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Abstract

Robust and reliable projections of future streamflow are essential to create more resilient water resources, and such projections

must first be bias corrected. Standard bias correction techniques are applied over calendar-based time windows and leverage

statistical relations between observed and simulated data to adjust a given simulated datapoint. Motivated by a desire to connect

the statistical process of bias correction to the underlying dynamics in hydrologic models, we introduce a novel windowing

technique for projected streamflow wherein data are windowed based on hydrograph-relative time, rather than Julian day. We

refer to this method as ‘seasonally anchored’. Four existing bias correction methods, each using both the standard day-of-year

and the novel windowing technique, are applied to daily streamflow simulations driven by 10 global climate models across a

diverse subset of six watersheds in California to investigate how these methods alter the model climate change signals. Among

the methods, only PresRat preserves projected annual streamflow changes, and does so for both windowing techniques. The

seasonally anchored window PresRat reduces the ensemble bias by a factor of two compared to quantile mapping (Qmap),

cumulative distribution function transform (CDFt), and equidistant quantile matching (EDCDFm) methods. For wet season

flows, PresRat with seasonally anchored windowing best preserves the original model change over the entire distribution,

particularly at the highest quantiles, and the other three methods show improved performance using the novel windowing

method. Concerning temporal shifts in seasonality, PresRat and CDFt preserve the original model signals with both the novel

and standard windowing methods.
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ABSTRACT 12 

Robust and reliable projections of future streamflow are essential to create more 13 

resilient water resources, and such projections must first be bias corrected. Standard bias 14 

correction techniques are applied over calendar-based time windows and leverage statistical 15 

relations between observed and simulated data to adjust a given simulated datapoint. 16 

Motivated by a desire to connect the statistical process of bias correction to the underlying 17 

dynamics in hydrologic models, we introduce a novel windowing technique for projected 18 

streamflow wherein data are windowed based on hydrograph-relative time, rather than Julian 19 

day. We refer to this method as ‘seasonally anchored’. Four existing bias correction methods, 20 

each using both the standard day-of-year and the novel windowing technique, are applied to 21 

daily streamflow simulations driven by 10 global climate models across a diverse subset of 22 

six watersheds in California to investigate how these methods alter the model climate change 23 

signals. Among the methods, only PresRat preserves projected annual streamflow changes, 24 

and does so for both windowing techniques. The seasonally anchored window PresRat 25 

reduces the ensemble bias by a factor of two compared to quantile mapping (Qmap), 26 

cumulative distribution function transform (CDFt), and equidistant quantile matching 27 

(EDCDFm) methods. For wet season flows, PresRat with seasonally anchored windowing 28 

best preserves the original model change over the entire distribution, particularly at the 29 

highest quantiles, and the other three methods show improved performance using the novel 30 

windowing method. Concerning temporal shifts in seasonality, PresRat and CDFt preserve 31 

the original model signals with both the novel and standard windowing methods. 32 

 33 

SIGNIFICANCE STATEMENT 34 

Robust and reliable projections of future streamflow are essential if we are to create 35 

more resilient water resources, and such model data must first be bias corrected. We 36 

introduce a novel windowing technique to be used in streamflow bias correction methods 37 

which improves the preservation of the original model climate change signal. Crucially, these 38 

improvements are realized not only for the water year mean signal, which is important as it 39 

relates to the total volume of water flowing through the river over the course of the year, but 40 

is also true for both low and high streamflow events which have an outsized imprint on 41 

California’s hydroclimate, water resources, and ecosystems.  42 
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 43 

1. Introduction 44 

a. Climate Change Impacts 45 

Fueled by climate change, rising temperatures and declining snowpacks have revealed 46 

that the ways in which the American West has managed water for the past 75 years is 47 

insufficient to sustainably meet projected demands (Barnett & Pierce, 2009; Rajagopalan et 48 

al., 2009; Udall & Overpeck, 2017). It is equally apparent that river basins, watersheds, and 49 

reservoir drainage areas will not be impacted uniformly (Das et al., 2011; Kalra et al., 2008; 50 

Mote et al., 2005, 2018). The response of water supply-relevant variables to climate change, 51 

such as annual streamflow, total precipitation, or the extent of April 1st snowpack, will be 52 

functions of factors like shifting large-scale weather patterns, elevation, topographic aspects, 53 

vegetation, and the amplitude of season temperature cycles (Gonzalez et al., 2018; He et al., 54 

2019; Huning & AghaKouchak, 2018; Pierce & Cayan, 2013). As a result, the potential 55 

impacts of climate change on water management, riparian health, and associated mitigation or 56 

adaptation strategies need to be examined on local scales and on a case-by-case basis.  57 

 58 

b. Downscaling and Bias Correction 59 

Future climate projections from global climate models (GCMs) are a key tool for 60 

estimating likely impacts of climate change on future water availability, but due to limited 61 

spatial resolution (typically no finer than 100 km) are insufficient for studying changes at the 62 

local-scale of river basins and heterogeneous hydrologic processes (Fowler et al., 2007; 63 

Hewitson et al., 2014; Salathé, 2003). Further, biases in the GCMs, arising from model 64 

limitations like subgrid parameterizations of cloud microphysics and poorly resolved 65 

topography at the native GCM grid scale, can result in distorted projected climate impacts 66 

(see discussion in Maraun et al., 2017). Prior to being used in most applications, therefore, 67 

climate projections must be downscaled and bias corrected. Implemented through either a 68 

‘statistical’ or ‘dynamical’ approach, downscaling techniques interpolate smaller-spatial scale 69 

features by combining coarser GCM output with higher-resolution observations, topography, 70 

and dynamics to produce projections with resolutions on the order of 10s km. Either as part 71 

of the downscaling process or done subsequently, bias correction removes systematic errors 72 

in the GCM with the goal of retaining the raw GCM climate change signal. 73 
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 74 

While some climate change planning projects may be satisfied simply by downscaled 75 

and bias corrected GCM output (e.g., temperature, precipitation), many require the use of a 76 

land-surface model to produce quantities such as streamflow or soil moisture. Even if 77 

downscaled and bias corrected GCM output is used to drive the land surface model, 78 

streamflow projections often need ‘secondary’ bias corrections before they are used for 79 

planning due to biases introduced within the land-surface model. Though useful, it should be 80 

understood that bias correction is a statistical technique and thus is not able to discern 81 

between physical processes responsible for a given data-point or a broader climate change-82 

imposed trend (Maraun et al., 2017). 83 

 84 

1) WINDOWING / BIAS CORRECTION GOALS 85 

Although the goal of the windowing and bias correction process is to remove 86 

systematic biases while retaining the signal of change from the driving climate model, many 87 

bias correction methods alter the model-predicted change for unphysical reasons (Hagemann 88 

et al., 2011; Maraun, 2013; Maurer & Pierce, 2014; Pierce et al., 2013). As a result, the 89 

application of different bias correction methods to identical datasets will yield varied future 90 

projections (Maurer & Pierce, 2014; Teutschbein & Seibert, 2012). Simplified, many bias 91 

correction methods establish a correction function that maps a model variable’s empirical 92 

distribution over a historical period to that of an observed variable’s distribution over a 93 

historical period. Upon applying this correction function to the model historical data, the bias 94 

corrected data is mapped onto the observed variable’s distribution thus removing any 95 

systematic biases over the historical period. Though the definition of the transfer function 96 

varies among methods (Pierce et al. 2015), nearly all methods make assumptions of 97 

stationarity, i.e., that model biases occurring in the model’s historical period also apply to 98 

future model periods. Though commonly adopted, stationarity is not guaranteed, and it is 99 

therefore crucial to understand under what conditions it breaks down (e.g., with changes in 100 

large-scale circulation).   101 

Because model biases typically vary by season, correction functions are usually 102 

developed for specific calendar-based “seasons” (e.g., Thrasher et al. 2012). Specifically, 103 

distributions of the observed, historical- and future- model datasets are developed by 104 
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subsetting in time, either by individual months or by taking some rolling window of fixed 105 

width (see Pierce et al., 2015 for a deeper discussion). Although cumulative distribution 106 

functions (CDFs) can be generated either empirically (as in the methods examined here) or 107 

parametrically, nonparametric methods have yielded higher skill in reducing systemic errors 108 

for precipitation (Gudmundsson et al., 2012).  109 

In the context of climate change, for variables whose seasonal cycles are 110 

predominately affected by changing amplitudes rather than shifts in seasonality (such as 111 

temperature or even precipitation) it may be fair to assume that historical biases for January 112 

data can be removed directly from future January data. Consider, though, a variable whose 113 

climate change signal is characterized in large part by a temporal shift in its climatology, such 114 

as snowfed streamflow. Historically in the western U.S., mountainous rivers experience peak 115 

streamflow during the spring (later for higher elevation sites) as the snowpack begins to melt 116 

