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Abstract

The ability of global climate models to reproduce recurrent regional atmospheric circulation types is introduced as an over-

arching concept to explore potential dependencies between these models. If this approach is applied on a sufficiently large

spatial domain, the similarity of the resulting error pattern can be compared from one model to another. By computing a

pattern correlation matrix for a large multi-model ensemble from the Coupled Model Intercomparison Project Phases 5 and 6,

groups of comparatively strong correlation coefficients are obtained for those models working with similar atmospheric com-

ponents. Thereby, frequent shared error patterns are found within in the ensemble, which also occur for nominally different

atmospheric component models. The error pattern correlation coefficients describing these similarities are nearly unrelated to

model performance and can be used as statistical dependency weights.
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Key Points:7

• Global Climate Models (GCMs) have common regional atmospheric circulation8

error patterns in the northern hemisphere extratropics.9

• Similar error patterns are obtained for GCMs using the same AGCM family and,10

unexpectedly, also for some GCMs using different AGCM families.11

• A set of weighting coefficients documenting statistical dependence is provided which12

is virtually unrelated to model performance.13
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Abstract14

The ability of global climate models to reproduce recurrent regional atmospheric circu-15

lation types is introduced as an overarching concept to explore potential dependencies16

between these models. If this approach is applied on a sufficiently large spatial domain,17

the similarity of the resulting error pattern can be compared from one model to another.18

By computing a pattern correlation matrix for a large multi-model ensemble from the19

Coupled Model Intercomparison Project Phases 5 and 6, groups of comparatively strong20

correlation coefficients are obtained for those models working with similar atmospheric21

components. Thereby, frequent shared error patterns are found within in the ensemble,22

which also occur for nominally different atmospheric component models. The error pat-23

tern correlation coefficients describing these similarities are nearly unrelated to model24

performance and can be used as statistical dependency weights.25

1 Introduction26

As the number of nominally different Global Climate Models (GCMs) participat-27

ing in the Coupled Model Intercomparison Project (CMIP) increases (Taylor et al., 2012;28

Eyring et al., 2016), so does the need to explore the degree to which they have been de-29

veloped independently. This effort is important because the spread of the multi-model30

ensemble is assumed to provide reliable uncertainty estimates of the climate system’s re-31

sponse to external forcing (Lee et al., 2021). Thus, similar development strategies, such32

as common parametrization schemes, reference datasets used for model verification and,33

most evidently, the sharing of entire component models representing the physical and34

biogeochemical properties of the climate system (Brands, 2022b; Brands et al., 2022) would35

weaken the ensemble’s suitability for uncertainty estimation and also compromise the36

use of unweighted multi-model mean values (Masson & Knutti, 2011; Knutti et al., 2013;37

Abramowitz et al., 2019). To account for this, those GCMs presenting considerable de-38

pendencies with the other members of the multi-model ensemble are down-weighted or39

even eliminated (Boé, 2018; Brunner et al., 2020; Maher et al., 2021). Similar weight-40

ing strategies are applied as a function of the GCMs performance in reproducing key as-41

pects of the observed climate (Brunner et al., 2020; Liang et al., 2020), which is partic-42

ularly important if the model errors induce too strong or too weak feedback processes43

along the integration period which lead to an unrealistic climate response to external forc-44

ing (Hall & Qu, 2006; Nijsse et al., 2020; Tokarska et al., 2020; Simpson et al., 2021).45

The present study focuses on the exploration of GCM dependencies and in this re-46

search field, two distinct approaches have been proposed so far (Boé, 2018). The a pos-47

teriori approach seeks dependencies by analysis of model output. In this approach, dis-48

tance between the output variables from the different members of the multi-model en-49

semble, such as temperature, precipitation or sea-level pressure, is directly used to mea-50

sure model dependency in a purely statistical way, the more distant models being less51

similar (Masson & Knutti, 2011; Knutti et al., 2017; Brunner et al., 2020). A variation52

of this approach is to apply model errors with respect to observations instead of inter-53

model distance, with larger errors indicating less similarity (Jun et al., 2008; Knutti et54

