, et al., 2022), the routing modules have not similarly benefited. 91 

Neural networks (NNs) like long short-term memory (LSTM), GraphWaveNet (Sun et al., 2021) 92 

or convolutional networks (Duan et al., 2020), while very generic, have demonstrated their 93 

prowess in learning hydrologic dynamics from big data. They are applicable not only to 94 

streamflow hydrology but also variables across the entire hydrologic cycle (Shen et al., 2021; 95 

Shen & Lawson, 2021) such as soil moisture (Fang et al., 2017, 2019; J. Liu et al., 2022; O & 96 

Orth, 2021), groundwater (Wunsch et al., 2022), snow (Meyal et al., 2020), longwave radiation 97 

(Zhu et al., 2021), and water quality parameters (He et al., 2022; Hrnjica et al., 2021; Lin et al., 98 

2022; Rahmani, Lawson, et al., 2021; Zhi et al., 2021). However, these approaches are mostly 99 

suitable for relatively homogeneous headwater basins; spatial heterogeneities in forcings and 100 

basin characteristics are generally not captured well, and large basins often turn out to have 101 

poorer performance for LSTM models. 102 

 103 

A recent development in integrating ML with physical understanding is differentiable, learnable 104 

process-based models, which can approach the performance of LSTM models but also provide  105 

interpretable fluxes and states (Feng, Liu, et al., 2022). By connecting deep networks to 106 

reimplemented process-based models (or their neural network surrogates), Tsai et al. (2021) 107 

obtained an NN-based parameterization pipeline that infers physical parameters for process-108 

based models. The keyword is “differentiable” (as in differentiable programming), which means 109 
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that the system allows gradient-tracking along all calculation steps such that gradient-based 110 

training of neural networks can be enabled. This critically enables the hybrid framework to learn 111 

complex and potentially unknown functions from big data while keeping physical formulations. 112 

Feng, Beck, et al. (2022) further found that this type of differentiable model can extrapolate 113 

better than purely data-driven LSTM.  114 

 115 

Nevertheless, it is unclear if differentiable computing is applicable to the highly-complex river 116 

graph. The river network forms a hierarchical graph, which is not unlike the graph networks for 117 

applications like social recommendations (Fan et al., 2019), but with a predefined spatial 118 

topology (due to a fixed river network) and a converging cascade. A complex river graph can 119 

have many nodes, which, when coupled with many time steps, could potentially lead to a 120 

training issue known as the vanishing gradient. It is unclear if such an issue would prevent a 121 

differentiable model from learning. It is also unclear if downstream discharge data alone has 122 

enough information to train a parameterization scheme, and the length of the training period 123 

required.  124 

 125 

In this work, we created a novel differentiable modeling framework to perform routing and to 126 

learn a parameterization scheme for routing flows on the river network. Such a physically-based 127 

routing method has never been trained together with neural networks. An NN-based 128 

parameterization scheme for Manning’s n and river bathymetry shape (q) is coupled to 129 

Muskingum-Cunge routing and is applied throughout the river network. We designed synthetic 130 

and real data experiments to answer the following research questions: 131 

1. Does a downstream hydrograph have enough information to identify n and q 132 

parameterization schemes? 133 

2. Can a parameterization scheme for routing produce reliable results for long-term 134 

simulations for both trained and untrained gages? 135 

3. What lengths of training periods are required to train a reliable parameterization 136 

scheme? 137 

Because our framework is built on physical principles and estimates widely-used n, it can be 138 

easily ported to work with other models. For example, the trained NN and the weights can be 139 

loaded into Fortran or C programs to support traditional hydrologic models or routing schemes, 140 

e.g. (H. Li et al., 2013; Mizukami et al., 2016). It does not have to be limited to a machine 141 

learning platform. 142 

 143 
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2. Data and Methods 144 

2.1. Overview 145 

As an overview, we used a previously pretrained LSTM model to produce daily runoff estimates 146 

for Level-10 Hydrologic Cataloging Unit (HUC10) watersheds (Figure 1a) which were then 147 

disaggregated to hourly time steps and routed throughout the river network using the proposed 148 

differentiable routing model (Figure 1b). This model can also be perceived to as a physics-149 

guided graph neural network (GNN) from the ML perspective. We embedded an NN as a 150 

parameterization scheme for the routing model and trained the whole model on the downstream 151 

hydrograph.  152 

 153 

In the following, we sequentially describe the pretrained LSTM, the creation of the river graph, 154 

the neural network used to approximate Manning’s n, and our synthetic experiments. We first 155 

ran synthetic experiments to verify if such a framework could recover assumed n and q 156 

parameterizations. We then trained the framework on real-world discharge data and compared 157 

the results to some alternatives, including an LSTM assuming the entire basin as 158 

homogeneous, a summation of runoff inputs, and routing with a spatially-constant n value of 159 

0.02. We then tested the conditions needed to obtain reliable routing parameters for untrained 160 

time periods using several models with short training periods.  161 

 162 

2.2. Pretrained LSTM 163 

A model based on the long short-term memory (LSTM) algorithm (Hochreiter & Schmidhuber, 164 

1997) was used to estimate runoff inputs in the Muskingum-Cunge equation and provide a 165 

benchmark for the routing model. This LSTM model was similar to those from previous 166 

streamflow and water quality (Feng et al., 2020; Ouyang et al., 2021; Rahmani, Lawson, et al., 167 