(Serreze et al., 1999). Towards the end of the 21st century, reduced in volume and melting 117 

earlier, projected snowpack declines result in peak streamflow shifting significantly earlier 118 

into the season (Noah Knowles & Cronkite‐Ratcliff, 2018; Udall & Overpeck, 2017). If we 119 

were to apply a calendar-fixed window to bias correct streamflow (e.g., comparing data from 120 

the month of April, historical to future), it is possible that historical bias corrections of peak 121 

or rising-limb streamflow data will be applied to future streamflow data occurring well into 122 

the receding limb, thus applying corrections to and from different streamflow regimes and 123 

controlled by different physical processes. 124 

 125 

c. Purpose of Paper 126 

Motivated by the desire to move towards a ‘process-aware’ method of statistical bias 127 

correction and the inability of fixed calendar- windowing to account for processes that shift 128 

seasonality under future climate scenarios, this paper introduces a new ‘seasonally anchored’ 129 

windowing approach that, when applied to existing statistical methods, improves the 130 

preservation of original model – used henceforth to refer to hydrologic model output driven 131 

by downscaled and bias corrected GCM data  – climate change signals in projections of 132 

streamflow. We evaluate the performance of several published bias correction methods, using 133 

the standard Julian day anchored framework and our seasonally anchored windowing 134 

techniques, with respect to their ability to reduce bias while preserving key metrics of climate 135 

change from the original model. Specifically, we investigate the preservation of: 1) original 136 
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model projected changes in water year mean streamflow, 2) original model projected change 137 

across all deciles of wet season streamflow, and 3) original model change in seasonality as 138 

measured by change in date of peak streamflow.  139 

The paper is structured in the following manner. In Sections 2 and 3, we describe the 140 

study domain and the rivers included in this work, and detail the observed and model data 141 

sources used to evaluate the various bias correction methods. In Section 4, we detail the 142 

seasonally anchored windowing technique and describe the four bias correction methods 143 

compared. Section 5 describes the performance of the various methods over both the 144 

historical and future climate periods. Lastly, Section 6 summarizes and discusses these 145 

results.  146 

 147 

2. Study Domain 148 

The hydroclimate of California is characterized by distinct wet and dry seasons and is 149 

punctuated by high interannual variability (Dettinger et al., 2011). In fact, the presence or 150 

absence of just a few storms each year can determine the difference between drought 151 

conditions and sufficient water supply (Dettinger & Cayan, 2014). Moreover, interannual 152 

variability and dependence on just a few storms per year is expected to increase in the future, 153 

with model projections showing fewer wet days but more precipitation on the wet days that 154 

occur (Pierce et al., 2013). Because 1) there is a strong latitudinal gradient in the frequency of 155 

landfalling winter storms (Payne & Magnusdottir, 2014), and 2) interactions between low-156 

level moisture flux and local orographic forcing is driving mechanism of California 157 

precipitation (Neiman et al., 2002), the complex terrain of coastal and inland ranges results in 158 

marked spatial heterogeneity in the hydroclimate. California’s rivers and streams are as 159 

diverse as the landscapes that feed them, with flashy, ephemeral streams in low deserts and 160 

snow-fed perennial rivers in the high mountains, the latter of which are responsible for filling 161 

some of the nation’s largest reservoirs. As projected climate change impacts for riparian 162 

environments differ dramatically across watersheds and stream types (Perry et al., 2015 and 163 

references therein), the diversity of California’s waterways and robustness of its 164 

observational network make it an excellent testbed for our bias correction methods. 165 

 166 
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3. Data 167 

Bias correction requires both historical (observed or reanalysis) and model data. Thus, 168 

the number of rivers eligible for examination are limited to those with both of the above 169 

datasets. Streams were selected based on the following criteria: 1) availability of routed 170 

streamflow projections from land-surface models driven by downscaled and bias corrected 171 

GCM data, 2) availability of at least 20 years of observational data, and 3) their inclusion 172 

enhance the representation of selected streams from along the continuum of rain- versus 173 

snow- dominated basins. Upon applying the above criteria, we choose 6 rivers for our case 174 

study (Figure 1, Table 1). The selected rivers span hydrologic characteristics of rain-, snow-, 175 

and mixed rain-and- snow dominated watersheds, allowing us to test the performance of our 176 

seasonally anchored windowing technique for bias correction on streams with and without 177 

large projected flow-seasonality changes. We emphasize here that our goal is not to produce 178 

an expansive dataset of bias-corrected streamflow, which requires a larger network of 179 

streams, though such an exercise will undoubtedly be useful. 180 

Streamflow projections used in this study were obtained from Knowles & Cronkite‐181 

Ratcliff, 2018  (see Section 2.2 of Knowles and Cronkite-Ratcliff, 2018 for details).  They 182 

use Localized Constructed Analogs (LOCA, Pierce et al., 2014) statistically downscaled 183 

GCM data to force the Variable Infiltration Capacity (VIC) hydrological model (Liang et al., 184 

1994). Rather than use each of the 31 members in the Coupled Model Intercomparison 185 

Project (CMIP5; Taylor et al., 2012) ensemble, we focus our analysis on a subset of 10 186 

GCMs chosen by the California DWR Climate Change Technical Advisory Group as 187 

providing passable simulations of the historical California hydroclimate (California 188 

Department of Water Resources Climate Change Technical Advisory Group, 2015, models 189 

listed in Table 2). Here, we restrict our analysis to the future climate relative concentration 190 

pathway (RCP) 8.5 since the climate change signal of shifting seasonality is more easily 191 

discerned in higher warming scenarios. However the results found here will apply to other 192 

emissions scenarios. Observational data for the six streams span water years (WYs) 1997-193 

2019 and were obtained from the United States Geological Survey (USGS) and California 194 

Department of Water Resources (DWR) Data Exchange Center.  195 

 196 
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 197 

Fig. 1. Map of the study domain with watershed boundaries (black contour), gage locations 198 

(purple circle), and three-letter abbreviations for the 6 streams alongside elevation (color 199 

shade). Characteristics of each watershed are listed in the accompanying table.  200 

 201 

Stream Gage 

ID  

Drainage 

Area (km2) 

Min, 

Max 

Mean 

Elevation 

(m) 

% 

Streamflow 
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Elevation 

(m) 

Before April 

1 (Observed) 

Napa River USGS, 

1145800 

550 7, 1161 247 87.7 

Elder Creek USGS, 

11379500 

250 255, 

1959 

978 73.2 

Shasta Dam CDEC, 

SHA 

18350 306, 

4113 

1435 62.0 

Oroville Dam CDEC, 

ORO 

9350 240, 

2635 

1545 58.0 

New Melones 

Reservoir 

CDEC, 

NML 

2550 160, 

3381 

1632 43.6 

Friant Dam 

(Millerton) 

CDEC, 

MIL 

4250 157, 

3954 

2161 30.6 

Table. 1. Name, gage identification and summary characteristics of each watershed. Streams 202 

are listed by their fraction of total water year streamflow occurring before April 1 (proxy 203 

used to indicate importance of snowmelt) in descending order with the snowiest watersheds 204 

listed in the final rows.  205 

 206 

 207 

Model Acronym Model Source/Institution 

ACCESS1.0 Commonwealth Scientific and Industrial Research 

Organisation (CSIRO) and Bureau of Meteorology, Australia 

CCSM4 National Center for Atmospheric Research (NCAR), United 

States NCAR, United States 
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CESM1-BGC National Center for Atmospheric Research (NCAR), United 