al., 2010; Pennell & Reichler, 2011; Bishop & Abramowitz, 2012). The principal limi-55

tation of the a posteriori approach is that decreasing distances or model errors are not56

necessarily indicative of increasing model dependencies (Annan & Hargreaves, 2017). In57

other words, a group of models might produce similar output in spite of being concep-58

tually different, in which case more confidence should be put on them in the multi-model59

approach. If applied on its own, the a posteriori approach is therefore unable to distin-60

guish similarity due to conceptual model dependencies from similarity due to convergence61

of independent models.62

This is where the a priori approach comes into play. There, model similarity is es-63

timated on the basis of expert knowledge about the models’ architecture. Ideally, this64
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should be done by the model developers themselves, comparing and discussing their own65

source codes. However, probably because of the codes’ complexity and long history —66

some model developments started in the late 1960s (Volodin et al., 2010)—, and also be-67

cause of legal code availability restrictions, the a priori approach is still in its infancy68

and only a few attempts to put light on the models in this context are reported in the69

literature. Annan and Hargreaves (2017) defined a priori model similarity by institu-70

tional belonging, i.e. GCMs from the same institution are more dependent than those71

from different institutions. Boé (2018) went into more detail by counting the number of72

common components used in the coupled model configurations participating in CMIP5,73

taking into account the four basic components atmosphere, land-surface, ocean and sea-74

ice that constitute the minimum climate system component coverage of the coupled model75

configurations currently used as global climate models (GCMs). Finally, Maher et al. (2021)76

define model dependencies by looking at common sub-models or versions thereof.77

The present study proposes a synthesis of the a priori anda posteriori approaches.78

Exploiting the newly available global climate model metadata archive built by Brands79

et al. (2022), it is possible to identify the names and versions of up to ten climate sys-80

tem components for currently 61 nominally distinct coupled model configurations par-81

ticipating in CMIP5 and 6. Since the focus is here put on atmospheric circulation, the82

metadata of the atmospheric general circulation model (AGCM) is extracted for each83

of these GCMs. Then, those GCMs using the same AGCM or versions thereof are put84

into the same group, each one representing a specific “AGCM family”. This a priori ap-85

proach makes it possible to put GCMs from different institutions into the same group86

if they use the same AGCM, which is actually often the case in the CMIP ensemble.87

As an alternative to the use of several atmospheric variables for calculating model88

distances or errors in an a posteriori manner, the present study applies a single, inte-89

grative variable: the 27 regional atmospheric circulation types defined by (Lamb, 1972)90

and Jenkinson and Collison (1977). Calculated upon 6-hourly instantaneous sea-level pres-91

sure values, these Lamb Weather Types (LWTs) are known to be linked with a number92

of key variables in atmospheric physics and chemistry (Trigo & DaCamara, 2000; Her-93

tig et al., 2020) and can thus be considered an overarching concept to describe regional-94

scale climate variability (Huth et al., 2016). Here, LWT time series are calculated at each95

grid-box of a regular latitude-longitude grid covering the northern hemisphere extra-tropics96

(Jones et al., 2013) for each of the 61 GCMs mentioned above and for several reference97

reanalysis datasets used as quasi-observations. Then, the modeled and observed clima-98

tological relative frequencies of the 27 LWTs are compared and it is shown that the model-99

specific spatial patterns of the corresponding circulation error correlate considerably (r100

+0.65) for those GCMs belonging to the same AGCM group and, unexpectedly, even for101

some GCM pairs from different AGCM groups. This means that, if the right a priori and102

a posteriori methods are combined, then they mutually support each other. Finally, a103

set of statistical dependence weights is obtained from the error pattern correlation co-104

efficients, which was found to be nearly unrelated to model performance.105

2 Data and Methods106

The present study makes use of the 6-hourly instantaneous LWT sequences for the107

time period from 1979 to 2005 computed in Brands (2022b), which were updated for the108

present study. The LWT approach is an automated circulation typing technique based109

the subjective classification made by Lamb (1972) for the British Isles. It is also known110

