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Key Points:

• A new method is proposed to improve surrogate runoff signals using pas-
sive microwaves.

• Eliminating the ambiguity of selecting a calibration pixel in space enables
adopting a longer wavelength microwave.

• The new algorithm outperforms existing alternatives in densely forested
areas.

Abstract

We present herein a new basis for measuring river discharge in ungauged catch-
ments. Surrogate runoff (SR) is created using remotely sensed data to com-
pensate for the absence of ground streamflow measurements. Because of their
widespread availability, remotely sensed SR products are attractive, with ap-
proaches such as satellite-derived measurement-calibration ratio (C/M ratio).
However, the use of the C/M ratio suffers from its limited penetration through
ground vegetation canopies. While a microwave signal with a longer wavelength
has been used to enhance the penetration capability, the coarseness of the spatial
resolution of the microwave signal offsets its improvement due to the inherent
assumptions in the C/M ratio, i.e., selecting two contrasting pixels (i.e., mea-
surement and calibration) at the same time. To address both issues, this study
proposes a new SR formulation using a longer wavelength (L-band microwave)
with a better assumption for handling coarse grids, whereby the temporal vari-
ability of dryness against the driest state in each grid is used. The performance
of the new SR is assessed for 467 Australian Hydrologic Reference Station catch-
ments. Results show considerable improvements in the Pearson linear correla-
tion (R) between the proposed SR and streamflow: 44% of the study areas show
R higher than 0.4 with the new approach, whereas only 13% of the study areas
show R higher than 0.4 with the currently used alternative (C/M ratio derived
from Ka-band microwave). Overall, the resulting SR is dramatically improved
by using the newly designed SR approach with the L-band microwave signal.

Plain Language Summary

We present a new Surrogate Runoff (SR) that can be used as an alternative to
in-situ river discharge, which has limited gauges worldwide. The new measure-
ment is retrieved from satellite data with global coverage for ungauged areas.
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Existing SRs are limited due to their limited penetration through ground veg-
etation canopies. Therefore, a microwave signal with a longer wavelength is
an attractive approach because it provides greater penetration and improves
the signal’s quality. Still, deriving a useful SR product is difficult due to the
coarseness of the signal. The new SR formulation is proposed to use a longer
wavelength (L-band microwave) by addressing key limitations in a coarse grid.
The performance of the new SR is assessed for 467 Australian Hydrologic Refer-
ence Station catchments. Results show considerable improvements in accuracy
as measured by correlation between the SR and observed streamflow. Over-
all, the resulting SR is dramatically improved by using the newly designed SR
approach with the L-band microwave signal.

1. Introduction

Floods and droughts arguably represent the biggest and most severe natural
disasters society faces year after year (Thomas and López, 2015). A key reason
for their damaging impact is the lack of a reliable streamflow monitoring net-
work, resulting in poor acceptance of the forecasts by the community (Smith
et al., 2019; Tellman et al., 2021). Therefore, measuring hydroclimatic fluxes
from space has long been an active area of research, with unprecedented re-
cent opportunities created for measuring water and energy fluxes at the Earth’s
surface.

Recent studies have added to remote sensing capabilities by creating novel means
of assessing flood inundation (Brakenridge and Anderson, 2006; Parinussa et al.,
2016) to improve flood forecasts in ungauged catchments. Spatial comparisons
of temperature retrievals represent a key remote-sensing measurement pathway,
the hypothesis being that lower brightness temperature is synonymous with a
greater wetted perimeter (Kim and Sharma, 2019) compared to the drier pixels
(the reference pixels) in the image. This has led to the rationale of Surrogate
Runoff (SR), also known as the measurement-calibration ratio (C/M ratio or MC
ratio; Brakenridge et al., 2007; Brakenridge et al., 2012), representing the ratio
of the target temperature and assumed to equal land temperature within the
measurement pixel. Using this rationale, the derived SR has been demonstrated
to have a high correlation to river discharge (De Groeve, 2010; Brakenridge et
al., 2012). While there now exist alternatives to better calibrate hydrologic
models using a suitable SR (Yoon et al., 2022), allowing extended streamflow
estimates at ungauged catchments worldwide, their efficacy is dependent on the
quality of the signal the SR is able to impart. Hence, an advanced surrogate
derived from satellite signals is needed to improve hydrologic prediction.

Specifically, there still are limitations in existing SR due to the inherent er-
rors in the observation and necessary assumptions. This assumption becomes
critical when longer wavelength electromagnetic waves are used, such as mi-
crowaves with greater penetrative capability through the atmosphere and veg-
etation canopy but operate over a coarse resolution. In contrast, the use of
shorter electromagnetic waves covering finer spatial resolutions allows a refer-
ence pixel to be assumed as the land reflectance at the measurement pixel but
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provides reduced ground penetration (Hou et al. 2020). Whether to use a more
precise but longer electromagnetic wave or a less precise but higher resolution
shorter electromagnetic wave then depends on how well the reference pixel is
specified, a requirement we seek to eliminate in the research proposed here.

In this context, we present here a radically new basis for measuring river dis-
charge using a longer electromagnetic wave, such as the L-band microwave. The
end outcome is a robust and reliable framework to create a new surrogate data
source that can be implemented in any region regardless of the availability of
ground measurements.

The paper is organized as follows. Section 2 introduces the background of
previous studies on SRs and compare their strength and weakness. Section
3 develops the new SR from this initial analysis to offer an advanced runoff
prediction. Section 4 introduces the study area and data, section 5 illustrates
results, section 6 discusses key points, and section 7 summarizes and concludes
the main findings.

2. Background

A substantial amount of work is aimed at estimating river discharge using re-
mote sensing data. Early studies used river water levels detected from satellite
altimetry data to measure river discharge with Manning’s equation, however,
this is generally only possible for the world’s largest rivers (Birkinshaw et al.,
2010). Thus, alternative methods have been developed to measure river width
or inundation extent to estimate river discharge using radar or optical images
(Smith et al., 1996; Smith, 1997). From the assumption that the water inun-
dation is correlated to the river discharge amount (Vörösmarty et al., 1996),
several studies then related river discharge to the inundation extent (Bjerklie et
al., 2005; Brakenridge et al., 2005; Brakenridge et al., 2012; Papa et al., 2008;
Smith and Pavelsky, 2008; Gleason et al., 2014; Pavelsky, 2014; Van Dijk et al.,
2016).