2021; Rahmani, Shen, et al., 2021). To briefly summarize, the LSTM model used a combination 168 

of basin-averaged attributes, daily meteorological forcings, and observations as inputs, and 169 

outputs daily basin discharge. Meteorological forcings (total annual precipitation, downward 170 

long-wave radiation flux, downward short-wave radiation flux, pressure, temperature) were 171 

obtained from the NASA NLDAS-2 Forcing Data set (Xia et al., 2009, 2012). We selected 29 172 

basin attributes (Table A1) similar to those chosen in previous LSTM studies (Ouyang et al., 173 

2021). Consistent with Ouyang et al. (2021), we focused on training the LSTM on 3213 gages 174 

selected from the USGS Geospatial Attributes of Gages for Evaluating Streamflow II (GAGES-175 

II) dataset (Falcone, 2011) with input data between 1990/01/01 - 1999/12/31. We developed the 176 

workflow to obtain forcing data and inputs seamlessly for any small basin in the CONUS. In this 177 
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case we extracted data from HUC8 subbasins and HUC10 watersheds to gather inputs to train 178 

our LSTM model and predict discharge, respectively.   179 

 180 

The LSTM model was trained in the same way as in our previous work, on >3000 natural and 181 

human-disturbed basins (Ouyang et al., 2021) across the conterminous United States (CONUS) 182 

to generate accurate and seamless predictions. When evaluated on the gaging stations in the 183 

study domain, the model obtained a domain-wide median daily NSE of 0.7849 for eight gauging 184 

stations. After training during the period of 1990/01/01 - 1999/12/31, a forward run was 185 

conducted from 2000/01/01-2009/12/31 to predict discharge for the 17 HUC10 watersheds in 186 

the study domain, using HUC10-averaged attributes for each HUC10 basins:  187 

 𝑄′ 𝐿𝑆𝑇𝑀 𝑥 ,𝐴  (1) 

where Q’ [m3/s] is the daily runoff for the HUC10 basin, and xHUC10 and AHUC10 are HUC10-188 

averaged atmospheric forcings and static attribute variables, respectively. This LSTM was only 189 

used in an inference mode to enable a modular model design and was not further tuned while 190 

training our routing model (Figure 1b). We first carefully shifted the LSTM-produced runoff 191 

outputs by 5 hours to account for the time zone differences between the forcing data (recorded 192 

using UTC) and USGS streamflow (recorded in UTC-5). Then, we applied an additional shift to 193 

avoid a double routing issue as implicitly, the LSTM-estimated runoff has already considered in-194 

channel flow at the subbasin scale as it is trained on subbasin-outlet hydrographs. To keep 195 

things simple for this initial exploration, we pushed the LSTM-produced hydrograph back by 𝜏 196 

hours as an anti-routing procedure to avoid routing the streamflow twice. 𝜏 was a 197 

hyperparameter, for which we used the value of 𝜏 9 in all of our routing models. This value 198 

was calculated through various trials to maximize NSE and minimize 𝜏 while retaining 199 

meaningful parameter values that fit with literature constraints. More complicated procedures 200 

could be employed in the future, but this simple approach appeared to work decently here. 201 

 202 

2.3. River Graph and Discharge Interpolation 203 

We constructed a river network (or graph) for our area of interest, the Juniata River Basin (JRB) 204 

(Figure 2), by obtaining nodes (junction points, of which there were 544) and edges (river 205 

reaches, of which there were 582) from the National Hydrography Dataset (NHDplus v2) 206 

(HorizonSystems, 2016; Moore & Dewald, 2016) which describes both the topology and some 207 

attributes of the river reaches. To reduce computational demand, a subset of river reaches was 208 

selected from all the available river reaches based on applying a stream density threshold (total 209 
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stream length/watershed area). We selected rivers with the longest length until a specific stream 210 

density was reached (0.2 km/km2). Next, we calculated slope and sinuosity by overlaying NHD 211 

v2.0 with 10-m resolution digital elevation data (USGS ScienceBase-Catalog, 2022). We then 212 

discretized the selected rivers using a uniform step size of ~2,000 m to ensure the stability of 213 

the Muskingum-Cunge equation. Previous work describes the bulk of the extraction procedure 214 

that prepares input data for a physically-based surface-subsurface processes model (Ji et al., 215 

2019; Shen et al., 2013, 2014, 2016; Shen & Phanikumar, 2010). Along with the river graph, we 216 

computed a mass transfer matrix to determine the fraction of each HUC10 watershed that 217 

flowed laterally into its corresponding river segment. This matrix enables the runoff generated 218 

from the basins to be applied as source terms with the river reaches.  219 

 220 

Runoff estimates and discharge observations for the JRB were available on a daily, but not 221 

hourly, scale. Because Muskingum-Cunge (MC) routing needs to operate on smaller time steps, 222 

we quadratically interpolated daily data into hourly time steps. For training and evaluating the 223 

routing model, we collected observed discharge data for nodes intersecting United States 224 