as the Jenkinson and Collison (1977) approach and provides 27 discrete regional atmo-111

spheric circulation types, each one representing a typical and recurrent synoptic situa-112

tion affecting that region at a given point in time. These circulation types are entirely113

calculated upon zonal and meridional sea-level pressure gradients on a 16-point coordi-114

nate system covering 30 degrees in longitude and 20 degrees in longitude, centered on115

the respective region of interest. Figure 1 shows this coordinate system adjusted for the116
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Tokyo region as well as the type-specific SLP composite mean patterns to illustrate that117

the method also works fine other extratropical climate regimes.118

Each circulation type is characterized by 1) the direction of the geostrophic flow119

at sea-level (or lack thereof) as indicated by the 8 main cardinal directions and 2) the120

predominance of cyclonic or anticyclonic conditions (or lack thereof) in presence or ab-121

sence of the geostrophic flow. There are 8 purely directional (PD) types with no clear122

cyclonic or anticyclonic influence and a geostrophic flow blowing from the Northeast (NE),123

East (E), SE, S, SW, W, NW, or North (N) (see panels 10 to 17 in Figure 1). Further-124

more, there are 16 hybrid types with either anticyclonic (panels 1 to 8) or cyclonic (pan-125

els 19 to 26) conditions in combination with a geostrophic flow from one of the afore-126

mentioned cardinal directions. Finally, there is one purely anticyclonic and another purely127

cyclonic type (panels 1 and 18, respectively), characterized by a negligible geostrophic128

flow, and one unclassified type characterized by weak pressure gradients and a lack of129

cyclonic or anticyclonic influence, corresponding to what is known as ”barometric swamp”130

among weather forecasters (panel 27).131

Here, the LWT approach is applied in a rolling manner (Otero et al., 2017), i.e. it132

is iteratively centered on each box of a regular latitude-longitude grid with a resolution133

of 2.5◦, covering a zonal belt between 35◦ and 70◦N. Along the time axis, the method134

loops through six-hourly instantaneous SLP values from 1979 to 2005, providing one dis-135

crete LWT per timestamp. A complete description of the method can be found in Jones136

et al. (1993) and also in Brands (2022b), the later being an open access study.137

In Brands (2022b), the resulting 3-dimensional LWT arrays (dimensions: time, lat-138

itude and longitude) have been calculated for 2 distinct reanalyses and for the histor-139

ical runs of 56 nominally different coupled model configurations contributing to CMIP5140

and 6. For the present study, this catalogue has been extended by the ECMWF ERA5141

reanalysis (Hersbach et al., 2020), here used as principal reference dataset, and by 5 ad-142

ditional GCMs, namely GFDL-ESM2G (Dunne et al., 2012), CMCC-CM2-HR4 (Cherchi143

et al., 2019), GFDL-ESM4 (Dunne et al., 2020), INM-CM5 (Volodin et al., 2017) and144

KACE1.0-G (Lee et al., 2019); the former participating in CMIP5 and the latter four145

in CMIP6, respectively. All applied LWT catalogues were permanently stored in Brands146

(2022a).147

A detailed metadata archive for the GCMs used here is is provided in Brands et148

al. (2022) (see get historical metadata.py therein), including the names and versions of149

all component models used in these GCMs (up to 10), resolution details, reference ar-150

ticles and run specifications considered in the present study. For more details on the con-151

sidered GCMs, the interested reader is also referred to Brands (2022b).152

At each box of the aforementioned northern hemisphere grid, the Mean Absolute153

Error (MAE) of the n = 27 relative LWT frequencies for a given GCM, denoted m, is154

calculated with respect to the respective frequencies from the reanalysis, denoted o (Brands,155

2022b; Wilks, 2006):156

MAE =
1

n
Σn

i=1|mi − oi| (1)