From these studies, Brakenridge et al. (2007) developed the brightness temper-
ature ratio, and further studies (see Table 1) improved SR in several aspects,
including the source of signal, measurement (M) pixel selection methods, and
calibration (C) pixel selection methods. These methods are summarized in Table
1, with the factors that affect the quality of the derived SR. The performance of
SR is calculated via the Pearson linear correlation (R) with gauged streamflow.
To examine and advance these approaches, we examine three factors affecting
the quality of the SR (SR formulations, measurement and calibration cell selec-
tion, and wavelength). Then we present the new SR designed to address the
limitations of previous SRs.

Table 1 Summary of previous studies on SRs. These are categorized
with the SR formulation, the signal source, and the calibration and
measurement pixel selection methods (discussed in sections 2.1 ~ 2.4).
The definition and detailed information of SR1 and SR2 are described
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in section 2.1. In C and M pixel selection, ‘best cells’ refers to cells
selected based on their performance, such as a correlation to river
discharge. Additionally, ‘Low CV’ means that cells with low coeffi-
cients of variance are selected, and ‘Low Tb’ means that cells with
low brightness temperature are selected. SD denotes standard devia-
tion. ‘TWI filtering’ denotes the Topographic Wetness Index filtering
approach suggested in Kim and Sharma (2019).

SR for-
mation

Signal C pixel
selec-
tion

M
pixel
selec-
tion

ReferenceStudy
Area

Performance
(R)

Temporal
resolu-
tion

SR1 Ka-
band
Microwave

Best
cells

Single
cell

Brakenridge
et al.,
2007

sites
(USA)

–0.74 Daily

Low
Tb

Single
cell

Brakenridge
et al.,
2012

sites
(USA)

-

Khan
et al.,
2014

sites
(Indus
River
Basin
at Pak-
istan)

–0.84

nearest
cells

Revilla-
Romero
et al.,
2014

sites
(across
the
world
except
Ocea-
nia)

–0.4
(42%);
0.4–0.5
(15%);
0.5–
(10%)

Revilla-
Romero
et al.,
2015

sites
(across
the
world)

–1.0

Best
cells

Van
Dijk et
al.,
2016

sites
(across
the
world)

Monthly
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SR for-
mation

Signal C pixel
selec-
tion

M
pixel
selec-
tion

ReferenceStudy
Area

Performance
(R)

Temporal
resolu-
tion

TWI
filter-
ing

Kim
and
Sharma,
2019
Yoon
et al.,
2021

sites
(Aus-
tralia)

Daily

Best
cell

Best
cells

Kugler
et al.,
2019

sites
(Ama-
zon)

–0.69

L-band
Microwave

Best
cell

Best
cells

sites
(Ama-
zon)

–0.92

Near
In-
frared

Best
cell
Low
CV

Best
cells

Tarpanelli
et al.,
2013
Tarpanelli
et al.,
2020

–5
sites
(Po
river
Basin
at
Italy)

–0.81

Reference
Area

Inundated
area

Li et
al.,
2019

sites
(Heigh
River
Basin
at
China)

–0.83

Best
cell

Single
cell

Sahoo
et al.,
2020

sites
(Brah-
mani
River
Basin
in
India)

–0.84

Low
CV

Best
cells

Shi et
al.,
2020

sites
(Mur-
ray
Dar-
ling
Basin
in Aus-
tralia)

–0.9
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SR for-
mation

Signal C pixel
selec-
tion

M
pixel
selec-
tion

ReferenceStudy
Area

Performance
(R)

Temporal
resolu-
tion

SR2 SWIR
(short-
wave
in-
frared)

Low
Tb

Best
cells

Van
Dijk et
al.,
2016

sites
(across
the
world)

Monthly

Hou et
al.,
2020

sites
(across
the
world)

–
(30%)

2.1 SR formulations
Here the SR suggested in Brakenridge et al. (2007) (advocating the use of
measurement-calibration ratio) is defined as SR1 to distinguish it from the other
SR formulations presented later. As mentioned, SR1 is derived from the bright-
ness temperature of two pixels: the measurement pixel (located on the wetland)
and the calibration pixel (located on the dryland). Since the raw brightness tem-
peratures (𝑇𝑏,𝑚) are influenced by various local factors such as physical temper-
ature, permittivity, surface roughness, vegetation, atmospheric moisture, and
other environmental variables (Brakenridge et al., 2007; Van Dijk et al., 2016),
it is scaled by the signal of land observation (𝑇𝑏,𝑐). The SR1 derivation starts
from the assumption that 𝑇𝑏,𝑚 exhibits a mixture of a brightness temperature
of land (𝑇𝑏,𝑙) and water (𝑇𝑏,𝑤) in the pixel, allowing the proportion occupied by
water (denoted 𝑤 0 to 1) to serve as a measure of the stream extent and hence
streamflow (Brakenridge et al., 2007; Kugler and De Groeve, 2007), as shown
in Equation 1:

𝑇𝑏,𝑚 = 𝑇𝑚𝜀𝑚 = 𝑤𝑇𝑏,𝑤 + (1 − 𝑤)𝑇𝑏,𝑙 = 𝑇𝑤(𝑤𝜀𝑤) + 𝑇𝑙(1 − 𝑤)𝜀𝑙 ( 1 )

Following this, the brightness temperature of the calibration pixel is explained
as

𝑇𝑏,𝑐 = 𝑇𝑐𝜀𝑐 . ( 2 )

Here, 𝑇𝑚 and 𝑇𝑐 are the physical temperatures of the measurement and cali-
bration pixels, and 𝑇𝑤 and 𝑇𝑙 are the physical temperatures of the water and
land area in the calibration pixels, respectively. Additionally, 𝜀𝑚 and 𝜀𝑐 are
the emissivity of the measurement and calibration pixels, and 𝜀𝑤 and 𝜀𝑙 are
the emissivity of the water and land in the measurement pixels. Here two as-
sumptions are made that 𝜀𝑐 can be estimated with 𝜀𝑙, and the surface physical
temperature T are homogeneous (𝑇𝑤 and 𝑇𝑙 are equal to 𝑇𝑚) as:

Assumption 1: 𝜀𝑙 ≈ 𝜀𝑐 ( 3 )
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Assumption 2: 𝑇𝑚 ≈ 𝑇𝑐 ≈ 𝑇𝑤 . ( 4 )

Then, the inverse of SR1 can be written as:
𝑇𝑏,𝑚
𝑇𝑏,𝑐

= 𝑇𝑚(𝑤𝜀𝑤+(1−𝑤)𝜀𝑙)
𝑇𝑐𝜀𝑐

≈ 1 − 𝑤 + 𝑤 𝜀𝑤
𝜀𝑙

= 1 − 𝑤(1 − 𝜀𝑤
𝜀𝑙

) = 𝑓(𝑤) ( )

The inverse of 𝑓(𝑤), 𝑔(𝑤), is known to be correlated to streamflow (De Groeve,
2010); resulting in SR1 being defined as

SR1≔ 𝑇𝑏,𝑐
𝑇𝑏,𝑚

= 𝑔(𝑤) = 1/(𝑓(𝑤)) ( )

Here, it is required that the value of 1− 𝜀𝑤
𝜀𝑙

is a constant or a variant proportional
to 𝑤 to ensure that 𝑔(𝑤) is an increasing function of 𝑤. Thus, there is a hidden
assumption in SR1 as

Assumption 3: 1 − 𝜀𝑤
𝜀𝑙

∝ 𝑤 or 1 − 𝜀𝑤
𝜀𝑙

≈ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 . ( )
However, this assumption may not be valid in some conditions since 𝜀𝑙 can
be affected by 𝑤, based on the relationship between the 𝜀𝑙 and soil moisture
(Schmugge, 1983; Owe and Van De Griend, 1998) relative to the surface water
extent (Ghajarnia et al., 2020).

Thereafter, Van Dijk et al. (2016) developed an alternative from the same linear
mixing model in De Groeve (2010), which is expressed as,

𝜀𝑚 = 𝑤𝜀𝑤 + (1 − 𝑤)𝜀𝑙 ( 8 )

following which SR2 is derived as an estimate of 𝑤 via:

𝑟 = 1 − 𝜀 ( 9 )

𝑤 = 𝑟𝑚−𝑟𝑙
𝑟𝑤−𝑟𝑙

( 10 )

where 𝑟 is reflectance and 𝜀 is emissivity that satisfies Equation 9, 𝑟𝑚 is the re-
flectance of the measurement pixel, 𝑟𝑙 is the reflectance of the land in that mea-
surement cell, and 𝑟𝑤 is the reflectance of the water extent. Then, 𝑟𝑙 is inferred
from the reflectance of the calibration cell (𝑟𝑐) with Assumption 1 (Equation 4),
and this results in SR2 being

SR2:= 𝑟𝑚−𝑟𝑐
𝑟𝑤−𝑟𝑐

. ( 11 )

Here, the use of reflectance instead of brightness temperature eliminates two
assumptions (Assumption 2 and 3), which amplifies the uncertainty of SR1.
The reflectance of the water is considered constant in both SRs, although it is
not truly constant because 𝑟𝑤 has a low variability (Hou et al., 2020).

2.2 Selecting measurement and calibration cells
In deriving SR, a measurement pixel must be carefully selected to make a proper
prediction. Although the high performance of the pixel selection is based on
their metrics, such as the correlation to streamflow (Brakenridge et al., 2007;
Brakenridge et al., 2012; Khan et al., 2014; Kugler et al., 2019; Tarpanelli
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et al., 2013; Tarpanelli et al., 2017), it requires the information of the in-situ
water discharge data. Therefore, other approaches were developed to collect
measurement cells. Revilla-Romero et al. (2014) proposed spatially averaging
over the three nearest neighbors of the grid where a gauge exists. Additionally,
Kim and Sharma (2019) further enhanced the selection with the Topographic
Wetness Index (TWI; Beven and Kirkby, 1979) by refining the pixels to be
considered downstream, which is shown to have a clearer signal to estimate
streamflow (Hou et al., 2020).

Concurrently, selecting a calibration cell (with reference cells representing land
brightness temperature) was also considered a key component affecting the qual-
ity of SR. Brakenridge et al. (2007) and Kugler et al. (2019) selected the calibra-
tion cell manually to satisfy certain criteria (located near the measurement cell
but the least affected area by water change). Alternatively, the calibration cell
can be selected automatically with 𝑛×𝑛 grid where the measurement located at
the center (see Figure S1 in Supporting Information). De Groeve (2010) devel-
oped an effective automatic calibration pixel selection method, which collects a
pixel presenting the 95th percentile of brightness temperature among the 𝑛 × 𝑛
grids neighboring the measurement pixel at each time step. In our study, this
method is denoted as the C95 method, and used to calculate SR1 and SR2.

2.3 Wavelength of the signals used to construct SR
Various types of remotely sensed observations, such as active (radar) and passive
(optical, infrared, and microwave) signals, all have their strengths in streamflow
estimation. However, there is a well-established compromising relationship be-
tween their penetration skill and resolution as presented in Table 2: near infrared
(NIR) and shot-wavelength infrared (SWIR) from Moderate Resolution Imaging
Spectroradiometer (MODIS), Ka-band microwave from Global Flood Detection
System (GFDS), and L-band microwave from Soil Moisture and Ocean Salinity
(SMOS).

Visible or infrared observations (380nm � 1mm) are affected by geophysical ob-
structions such as cloud, vegetation, and shadow effects, causing considerable
data loss (De Groeve, 2010; Rees, 2013; Smith, 1997). These signals are more
vulnerable for specific areas, such as tropical climate regions where cloud ob-
structions can be more persistent and pervasive (Kugler et al., 2019), despite
their finer spatial resolutions (Van Dijk et al., 2016). Also, radar-derived altime-
try has been used to predict water surface elevation (Paris et al., 2016; Tourian
et al., 2017; Pham et al., 2018), but it also has limitations from vegetation
scattering (Smith,1997) and long revisit time (Hou et al., 2020).