Geological Survey (USGS) GAGES-II monitoring stations, locating a total of eight stations. Only 225 

some time periods of the most downstream station were used for training, and other stations 226 

were only used for evaluation. The observed discharge data were disaggregated using 227 

quadratic interpolation similar to LSTM-predicted runoffs. Training periods were selected based 228 

on times when the LSTM had high accuracy, and when high flashiness was observed in yearly 229 

hydrographs. Two eight-week periods, 02/01-03/29 and 11/01-12/26 fit these requirements and 230 

were used to provide training data across multiple years (2001, 2005, 2007, and 2008) for a 231 

total of eight trained models. 232 

 233 

The hydrograph at the furthest downstream JRB gage, USGS gage 01563500 [node 4809 in our 234 

graph] on the Juniata River at Mapleton Depot, PA, was chosen as the training target. This 235 

reach has a catchment area of 5,212 km2 contributed from the 582 reaches upstream. Seven 236 

USGS gages are located upstream of this node which enables further validation of the 237 

simulations. 238 
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 239 

 240 
Figure 1: (a) An overview of how inputs move through our workflow to eventually be run through 241 
Muskingum-Cunge (MC). After calculating Qt+1, the discharge value is then used again to predict 242 
the next node’s discharge. (b) An illustration of how we traverse the graph using MC to make a 243 
discharge prediction for the final node. Our case study has 582 reaches and 544 nodes. 244 
 245 
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 246 
Figure 2: (a) A map of the Juniata River Basin's river network and HUC10 watersheds. Each 247 
number corresponds to a USGS gage. (b) A histogram showing the distribution of HUC10 248 
watersheds in the JRB. The x-axis shows the distribution of the HUC10 watershed areas, and 249 
the y-axis shows the number of HUC10s that fall within the area ranges. 250 
 251 

2.4. Differentiable Routing Model 252 

Our parameterization scheme consists of a feed-forward multilayer perceptron (MLP) neural 253 

network with two hidden layers (altogether, three matrix multiplications) and a sigmoid activation 254 

function for the output layer. The MLP’s outputs are physical parameters used in the MC river 255 

routing module. The MLP accepts an array of attributes (together abbreviated as A and each 256 

attribute was normalized based on the range of its respective values) per reach (Table A2). The 257 

network outputs Manning’s roughness coefficient n, and channel bathymetry shape coefficient 258 

q: 259 

 𝑛, 𝑞 𝑁𝑁 𝐴  (2) 

where n represents a channel’s resistance to flow and q represents the shape of the channel’s 260 

cross-sectional area. Since we assumed n and q to be constant in time for this study, the MLP is 261 

invoked once at the beginning of each epoch for all reaches. The weights of the MLP were 262 

updated using backpropagation and the Adam optimizer (Kingma & Ba, 2017). 263 

 264 
 265 
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 266 

The MC routing is run once for each river reach in the network per time step:  267 

 𝑄 𝑐 𝐼 𝑐 𝐼 𝑐 𝑄 𝑐 𝑄′ (3) 

where I represents inflow and Q represents discharge and c1-c4 are coefficients explained 268 

below. Thus, for n reaches, MC will be run m times in each time step, from upstream to 269 

downstream, sequentially. To enable differentiable computing, we implemented MC and 270 

Equation 3 on PyTorch, a machine learning platform. From a hydrologic perspective, this is 271 

essentially a river routing module with the ability to train the MLP described in Equation 2. From 272 

an ML perspective, it can be considered a graph neural network constrained by the topology in 273 

the river network, mass conservation, and the MC routing method as the imposed law for each 274 

edge.  275 

 276 

The MC method calculates several coefficients using hydraulic properties K and X (Equations 4-277 

7):  278 

 
𝑐

Δ𝑡 2𝐾𝑋
2𝐾 1 𝑋 Δ𝑡

 
(4) 

 
𝑐

Δ𝑡 2𝐾𝑋
2𝐾 1 𝑋 Δ𝑡

 
 (5) 

 
𝑐

2𝐾 1 𝑋 –  𝛥𝑡
2𝐾 1 𝑋 𝛥𝑡

 
(6) 

 
𝑐

2𝛥𝑡
2𝐾 1 𝑋 𝛥𝑡

 
(7) 

 279 

We chose an hourly time step (Δt) and a weighting coefficient (X) of 0.3 with K representing  280 

travel time. To estimate K, we divided the length of the reach by its velocity (v [m /s]): K=L/v. 281 

Since v varies over time, it needs to be updated in each time step with connection to discharge 282 

Q, which was done with the help of a constitutive relationship to close the equations. For this, 283 

the core geometric assumption we make is that there is a power-law relationship between 284 

stream width (w [m]) and depth (d [m]):  285 

 𝑤 𝑝𝑑  (8) 
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where p [m] and q [-] are parameters that are potentially spatially heterogeneous. p and q 286 

represent the shape of the channel’s cross-sectional area. For a rectangular channel, q=0, and 287 

for a triangular channel, q=1. The cross-sectional area A [m2] is the integral of w over d 288 

(Equation 9 & Figure 1a). The NN described earlier (Equation 2) outputs q. To simplify the task 289 

(and also because it is not sensitive based on our observations), we assumed p=21 based on 290 

some preliminary data fitting to USGS hydraulic geometries from field surveys of gages in the 291 

JRB. Note that even though we make this assumption here for model completeness, we do not 292 

posit that q is invertible from available data because it may not be that significant for the 293 

downstream discharge.  294 

 
𝐴 𝑤 𝜕𝑑 𝑝𝑑 𝜕𝑑

𝑝𝑑
𝑞 1

 
(9) 

Reorganizing Equation 9, we have a function that estimates d from Q (Equation 10a), given the 295 

coefficients from the NN. With d, p, and q, we can estimate A, v, and K using Equation 10b-d, 296 

which closes the equations.  297 

 