, thereby obtaining 61 spatial error patterns (one for each GCM) covering the north-157

ern hemisphere extratropics. The corresponding maps can be found in the supplemen-158

tary material to this article (see Open Research section below) and an illustrative ex-159

ample displaying the results for 4 nominally different GCMs is shown in Figure 2. Two160

of the GCMs shown therein are from the same development team (panels a and c) and161

the remaining two from others (b and d). Then, the error pattern correlation matrix is162

calculated in order to measure the spatial similarity of the error fields (see Figure 3) (Abramowitz163

et al., 2019). Since the correlation coefficient measures the linear similarity of two anomaly164
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samples (error fields in this case), similarity is not necessarily related to model perfor-165

mance, here defined in Equation 1, and vice versa. We will come back to this point in166

Section 4.167

Using the metadata collected in Brands et al. (2022), those coupled model config-168

urations sharing the same atmospheric general circulation model (AGCM ), or versions169

thereof, are put into the same group and placed next to each other in the correlation ma-170

trix. For ease of understanding, GCMs are printed normal and the AGCMs used therein171

are highlighted in the following.172

3 Results173

Along the diagonal of the correlation matrix in Figure 3, marked with black boxes,174

12 distinct AGCM “groups” or “families” (used as synonyms here) can be distinguished,175

each one containing at least 2 GCMs (see Table 1). These groups house 58 out of the176

61 considered GCMs, the remaining 3 GCMs using unique AGCMs. For 11 out of these177

12 families, the within-group pattern correlation coefficients (r) do not fall below 0.65,178

except for EC-Earth2.3 and MIROC-ESM constituting outliers of their respective AGCM179

group (IFS and MIROC-AGCM ). Excluding the latter two GCMs, these 11 families are180

hereafter referred to as “clusters” because in addition to forming an AGCM group, their181

members also meet the aforementioned within-group correlation threshold. From this182

it follows that FGOALS-g2 and g3 form an AGCM “group” (GAMIL, group 2 in Fig-183

ure 3) but not a “cluster” because their within group correlation coefficient is too low184

(r= 0.47).185

Concerning the pattern correlation between different AGCM clusters, placed away186

from the diagonal and depicted in blue for one illustrative comparison in Figure 3, the187

ECAM cluster correlates comparatively strong with the HadGAM/UM, LMDZ, GSMUV/MRI-188

AGCM and INM-AGCM clusters, yielding correlation coefficients in the range of 0.66–189

0.75, 0.60–0.79, 0.59–0.75 and 0.63–0.82, respectively, and even stronger associations with190

the GFDL-AM cluster (0.58–0.89). The ECHAM cluster is also closely associated with191

CanAM4, i.e. the AGCM used in CanESM2 (0.73–0.82).192

The HadGAM/UM cluster yields correlation coefficients in the range of 0.66–0.80193

and 0.62–0.73 with the LMDZ and GFDL-AM clusters, except for the somewhat weaker194

links with the GFDL-AM version used in KIOST-ESM (0.55–0.62). HadGAM/UM is195

also strongly linked with CanAM4 (0.70–0.77) and with the INM-AGCM version used196

in INM-CM5 (0.73–0.80).197

The two BCC-CSM versions are here assigned to the CAM group because BCC-198

CSM’s atmospheric component BCC-AGCM was originally developed from CAM3 (Wu199

et al., 2010). The CAM cluster correlates comparatively strong with one half of the ECHAM200

cluster (MPI-ESM-LR, MPI-ESM-MR, MPI-ESM1.2-LR and MPI-ESM1.2-HR, 0.61–201

0.81), as well as with GFDL-CM3 and GFDL-ESM2G (0.62–0.82), and with GISS-E2.1-202

G (0.73–0.81).203

The IFS cluster is only moderately correlated with the remaining AGCM groups204

and the lowest pattern correlations with the other groups are obtained for the MIROC-205

AGCM/CCSR-AGCM cluster.206

With r < 0.40 on average (see axis labels in Figure 2), MIROC-ES2L, MIROC5207

and FGOALS-g2 are the most independent coupled model versions considered here, whereas208