Alternatively, passive microwave observations have a higher penetration skill
than optical or infrared observations (Van Dijk et al., 2016; Kugler et al., 2019)
but suffer from coarse spatial resolutions (0.09°×0.09° to 0.25°×0.25°). In SR
calculations, the merged Ka-band microwave (7.5�11.1 mm) provided by GFDS
has been widely used in previous studies (Brakenridge et al., 2007; Brakenridge

8



et al., 2012; Khan et al., 2014; Kim and Sharma, 2019; Revilla-Romero et al.,
2015; Revilla-Romero et al., 2014) because of its daily revisit time and penetra-
tion skill (De Groeve, 2010). However, its spatial resolution suffers in picking
calibration cells. Despite the reasonable calibration cell selection rationale (De
Groeve, 2010), the uncertainty remains (see section 2.4) because the calibration
cell may lie on land with different physical conditions, such as land cover, soil
type, and elevation profiles, to the measurement cell.

The L-band microwave (15–30 cm) approach to SR has also been tested by Ku-
gler et al. (2019) for catchments located in the Amazon having high vegetation
density. Because of the L-band penetration capability, increased R values (0.80–
0.92) are demonstrated for those catchments (see Table 1), which is an improved
result compared to those using Ka-band (R values of 0.36–0.69). However, it
has been noted that L-band is limited in calibration pixel selection due to its
coarse resolution (~25 km) (Crow et al., 2017).

Therefore, selecting calibration pixels needs extra attention. Our study then
aims to develop a better SR to use coarser signals such as the L-band microwave.
The limitation in the L-band signal is resolved by addressing the uncertainty in
the selection and specification of the calibration pixel.

Table 2 Remotely sensed data sources previously studied for stream-
flow reconstruction. Note reflectance (r) represents the fraction of
radiant energy reflected off the surface, and 𝑇𝑏 is the brightness tem-
perature, all thermal indicators are sensitive to the presence of water.

RS
signal
(Sensor/
Mission)

Thermal
data
convert-
ible to
flood
signal

Spatial
Resolu-
tion

Wavelength
/ Fre-
quency

Temporal
Resolu-
tion

Penetration
capacity

Study

Optical/NIR
(MODIS)

𝑇𝑏, 𝑟 –250m –1440
nm
(208–
750THz)

to
16-day

Weak
Strong

Tarpanelli
et al.,
2013
Li et al.,
2019
Sahoo et
al., 2020
Shi et
al., 2020
Tarpanelli
et al.,
2020
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RS
signal
(Sensor/
Mission)

Thermal
data
convert-
ible to
flood
signal

Spatial
Resolu-
tion

Wavelength
/ Fre-
quency

Temporal
Resolu-
tion

Penetration
capacity

Study

SWIR
(MODIS)

𝑇𝑏, 𝑟 ° ×
0.05°

–
2155nm
(139–142
THz)

-day Van
Dijk et
al., 2016
Hou et
al., 2020

Ka-band
(GFDS)

𝑇𝑏 ° ×
0.09°

mm
(36.5
GHz)

-day Brakenridge
et al.,
2012
Revilla-
Romero
et al.,
2015
Van
Dijk et
al., 2016
Kim and
Sharma,
2019
Kugler
et al.,
2019

L-band
(SMOS)

𝑇𝑏, 𝑟 ° ×
0.25°

cm
(1.4
GHz)

-day Kugler
et al.,
2019

2.4 Uncertainty in the calibration pixel selection

Uncertainties arise from the assumptions for selecting the calibration pixel, es-
pecially for a coarse pixel of low-frequency passive microwaves (Kugler et al.,
2019). Figure 1 shows a typical example at a catchment in northern Australia
(G8140067, see section 4.1 for the details), where the signals from surrounding
cells are not suitable as the calibration pixel, so the performance of SR is highly
degraded. The calibration signal is meant to make a cohesive relationship be-
tween streamflow and the satellite signal at the measurement pixel. However,
Figure 1 clearly shows that if the assumptions (Equations 4, 5, and 7) for the
SR formulations are not well fulfilled (typically happens in microwave signals),
then the land reflectance (or brightness temperature) in the measurement cell
cannot be properly estimated from those of the calibration cell. A signal with
a longer wavelength has more difficulty selecting an appropriate calibration cell
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because the primary assumptions � homogeneity of physical temperatures and
land cover among neighboring grid cells� are not valid.

While noise can be somewhat reduced by filtering out unreliable signals using
hydrological and topographical constraints (Kim and Sharma, 2019), an im-
provement would be formulating a physically sound approach that does away
with the necessity of selecting the calibration pixel altogether. This study ad-
dresses this point by eliminating the need to select the calibration pixel and
accordingly provides markedly higher accuracy than has been possible to date
by considering the real variability of land reflectance. This results in a paradigm
shift in surrogate streamflow measurement, which enables low-frequency signals
to predict water discharge.

Figure 1 R of SR1 and SR2 for the catchment G8140067 for an 8-year
study period (1/1/2011 to 31/12/2018). (a) The map of the catch-
ment G8140067, where a 5 × 5 grid of SMOS pixels (0.25°×0.25°) is
overlaid, and the gauge (-14.36, 131.57) exists at the center (blue
box). The center pixel is the measurement (M) pixel, and the re-
maining pixels are candidates of the calibration (C) pixel (C; the set
of the candidates of C pixels). (b) R values of SR1 (𝑇𝑏,𝑐/𝑇𝑏,𝑚) are cal-
culated using each neighboring pixel as the calibration pixel. Here,
the value on the center pixel denotes the R between Q and the time
series of inversed brightness temperature (1/𝑇𝑏,𝑚) at the measure-
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ment pixel, which is the baseline not using a calibration signal. (c)
R values of SR2 ( 𝑟𝑚−𝑟𝑐

𝑟𝑤−𝑟𝑐
) are calculated using each neighboring pixel

as the calibration pixel. The value on the center pixel denotes the R
between Q and the reflectance (𝑟𝑚) of the measurement pixel. Note
that none of the surrounding SR1 outperforms the baseline in terms
of R. Likewise, none of the SR2 in Figure 2c surpasses their baseline,
i.e., the R between Q and the time series of reflectance (𝑟𝑚) at the
measurement pixel. Here, the reflectance of water (𝑟𝑤) is set as 0.72
with the dielectric constant 80 (Owen et al., 1961; Andryieuski et al.,
2015). 3. Methodology

As analyzed in the previous section, the limitation in SR is mainly derived from
two factors: 1) the need for a reference pixel and 2) the trade-off relationship
between spatial resolution and penetration capability of electromagnetic waves.
Although the shorter electromagnetic waves give high spatial resolution, making
it easier to pick a reference pixel, it has poor penetration ability and longer re-
visit times. However, the longer electromagnetic waves have greater penetrative
capability through the atmosphere and vegetation canopy but operate over a
coarse resolution, making it hard to choose a reference pixel (Hou et al., 2020).