States NCAR, United States 

CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici 

CNRM-CM5 Centre National de Recherches Météorologiques, France 

CanESM2 Canadian Centre for Climate Modelling and Analysis, 

Canada 

GFDL-CM3 Geophysical Fluid Dynamics Laboratory (GFDL), Princeton, 

New Jersey, United States 

HadGEM2-CC Met Office Hadley Center, UK 

HadGEM2-ES Met Office Hadley Center, UK 

MIROC5 Atmosphere and Ocean Research Institute and NIES, Japan 

Table. 2. Selection of 10 GCMs from CMIP5 used in this work along with their originating 208 

institutions. 209 

 210 

4. Methodology 211 

While the following subsections describe the methodology in complete detail, we 212 

preface by briefly summarizing the algorithmic approach. First, for a given value that is to be 213 

bias corrected, we convert from Julian day to a hydrograph-relative time unit. This is done by 214 

locating its position (in time) relative to important climatological features (e.g., day of peak 215 

streamflow). Then, we map this point in ‘hydrograph-relative’ time onto all datasets 216 

(observed, historical GCM, future GCM) to identify hydrologically similar periods.  217 

 218 

a. Climatological Hydrograph 219 

The first step in the new seasonally-anchored approach is to calculate climatological 220 

mean hydrographs for the (1) observed, (2) simulated-historical and (3) simulated-future 221 

flows. In the present study, the length of climatological periods varies from the observed 222 
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(n=23 years, 1997-2019), simulated-historical (n=36 years, 1970-2005), and simulated-future 223 

flow series (n=31 years, e.g., 2069-2099). The observed period is limited by the period of 224 

available record of gaged streamflow. Climatological-average hydrographs are computed at 225 

several quantiles (discussed below), but to ease explanation of the process, we explain it for 226 

the 70th percentile (P70) first.  227 

For a given Julian day, the 70th percentile streamflow value is estimated from a 228 

distribution containing all data from the climatological period within a 31-day centered 229 

window (e.g. at Julian day 185, use data from Julian days 170-200) similar to Thrasher et al., 230 

2012. Once done for all days of the year, this array of length 365 is then smoothed by taking 231 

the mean of all points within the centered 31-day windows. The resulting smoothed array is 232 

the climatological hydrograph at the 70th percentile (Figure 2, top). 233 

 234 

b. Locating Seasonal Milestones 235 

Once the climatological hydrograph is calculated for a given percentile, milestones 236 

along the curve that correspond to key characteristic features of the stream are identified. 237 

Similar to previous work by Yarnell et al. (2015) we define our milestones as the Julian days 238 

when four climatological-hydrograph transitions occur (detailed below, and shown in Fig. 2): 239 

(1) minimum flow, (2) transition from a low-flow period to the rising limb, (3) maximum 240 

flow, and (4) transition from the receding limb to a low-flow period.  241 
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 242 

Fig. 2. Visual depiction of the algorithm used to identify climatological milestones for the 243 

seasonally anchored windowing method. Climatological data from the New Melones stream 244 

and ACCESS1.0 GCM is shown at the 70th percentile to illustrate the method. Daily mean 245 

climatological streamflow (top), and the first and second derivatives of streamflow with 246 

respect to time (middle and bottom respectively) are plotted on against water year Julian day. 247 

Numerical annotation is used to indicate the workflow by which the four seasonal milestones 248 

are assigned: (1) Peak streamflow (triangle), (2) Minimum streamflow (circle), (3) Start of 249 

the dry season/end of receding limb (x), and (4) Start of the wet season/beginning of the 250 

rising limb (diamond).  251 

 252 

1) MAXIMUM AND MINIMUM STREAMFLOW 253 

The milestone of peak flow occurs on the Julian day with the largest climatological 254 

streamflow and delineates the change from the rising to the falling limbs of the hydrograph 255 

(Fig. 2, triangle). Similarly, the milestone marking the minimum streamflow occurs on the 256 

Julian day with the lowest value of climatological streamflow (Fig. 2, circle). This is done for 257 

each of the three flow series. Although the vast majority of climatological hydrographs in this 258 
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study are described by having a single peak, Appendix A describes how the identification of 259 

the peak streamflow milestone is handled for ‘bimodal’ hydrographs.  260 

 261 

2) START OF DRY SEASON 262 

Qualitatively, transitions between distinct streamflow regimes occur when the shape 263 

of the hydrograph changes rapidly. We can quantify the shape of the hydrograph by its 1st and 264 

2nd derivatives with respect to time. The first derivative of streamflow (!"
!#

, Figure 2 middle) 265 

indicates where the stream is rising and falling. If we wish to pinpoint the end of the falling 266 

limb, we must only examine days when !"
!#
	< 0.  The second derivative with respect to time 267 

(!
!"
!#!

, Figure 2 bottom) is used to identify when the hydrograph has maximum points of 268 

curvature, or in the language used above, when the shape of the hydrograph indicates an 269 

inflection point. To identify the milestone associated with the end of the falling limb (start of 270 

the dry season), we find the Julian day coinciding with the local maximum of !
!"
!#!

  given that 271 

!"
!#
	< 0. This is shown schematically in bottom subplot of Figure 2 by the ‘x’. This is done 272 

for the observed and simulated-historical datasets. The process for the simulated-future 273 

dataset is describes in the following section.  274 

 275 

3) START OF WET SEASON 276 

For mixed rain- and snow dominated rivers, there is larger variability in the onset of 277 

the wet For mixed rain- and snow dominated rivers, there is larger variability in the onset of 278 

the wet season than the onset of the dry season (Patterson et al., 2020) as the former is 279 

governed by precipitation, which has a high degree of interannual variability (Dettinger et al., 280 

2011), whereas the latter is corresponds to the end of the snowmelt pulse (Stewart et al., 281 

2005), which is driven by lower variability fields such as synoptic temperature advection and 282 

solar insolation (Cayan et al., 2001; Mioduszewski et al., 2015; Pederson et al., 2011). 283 

Therefore, we don’t apply the same method as in the previous section. Rather, we assume the 284 

streamflow value associated with the ‘start of the dry season’ milestone delineates between 285 

baseflow and non-baseflow periods. Since the ‘start of the wet season’ marks the stream’s 286 

departure from baseflow, the corresponding milestone is set at the Julian day when the 287 
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climatological hydrograph increases above the streamflow value associated with the ‘start of 288 

the dry season’ milestone. This is shown schematically in top panel of Figure 2 by the 289 

diamond marker and is calculated for the observed and simulated-historical datasets.  290 

Motivated by the importance of the low-flow period to ecosystem health (Hill et al., 291 

1991; Petts, 1996; Poff et al., 1997; Richter et al., 1996), we deem this ‘threshold value’ 292 

(evaluated as flow above baseflow) to be characteristic of the stream and assume that the 293 

streamflow above baseflow value associated with the low-flow period does not change with 294 

time. That is, while baseflow levels may change from historical to future periods, if the 295 

historical low-flow period was delineated at 500 cfs above baseflow, then the future climate 296 

milestone for the ‘start (‘end’) of the west season’ will be located when the stream rises 297 

(falls) to 500 cfs above the future climate baseflow. This will yield a consistent comparison 298 

of how both the duration of the low-flow period and corresponding streamflow magnitudes 299 

change in future climate projections.  300 

 301 

c. Calculating the Mean Milestones Across Quantiles  302 

The milestone identification process is performed with hydrographs computed at 303 

every 5 percentage points between the 40th and 80th percentiles (P40-80). The final milestone 304 

locations for the climatological period are computed by taking the mean value of the 305 

milestone dates across all individual quantiles. The rationale for choosing to evaluate data 306 

between the 40th and 80th percentiles is two-fold. First, the final milestones should represent a 307 

broad range of climatological stream conditions, but extreme values—while only a small 308 

fraction of total data--can yield outlier milestones that are not representative of the entire 309 

distribution. Because of this, quantiles near the distribution tails are excluded from this final 310 

step of the milestone process – though they are accounted for during the windowing 311 

procedure described in Section 4.d. Second, the asymmetry, relative to the median, of the 312 