MPI-ESM-LR, MPI-ESM-MR and MPI-ESM-1.2-LR are the most dependent or, if seen209

the other way around, most influential GCMs (r > 0.70). Among the institutions con-210

tributing a single model, IITM-ESM constitutes a rather independent GCM that relies211

on GFS in the atmosphere, which is not used by any other GCM. CSIRO-MK3.6 is also212

relatively poorly correlated with the other GCMs, but has not been further developed213
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since CMIP5. As stated above, CanESM2’s average correlation coefficient with the re-214

maining GCMs is comparatively large.215

Several sensitivity tests have been conducted to test whether the aforementioned216

results are robust to several well known uncertainty sources. These include 1) the use217

of alternative reference reanalysis datasets, 2) the application of alternative historical218

model integrations initiated from other starting dates of the corresponding pre-industrial219

control run and 3) the exclusion of those regions where the JRA-55 reanalysis compared220

with ERA-Interim does not rank first when treated as if it was another GCM, thereby221

indicating relevant reanalysis uncertainties (see Figure 1b in Brands (2022b)). The largest222

effect of reanalysis uncertainty is an increase in the average error pattern correlation co-223

efficients for the IFS group of up to 0.20 when switching from the ECMWF products224

to JRA-55. This means that the error patterns of the EC-Earth versions are less sim-225

ilar to the remaining GCMs if validated against ECMWF reanalyses than for the val-226

idation against JRA-55 (compare Supplementary Figure 1a and b with c). A likely rea-227

son for this is that both EC-Earth and the ECMWF reanalyses use IFS, meaning that228

they are a priori dependencies in this case. Since EC-Earth’s performance was also found229

to be slightly favoured by an evaluation against ECMWF reanalyses (Brands, 2022b),230

it may be argued that, from a model dependence point of view, JRA-55 is the more suit-231

able reference reanalysis for multi-model evaluations in the northern hemisphere extra-232

tropics if EC-Earth is involved. In spite of this issue, the correlation matrices calculated233

upon the 3 mentioned reanalyses are similar to each other and the overall effects of re-234

analysis uncertainty on the results are small (see Supplementary Figure 1). The effects235

of internal model variability are even smaller (see Supplementary Figure 2), probably236

because the climatological mean state is studied here instead of inter-annual variability,237

the latter known to be more sensitive to this kind of variability in the extratropics (Maher238

et al., 2021). Removing the regions prone to reanalysis uncertainty from the study has239

more substantial effects on the results, but does not change the main conclusions either240

(see Supplementary Figure 3). The pattern correlation coefficients decrease only slightly241

(see boxplot next to the colorbar), the AGCM families are still visible along the diag-242

onal and the similarity between the ECHAM and CAM families increases, tending to form243

a joint supercluster. Coming back to the full-domain analyses, if the error patterns for244

JRA-55 or ERA-Interim w.r.t ERA5 are correlated with those obtained for the GCMs,245

i.e. the reanalyses are treated as if they were GCMs, the coefficients are similar to those246

obtained for the majority of GCMs in Figure 3 (0.60 and 0.63 on average, not shown).247

This again points to common error structures in both the GCMs and reanalyses.248

If subtracted from 1, the average error pattern correlation coefficient obtained from249

correlating a given GCM with all others can be used as model weight (w = 1 – r, see Ta-250

ble 1). Interestingly, the correlation coefficient between these weights and the mean model251

errors derived and updated from Brands (2022b) is 0.20 only, which is insignificant for252

a two-tailed t-test conducted at a test level of 0.05.253

4 Discussion and Conclusions254

The present study has shown that the a priori grouping of the GCMs used in CMIP5255

and 6 according to the applied atmospheric sub-model leads to clusters of similar spa-256

tial error patterns describing the models’ capability to reproduce the regional atmospheric257

circulation as represented by the well known Lamb Weather Types. This way, 58 out of258