𝑎  𝑑
𝑄 𝑛 𝑞 1

𝑝𝑆

;     𝑏  𝐴
𝑝𝑑
𝑞 1

;     𝑐  𝑣
𝑄
𝐴

;      𝑑  𝐾
𝑙𝑒𝑛𝑔𝑡ℎ
𝑉

  

(10) 

Here, S0 represents reach slope, 𝑄  represents the discharge entering the reach at time t, and 298 

length is the length of the reach.  represents the discharge entering the reach at time t, and 299 

length is the length of the reach.  300 

 301 

The Q’ values in the Muskingum-Cunge equation (Equation 3) were obtained from the 302 

pretrained LSTM as described above, multiplied by the mass transfer matrix. Discharge outputs 303 

from the final node of the graph network were run through a MSE function to calculate loss prior 304 

to gradient descent and backwards propagation.  305 

 306 

Hyperparameters and training period size for our differentiable routing model were chosen 307 

through repetitive trial and error based on the training period. These trials led us to choose a 308 

hidden size of 6 for our MLP, a training size of eight weeks, and 50 and 100 epochs for 309 

synthetic and real data experiments, respectively. Since our differentiable model at t=0 assumes 310 

no inflow to the river network, relying exclusively on Q’ for flow inputs, a period of 72 hours is 311 

employed to warm up the model states in the river network and the loss function is not 312 

calculated within this period. 313 
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 314 

2.5. Experiments and tests 315 

We first ran multiple synthetic parameter recovery experiments to check if the dataset and the 316 

framework could indeed recover assumed relationships with small training periods. Our first 317 

experiment tested if we could correctly recover a single, constant set of assumed values for 318 

both n and q for the whole river network. Thus, there are only two degrees of freedom. In our 319 

second experiment, we assumed constant n throughout the reaches but set the trained model 320 

as n,q = NN(A) (Equation 2) so that the n, q can be different from reach to reach. In this case, 321 

ideally, the NN would learn to output a constant value regardless of what the inputs are. Our 322 

third synthetic experiments examined if we could retrieve simple assumed relationships 323 

(inverse-linear or power-law) [Equation 11-12] between n, q, and drainage area (DA), given that 324 

the MLP had far more inputs than just DA. The trained model is still Equation 2 as we assumed 325 

we did not know the functional relationship a priori.  326 

  𝑛 0.06 8𝑒 𝐷𝐴  

𝑞 2 0.00018 𝐷𝐴   

(11) 

 
𝑛

0.0915
𝐷𝐴 .  

𝑞
2.1

𝐷𝐴 .  

 

(12) 

After the synthetic experiments, we trained our differentiable model (still training the 327 

parameterization NN as in equation 2) against observed USGS data to infer Manning's n and q 328 

for reaches within the river network. We employed eight weeks of training periods from different 329 

years and checked whether the resulting parameters led to satisfactory routing in other years at 330 

both the training gage and untrained gages, and under what conditions. We evaluated the 331 

model using both the downstream and the inner gages. We compared the results to three 332 

benchmarks: the LSTM that modeled the whole JRB as a uniform basin, a simple summation 333 

and time shift of Q’, and fixed Manning's n routing for the whole JRB reaches. Lastly, we trained 334 

the differentiable routing models on several time periods in different years to determine the 335 

sensitivity to the training periods. 336 

 337 
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3. Results and Discussion 338 

In the following, we first discuss our synthetic experiments (Section 3.1) to showcase the 339 

potential to retrieve assumed parameters from our differentiable graph neural network. Next, we 340 

confront our model with LSTM-simulated runoff as observed streamflow at the furthest 341 

downstream gage, expand the training period to other time ranges, then apply our models to 342 

different years for observation (Section 3.2). Furthermore, we discuss the stability of our trained 343 

models over several years of testing (Section 3.3). Lastly, we analyze the Manning's n 344 

parameters recovered for the trained models and discuss their implications (Section 3.4). 345 

 346 

3.1 Synthetic experiments 347 

Our first synthetic experiment (with constant parameters and the degree of freedom is only 2) 348 

showed success recovering the assumed Manning's n values, but not the channel geometry 349 

parameter q (Table 1). Recovered n values were within a small range of the assumed ones, with 350 

minor fluctuations, while recovered q values mostly stayed around the initial guesses, slightly 351 

changed after a number of iterations. This result was consistent across 10 runs, each with 352 

different "synthetic truth" values for n and q. The training led n to the assumed values rapidly, 353 

typically within 20 epochs (an epoch is a forward run of the model for the Juniata River Basin 354 

(JRB) and a parameter update) (Figure A1). The non-identifiability of q was likely because q has 355 

only a small influence on the storage capacity of the stream and the simulated discharge is not 356 

sensitive to q, making dL/dq (where L is the loss function) negligible. Since p and q operate on 357 

the same equation and q alone was already not identifiable, we deduced that p was also non-358 

invertible and thus used a constant value of 21 throughout. While it is a pity that q and p cannot 359 

be estimated, the results also implied that they would not influence the routing results 360 

noticeably. Thus, in our effort below, we focused on n.   361 

 362 
Table 1: Results from the constant synthetic n and q parameter recovery experiments 363 

 
Run 

n q 

Initial 
Guess 

Synthetic 
Truth 

Recovered Initial 
Guess 

Synthetic 
Truth 

Recovered 

1 0.271 0.03 0.028 2.7 2 2.327 

2 0.271 0.04 0.035 2.7 2 2.37 

3 0.271 0.05 0.046 2.7 2.5 2.390 
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4 0.271 0.06 0.059 2.7 2.5 2.456 