P40-80 range reflects the differing dynamics of high and low flow climatologies. High 313 

quantile flows in the early water year only occur when the synoptic environment is favorable 314 

for large precipitation events (typically October at the earliest). As a result, for higher 315 

quantile climatological hydrographs, the timing of the start of the wet season is more-or-less 316 

constrained to a narrow window of 1-3 months at the beginning of the water year. However, 317 

low quantile flows correspond to the absence of large storms and are not constrained in time. 318 

For drier years with few storms during the early WY, the start of the wet season can be 319 
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pushed far into the water year and, if included, skew the mean value taken over all quantiles 320 

in P40-80 (see Fig. A2 and A3).   321 

 322 

d. Seasonally Anchored Windowing 323 

Using the milestones as reference points, we are able to bias correct a day's simulated 324 

flow in a way that acknowledges its position in the hydrograph, which ensures that the 325 

hydrologic processes at work on that day are accommodated. For example, a flow that occurs 326 

on the descending limb of the hydrograph will be bias corrected using the same parameters 327 

no matter whether that flow is in, e.g., June in the historical period or in, e.g., April in a 328 

future projection (Fig. 3, bottom). This differs from traditional bias correction techniques that 329 

are anchored by day-of-year, which means (in cases where the peak flow shifts earlier in the 330 

year) the bias correction parameters from the rising limb of the hydrograph in the historical 331 

period might be applied to values from the descending limb of the hydrograph in the future 332 

period (Fig. 3, top). Because window widths are based on the length of streamflow regime 333 

segments (e.g., rising limb), and those segments vary across the observed, historical-, and 334 

future GCM climatologies, we do not require the different datasets to have the same window 335 

widths. Before the actual bias correction step is done, the empirical distributions of daily 336 

streamflow data are cubic hermite spline interpolated to obtain the same length, following 337 

Pierce et al., 2015. 338 

 339 
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 340 

Fig. 3. Schematic highlighting the effect of windowing technique on which segments of the 341 

climatological hydrograph are used to bias correct a given model datapoint on the 180th day 342 

of the water year (yellow star). Each panel shows the climatological hydrographs in thin lines 343 

for the observed (black), historical original model (red), and end-of-century original model 344 

(blue) data. The segments of each hydrograph used in bias correction are plotted as bolded 345 

lines. Standard day-of-year windowing (top) uses data from each curve that falls within the 346 

centered 30-day period (grey shaded region). Seasonally anchored windowing (bottom) uses 347 

a centered 30-day window over the climatological period being corrected and then finds 348 

equivalent segments of the observed and historical hydrographs to use for bias correction.  349 

 350 

e. Bias Correction Methods to be Compared 351 

To illustrate the effect of the windowing technique on bias corrected streamflow data, 352 

we examine the performance of 4 different bias correction methods using first the standard 353 

DOY windowing, and then seasonally anchored windowing. Similar to (Pierce et al., 2015), 354 

we apply the following techniques: PresRat (Pierce et al., 2015), CDF-transform (CDFt, 355 
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Michelangeli et al., 2009), equidistant CDF matching (EDCDFm, Li et al., 2010), and 356 

quantile mapping (Qmap, Panofsky & Brier, 1968; Wood et al., 2002). For the sake of 357 

brevity, we do not discuss the details of each bias correction method and instead refer the 358 

reader to Section 3 of Pierce et al., 2015.  359 

For the CDFt, EDCDFm, and Qmap methods, we adopt the standard practice of bias 360 

correcting data using a 30-day window centered around a given datapoint. The 30-day 361 

window enables the methods to represent the seasonal cycle, but such a narrow window is not 362 

suitable to correct extreme events. Because extreme values of precipitation can occur at any 363 

time during the wet season, the PresRat method from Pierce et al., 2015 does not use a fixed 364 

30-day window like the other 3 methods and instead iteratively bias corrects data using 365 

windows of increasing width, providing better correction of extreme values. Rather than 366 

applying iterative bias correction in the version of PresRat used in this study, we develop an 367 

alternative method to balance the correction of extreme values (requiring a wide window) and 368 

the seasonal cycle (requiring a narrow window). Here, we vary the window width based on 369 

the ‘extremity’ of a value. Beginning with a 30-day window, we find the quantile location of 370 

the data point being corrected in its climatological distribution. If it falls between the 20th and 371 

80th percentile, a 30-day window is used. Otherwise the window is expanded by 15-days on 372 

either side and the quantile location of the data is found again. If the data falls between the 373 

10th and 90th percentile, the 60-day window is applied. If not, a 120-day window is used to 374 

bias correct the most extreme values. This reflects the fact that extreme events are by nature 375 

rare.  376 

Because some methods of bias correction operate on fractional changes between a 377 

future and historical model period, they can be sensitive to small errors occurring at low 378 

values (Pierce et al., 2015). For this reason, prior to bias correction, we correct for any biases 379 

in the model baseflow by adding the difference between the observed and simulated baseflow 380 

values to all model data. This greatly improves the efficacy of the bias correction methods at 381 

lower flows while having very little impact at higher flows.  382 

 383 

5. Results and Discussion 384 

The efficacy of a bias correction method can be evaluated by its ability to remove 385 

systematic model biases while preserving desired climate change signals from the original 386 
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model. In this case we choose to consider: 1) mean changes in streamflow magnitude over the 387 

entire water year, 2) changes in magnitude evaluated at high, medium, and low quantiles of 388 

the distribution, and 3) temporal shifts of seasonality (which may be small in some streams). 389 

The combination of bias correction method (QM, CDFt, EDCDFm, PresRat) and windowing 390 

technique (standard day-of-year or seasonally anchored) is evaluated by its ability to preserve 391 

the 3 quantities listed above. As the magnitude of streamflow varies substantially between 392 

California watersheds, working with normalized data allows for a more straightforward 393 

comparison of climate change signals. For this reason, we normalize any change between a 394 

simulation’s future and historical values by a historical baseline (Equation 1) to give a 395 

percent change relative to the pre-climate change period.  396 

∆	= 	𝟏𝟎𝟎	 ∗ 	𝑭𝒖𝒕𝒖𝒓𝒆	*	𝑯𝒊𝒔𝒕𝒐𝒓𝒊𝒄𝒂𝒍	
𝑯𝒊𝒔𝒕𝒐𝒓𝒊𝒄𝒂𝒍

    (1) 397 

Using a standardized metric (D) helps us compare both the magnitude of change 398 

across a diverse subset of streams and the performance of bias correction methods in 399 

preserving this metric. In the following sections, we evaluate change between the future (also 400 

referred to as ‘end-of-century’) and historical periods defined as water years 2069-2099 and 401 

1970-2005 respectively. Subsequent sections evaluate this change over both the entire water 402 

year and over the ‘wet season’, which we define as the timeframe spanning 1-month prior to 403 

the start of the wet milestone to 1-month after the end of the wet season milestone. This 404 

covers the period roughly from November to June (although it is subject to both watershed 405 

elevation and climatological era). 406 

 407 

a. Validation over the Historical Period 408 

Applied over the historical period, the PresRat, CDFt, and EDCDFm methods 409 

simplify to the quantile mapping method, with the exception of data off the endpoints of the 410 

historical distribution (see Section 3 of Pierce et al., 2015 for discussion). Therefore, when 411 

using a relatively narrow 30-day window, all methods are effective in correcting the historical 412 

GCM data so that it recreates the observed data’s seasonal cycle. This is true for both the 413 

standard day-of-year windowing technique and the seasonally anchored windowing technique 414 

(not shown). Concerning the historical period, the only meaningful difference between the 415 

four bias correction methods results from the variable window width used in our PresRat 416 
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method (Figure 4). Because the window width expands when correcting high-quantile data, 417 

large streamflow events occurring early in the wet season can be mapped onto observed 418 

streamflow values occurring up to 60 days later (as opposed to 15 days later in the standard 419 

method). This can result in slightly elevated mean flows during the transition from dry-to-wet 420 

season, driven by streamflow at high quantiles. However, as extreme precipitation and 421 

streamflow events can occur at any point between October-April, a variable window based on 422 

the quantile of the datum being corrected is more easily justifiable than the common fixed 423 

narrow (31-day) window when correcting hydrometeorological variables in the western US.  424 