How then could one circumvent the use of a calibration pixel while taking advan-
tage of the L-band microwaves’ strengths to ascertain surrogate streamflow with
accuracy? The solution lies in utilizing the time evolution of the measurement
pixel retrievals, unlike the previous SRs using spatial references for calibration
pixel selection.
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Figure 2 The concept of how SR1, SR2, and SR* are derived. SR1
compares the reflectance signals of measurement (M) and calibration
(C) pixel; SR2 also considers the reflectance gap of the water and C
pixel; the newly proposed SR* calculates the reflectance increment
from its minimum value and the gap between the water and M pixel.
As illustrated in Figure 2, the prior SRs rely on identifying an appropriate spatial
reference. For example, the initial derivation of SR (denoted here as SR1 and
SR2) depends on the brightness temperature (or reflectance) of the calibration
pixel (Equations 6 and 11). However, the land’s heterogeneity between the
calibration and measurement cells may countermine Assumption 1 (Equation 3).
Therefore, unlike previous approaches, we eliminate the need for the calibration
pixel in the SR formation but instead take the reference from the measurement
pixel at a different point in time. The new SR (denoted as SR* hereafter)
is designated as the ratio of the reflectance increased (�𝑟𝑚) from the driest
time (𝑟𝑚_, the lower baseline) and the reflectance gap (𝑟𝑤 − 𝑟𝑚) to the water
reflectance (𝑟𝑤, the upper baseline)

SR*= �𝑟𝑚
𝑟𝑤−𝑟𝑚

= 𝑟𝑚−𝑟𝑚_
𝑟𝑤−𝑟𝑚

. ( )

Here, 𝑟𝑚_ can be set as the lower baseline and 𝑟𝑤 can be set as the upper
baseline in the microwave (reflectance of water > reflectance of dry land), but
in shorter electromagnetic waves, such as near-infrared, it should be set inversely
(reflectance of water < reflectance of dry land).

The SR* also can be derived from

𝑟𝑚 = 𝑤𝑟𝑤 + (1 − 𝑤)𝑟𝑙 ( )

which is equivalent to Equation 8. As noted in section 2.1, 𝑟𝑤 is regarded as
constant (Van Dijk et al., 2016; De Groeve, 2010). Then, a reference value is
set as 𝑟𝑚_, the lowest recorded reflectance over the measurement time period,
which should correspond to the lowest water presence 𝑤_. Non-constant values,
𝑟𝑚, 𝑟𝑙 and 𝑤, are disaggregated with their minimum value (𝑟𝑚_, 𝑟𝑙_, and 𝑤_)
and increment at time t (�𝑟𝑚, �𝑟𝑙, and �𝑤) as,

𝑟𝑚 = 𝑟𝑚_ + �𝑟𝑚, 𝑟𝑙 = 𝑟𝑙_ + �𝑟𝑙, and 𝑤 = 𝑤_ + �𝑤 . ( )

Then, Equation 14 is drawn by putting Equation 12 to Equation 13 as,

𝑟𝑚_ + �𝑟𝑚 = (𝑤_ + �𝑤)𝑟𝑤 + (1 − (𝑤_ + �𝑤))(𝑟𝑙_ + �𝑟𝑙) ( )

and from this, Equation 17 is derived via Equation 16 as (see Text S1 in Sup-
porting Information for more details),

𝑟𝑚_ = 𝑤_𝑟𝑤 + (1 − 𝑤_) 𝑟𝑙_ ( )

�𝑟𝑚 − �𝑤(𝑟𝑤 − 𝑟𝑙_) − (1 − (𝑤_ + �𝑤))�𝑟𝑙 = 0 ( )

here, �𝑟𝑙 is necessary to predict �𝑤, the increment of the water extent. However,
only �𝑟𝑚 is measurable, thus, an assumption is needed to solve this equation to
infer �𝑤. Here an assumption is needed, such as,
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�𝑟𝑙 = 𝑎 + 𝑏�𝑟𝑚 + 𝑐�𝑤 + 𝜀 , ( )

and this is appropriate because 𝑟𝑚 and 𝑟𝑙 have analogous trend due to the soil
wetness (Schmugge, 1983; Owe and Van De Griend, 1998), but may also be
affected by water proportionality �𝑤. Here, a, b, c are constant values and 𝜀 is
the error in this assumption. In L-band signal, 𝑎 ≈ 0, 𝑏 ≈ 1, and 𝑐 ≈ 0 can be
assumed from its large grid size (this assumption is checked through Text S2,
Text S3, and Figure S2 in Supporting Information). Then, the estimation of �𝑤
(�̂𝑤) can be explained with �𝑟𝑚 as

�̂𝑤 = 𝑘1�𝑟𝑚 + 𝑘2
(𝑟𝑤 − 𝑏�𝑟𝑚 + 𝑘3) ∝ �𝑟𝑚

(𝑟𝑤 − �𝑟𝑚) ∝ �𝑟𝑚
(𝑟𝑤 − 𝑟𝑚)

s.t. 𝑘1 = 1 − 𝑏 + 𝑏𝑤−, 𝑘2 = −𝑎 (1 − 𝑤−), 𝑘3 = 𝑐 (1 − 𝑤−) − 𝑎 − 𝑟𝑙_, 0 < 𝑏 < 1,
0 < 𝑘1 ( 19 )

and detailed derivations can be found in Text S1 in Supporting Information. It
should be noted that this Equation is developed for the signal which satisfies
𝑟𝑙 < 𝑟𝑚 < 𝑟𝑤, such as microwaves (Rees, 2013), thus, it should be derived
inversely for shorter waves. Finally, the last term in Equation 19 is proportional
to the�̂𝑤, therefore, it becomes the new SR (SR*) which is defined in Equation
12.

