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Abstract

Increasing wildfire and declining snowpacks in mountain regions threaten water availability. We combine satellite-based fire

detection with snow seasonality classifications to examine fire activity in California’s seasonal and ephemeral snow areas. We

find a nearly tenfold increase in fire activity during 2020 and 2021 compared to 2001-2019 as measured by satellite data.

Accumulation season snow albedo declined 17-77% in two burned sites as measured by in-situ data relative to un-burned

conditions, with greater declines associated with increased soil burn severity. By enhancing snowpack susceptibility to melt,

decreased snow albedo drove mid-winter melt during a multi-week midwinter dry spell in 2022. Despite similar meteorological

conditions in 2013 and 2022, which we link to persistent high pressure weather regimes, minimal melt occurred in 2013. Post-

fire differences are confirmed with satellite measurements. Our findings suggest larger areas of California’s snowpack will be

increasingly impacted by the compounding effects of dry spells and wildfire.
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Key Points:15

• A factor of 9.8 increase in satellite-based fire detections are observed in Califor-16

nia’s snow zones in 2020-2021 compared with 2001-2019.17

• Measured accumulation season snow albedo declined 25-71% with these reductions18

driving decreased snow covered days and snow cover fraction.19

• Compared with a meteorologically similar 2013 dry spell, snow albedo declines led20

to rapid midwinter melting in post-fire environments.21
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Abstract22

Increasing wildfire and declining snowpacks in mountain regions threaten water avail-23

ability. We combine satellite-based fire detection with snow seasonality classifications24

to examine fire activity in California’s seasonal and ephemeral snow areas. We find a nearly25

tenfold increase in fire activity during 2020 and 2021 compared to 2001-2019 as measured26

by satellite data. Accumulation season snow albedo declined 17-77% in two burned sites27

as measured by in-situ data relative to un-burned conditions, with greater declines as-28

sociated with increased soil burn severity. By enhancing snowpack susceptibility to melt,29

decreased snow albedo drove mid-winter melt during a multi-week midwinter dry spell30

in 2022. Despite similar meteorological conditions in 2013 and 2022, which we link to31

persistent high pressure weather regimes, minimal melt occurred in 2013. Post-fire dif-32

ferences are confirmed with satellite measurements. Our findings suggest larger areas of33

California’s snowpack will be increasingly impacted by the compounding effects of dry34

spells and wildfire.35

Plain Language Summary36

Satellite fire detections indicate substantial increases in wildfire activity in Cali-37

fornia’s snow-covered landscapes during 2020 and 2021, suggesting wildfire is increas-38

ingly altering mountain hydrology. During 2022, an multi-week mid-winter drought, or39

dry spell, occurred. A meteorologically-similar dry spell occurred in 2013, and the 202240

event provides a test case to examine how post-fire changes (canopy loss and deposition41

of burned dark material on snowpack) alter snowmelt patterns. Using field observations,42

weather station data, and satellite remote sensing of snow, we find large reductions in43

snow albedo drove rapid melt during the 2022 dry spell in burned areas whereas dur-44

ing 2013, minimal melt occurred. Our findings motivate additional research into assess-45

ing and planning for post-fire hydrologic changes in snow-dominated landscapes as both46

wildfire and dry spells will increase in frequency with climate warming.47

Peer Review Disclaimer48

Peer Review DISCLAIMER: This draft manuscript is distributed solely for pur-49

poses of scientific peer review. Its content is deliberative and predecisional, so it must50

not be disclosed or released by reviewers. Because the manuscript has not yet been ap-51

proved for publication by the U.S. Geological Survey (USGS), it does not represent any52

official USGS finding or policy.53
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1 Introduction54

Communities and ecosystems worldwide rely on snowpack to meet water demands55

(Immerzeel et al., 2020). A warming climate changes the spatial patterns and timing of56

snowpack accumulation and melt via alterations to rain-snow partitioning, decreases in57

cold content, extended dry spells, and extreme precipitation events (Lynn et al., 2020;58