425 

 426 

Fig. 4. Daily mean streamflow for the observed (black), and bias corrected data over the 427 

historical period for PresRat with seasonally anchored windowing (red) and quantile mapping 428 

with day-of-year windowing (blue) for each of the 6 rivers. For the GCM data, the ensemble 429 

mean across the 10-GCMs is shown in a bolded line with individual members depicted by 430 
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thin lines. Subplots are arranged such that from top-to-bottom, streams transition from rain- 431 

to snow dominated watersheds.  432 

 433 

b. Water Year Mean Streamflow 434 

Before evaluating the ability of each bias correction method to preserve the projected 435 

future change in mean water year streamflow, we first examine the original model signal 436 

(Figure 5). Across the simulations of 6 streams that were driven by projections from 10 437 

GCMs, the changes in water year mean streamflow differ considerably. Evaluating change in 438 

units of percent of historical mean, which removes the influence of differing streamflow 439 

magnitudes, we see that CESM1-BGC, CNRM-CM5, and CanESM2 have the largest 440 

projected increases in water year mean streamflow with values upwards of 40% for some 441 

streams. Although the largest percent increases occur for the streams with the lowest flows, 442 

these models suggest higher-flow streams will still see increases beyond 30%. Among the 443 

projections based on the 10 GCMs, there is little agreement on the sign or magnitude of the 444 

projected change and the projections with very large increases heavily influence the multi-445 

model ensemble mean change.  446 

 447 

Fig. 5. Original model projected change in water year mean streamflow across the 6 streams 448 

(rows) and 10 GCMs (columns) with the 10-member ensemble mean and standard deviation 449 

(farthest right columns). Using units of ‘percent change from the historical mean’, increasing 450 

streamflow is indicated by green color-shading, and decreasing streamflow by brown. Values 451 

under 5% change appear as white. 452 
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 453 

We use the term ‘error’ here to refer to the difference between original model 454 

projected change and post-bias correction projected change. This quantity is an error in the 455 

sense that we expect our bias correction approach to preserve certain key aspects of the 456 

model-predicted climate change signal (as listed explicitly above), and is defined in Equation 457 

2 below,  458 

𝐸𝑟𝑟𝑜𝑟	 = 	∆2345	67889:#9! − ∆;4<	=6>    (2) 459 

wherein D is defined by Equation 1. Using the above definition, we now compare the ability 460 

of the 4 bias correction methods and 2 windowing techniques in preserving the signal of 461 

water year mean change averaged across the 10 GCMs and 6 streams. 462 

The CDFt, EDCDFm, and Qmap bias correction techniques do not intrinsically 463 

preserve the water year mean flow change signal from the un-bias corrected projections 464 

(Table 3). The PresRat method is the one method that preserves the water year mean flow 465 

change, for both windowing methods, with mean and root-mean-square (RMS) errors <1%, 466 

and does so by design (see Pierce et al., 2015). The other three methods alter the original 467 

model signal to varying degrees. In all cases, applying a seasonally anchored window 468 

improves the preservation of the water year mean flow change signal by nearly a factor of 2 469 

compared to the standard day-of-year windowing technique. In addition to improving the 470 

mean flow change, the new windowing technique also results in a narrower spread of errors 471 

among the models in the PresRat, CDFt, and Qmap methods.  472 

 473 

BC Method  Ens. Mean Error [%] RMS Error [%] 

PresRat 0.20 (0.37) 0.86 (0.91) 

CDFt 1.72 (6.18) 5.57 (8.64) 

EDCDFm 4.49 (7.69) 13.04 (12.96) 

Qmap 3.33 (6.14) 7.64 (10.59) 

Table 3. Summary statistics for each bias correction method (rows) and windowing technique 474 

(Standard day-of-year show in parentheses, seasonally anchored shown without) on their 475 
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success in preserving the projected mean change in water year mean streamflow across the 6 476 

streams and 10 GCMs.  477 

 478 

c. Wet Season Streamflow by Decile 479 

The hydroclimate of the western US is dominated by the occurrence (and absence of) 480 

extreme precipitation and streamflow events. Therefore, statistical bias correction techniques 481 

need to preserve the original-model projected changes at high-flow quantiles, rather than 482 

altering the projected change for no physical reason. When viewed at the granularity of a 483 

single percentile of flow, the signal of projected changes can be noisy. Therefore, we evaluate 484 

here changes at decile levels over the wet season. Again, before evaluating the ability of each 485 

bias correction method to preserve this quantity, we first examine the un-bias corrected model 486 

signals. Change is calculated with Equation 1 using the mean of all streamflow values within 487 

a given decile range for each of the historical and future climate periods. Figure 6 gives a 488 

visual depiction of the original model climate change signal at the Shasta gage and the 489 

remaining 5 streams can be seen in Appendix B. Although some minor differences exist 490 

among the 6 streams and 10 GCM-based histories, there is a near unanimous agreement that 491 

the top 10-20% of streamflow values will increase while the middle ~30% of the distribution 492 

will decrease. This follows the projected climate change signal in precipitation wherein high-493 

tail events occur with greater frequency (Gershunov et al., 2019). Notably, in the historically 494 

most snow dominated watershed, Millerton, larger differences exist between the 10-member 495 

ensemble, with 4 models projecting large increases at the high end and 2 projecting 496 

decreases. Again, this work does not focus on the impacts or certainty of projected 497 

streamflow changes, but rather on the extent to which they are altered by bias correction 498 

techniques. 499 

 500 
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 501 

Fig 6. Original model projected change in Shasta streamflow by decile (rows) and GCM 502 

(columns) with the 10-member ensemble mean and standard deviation (farthest right 503 

columns). Using units of ‘percent change from the historical mean’, increasing streamflow is 504 

indicated by green color-shading, and decreasing streamflow by brown. Values under 5% 505 

change appear as white. 506 

 507 

Using Equation 2, we evaluate how well each correction method and windowing 508 

technique preserves the original projected change at each decile over the wet season. Figure 7 509 

provides a visual representation of these errors for the PresRat method using seasonally 510 

anchored windowing. Equivalent plots for the remaining combination of bias correction and 511 

windowing methods can be found in Appendix C. Each subplot contains a box-and-whisker 512 

plot for a given stream wherein errors for individual GCM projections are shown by grey 513 

circles and the mean error across the 10-member ensemble is depicted by an orange line. In 514 

Figure 7, with few exceptions, errors in the depiction of future changes in wet season 515 

streamflow, by quantile, falls within ± 10% of the original model signal for all the 516 

combinations of GCMs and streams. As mentioned earlier, a large fraction of the total 517 

streamflow is contained in the top 10-20% of the distribution. To highlight where, in terms of 518 

decile, large errors in the bias correction method begets large errors in streamflow, the 519 

fraction of total wet season streamflow represented by each decile is plotted on the right y-520 
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axis. Though not explicitly shown here, the PresRat method with seasonally anchored 521 

windowing has notably smaller biases than other techniques at the top decile of flows. 522 

 523 

Fig. 7. Error by decile for change in wet season streamflow for PresRat with seasonally 524 

anchored windowing. Errors (x-axis) for individual GCMs are depicted by grey circles, the 525 

mean error across the 10-member ensemble is depicted by an orange line. The box edges and 526 

whiskers represent the middle 5 and 8 GCMs respectively. The error for a single GCM 527 

averaged over all deciles is depicted as a small grey triangle on the x-axis and the value for 528 

the 10-member ensemble mean is denoted by a large triangle.  For reference, the grey shading 529 

and dashed black line correspond to ± 10% error and 0% error respectively. For each stream, 530 

the right y-axis depicts the historical percentage of total wet season streamflow contained in 531 

each decile averaged across the 10-member ensemble. Subplots are organized so that as you 532 

move down the rows, streams transition from rain- to snow dominated over the historical 533 

period.  534 
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 535 

To quantitatively assess how well the original signal is preserved, we calculate the 536 

root-mean-square error (RMSE) at each decile for each of the 4 correction methods and 2 537 

windowing techniques, using the following equation, 538 

𝑅𝑀𝑆𝐸	 = 	0
∑ (∆"#$%	'())*+,*-#*∆.$/	0'1#)