5 0.271 0.07 0.070 2.7 3 2.480 

6 0.068 0.03 0.030 0.6 1.0 0.574 

7 0.068 0.04 0.042 0.6 1.0 0.592 

8 0.068 0.05 0.055 0.6 1.5 0.730 

9 0.068 0.06 0.067 0.6 1.5 0.777 

10 0.068 0.07 0.087 0.6 2.5 0.690 

 364 
Our second synthetic experiment (assumed constant n to be recovered by NN(A)) showed that 365 

we were able to recover the mean value, but there was some scattering for the headwater 366 

reaches (Figure 3b, 3d). There were some visible differences between the synthetic 367 

hydrographs resulting from different assumed n values (comparing Figures 3a and 3c). This 368 

allowed the recovered n values to mostly center around the assumed value. However, the 369 

scattering of points toward the lower-DA part of Figures 3b and 3d alluded to the fact that the 370 

downstream discharge was not a strong constraint. n in different ranges can fluctuate around 371 

the mean to generate overall the same pattern as a constant n value. 372 

 373 

In our third synthetic experiments, which were more consistent with our expectation of n, the 374 

simple functions could be roughly recovered for most of the reaches, while there may be 375 

increased uncertainty for the most downstream reaches (Figure 3). There are again noticeable 376 

differences in the hydrographs (Figures 3e & 3g) from previous ones  When the power-law 377 

relationship was assumed, the hydrograph matched the synthetic one almost completely (Figure 378 

3e) and the estimated n outputs from MLP overlapped to a great extent with the assumed one 379 

(Figure 3f). The headwater reaches (small-DA) showed a rapid decline in n with respect to 380 

increasing DA. In the middle ranges of DA, the curve followed the assumed one almost exactly. 381 

Toward the higher range of DA, the recovered values are lower than the assumed relationship 382 

but the deviation is not huge because the power-law formulation becomes flat in this range. 383 

Based on the closeness of hydrographs in Figure 3g, we do not imagine further optimization can 384 

bring significant improvement to the estimations. Similar to the two-constant-parameter retrieval 385 

experiment, the q parameter was not recoverable and thus is not shown here. 386 

 387 
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Based on these simple experiments, it seems training on the river graphs has some promise but 388 

also some limitations. It is promising because it is likely that n is related to DA which we show is, 389 

to some extent, recoverable. Discharge is a widely available variable so this method can be 390 

used to estimate n in many regions across the world. It is simultaneously challenging because, 391 

as we have a large number of reaches contributing to one gage, it is an underdetermined 392 

system. This method was not able to fully reproduce the drastic change in the low-DA range 393 

presumably because this sharp slope was too inconsistent with the rest of the curve and NNs 394 

generally do not output extreme values. It also ran into difficulty toward the high-DA range 395 

because there were simply far fewer reaches with large DA so their roles in routing were 396 

relatively little, making the curve unconstrained in this range. This experiment informed us we 397 

should not expect values of n, especially toward high-DA range, to be reliable, but the overall 398 

trend may have merit, especially when we also have other constraints. These findings formed 399 

the basis for the next stage of the work where we trained n=NN(A) for real-world data. We thus 400 

expected to extract the overall patterns of n distribution but for the recovered q not to be 401 

meaningful. 402 

 403 

 404 
Figure 3: Synthetic discharge distribution experiments. (a, c, e, g) Synthetic and modeled 405 
discharge over time for various assumed relationships between Manning’s n and drainage area. 406 
(b, d, f, h) Synthetic and modeled values of n with respect to drainage area. The NN can recover 407 
the overall pattern, but is not accurate near sharp changes or for reaches with large drainage 408 
areas. Each dot represents a 2-km river reach in the river network. 409 

 410 
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3.2. Training on eight weeks of real data 411 

The real-world data experiment showed decent streamflow routing in the training period, 412 

showing improvements against approaches that did not employ the routing scheme despite 413 

having significant bias (Figure 4b). The hydrograph simulated by the differentiable routing model 414 

is, as expected, smoothed and delayed from the summation of runoffs during the training period. 415 

Unlike the direct summation of the runoff, which has a timing difference from the observation, 416 

the peaks of the routed hydrograph are placed almost exactly under the observed peaks, 417 

leading to a high training NSE of 0.834. We noticed a substantial bias in this training period. 418 

This is due to the mass-balance dictated by the MC formulation, which prevents the model from 419 

adding or removing mass to remove the bias. In traditional hydrologic model calibration, bias 420 

can be a significant concern as it sometimes distorts other parameters to reduce the bias. In this 421 

case, we found the model did a decent job even under bias, and rightfully focused on adjusting 422 

the timing of the flood waves. This is perhaps due to the fact that the allowable adjustments are 423 

limited to routing parameters, which blocked the model from distorting other processes.  424 

 425 

 426 

Figure 4: (a) Results from testing the trained model from Figure 4(b) over a year period (2001) 427 

compared with the summation of lateral inputs and Whole Basin LSTM benchmark (b) Results 428 

from training the differentiable model during an eight week period (2001) against USGS 429 

observations compared with the summation of lateral inputs. 430 



17 
 

 431 

The year-long test of the differentiable model yielded high metrics compared to the alternatives 432 