Gershunov et al., 2019; Siirila-Woodburn et al., 2021). During the dry season, reduced59

snowpack combined with warming and drying enhances evaporative demand (Abatzoglou60

& Williams, 2016; Alizadeh et al., 2021) and lowers fuel moisture (McEvoy et al., 2019).61

A warming, drying, and disturbance-prone climate combined with fire suppression62

promotes severe wildfire at higher elevations in the western U.S. (Millar & Stephenson,63

2015; Alizadeh et al., 2021). From 1984-2017, a 9% increase per year in area burned in64

the seasonal snow zone (Gleason et al., 2019) has been accompanied by a 7.6 myr−1 up-65

slope increase in average wildfire elevation (Alizadeh et al., 2021). High burn severity66

areas also increased during these decades (Parks & Abatzoglou, 2020).67

Severe fires alter mountain snowpack processes near and below the treeline in two68

key ways. First, the burned canopy increases incoming solar radiation and black carbon69

sourced from burned vegetation reduces snow albedo, which together, accelerate snowmelt70

rates by up to 57% (Gleason et al., 2013; Kaspari et al., 2015; Gleason & Nolin, 2016;71

Gleason et al., 2019; Skiles et al., 2018; Aubry-Wake et al., 2022). Second, the decrease72

in forest canopy reduces interception. Every 20% increase in tree mortality increases below-73

canopy snow accumulation by 15% (Maxwell & Clair, 2019). In the absence of fire, re-74

duced canopy shifts the timing of peak snowpack later (Cristea et al., 2014).75

Additional wildfire impacts on mountain hydrology include changes in soil hydraulic76

properties (Ebel & Moody, 2017), shifts in surface and subsurface water partitioning and77

flow pathways that increase water yields (Maina & Siirila-Woodburn, 2020), as well as78

interactions between forest structure, snow, and fire effects (e.g., Moeser et al., 2020; Wil-79

son et al., 2021). By altering the snow-vegetation-hydrology dynamics, severe fire in mon-80

tane forests threatens ecosystems and the volume of snowpacks (Stevens, 2017; Gleason81

et al., 2019; Siirila-Woodburn et al., 2021). While it is well-documented that spring snowmelt82

rates increase after wildfire (e.g., Gleason et al., 2019; Uecker et al., 2020), the mid-winter83

impacts remain understudied.84

Our work is motivated by two recent phenomena adversely affecting California’s85

snow hydrology: widespread severe wildfires of 2020-2021 reaching into the seasonal snow86

zone of mountain watersheds (Figure 1) and the multi-week, midwinter dry spell dur-87

ing the winter of 2022. We examine how the post-fire environment during the unusually88

dry conditions amplified snowmelt rates. We hypothesize fire-impacted regions undergo89

declines in midwinter snow albedo that drive more rapid and earlier snowmelt compared90

with pre-fire or unburned conditions.91

2 Methods92

2.1 Satellite Fire Detection in Seasonal and Ephemeral Snowpacks93

In-situ wildfire activity is difficult to quantify. Satellite-based fire detection is a use-94

ful proxy for generally assessing wildfire activity by providing consistent overflight re-95

turn intervals across multiple years (Justice et al., 2002). We acquired daily fire detec-96

tions at 1 km horizontal resolution from the MODerate resolution Imaging Spectrora-97

diometer (MODIS) via the FIRMS database (https://firms.modaps.eosdis.nasa.gov/98

download/) for the period spanning January 2001 to December 2021. We subset all Cal-99

ifornian fire detections into seasonal, ephemeral, and non-snow environments based on100

the concept of snow seasonality (Petersky & Harpold, 2018; Hatchett, 2021): the dura-101

tion of time a landscape is continuously snow-covered. To assess seasonality, we applied102
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the snow classifiers to a gridded, 4-km horizontal resolution, daily snow water equiva-103

lent (SWE) product (Zeng et al., 2018; Broxton et al., 2019) across California. Seasonal104

snowpacks are defined as gridcells with an annual median of more than 60 days of con-105

tinuous snow cover spanning 1982–2018. Ephemeral snowpacks are defined as gridcells106

with intermittent (i.e., > 60 days of continuous) snow cover.107

2.2 Snow Remote Sensing108

Daily observations of snow surface properties from the vicinity of the Caldor Fire109

from Terra MODIS are available from a collaboration between the National Snow and110