61 considered GCMs can be be grouped into 12 distinct AGCM families, whereas the259

remaining 3 GCMs use unique AGCMs. For 11 of the thereby defined AGCM families,260

housing a total of 54 GCMs, the within-group error pattern correlation coefficients are261

sufficiently strong (r > 0.65) to depict clusters of statistical dependency visible along262

the diagonal of the error pattern correlation matrix. In some cases, the error patterns263

for distinct AGCM families also correlate strongly, e.g. for the ECHAM and GFDL-AM264

families. This probably indicates model convergence in spite of conceptual differences265
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and should increase our confidence in the output of these models, particularly in those266

regions where they have shown to perform well (Brands, 2022b).267

Complemented by the model performance estimates reported in the aforementioned268

study, the here presented dependence estimates provide consistent criteria for GCM weight-269

ing and selection, covering both CMIP5 and 6 (Lee et al., 2021). The correlation ma-270

trices w.r.t to various reanalysis datasets are provided in netCDF format (see supple-271

mentary material) and alternative average weights can be easily computed, e.g. by se-272

lecting only a single GCM per development team (Leduc et al., 2016), if this is preferred273

by the reader.274

Making use of the metadata archive built by Brands et al. (2022), the GCMs can275

be alternatively ordered according to their sub-models for other climate system compo-276

nents, using appropriate alternative error measures. This effort, as well as the use of the277

proposed atmospheric circulation error to constrain future climate projections (Cox et278

al., 2018; Eyring et al., 2019), is left open for future studies.279

Finally, it is noted that the model developers themselves have embarked on an ef-280

fort to disentangle the complex dependencies in the CMIP ensemble from expert knowl-281

edge and source code, leading to impressive in-depth studies for specific climate system282

components (Séférian et al., 2020). At some point in the future, it might thus be pos-283

sible to abandon the a posteriori or ad-hoc approach used to explore GCM dependen-284

cies solely with output data, in favour of a fully informed a priori approach (Annan &285

Hargreaves, 2017; Boé, 2018). The aforementioned metadata archive is a starting point286

for such an endeavor.287

Open Research288

The LWT catalogues and underlying Python code, including the applied GCM meta-289

data archive, are publicly available from Brands (2022a) and Brands et al. (2022). The290

supplementary material to this article is available at https://figshare.com/ndownloader/291

files/37598465.292
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J., . . . Thépaut, J.-N. (2020). The ERA5 global reanalysis. Quarterly356

Journal of the Royal Meteorological Society , 146 (730), 1999-2049. doi:357

https://doi.org/10.1002/qj.3803358

Hertig, E., Russo, A., & Trigo, R. M. (2020). Heat and ozone pollution waves in359

central and south Europe—characteristics, weather types, and association360

with mortality. Atmosphere, 11 (12), 1271. doi: https://doi.org/10.3390/361

atmos11121271362
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Table 1. Atmospheric general circulation model groups and coupled model configurations they

are used in. GCMs belong to the same cluster if their AGCM is from the same group and if the

error pattern correlation coefficients (r) with the remaining members of this group exceeds 0.65

(see Figure 3). Only 7 of the 61 considered GCMs cannot be assigned to one of the clusters, ei-

ther because their within-group error pattern correlation coefficients are too low (this is the case

for EC-Earth2.3, FGOALS-g2, FGOALS-g3 and MIROC-ESM) or because their AGCM is unique

within the multi-model ensemble considered here (this is the case for CanESM2, IITM-ESM and

CSIRO-MK3.6). Also shown are the number of GCMs pertaining to each AGCM group (paren-

theses in first column) and the weighting coefficients (1-r, parentheses in second column) derived

from the average error pattern correlation coefficients per GCM (r) displayed in Figure 3. All

results are w.r.t. ERA5.

AGCM group Coupled model configurations

GCMs fulfilling the clustering criteria (54)

HadGAM/UM (8) ACCESS1.0 (0.36), ACCESS1.3 (0.36), ACCESS-CM2 (0.36), ACCESS-ESM1 (0.37)
HadGEM2-CC (0.37), HadGem2-ES (0.36), Hadgem3-GC31-MM (0.36), KACE1.0-G (0.37)

ECHAM (8) MPI-ESM-LR (0.28), MPI-ESM-MR (0.29), MPI-ESM1.2-LR (0.29), MPI-ESM1.2-HR (0.31)
MPI-ESM-1-2-HAM (0.37), AWI-ESM-1-1-LR (0.36), NESM3 (0.32), CMCC-CM (0.36)