The new SR (using only a single measurement pixel) eliminates the reliance
on calibration pixel selection. Instead, it applies the alternative assumption
(Equation 18) to calculate SR in the absence of 𝑟𝑙. This new assumption is
a tool for creating streamflow-correlated data and is applicable when spatial
reference is unavailable. Supporting Information (Text S2, S3, and Figure S2)
shows that the new assumption is more reliable in the L-band microwave than
assumptions in previous approaches.

Consequently, the issue comes down to the second limitation in the previous
SR—the coarse spatial scale of the L-band retrieval. However, we argue that
eliminating the calibration pixel using the new logic reduces the need for finer
scale retrievals. We propose that even though the new SR derivation is at a
coarser resolution, the greater penetrative capability of the L-band microwave
offers a better representation of actual streamflow.

4. Study Area and Data

4.1 Study Area
Our study assesses the performance of SRs for an 8-year study period (1/1/2011
to 31/12/2018) at the Australian Hydrologic Reference Stations (HRS; Zhang
et al., 2016; Turner et al., 2012; Figure 4a). The 467 HRSs in total have
been carefully selected and maintained by the Australian Bureau of Meteorol-
ogy, representing all dominant Australian climate zones and areas which can
be argued to be free from anthropogenic effects. Among the 467 HRS, the
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catchment G8140067 located at Daly River is first analyzed in detail. This
catchment has well-shaped features to capture the streamflow using satellite
signals—specifically, it has a large catchment size of 33227km2, and most of
the area is covered by sparse trees (Lymburner et al., 2011). It is selected to
highlight the difficulty in identifying stable calibration pixels, measuring the
effects of the assumptions on the previous SRs, and comparing the dynamics of
previous SRs and that of the new SR. Daily in-situ streamflow observations are
used as a reference to evaluate the derived SRs. For 467 HRS across Australia,
streamflow data is acquired from the Australian Bureau of Meteorology (Zhang
et al., 2016; Turner et al., 2012).

Figure 3 Study area of the study. (a) Catchment boundaries of
467 HRS catchments in Australia (colored as light blue), and one
selected catchment (G8140067, blue line). (b) Magnified view of
G8140067, showing elevation, catchment boundary (black line), and
river streams (light blue lines).
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4.2 Data
4.2.1 Microwave signals

Reflectance and brightness temperature derived from L-band mi-
crowave

Our study uses the L-band microwave to predict streamflow due to its outstand-
ing penetrative capability over shorter waves. The signals were obtained from
the French Center Aval de Traitement des Données SMOS (CATDS) ground
segment of the Center National d’Etudes Spatiales (CNES) (CATDS, 2016; Al
Bitar et al., 2017). SMOS daily gridded data indicated Level 3 (L3) was acquired,
including brightness temperatures and dielectric constants. Because of its high
sensitivity to water occurrence (Brakenridge et al., 2007), the brightness tem-
perature in horizontal (H) polarizations was retrieved with an incidence angle
of 42.5º, descending orbit variables with a 0.25°×0.25° resolution. Reflectance
is provided via dielectric from L-MEB (Wigneron et al., 2007), and Fresnel re-
flection coefficient for H-polarization radiation based on Maxwell’s equations at
the boundary (Rees, 2013) as

𝑟 = [ 𝑐𝑜𝑠𝜃−√𝜀𝑟−sin2 𝜃
𝑐𝑜𝑠𝜃+√𝜀𝑟−sin2 𝜃

]
2

( )

where 𝜀𝑟 is the dielectric constant, and 𝜃 is the incidence angle (42.5º).

Brightness temperature derived from Ka-band microwave

The Ka-band microwave was provided from the Global Flood Detection Sys-
tem (GFDS) as 0.09°×0.09° gridded daily brightness temperature maps at a
frequency of 36.5 GHz with H-polarization. GFDS also provides one of the SR
(SR1 derived from Ka-band microwave), the ratio over a wet measurement pixel
with automatically selected calibration pixels (Kugler and De Groeve, 2007).
By combining observations from multiple passive microwave sensors (Tropical
Rainfall Measuring Mission (TRMM), Advanced Microwave Scanning Radiome-
ter for Earth Observing System (AMSR‐E), and Advanced Microwave Scanning
Radiometer 2 (AMSR2)) with global coverage, the signal is enhanced by taking
advantage being able to retrieve data on cloudy days.

4.2.2 Global Surface Water Data

Global Surface Water (GSW) (Pekel et al., 2016) includes statistics on the ex-
tent and change of surface water worldwide. It was produced by the European
Commission Joint Research Center based on surface water mapping using 3
million images from the Landsat 5, 7, and 8 satellites during 1984–2015. GSW
provides surface water occurrence, occurrence change intensity, seasonality, re-
currence, transitions, and maximum water extent at a 30 m spatial resolution.
Especially, the Change in Water Occurrence Intensity (CWOI) map between
two epochs (16 March 1984 to 31 December 1999, and 1 January 2000 to 31 De-
cember 2020) was provided by computing the difference between the two epochs
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and averaging differences between all homologous pairs of months. In our study,
the CWOI clarifies the impact of changes in water occurrence at each pixel and
verifies the assumptions in previous SRs and the novel SR.

5. Results

5.1 Single catchment results (G8140067)
5.1.1 Comparison of derived SR1, SR2, SR*, and streamflow

Here we validate the new approach across a diverse set of catchments. We first
assess the advantages of the new SR with the selected catchment G8140067.
Figure 4 shows the time series of reflectance, three derived SRs (SR1, SR2,
and SR*) retrieved from L-band microwave, and in-situ streamflow (Q) from
1/1/2011 to 31/12/2018. Firstly, the 25 reflectance values of 5 × 5 pixels are
compared (Figure 4a). In general, all the reflectance values have similar dynam-
ics. Specifically, the reflectance values’ trends do not significantly differ under
wet conditions, making it hard to estimate high-flow peaks. From these dynam-
ics of reflectance, the performance of SRs can be explained. SR1 is computed
via Equation 6 using the brightness temperature. SR2 and SR* are calculated
via Equations 11 and 12 using reflectance, and the reflectance of water (𝑟𝑤) is
set as 0.72 with the dielectric constant 80 (Owen et al., 1961; Andryieuski et al.,
2015). It is shown that SR* has a high R to observed Q with a value of 0.771,
while 𝑆𝑅1 and 𝑆𝑅2 have R values of 0.430 and 0.468, respectively. Some
high-flow signals are well detected in SR1 and SR2, but there are many false
high-flow signals during low-flow periods. However, SR* shows a clear align-
ment to streamflow Q with less noise at low-flow, indicating the improvement
of SR* over SR1 or SR2.
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Figure 4 Full time-series of (a) reflectance, (b) SR1, (c) SR2, (d)
SR*, and (e) Q of the catchment G8140067 in study period 1/1/2011
~ 31/12/2018. There is missing data from 24/11/2015 to 24/12/2015
(vertical gray bar). (a) The range of nearby 5×5 pixels’ reflectance
(shaded light red) and the reflectance of M pixel (𝑟𝑀 ; red line) and
C95 pixel (𝑟𝐶95; blue line) are illustrated. In (b) and (c), the range of
the 24 SR signals derived from neighboring C pixels is described as
a blue shade. SR𝐶95 are illustrated as blue lines as a representative
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value. Note that all SRs are scaled from zero to one based on the
maximum and minimum values of each SR over the period for a clear
comparison.