!2
#34

C
    (3) 539 

where i represents a given driving-GCM. Then, motivated by the importance of large 540 

streamflow events to the hydroclimate of the western US, we weight the RMSE at each decile 541 

by the percentage of total historical wet season streamflow in the decile, thus emphasizing 542 

errors at higher deciles. We refer to this quantity as the flow-weighted RMSE. To equally 543 

weight the performance of the bias correction technique on each river, and thus equally 544 

sampling the range of snow vs. rain dominated regimes, the flow weighted RMSE at each 545 

decile is averaged across the 6 streams.  546 

Figure 8 and Table 4 summarize the above process and depicts the flow weighted 547 

RMSE averaged across the 6 streams for all combinations of correction method and 548 

windowing technique. At lower deciles, the flow weighted RMSE values are similar across 549 

the 4 correction methods. The lines begin to diverge near the 50th percentile with the 550 

seasonally anchored PresRat and CDFt methods achieving the best performance between the 551 

50th-90th percentiles. For the top 10% of streamflow, where the most impactful of streamflow 552 

events exist, PresRat with seasonally anchored windowing best preserves the original model 553 

signal of change. If we take the average across all deciles for each line individually, we see 554 

that the PresRat method using seasonally anchored windowing not only yields the lowest 555 

flow weighted RMSE, but that for each correction method, the seasonally anchored 556 

windowing method outperforms the standard day-of-year method (triangle markers).  557 
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 558 

Fig. 8. Flow weighted root-mean-square error (RMSE) in the representation of model-559 

predicted future change in mean flow at each decile averaged across the 6 streams. Solid 560 

(dotted) lines represent correction methods using seasonally anchored (standard day-of-year) 561 

windowing techniques. For solid (dotted) lines, the value of the flow weighted RMSE 562 

averaged across all deciles is indicated by a hatched (unfilled) triangle on the lower x-axis.  563 

 564 

BC Method  Ensemble Mean RMSE Across 

Deciles [Flow Weighted %] 

PresRat 0.51 (0.81) 

CDFt 0.75 (1.37) 

EDCDFm 1.81 (3.47) 

Qmap 1.21 (1.93) 

Table 4. Flow weighted root-mean-square error (RMSE) averaged over all deciles and across 565 

all streams. Methods using standard day-of-year windowing are shown in parentheses, and 566 

those using seasonally anchored are shown without parentheses.  567 
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 568 

d. Temporal Shift in Peak Streamflow 569 

The previous sections focus on the ability of bias correction techniques to preserve 570 

original model projected changes in the magnitude of annual and wet season flow. Because 571 

the fingerprint of climate change for mountain rivers is characterized by changes in both 572 

magnitude and timing of peak streamflow, we will now evaluate the ability of each correction 573 

method and windowing technique to preserve projected shifts in seasonality. Using the 574 

climatological milestone associated with the peak streamflow (defined in Section 4), we 575 

compare the original model change (measured in days) in peak streamflow timing with the 576 

bias corrected changes.  577 

Evaluating the difference in Julian day of peak streamflow between the end-of-578 

century and historical periods, Figure 9 shows the original model change in days on the x-579 

axis and the change from the PresRat with seasonally anchored windowing method on the y-580 

axis for each of the 10 GCM-projected climates and 6 rivers. If the bias correction methods 581 

preserve the original model signal exactly, all markers would fall on the dotted black 1-to-1 582 

line. For the overwhelming majority of stream and GCM combinations, we see that the 583 

temporal shift is well-preserved. Though the amount of change varies with GCM, it is most 584 

strongly related to the how snow-dominated a watershed is over the historical period. The 585 

largest signal of change is seen at New Melones (red markers), which loses its historical 586 

snowmelt peak entirely. The snowiest basin, Millerton (green markers), doesn’t exhibit as 587 

large a signal because unlike New Melones, it retains a snowmelt peak in some projections. 588 

Table 5 summarizes the preservation of the projected temporal shifts for the various 589 

bias correction methods and windowing techniques. For the PresRat and CDFt methods, 590 

which best preserve changes in streamflow magnitude, the seasonally anchored windowing 591 

method yields similar error metrics as the standard day-of-year technique. By virtue of 592 

locking windows to Julian days, the day-of-year method does a good job at preserving the 593 

raw model signal of temporal change. Notably, the seasonally anchored method achieves the 594 

same efficacy (for PresRat and CDFt) as the day-of-year method without requiring identical 595 

windows for the historical and future datasets.   596 

 597 
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BC Method  R2 Ens. Mean Error 

[days] 

RMSE [days] 

PresRat 0.9 (0.9) 0.4 (0.1) 6.8 (6.9) 

CDFt 0.9 (0.9) 0.1 (0.1) 7.1 (7.0) 

EDCDFm 0.6 (0.9) 3.1 (-0.5) 15.3 (6.7) 

Qmap 0.8 (0.9) 0.1 (0.4) 11.1 (7.6) 

Table 5. Summary of the ability of each bias correction method and windowing technique to 598 

preserve the original model signal in the temporal shift in climatological peak streamflow. 599 

Methods using standard day-of-year windowing are shown in parentheses, and those using 600 

seasonally anchored are shown without parentheses.  601 

 602 

 603 

Fig. 9. Change in timing of peak climatological streamflow for the original model change (x-604 

axis) and PresRat with seasonally anchored windowing (y-axis) between the end-of-century 605 
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and historical periods. Markers represent the change for each GCM and are color-coded by 606 

stream. A dotted black 1-to-1 line is shown for reference. 607 

 608 

6. Summary and Conclusion 609 

Robust and reliable projections of changes in future streamflow are essential if we are 610 

to improve (or maintain) resilient water resources and mitigate damage to riparian ecosystems 611 

in the face of climate change. But raw simulations of streamflow are used in applications or 612 

impact models only at one’s peril, unless first bias corrected. Traditional methods for bias 613 

correction operate by comparing future and historical model data from shared ranges of 614 

Julian days. However, the physical and environmental process that govern streamflow (or any 615 

hydrometeorological variable) are not necessarily fixed to calendar periods, especially in the 616 

context of climate change, which will advance melting season earlier in the year and can alter 617 

the seasonality of precipitation. In order to better connect the statistical process of bias 618 

correction to the underlying processes in hydrologic models, we introduce a novel windowing 619 

technique for bias correction of projected streamflows. Data are windowed based on 620 

hydrograph-relative time, not calendar day. By locating the temporal position of a given data 621 

point undergoing correction in relation to characteristic features of its average hydrograph 622 

(e.g., start of rising limb, peak flow, end of falling limb, minimum flow) we window data 623 

based on hydrographically-equivalent days across the observed, simulated-historical, and 624 

simulated-future periods.   625 

We evaluate the efficacy of several bias correction methods, using both the standard 626 

day-of-year and our new seasonally anchored windowing technique, applied to streamflow 627 

projections for six California streams that range from rain- to snow dominated watersheds 628 

and that are responses to climate projections from a suite of 10 CMIP5 global climate models 629 

(GCMs) selected by the California Department of Water Resources as having good 630 

representation of the historical California hydroclimate. Based on the importance of 631 

individual high-magnitude streamflow events, total water year streamflow, and timing of 632 

peak flow on the natural and built environment, we argue that successful bias correction 633 

should accomplish three tasks: 1) preserve the water year mean climate change signal of the 634 

un-bias corrected flow projections, 2) preserve un-bias corrected changes at all quantiles, and 635 

3) preserve any temporal signal of shifting seasonality in the un-bias corrected flow 636 

projections, all while correcting the simulated historical statistics to that of the observed 637 
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dataset. Evaluated as the percent difference relative to the historical period, we investigate the 638 

degree to which the four bias methods and two windowing techniques preserve the un-bias 639 

corrected signal of climate change across the study domain.  640 

PresRat is the only bias correction method examined in this work that preserves the 641 

original model, shorthand for hydrologic model output driven by downscaled and bias 642 

corrected GCM data, signal of water year mean change and does so for both seasonally 643 

anchored and standard day-of-year windowing techniques. Although the other 3 methods, 644 