CAM (11) CMCC-CM2-SR5 (0.39), CMCC-CM2-HR4 (0.39), CMCC-ESM2 (0.38), CCSM4 (0.41)
NorESM1-M (0.37), NorESM2-LM (0.39), NorESM2-MM (0.37), SAM0-UNICON (0.39)
TaiESM1 (0.38), BCC-CSM1.1 (0.36), BCC-CSM2-MR (0.35)

ARPECHE (4) CNRM-CM5 (0.38), CNRM-CM6-1 (0.36), CNRM-CM6-1-HR (0.43), CNRM-ESM2-1 (0.37)
IFS (5) EC-Earth3 (0.48), EC-Earth3-Veg (0.49), EC-Earth3-Veg-LR (0.38)

EC-Earth3-AerChem (0.49), EC-Earth3-CC (0.54)
GFDL-AM (5) GFDL-CM3 (0.29), GFDL-CM4 (0.37), GFDL-ESM2G (0.33), GFDL-ESM4 (0.36), KIOST-ESM (0.40)
GISS-E2 (3) GISS-E2-H (0.47), GISS-E2-R (0.43), GISS-E2.1-G (0.37)
LMDZ (3) IPSL-CM5A-LR (0.40), IPSL-CM5A-MR (0.39), IPSL-CM6A-LR (0.33)
MIROC-AGCM/CCSR AGCM (3) MIROC5 (0.63), MIROC6 (0.49), MIROC-ES2L (0.71)
GSMUV/MRI-AGCM (2) MRI-ESM1 (0.39), MRI-ESM2.0 (0.34)
INM-AM (2) INM-CM4 (0.37), INM-CM5 (0.36)

GCMs not fulfilling the clustering criteria (7)

GAMIL FGOALS-g2 (0.62), FGOALS-g3 (0.40)
MIROC-AGCM/CCSR AGCM MIROC-ESM (0.38)
CSIRO-AGCM CSIRO-MK3.6 (0.54)
IFS EC-Earth2.3 (0.42)
CanAM CanESM2 (0.36)
GFS IITM-ESM (0.44)
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Figure 1. Composite mean sea-level pressure patterns (in Pa) for each of the 27 Lamb

Weather Types over the Tokyo region. Also shown is the coordinate system the method is de-

fined on and the relative occurrence frequencies of each type. Source: ERA5, period: 1979-2005
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a) MPI-ESM1.2-LR b) GFDL-ESM4

MAE of relative LWT frequencies (%)

c) MPI-ESM-LR d) MIROC-ES2L

r(a,b) = 0.79
r(a,c) = 0.92
r(a,d) = 0.35

r(b,d) = 0.33
r(b,c) = 0.79
r(c,d) = 0.300 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Figure 2. Spatial pattern of the Mean Absolute Error (MAE) in the relative frequencies of

the 27 Lamb Weather Types for two GCMs pertaining to the same AGCM family (a and c) and

for two GCMs pertaining to a distinct AGCM family each (b and d). Despite nominally distinct

AGCMs are in use (ECHAM and GFDL-AM), the error pattern correlation (r) between the MPI

and GFDL models is comparatively large.
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Figure 3. Spatial correlation of the northern hemisphere mean absolute error pattern in the

relative frequencies of the 27 Lamb Weather Types for 61 distinct GCMs from CMIP5 and 6

evaluated against ERA5. The corresponding maps are provided in the supplementary material.

The acronym (a), CMIP generation (b) and average spatial correlation coefficient ×100 (c) of

each GCM are provided along the axes. The boxplot describes the distribution of the correlation

coefficients without repetitions and unity values. It is constructed with the median, interquartile

range (IQR) and whiskers of this sample, the latter placed at the 25th percentile - 1.5 × IQR and

at the 75th percentile + 1.5 × IQR. AGCM families are marked with black boxes. Blue boxes

indicate an illustrative example for two distinct AGCM families correlating strongly.
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