5.1.2 Validity of the assumptions in the previous form of SRs in L-
band microwave

The water extent ratio in each pixel and the L-band reflectance are examined
under wet and dry conditions for the study catchment. Figure 5a shows the max-
imum water intensity from CWOI of 5×5 pixels around the gauge of catchment
G8140067, and Figure 5b and 5c show the averaged reflectance of the low-flow
condition and high-flow condition. As illustrated in Figure 5c, it cannot be
supposed that a grid cell that includes a water extent has higher reflectance in
high-flow states. Also, from Figure 5b, it can be deduced that land reflectance
is not analogous through these pixels, suggesting heterogeneity among near grid
cells inferred from the reflectance under low-flow conditions. Therefore, it is not
possible to substitute land reflectance (𝑟𝑙) for the reflectance from the calibra-
tion pixel (𝑟𝑐) in this case.

In Figure 5d and 5e, the W ratio is displayed with the distribution of reflectance
in terms of pixel number, where the water extent ratio (W ratio) is calculated
as the water extent area out of the measurement pixel’s grid size with the
water extent extracted from the maximum water occurrence from CWOI. Here
no clear relationship is shown between the reflectance values and the W ratio.
Specifically, Pixels 7 and 13 have high W ratios, but their reflectance values are
not higher than those of other pixels. In addition, the pixels with a near-zero W
ratio do not have smaller deviations of reflectance compared with other pixels,
making Assumption 1 (Equation 4) inapplicable.
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Figure 5 (a) Maximum water occurrence from GSW data. (b)
The averaged value of reflectance when q is smaller than Q1
(𝐸(𝑟|𝑞 < 𝐹 −1

𝑞 (0.01)). (c) The averaged value of reflectance when q is
larger than Q99 (𝐸(𝑟|𝑞 > 𝐹 −1

𝑞 (0.99)). (d) The W ratio of each pixel (e)
The boxplots of reflectance of 25 pixels. The pixels are numbered as
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𝑖 = 5(𝑚 − 1) + 𝑛 for each pixel, where n is the column number and m
is the row number. The mean value of the reflectance of each pixel
is described as a blue line. 𝐹 −1

𝑞 (𝑝) denotes the inverse function of the
cumulative distribution function of streamflow (q) in terms of the
probability 𝑝. which is numbered horizontally from the upper-left
cell along each row

5.2 Multi-catchment analysis
5.2.1 Comparison of SR estimations

In this section, we compare the results of 467 HRS catchments to evaluate SRs
in terms of two factors affecting SRs’ quality: wavelength and SR formulation.
Since SR1 derived with Ka-band microwave (K-SR1) has been widely studied
and used as a surrogate for streamflow, as noted in section 2, it is compared
to L-band products: SR1, SR2, SR* derived with L-band microwave (L-SR1,
L-SR2, L-SR*, respectively).

Firstly, although there is no significant statistical difference between K-SR1 and
L-SR1 in their mean R values based on a one-sided t-test (Table S1 in Supporting
Information), L-SR1 exhibits advanced performance in some catchments in the
Forest category (Figure 6b). This generally results from the L-band-derived
signal’s superior penetration capability through the vegetation canopy.

The SRs are also assessed in terms of which formulation is effective in L-band
microwave. As seen in Figure 6a, L-SR1 has a mean of 0.099 (SD = 0.203), and
L-SR2 has a mean of 0.189 (SD = 0.143). According to the one-sided t-test for
comparing the mean values of R, L-SR2 presents higher mean values than L-SR1
(Table S1 in Supporting Information). In addition, SR1 has more negative R
values, suggesting that Assumptions 2 and 3 increased overall uncertainty. The
mean of R for SR* is 0.287 (SD = 0.169), showing a significant improvement
over SR1 and SR2 following one-sided t-tests at significance level �=0.05 (Table
S1 in Supporting Information).

Overall, it can be concluded that L-SR* shows considerably high performance
over other signals by eliminating the calibration signal in the SR calculation
(Figure 6a). Additionally, it is shown that L-SR* shows dramatically increased
R values, including the area where K-SR1 could not work properly, where forest
dominates (Figure 6b), and small catchments (Figure 6c) that have catchment
size less than 100km2.
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Figure 6 The distribution of R of K-SR1, L-SR1, L-SR2, and L-SR*.
SR1 and SR2 are calculated with the C95 method described in sec-
tion 2.1. (a) R distribution of all catchments (b) Categorized R dis-
tribution according to land type as Non-forest, Woodland forest, and
Forest (ABARES (2018)) (c) Categorized R distribution according to
catchment size (Zhang et al., 2016; Turner et al., 2012).

5.2.2 Improving SR with TWI filtering

Here L-SR* is further improved using the TWI filtering method (Kim and
Sharma 2019). The signals from the center measurement pixel (L-SR*-CTR;
the signals applied in previous figures (Figure 4 and 6)) are compared to the
signals with the TWI filtering method (L-SR*-TWI) in Table 3. The perfor-
mance improves when the TWI method is applied. The R for L-SR*-CTR has
a mean value of 0.286 (SD = 0.169), while L-SR*-TWI shows a better result
(t-test attached in Table S2 in Supporting Information) with a mean R-value
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of 0.374 (SD = 0.173). Also, our final product (L-SR*-TWI) is compared to
the K-SR1 enhanced with the TWI filtering method (Kim and Sharma 2019),
K-SR1-TWI, the latest and the most improved system using microwave signals
in previous studies in Table 3. It should also be highlighted that L-SR*-TWI
has an robust performance, with 44% of catchments having an R of daily flow
higher than 0.4 and 79% having an R of monthly flow higher than 0.4.