CDF transform (CDFt; Michelangeli et al., 2009), Equidistant CDF matching (EDCDFm; Li 645 

et al., 2010), and Quantile Mapping (Qmap; Panofsky & Brier, 1968; Wood et al., 2002) do 646 

not preserve the original model water year mean changes, even for these methods, seasonally 647 

anchored windowing reduces the ensemble mean error by roughly a factor of two while 648 

reducing the spread when compared to standard day-of-year windowing.  649 

For an extreme and highly variable hydroclimate, like California, where a large 650 

fraction of total water (both streamflow and precipitation) is contained in the top decile of the 651 

distribution, it is vital that bias correction does not skew the original model projection signals 652 

of change at the highest quantiles. Using the root-mean-square error evaluated at each decile 653 

of wet season streamflow to gauge success, we find that 1) PresRat with seasonally anchored 654 

windowing best preserves the raw signal at the top decile of flows, 2) PresRat with seasonally 655 

anchored windowing best preserves the raw signal averaged over all deciles, and 3) using 656 

seasonally anchored windowing improved the performance of each of the four bias correction 657 

methods. These findings are true not only for the 10-member ensemble averaged over the six 658 

streams, but true for all streams individually. With respect to streamflow magnitude, 659 

regardless of their hydrological characteristics (e.g., rain- vs. snow dominated), the seasonally 660 

anchored windowing technique was more effective in preserving the original model signals of 661 

climate change.  662 

Finally, because any shift in seasonality of snow-fed rivers will have strong impacts 663 

on both the natural and built environments, we examine the extent to which bias correction 664 

methods alter the original model signals of shifting seasons. We measure the change in 665 

seasonality by finding the difference between the Julian dates coinciding with peak 666 

streamflow in the simulated-future and simulated-historical periods. While the seasonally 667 

anchored windowing technique improved the preservation of original model signals in 668 

magnitude, we find that both windowing methods preserve the shift in seasonality equally 669 



31 

File generated with AMS Word template 2.0 

well (for PresRat and CDFt) with mean bias values < 1 day and root-mean-square error of ~7 670 

days.  671 

In summary, seasonally anchored windowing, as opposed to the standard day-of-year 672 

technique, yields better bias corrected projections of future streamflow across a subset of six 673 

streams ranging from rain- to snow- dominated ecosystems in California. Without sacrificing 674 

any capacity to preserve projected changes in timing of peak streamflow, the seasonally 675 

anchored method improves the preservation of magnitude changes in the un-bias corrected 676 

flow projections. This is true not only for the water year mean signal, which is important as it 677 

relates to the total volume of water flowing through the river over the course of the year, but 678 

is also true for both low and high streamflow events which have an outsized imprint on 679 

California’s hydroclimate, water resources, and ecosystems.  680 

While this work focused largely on wet season streamflow, Figure 10 highlights an 681 

important vulnerability of the standard day-of-year windowing concerning late season flows. 682 

Since biases from the early receding limb of the historical period hydrograph are applied to 683 

near-baseflow streamflow during the end-of-century period (because both occur over the 684 

same calendar-based period), the resulting bias corrected projections can represent something 685 

very unphysical: streamflow decreases past baseflow during the receding limb before 686 

rebounding and then receding once more until it reaches baseflow (dashed lines). In contrast, 687 

the future period hydrographs for seasonally anchored methods (solid lines) do not exhibit 688 

this unphysical behavior because they apply biases from equivalent stretches of the 689 

climatologies. Because this seasonal shift is driven by warming temperatures resulting in 690 

diminished snowpack whose peak volume is pushed earlier into the water year, this non-691 

physical feature is most prevalent for historically snow-dominated watersheds. 692 
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 693 

Fig. 10. Ensemble mean climatological hydrographs for raw and bias corrected data at each 694 

of the 6 streams. The upper inlay depicts observed (black) and original model hydrographs of 695 

the historical (red) and end-of-century (blue) periods for each river. The main subplots show 696 

the bias corrected historical hydrograph (black) alongside end-of-century bias corrected 697 

hydrographs for PresRat (purple) and CDFt (green) using seasonally anchored (solid) and 698 

day-of-year (dashed) windowing methods.  699 

 700 

This work 1) demonstrates the inability of bias correction with day-of-year 701 

windowing to provide reliable projections of variables whose climate change signal is 702 

characterized by changes in both magnitude and seasonality, and 2) introduces a novel 703 

windowing method which moves towards ‘process informed’ bias correction wherein 704 

environmental and physical processes, rather than calendar dates, are shared by windowed 705 

data. Given the importance of streamflow projections in creating more resilient water 706 

resources, it may be pertinent to evaluate the difference in future streamflow projections 707 
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across a wider range of California rivers using both seasonally anchored and day-of-year 708 

windowing methods.  Although we conceptualized and applied the method for the purpose of 709 

bias correcting streamflow in California, the fundamental technique of windowing based on 710 

the position (in time) of a given data point in reference to some climatological milestones 711 

could be applied to variables other than streamflow (e.g., snow water equivalent, which is 712 

also expected to have a significant seasonal shift in the future). For variables that will have 713 

seasonal shifts in the future, it is important to move towards ‘process informed’ bias 714 

correction and away from calendar-based methods that are completely detached from the 715 

physical processes governing the systems. Although the method introduced here does not 716 

directly tether the statistical process of bias correction to the underlying physics of GCMs or 717 

land surface models, it is a step in the appropriate direction.   718 
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 730 

APPENDIX 731 

Appendix A: Identification of Peak Streamflow Milestone for Bimodal Climatological 732 

Hydrographs 733 

Section 4.1.b describes the process of selecting peak streamflow milestones. While 734 

the vast majority of climatological hydrographs assessed in this study are not bimodal, for 735 

some future projections of historically snow-dominated rivers, the climatological hydrograph 736 

contains two local maxima (Figure A1). Recall that the purpose of the seasonally anchored 737 
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windowing technique is to conduct bias correction across data with similar background 738 

physical and environmental processes. The peak milestone in the historical period 739 

corresponds to streamflow generated from snowmelt. The future period bimodal hydrograph 740 

is characterized by what is likely an earlier rain-dominated peak and a later-season snowmelt-741 

dominated peak. Although the rain-dominated peak may be higher in magnitude, we select 742 

the later, snowmelt peak for the location of the milestone to better ensure that the data used in 743 

the bias correction shares similar physical and environmental processes. 744 

 745 

Fig. A1. Visual depiction of the algorithm used to identify climatological milestones for the 746 

seasonally anchored windowing method for the special case of bimodal hydrographs. End-of-747 

century climatological data from the Millerton/Friant Dam stream and CanESM2 GCM is 748 

shown at the 70th percentile to illustrate the method. Daily mean climatological streamflow 749 

(top), and the first and second derivatives of streamflow with respect to time (middle and 750 

bottom respectively) are plotted on against water year Julian day. Numerical annotation is 751 

used to indicate the workflow by which the four seasonal milestones are assigned: (1) Peak 752 

streamflow (triangle), (2) Minimum streamflow (circle), (3) Start of the dry season/end of 753 

receding limb (x), and (4) Start of the wet season/beginning of the rising limb (diamond). 754 

Note that the peak milestone (triangle), is not associated with the true maximum value of 755 

streamflow, but rather with the local maximum during the snowmelt period.  756 
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 757 

 758 

Fig. A2. Climatological hydrographs (lines) for flows ranging from the 5th to 95th percentile 759 

by intervals of 5 percentage points. Here, we see how the location of the ‘start of wet season’ 760 

milestone (circle) varies as a function of quantile.  761 

 762 

 763 
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Fig. A3. Day of water year associated with the ‘start of wet season’ milestone (from Fig. A2) 764 

for flows below 40th percentile (red), 40th-80th percentile (black), and above 80th percentile 765 

(blue). The mean value over each respective range is indicated by a circle.  766 

 767 

 768 

Appendix B: Original model Change in Wet Season Streamflow by Decile 769 

In accompaniment of Figure 6 in section 5.c, Appendix B provides the original model 770 

signal in wet season streamflow change by decile for the remaining 5 rivers.   771 

 772 

Fig. B1. Original model projected change in Napa River streamflow by decile (rows) and 773 