(Figure 4a). The differentiable model obtained a year-long NSE of 0.857, which is in line with the 433 

median NSE in the JRB. In contrast, the summation of 𝑄 𝜏 9  and the whole-basin 434 

𝐿𝑆𝑇𝑀 𝜏 0  were at 0.756 and 0.801, respectively. This comparison shows that if we simply 435 

added together the runoffs, the error due to timing could reduce NSE at the downstream gage 436 

by ~0.1 on a long-term basis. While the model had success especially with correctly timing the 437 

peak flows, it could not compensate for LSTM's errors, showing significant underestimation of 438 

the peak events. By design, the routing module should be detached from the errors in the runoff 439 

module.  440 

 441 

Interestingly, without specific instructions, the scheme recovered a power-law-like relationship 442 

between Manning’s n and drainage area, similar to the one assumed in the synthetic case 443 

(Figure 5). The n values were highest (near n=0.04) for smaller DA and declined gradually, 444 

approaching 0.015 at the lower end. The change rate of n as a function of DA then became 445 

more gentle as DA increased. This distribution agreed well with the general understanding that 446 

headwater streams running down ridges (this region is characterized by Ridge and Valley 447 

formations) have larger slopes, higher roughness, more vegetation, and thus higher n, while the 448 

high-order streams in the valley tend to have smaller slopes and smoother beds, corresponding 449 

with lower n. In most hydrologic handbooks (Mays, 2019), a smaller n is prescribed for larger 450 

rivers. 451 

 452 
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 453 

Figure 5: Learned relationship between Manning’s n and drainage area for the Juniata River 454 

basin according to the trained neural network. The network was trained for the period of 455 

2001/02/01-2001/03/29. Each dot represents a 2-km river reach. 456 

 457 

3.3. Inner gage evaluation and effects of different training periods 458 

Evaluating the model on the inner, untrained gages showed that the routing scheme became 459 

more competitive compared to alternatives as we looked further downstream (Table 2). For 2 of 460 

the 4 gages with larger than ~2000 km2 of catchment area, the differentiable routing model 461 

performed noticeably better than homogeneous LSTM models for them (for the other two, they 462 

were about the same). For the three midsized subbasins (500~2000 km2), the comparisons 463 

were mixed. For the small subbasins, and especially gage 01557500 (94.8 km2), the uniform 464 

LSTM was noticeably better. The subbasin for 01557500 is smaller than our runoff-producing 465 

unit (HUC10s, with the smallest one ~200 km2), suggesting predictions below this threshold can 466 

be error-prone. Our model was also consistently better than not doing routing (instead, summing 467 

and time-shifting the Q’ runoff for each HUC10 produced by LSTM), or running routing with a 468 

uniform n of 0.02 (as would be selected for main channels from a lookup table) (Table 2), 469 

suggesting it learned useful parameterization skills.  470 

 471 

Table 2: Internal gage NSE values for the year 2001, with the rows ranked by the size of the 472 

subbasin from small to large. The differentiable routing model was trained on the period from 473 
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2001/02/01-2001/03/29 calculating loss from the final gage but the LSTM was trained using 474 

>3000 CONUS gages. Bold font indicates the top performing model for each gage. 475 

Edge 

ID 

Gage 

Number 

Basin Drainage 

Area (km2) 

LSTM NSE 

 (𝜏 = 0) 

Q` Runoff NSE 

 (𝜏 = 9) 

Differentiable routing 

model NSE 

(𝜏 = 9) 

1280 01557500 94.8 0.8149 0.5801 0.5849 

1053 01560000 440.5 0.7028 0.6111 0.6627 

2799 01558000 542.1 0.8201 0.7486 0.7758 

4780 01556000 723.5 0.6624 0.6585 0.6949 

2662 01562000 1943.5 0.7957 0.6969 0.7997 

4801 01559000 2103.0 0.7815 0.7473 0.8138 

2689 01563200 2482.9 0.5703 0.6556 0.7869 

4809 01563500 5212.8 0.8024 0.7585 0.8576 

 476 

This comparison informed us of the favorable and unfavorable ranges of applicability of our 477 

workflow. Our workflow found competitive advantages for stem rivers with catchments greater 478 

than 2,000 km2, but may run into issues for scales smaller than the smallest runoff-producing 479 

unit (HUC10, around 200 km2). The issues for the smallest basins may have been due to our 480 

procedure used to transfer mass between different grids (subbasin to regular grids on the river 481 

network). Smaller runoff-generating units could be used in the future to mitigate this issue. The 482 

advantages for larger basins were due to resolving both the routing process and the 483 

heterogeneity in rainfall and basin static attributes. The results imply that the advantages will 484 

increase for even larger basins, where currently LSTM does not apply, as well as basins where 485 

rainfall heterogeneity makes a big difference. The JRB is situated in the northeastern part of the 486 