Table 3 The averaged value of the daily and monthly R and its SD, and the
ratio of catchments with R exceeding specific thresholds: 0.4, 0.5, 0.6, and 0.7.

Ka-SR1-CTR L-SR*-CTR Ka-SR1-TWI L-SR* -TWI
Daily Monthly Daily Monthly Daily Monthly Daily Monthly

Average 0.11 0.14 0.31 0.48 0.21 0.29 0.39 0.59
SD 0.16 0.26 0.16 0.22 0.15 0.26 0.17 0.20
0.4 ~ (%) 7 16 29 68 13 38 44 79
0.5 ~ (%) 3 9 14 50 5 24 26 70
0.6 ~ (%) 1 5 5 33 2 13 14 51
0.7 ~ (%) 1 3 1 16 0 5 5 34

6. Discussion

6.1 Does the new SR improve hydrologic prediction?
This study proposes a new SR methodology (denoted SR*) in providing a sur-
rogate of streamflow that considerably outperforms the existing SR alternatives.
Specifically, the new SR formulation uses a physically sounder assumption in
a longer wavelength signal and eliminates the need to select the calibration
pixel, enabling a ground-breaking SR performance (see Figures 4 and 6). Much
of the performance degradation in the existing SRs can be attributed to noise
occurring at low flows, which causes false signals, and the error that occurs
when substituting 𝑟𝑐(𝜀𝑐) with 𝑟𝑙(𝜀𝑙). Particularly, the brightness temperature
(reflectance) of the calibration pixel can be higher (lower) than that of the mea-
surement pixel, resulting in an overestimated SR1 and SR2. This may cause
a false peak SR value due to the calibration pixel’s lower reflectivity, not the
increased water extent due to the higher reflectivity of the measurement pixel
(Figure 4). However, eliminating the calibration allows the higher performance
of L-SR* that evades the uncertainty in a calibration signal. Another improve-
ment in the new SR is achieved by taking advantage of the L-band microwave.
As shown in Figure 6, the L-band-derived SRs outperform the Ka-band ones at
many HRS catchments classified as forests due to the superior penetration skill
of the L-band microwave through the vegetation canopy. Moreover, it is remark-
able that L-SR* shows better performance across all catchment sizes, including
small catchments, showing L-SR*’s competence in small catchments.

The improvements in the new SR can be highlighted when comparing our final
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result (Table 3) to those of relevant previous studies (Table 1). Also, it is
promising that L-SR* will further improve model performance when it is used
for hydrologic model calibration as a surrogate data of streamflow since the
high correlation of SR is essential to improve inference via a hydrological model
(Yoon et al., 2022).

6.2 Why does the new SR provide better predictions?
Our research also identified why the previous SR formulations are unsuitable
for predicting the streamflow in the L-band microwave. Firstly, Assumption 1
(Equation 3) is the common basis for the derivation of both SR1 and SR2. This
assumption’s premise is that the reflectance in low flow is similar to the calibra-
tion and measurement pixels (because the 𝑤 ratio has a low impact). However,
in Figure 5c, the reflectance varies in low-flow. Also, under this assumption,
the reflectance values at a high-flow period should be affected by the 𝑤 ratio,
which means that a pixel with a higher 𝑤 ratio should have a larger reflectance
deviation and higher reflectance values. However, this is not found in Figures
5b, 5d, and 5e. This is mainly because of multiple geophysical factors that af-
fect reflectance, making it difficult to set a calibration. Secondly, Assumption
3 (Equation 7) may not be valid in SR1. As seen in Figure 4, when the stream-
flow increases, 𝜀𝑙 decreases (𝑟𝑙 increases); thus, 1 − 𝜀𝑤/𝜀𝑙 also decreases. This
also causes discord between SR1 and the streamflow. On the other hand, the
assumption made in the proposed SR* is more applicable, having less errors in
inferring land reflectance values (Figure S2 in Supporting Information). This
makes SR more correlated to river discharge (Figure 4).

7. Conclusion

Our study aims to establish a new basis of satellite-driven SR measurement to
estimate streamflow in ungauged basins. A remarkably improved SR by utilizing
a longer microwave by eliminating a calibration signal. The new SR exhibits a
higher correlation to streamflow, which enables a more accurate streamflow pre-
diction. Below are the key findings of our study.

1. The new SR presents a higher correlation to streamflow than SR1 or SR2.
The percentile of the HRSs that have a daily flow with R> 0.4 is 6.25–
8.85% for SR1, 5.47–9.11% for SR2, and 28.39% for SR*, showing that
selecting a proper SR dramatically impacts the data quality.

2. Our new SR approach enables the successful estimation of streamflow
dynamics as the correlation of our new data (L-SR*-TWI) outweighs that
of the widely studied data (Ka-SR1-TWI). Specifically, 44% of the HRSs
have a daily flow of R> 0.4, and 79% have a monthly flow of R > 0.4 for
L-SR*-TWI.

3. The new SR is an improvement over the previous SRs, especially in densely
vegetated locations. The L-band microwave’s penetration skill advantages
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in the new approach become significant by reducing the uncertainty de-
spite the coarse spatial resolutions used.

4. We applied a new assumption that a land signal is almost identical to a
measurement pixel’s signal, and it is confirmed that the new assumption is
physically sounder than the previous one for a long-wavelength microwave
signal. Unlike the previous studies, our study focused on the temporal
difference between the water body and the measurement pixel’s signal,
which focused on the gap between the measurement and calibration pixels’
signals.

5. As our proposed SR enables runoff estimation in ungauged basins uni-
versally, it should be analyzed further worldwide. Also, the amount of
streamflow can be predicted with hydrologic models specified using the
proposed SR, which can yield significant benefits in simulating scenarios
of future change.

Overall, this work advances the previous studies that correlated remotely sensed
data to streamflow via using longer wavelength microwave signals with higher
penetration skills.
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