Ice Data Center and the Institute of Arctic and Alpine Research called Snow Today [https://111

nsidc.org//snow-today]. The website provides snow cover percent, snow cover days,112

snow albedo, as well as the reduction of snow albedo from light absorbing particles (LAP).113

Initial estimates of snow surface properties are based on the MODIS Snow Covered Area114

and Grain size model (MODSCAG, (Painter et al., 2009)) and the MODIS Dust Radia-115

tive Forcing in Snow model (MODDRFS, (Painter et al., 2012)). Data from the two mod-116

els are combined to create spatially and temporally complete (STC) daily images that117

account for forest canopy, off-nadir viewing, and cloud mis-identification (Rittger et al.,118

2020). Snow cover errors from MODSCAG have been shown to be half the size of stan-119

dard MODIS products (Rittger et al., 2013) and albedo estimates from STC-MODSCAG/MODDRFS120

show 5% RMSE with no bias (Bair et al., 2019). STC-MODSCAG/MODDRFS data has121

been previously used for SWE reconstruction (Rittger et al., 2016; Bair et al., 2016), real-122

time estimates of SWE (Bair et al., 2018), estimating trends in snow cover at regional123

scales (Ackroyd et al., 2021), understanding snow darkening related to LAP (Sarangi et124

al., 2019, 2020; Huang et al., 2022) and improving snow albedo modeling (Hao et al., 2022).125

2.3 Albedo Measurements126

Our study sites for snow albedo include the 2021 Caldor Fire (measured once in127

January 2022) and the 2020 Creek Fire (measured once in both February and April 2021;128

Figure 2a). These are two of the larger fires in California history–the Dixie Fire burned129

389,900 ha between July and October 2021, and the Caldor Fire burned 89,800 ha be-130

tween August and October 2021 [https://www.fire.ca.gov/media/4jandlhh/top20131

acres.pdf]–and were notable as both crossed the hydrographic crest of the Sierra Nevada.132

Spectral albedo measurements were made using a Spectral Evolution RS-3500 Portable133

Spectroradiometer (RS-3500) equipped with a 180◦ field of view diffuser mounted on an134

extendable 1.2 m pole (Figure 2b). The RS-3500 has a spectral resolution of 1 nm over135

the spectral range 350-2500 nm. Measurements were made every 10 m along approxi-136

mately flat terrain with one 100 m transect for each burn severity class: high, moder-137

ate, and unburned. Soil burn severity for each fire was determined using maps produced138

by the United States Department of Agriculture Forest Service Burned Area Emergency139

Response [https://burnseverity.cr.usgs.gov/products/baer] using field-checked,140

remotely-sensed pre- and post-fire visible reflectances (Key & Benson, 2006).141

2.4 Snowpack and Meteorological Observations142

We used station-based observations of SWE, precipitation and solar radiation to143

examine the impacts of wildfire in burned and unburned areas. Daily SWE observations144

(1 October 2011–15 April 2022) spanned the two mid-winter dry spells of interest from145

four stations in the California Cooperative Snow Survey Network (Rattlesnake, Robin-146

son Cow Camp, Greek Store, and Alpha) and two stations from the Snowpack Teleme-147

try Network (SNOTEL; Central Sierra Snow Laboratory and Echo Summit; Figure 2a).148