CONUS; there could be many other regions where the effect of heterogeneity is more 487 

prominent. For example, past studies have always found it difficult to simulate large basins on 488 

the northern and central Great Plains (Feng et al., 2020; Martinez & Gupta, 2010), potentially 489 

due to spatially-concentrated rainfall and runoff generation (Fang & Shen, 2017). Also, in the 490 

mountainous areas of Northwest and Southeast, orographic precipitation could have significant 491 
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spatial concentration. We hypothesize applying models to smaller basins and incorporating the 492 

routing scheme will allow these regions to be better modeled.  493 

 494 

When the scheme was trained on eight-week periods from different years, it generated 495 

somewhat different but mostly functional parameterizations, unless it was trained in some 496 

unreasonable training periods where the LSTM doesn’t match the observed outflows (Table 3). 497 

The maximum achievable NSEs for the years of 2001, 2005, 2007, and 2008 were 0.857, 0.87, 498 

0.827 and 0.787, respectively. We found that if the models were trained on other periods (2001a  499 

2001b, 2005b, 2007a), the test NSEs could still be close, and were at least not drastically 500 

worse. However, had we chosen 2007b, the results could have been worse (Figure 6a-d) 501 

Observing the characteristics of the different training periods, we see that the troublesome 502 

training periods did not contain full flood rise and recession phases (Figure 6e, 6f), and also had 503 

relatively low NSE. This could have led to ways to overfit. Hence, our experience suggests we 504 

need to pick periods that (i) contain full flood rise and recession phases; and (ii) have high NSEs 505 

for the training period. 506 

 507 

Table 3. The NSE values correspond to testing differentiable models on different test years. 508 
Bold font indicates the highest NSE. Underlined metrics indicate poor performance. 509 

 
 
 
Testing 
Period 

Training Period 

2001a  
 
02/01- 
3/29 

2001b   
           
11/01- 
12/26 

2005a  
            
02/01- 
3/29 

2005b      
11/01- 
12/26 

2007a   
           
02/01- 
3/29 

2007b      
11/01- 
12/26 

2008a   
           
02/01- 
3/29 

2008b   
           
11/01- 
12/26 

2001 0.857 0.845 0.850 0.853 0.857 0.831 0.782 0.856 

2005 0.797 0.828 0.843 0.870 0.816 0.713 0.785 0.785 

2007 0.815 0.812 0.821 0.827 0.819 0.774 0.753 0.813 

2008 0.643 0.715 0.723 0.762 0.676 0.534 0.787 0.623 

      510 
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 511 

Figure 6: Training (e, f) and testing of two of the eight-week trained models during the years (a) 512 

2001, (b) 2005, (c) 2007, and (d) 2008.  513 

 514 

3.4. Further discussion 515 

While the estimated n is functional for routing streamflow and physically-meaning, results 516 

suggest the downstream discharge only poses a moderate constraint on the n values, and by 517 

itself, may not be sufficient in identifying the true n values. Hence, we do not want to 518 

prematurely claim that the procedure retrieved highly realistic n parameterization in the real data 519 

case, especially considering that there are many input variables to NN covary in space and it 520 

may be difficult to disentangle their effects. Because we lacked the ground truth for n in the real-521 

data case, we leave this evaluation for future effort as we compile more measurement data. 522 

Recall that we were able to retrieve the overall pattern of n in the synthetic experiments but 523 

there could be some parts in the parameter space with large uncertainties. This is because we 524 

have a high degree of freedom (a high-dimensional input space for the NN, influencing many 525 

reaches) constrained by only one downstream output with a relatively short training period. This 526 
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training is nonetheless valuable because discharge data can be available widely. We will be 527 

able to employ it in conjunction with other constraints, e.g., scattered measurements or expert-528 

specified relationships. 529 

 530 

Here we employed a static parameterization scheme for n, but the framework would allow for a 531 

dynamic n to be employed (which would likely be dependent on Q). It is not clear if we must use 532 

a static parameterization, as some previous studies have found a dynamic n to offer better 533 

results (Ye et al., 2018). In the future, it will be interesting to see if a dynamical n 534 

parameterization could have a significant impact on the routing results. 535 

 536 

Our approach, similar to a classical routing scheme, is modular --- the trained weights of the NN 537 

that generates n are not tied to a particular runoff model. Our work can be coupled to traditional 538 

models in multiple ways. Firstly, the trained network can be used to generate n for traditional 539 

models. In this way, no change is required on the part of the traditional models. Secondly, the 540 

neural network and the trained weights can be ported to other programming environments like 541 

Fortran and retraining is not necessary. This makes it possible to use the trained 542 

parameterizations as a built-in module in continental-scale models (Greuell et al., 2015; 543 

Johnson et al., 2019; Regan et al., 2018). An alternative approach is to lump both the routing 544 

and the runoff simulation into one problem and optimize them together, as done in some other 545 

studies (Jia et al., 2021). In our case, this would mean that we train both the runoff LSTM and 546 

the routing module together. In many big-data DL case studies, the lumped model could have 547 

higher performance compared to a workflow that separates the tasks into multiple minor tasks. 548 

However, in our case here, the available downstream gauge data is limited. Moreover, our 549 

approach is modular so it can be easily coupled to other runoff models, e.g., a non-550 

differentiable, traditional model, or a differentiable one (Feng, Beck, et al., 2022; Feng, Liu, et 551 

al., 2022).  552 

 553 

4. Conclusions 554 

In this work, we used a combination of a pre-trained LSTM rainfall-runoff model and 555 

differentiable processed-based modeling via Muskingum-Cunge routing to create a learnable 556 

routing model (or, from the perspective of machine learning, a physics-informed graph neural 557 

network) to predict streamflow in stem rivers and learn river parameters throughout a river 558 

network. Our simple synthetic experiments succeeded in recovering the overall spatial pattern of 559 