GCM (columns) with the 10-member ensemble mean and standard deviation (farthest right 774 

columns). Using units of ‘percent change from the historical mean’, increasing streamflow is 775 

indicated by green color-shading, and decreasing streamflow by brown. Values under 5% 776 

change appear as white. 777 

 778 
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 779 

Fig. B2. Original model projected change in Elder Creek streamflow by decile (rows) and 780 

GCM (columns) with the 10-member ensemble mean and standard deviation (farthest right 781 

columns). Using units of ‘percent change from the historical mean’, increasing streamflow is 782 

indicated by green color-shading, and decreasing streamflow by brown. Values under 5% 783 

change appear as white. 784 

  785 

  786 
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Fig. B3. Original model projected change in Oroville Dam streamflow by decile (rows) and 787 

GCM (columns) with the 10-member ensemble mean and standard deviation (farthest right 788 

columns). Using units of ‘percent change from the historical mean’, increasing streamflow is 789 

indicated by green color-shading, and decreasing streamflow by brown. Values under 5% 790 

change appear as white. 791 

 792 

Fig. B4. Original model projected change in New Melones Reservoir streamflow by decile 793 

(rows) and GCM (columns) with the 10-member ensemble mean and standard deviation 794 

(farthest right columns). Using units of ‘percent change from the historical mean’, increasing 795 

streamflow is indicated by green color-shading, and decreasing streamflow by brown. Values 796 

under 5% change appear as white. 797 

 798 
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 799 

Fig. B5. Original model projected change in Millerton/Friant Dam streamflow by decile 800 

(rows) and GCM (columns) with the 10-member ensemble mean and standard deviation 801 

(farthest right columns). Using units of ‘percent change from the historical mean’, increasing 802 

streamflow is indicated by green color-shading, and decreasing streamflow by brown. Values 803 

under 5% change appear as white. 804 

 805 

Appendix C: Error in Wet Season Streamflow by Decile 806 

In accompaniment of Figure 7 in section 5.c, Appendix C provides the error in wet 807 

season streamflow change by decile for the remaining combinations of bias correction and 808 

windowing techniques.   809 
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 810 
Fig. C1. Error by decile for change in wet season streamflow for PresRat with standard day-811 

of-year windowing. Errors (x-axis) for individual GCMs are depicted by grey circles, the 812 

mean error across the 10-member ensemble is depicted by an orange line. The box edges and 813 

whiskers represent the middle 5 and 8 GCMs respectively. The error for a single GCM 814 

averaged over all deciles is depicted as a small grey triangle on the x-axis and the value for 815 

the 10-member ensemble mean is denoted by a large triangle.  For reference, the grey shading 816 

and dashed black line correspond to ± 10% error and 0% error respectively. For each stream, 817 

the right y-axis depicts the historical percentage of total wet season streamflow contained in 818 

each decile averaged across the 10-member ensemble. Subplots are organized so that as you 819 

move down the rows, streams transition from rain- to snow dominated over the historical 820 

period.  821 
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 822 
Fig. C2. Error by decile for change in wet season streamflow for CDFt with seasonally 823 

anchored windowing. Errors (x-axis) for individual GCMs are depicted by grey circles, the 824 

mean error across the 10-member ensemble is depicted by an orange line. The box edges and 825 

whiskers represent the middle 5 and 8 GCMs respectively. The error for a single GCM 826 

averaged over all deciles is depicted as a small grey triangle on the x-axis and the value for 827 

the 10-member ensemble mean is denoted by a large triangle.  For reference, the grey shading 828 

and dashed black line correspond to ± 10% error and 0% error respectively. For each stream, 829 

the right y-axis depicts the historical percentage of total wet season streamflow contained in 830 

each decile averaged across the 10-member ensemble. Subplots are organized so that as you 831 

move down the rows, streams transition from rain- to snow dominated over the historical 832 

period. 833 
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 834 
Fig. C3. Error by decile for change in wet season streamflow for CDFt with standard day-of-835 

year windowing. Errors (x-axis) for individual GCMs are depicted by grey circles, the mean 836 

error across the 10-member ensemble is depicted by an orange line. The box edges and 837 

whiskers represent the middle 5 and 8 GCMs respectively. The error for a single GCM 838 

averaged over all deciles is depicted as a small grey triangle on the x-axis and the value for 839 

the 10-member ensemble mean is denoted by a large triangle.  For reference, the grey shading 840 

and dashed black line correspond to ± 10% error and 0% error respectively. For each stream, 841 

the right y-axis depicts the historical percentage of total wet season streamflow contained in 842 

each decile averaged across the 10-member ensemble. Subplots are organized so that as you 843 

move down the rows, streams transition from rain- to snow dominated over the historical 844 

period. 845 
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 846 
Fig. C4. Error by decile for change in wet season streamflow for EDCDFm with seasonally 847 

anchored windowing. Errors (x-axis) for individual GCMs are depicted by grey circles, the 848 

mean error across the 10-member ensemble is depicted by an orange line. The box edges and 849 

whiskers represent the middle 5 and 8 GCMs respectively. The error for a single GCM 850 

averaged over all deciles is depicted as a small grey triangle on the x-axis and the value for 851 

the 10-member ensemble mean is denoted by a large triangle.  For reference, the grey shading 852 

and dashed black line correspond to ± 10% error and 0% error respectively. For each stream, 853 

the right y-axis depicts the historical percentage of total wet season streamflow contained in 854 

each decile averaged across the 10-member ensemble. Subplots are organized so that as you 855 

move down the rows, streams transition from rain- to snow dominated over the historical 856 

period. 857 
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 858 
Fig. C5. Error by decile for change in wet season streamflow for EDCDFm with standard 859 

day-of-year windowing. Errors (x-axis) for individual GCMs are depicted by grey circles, the 860 

mean error across the 10-member ensemble is depicted by an orange line. The box edges and 861 

whiskers represent the middle 5 and 8 GCMs respectively. The error for a single GCM 862 

averaged over all deciles is depicted as a small grey triangle on the x-axis and the value for 863 

the 10-member ensemble mean is denoted by a large triangle.  For reference, the grey shading 864 

and dashed black line correspond to ± 10% error and 0% error respectively. For each stream, 865 

the right y-axis depicts the historical percentage of total wet season streamflow contained in 866 

each decile averaged across the 10-member ensemble. Subplots are organized so that as you 867 

move down the rows, streams transition from rain- to snow dominated over the historical 868 

period.869 
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 870 
Fig. C6. Error by decile for change in wet season streamflow for Qmap with seasonally 871 

anchored windowing. Errors (x-axis) for individual GCMs are depicted by grey circles, the 872 

mean error across the 10-member ensemble is depicted by an orange line. The box edges and 873 

whiskers represent the middle 5 and 8 GCMs respectively. The error for a single GCM 874 

averaged over all deciles is depicted as a small grey triangle on the x-axis and the value for 875 

the 10-member ensemble mean is denoted by a large triangle.  For reference, the grey shading 876 

and dashed black line correspond to ± 10% error and 0% error respectively. For each stream, 877 

the right y-axis depicts the historical percentage of total wet season streamflow contained in 878 

each decile averaged across the 10-member ensemble. Subplots are organized so that as you 879 

move down the rows, streams transition from rain- to snow dominated over the historical 880 

period. 881 
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 882 
Fig. C7. Error by decile for change in wet season streamflow for Qmap with standard day-of-883 

year windowing. Errors (x-axis) for individual GCMs are depicted by grey circles, the mean 884 

error across the 10-member ensemble is depicted by an orange line. The box edges and 885 

whiskers represent the middle 5 and 8 GCMs respectively. The error for a single GCM 886 

averaged over all deciles is depicted as a small grey triangle on the x-axis and the value for 887 

the 10-member ensemble mean is denoted by a large triangle.  For reference, the grey shading 888 

and dashed black line correspond to ± 10% error and 0% error respectively. For each stream, 889 

the right y-axis depicts the historical percentage of total wet season streamflow contained in 890 

each decile averaged across the 10-member ensemble. Subplots are organized so that as you 891 

move down the rows, streams transition from rain- to snow dominated over the historical 892 

period. 893 
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