Two stations, Rattlesnake and Alpha, were burned in 2021 by the Dixie and Caldor Fires,149

respectively, but remained functional.150
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Figure 1. (a) Annual fire detections subset by snow seasonality (snow zone). (b) Snow sea-

sonality classifications for California. (c) All fire detections (2001-2021). Fire detections during

(d) 2001-2019 and (e) 2020-2021, noting fires named in the text.
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To characterize the frequency of midwinter dry spells and place recent dry spells151

in a climatological context, we used daily precipitation data spanning 1 October 1917–152

15 April 2022 from the Tahoe City National Weather Service Cooperative Observation153

Program. Dry spells were defined as consecutive periods of time with no daily precip-154

itation exceeding 2.54 mm between October and April.155

2.5 Weather Regimes156

To provide a synoptic-planetary perspective and compare atmospheric circulation157

patterns during the two dry spell winters, we used the weather regime catalog of Guirguis158

et al., which evaluates the daily joint phase relationships between four regionally impor-159

tant modes of atmospheric variability (Guirguis et al., 2020). We extended this prod-160

uct to include the winter of 2021–2022. We focus on the days of the dry spell period (30161

December to 18 February) shared between the two years.162

3 Results163

3.1 Fire activity increased in seasonal and ephemeral snow zones164

Fire detections show peaks during singular years (2008, 2018) or groups of years165

(2012–2016, 2020–2021; Figure 1a) across California’s seasonal and ephemeral snow zones166

(Figure 1b). In 2020 and 2021, an abrupt increase in fire detections in the snow zones167

occurred. ∼50% of total 2001-2021 fire detections in seasonal snow zones and ∼35% in168

ephemeral snow regions occurred in 2020-2021. A factor of 9.8 increase in mean annual169

fire detections in the seasonal snow zone occurred in 2020-2021 compared with the 2001-170

2019 average. Fire activity in snow zones was widespread throughout 2001-2021 (Fig-171

ure 1c), with a broad distribution of fire occurrence prior to 2020 (Figure 1d). However,172

very large fires including the Dixie, Caldor, and Creek Fires, as well as fire complexes173

elsewhere, during 2020 and 2021 clustered fire detections in snow zones (Figure 1e).174

3.2 Snow albedo declines following wildfire175

Snow albedo measurements in both the accumulation season (January and Febru-176

ary) and the ablation season (April) show time-dependent decreases in snow albedo (Fig-177

ure 2c). Decreases in the visible portion of the spectrum (0.4–0.7 µm) ranged from 17-178

31% (moderate severity) and 45-49% (high severity) compared to unburned during the179

accumulation season. In April, high burn severity areas showed a snow albedo decrease180

of 60% compared to unburned areas. For the NIR (0.7–2.5 µm), accumulation season181

declines ranged between 31 to 69% (moderate severity) to 47 to 77% (high severity). When182

comparing moderate to high severity burned areas, April albedo decreased by 34% in the183

NIR compared to 11% in the visible wavelengths. The opposite occurred in January where184

NIR decreased by 10% while the visible decreased by 34%. We note that the decreased185

albedo in the visible wavelengths is mainly due to light absorption by black carbon (Wiscombe186

& Warren, 1980; Warren, 1982), while decreased albedo in the near-infrared wavelengths187

is likely due to a combination of increased grain size and light absorption by black car-188

bon (Wiscombe & Warren, 1980; Warren, 1982; Skiles & Painter, 2019). Unlike dust, which189

has primary absorption in the visible wavelengths (He et al., 2019), black carbon is a “gray”190

absorber and can absorb throughout the solar spectrum. Translating measured snow albedo191

changes to net radiation using the Beer-Lambert Law indicates post-fire increases in net192

radiation from 0.931 Wm2 (unburned) to 40.3 Wm2 (high severity) during January and193

from 27.7Wm2 (unburned) to 161 Wm2 (high severity) during April (Koshkin, 2022).194
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Figure 2. (a) Map of stations and sample locations with fire names. (b) Albedo measure-

ments collection from high burn severity forest during January in the Caldor Fire. (c) Changes in

spectral snow albedo for unburned (gold), moderate burn severity (orange) and high burn sever-

ity (red) during January (Caldor February (Creek Fire) and April (Creek Fire). (d) Foreground

shows burned debris deposited onto the snow surface.