Manning's n but could not recover the channel cross-sectional geometry parameter (q). 560 
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Furthermore, our synthetic experiments yielded good results recovering synthetic Manning’s n 561 

and drainage area relationships, implying there is potential recoverability of some river 562 

parameters using our differential routing model. 563 

 564 

Training the differentiable routing model on eight weeks of real-world data showed decent 565 

streamflow routing and improved upon approaches that did not use routing in their approaches. 566 

Similar results were shown when the differentiable model was tested on a full year of data. 567 

Despite the model’s success, it could not compensate for errors in the LSTM causing an 568 

underestimation of significant storm events. When looking at Manning’s n vs drainage area 569 

distribution attained by our trained model against USGS observations, we found that the n 570 

values agreed with the literature bounds for the area and also conforms to our knowledge of n. 571 

Further work can expand this analysis to other basins with different conditions (streams outside 572 

of the Ridge and Valley physiographic division) to see if the model can still identify their trends 573 

correctly. Reviewing the internal gage NSE scores over a full year of data showed a correlation 574 

between drainage area and the relative advantage of our routing scheme, highlighting the 575 

impacts of heterogeneity.  576 

 577 

Our data suggests we need to pick periods that contain full flood rise and recession phases, and 578 

have high NSEs for the training period. We showed that systems trained on an eight-week 579 

period can be successfully applied to years outside of when they were trained and still attain 580 

high NSE scores. Our model’s training size is limited to a small period of time due to memory 581 

constraints. In future work, we look to improve our graph infrastructure to allow for both cross-582 

validation and an increased testing size.  583 

 584 

Open Research 585 

The LSTM code relevant to this work can be downloaded at 586 

http://doi.org/10.5281/zenodo.5015120. The differentiable routing model will be made available 587 

to reviewers upon a paper revision request, and a new Zenodo release will be published upon 588 

paper acceptance. The GAGES-II dataset can be downloaded at 589 

https://pubs.er.usgs.gov/publication/70046617. The NHDPlus data can be downloaded at 590 

https://nhdplus.com/NHDPlus/NHDPlusV2_home.php. The NLDAS forcing data can be 591 

downloaded at  http://doi.org/10.5067/6J5LHHOHZHN4. Other data sources can be found in 592 

Table A1. 593 

 594 
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Appendix 829 

 830 

Figure A1: The synthetic parameter recovery of Manning’s n after each epoch run with each 831 

colored line representing a different recovered value. (a) The initial value of n is set to 0.068 (b) 832 

the initial value of n is set to 0.271 833 

 834 

Table A1: The attributes and forcings used to predict streamflow in the LSTM 835 

Attribute Unit Dataset 

Mean Elevation m SRTMGL1 

Mean Slope unitless SRTMGL1 

Basin Area km2 SRTMGL1 

Dominant Land Cover Class MODIS 

Dominant Land Cover 
Fraction 

Percent MODIS 

Forest Fraction Percent MODIS 

Root Depth (50) m MODIS 

Soil Depth m MODIS 

Ksat (0-5) log10(cm/hr) POLARIS 

Ksat (5-15) log10(cm/hr) POLARIS 
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Theta s (0-5) m3/m3 POLARIS 

Theta s (5-15) m3/m3 POLARIS 

Theta r (5-15) m3/m3 POLARIS 

Ksat average (0-15)  log10(cm/hr) POLARIS 

Ksat e (0-5) cm/hr POLARIS 

Ksat e (5-15) cm/hr POLARIS 

Ksat average e (0-15)  cm/hr POLARIS 

Theta average s (0-15) em3/m3 POLARIS 

Theta average r (0-15) em3/m3 POLARIS 

Porosity Percent GLHYMPS 

Permeability Permafrost m2 GLHYMPS 

Permeability Permafrost 
(Raw) 

m2 GLHYMPS 

Major Number of Dams Unitless GAGES-II 

General Purpose of Dam Unitless National Inventory of Dams 
(NID) 

Max of Normal Storage Acre-ft National Inventory of Dams 
(NID) 

Standard Deviation of Normal 
Storage 

Unitless National Inventory of Dams 
(NID) 

Number of dams within river 
(2009) 

Unitless  GAGES-II 

Normal Storage (2009) Acre-ft National Inventory of Dams 
(NID) 

Precipitation hourly total kg/m2 NLDAS2 

Surface downward longwave 
radiation 

W/m2 NLDAS2 

Surface downward shortwave 
radiation 

W/m2 NLDAS2 

Pressure Pa NLDAS2 
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Air Temperature K NLDAS2 

 836 
SRTMGL1: https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003  837 
MODIS: https://modis.gsfc.nasa.gov/data/dataprod/mod12.php 838 
POLARIS: https://doi.org/10.1029/2018WR022797  839 
GLHYMPS: https://doi.org/10.5683/SP2/DLGXYO 840 
NID: https://nid.usace.army.mil/ 841 
NLDAS2: https://ldas.gsfc.nasa.gov/nldas/v2/forcing 842 
 843 
Table A2: The attributes used by the MLP to predict n and q 844 

Attribute Unit 

Reach Width m 

Average-Reach Elevation m  

Slope m/m  

Reach Area km2 

Total Drainage Area km2 

Area Per Reach Length km2/km 

Sinuosity m/m 

Bank Elevation m 

 845 