3.3 Rapid snowmelt during a dry spell following wildfire195

The long-term median midwinter dry spell at Tahoe City is 22 days. During wa-196

ter year (WY) 2022, Tahoe City experienced its second-longest midwinter dry spell (46197

days). With observations beginning in 1917, three of the five longest midwinter dry spells198

have occurred since WY2011, including WY2015 (third longest with 43 days), WY2022199

(second with 46 days), and the record-setting WY2012 (60 days). Although WY2013 (tied200

for 11th with 36 days) did not experience as prolonged a midwinter dry spell as WY2022,201

the well-below average precipitation following a wet start to the water year provides an202

object lesson year for comparison. In both WY2013 and WY2022, heavy precipitation203

during October-December produced substantial early season snowpacks (338–770 mm204

SWE), but were followed by persistent well-below average precipitation (Figure 3a) and205

similar radiation. Compared with WY2013, 5% more accumulated solar radiation oc-206

curred during WY2022 between 28 December–18 February period at the Red Baron RAWS207

(adjacent to the Caldor Fire) but approximately equal radiation between 28 December–1208

March (Figure S1).209

–7–
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Figure 3. (a) Accumulated precipitation at Tahoe City during WY2013 and WY2022. (b)

Snow water equivalent (SWE) as a fraction of peak SWE during water year (WY) 2022. (c) As

in (b) but for WY2013. Primary dry weather regimes (WR) and their frequency during the dry

spells of December 30-February 18 of (d) WY2022, and (e) WY2013.
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SWE declined faster at the two burned sites, Alpha and Rattlesnake, compared to210

the unburned sites during WY2022’s dry spell (Figure 3b). In contrast, all stations be-211

haved similarly during the WY2013 dry spell (Figure 3c), though Rattlesnake began melt-212

ing in mid-March. Compared to the date of maximum SWE, the SWE at unburned sites213

declined by 0-4 percentage points in WY2013 and 0-8 percentage points in WY2022 over214

the course of the dry period. During WY2013, Alpha and Rattlesnake declined by 2-9215

percentage points during the dry spell. However, in WY2022 after the wildfire, these sta-216

tions declined 41-45 percentage points, consistent with enhanced net shortwave radia-217

tion loading in burned environments (Figure 2). After a small precipitation event on 18218

February 2022, snowpack continued to decline at Rattlesnake but remained consistent219

at Alpha before declining in late March. Compared to WY2013, snow at both Alpha and220

Rattlesnake disappeared earlier during WY2022 (Figure 3b-c).221

3.4 Midwinter dry spell weather regimes222

Analysis of weather regimes (WR; (Guirguis et al., 2022) reveals broad similari-223

ties between WY2013 and WY2022 during the midwinter dry spells (Figure 3d-e) but224

also throughout the accumulation season (Figure S2).The bulk of the snow accumula-225

tion in December during both years was associated with wet weather regimes (Figures226

S2 and S3), which favor anomalously wet conditions over California and anomalous pos-227

itive snowpack accumulation in the Central Sierra Nevada (Guirguis et al., 2022). Be-228

ginning in late December (WY2013) or early January (WY2022) a WR shift occurred229

bringing atmospheric ridging conditions over/offshore from California (Figure S2).Similar230

dry-type WRs but with varying frequencies occurred during the respective dry spells (Fig-231

ure 3d-e). The cessation in SWE accumulation is associated with the onset and persis-232

tence of WRs favoring persistent high pressure ridging bringing about mid-winter drought233

conditions (Figure 3d-e). The ridging patterns were more persistent during WY2022 (Fig-234

ure 3d). WY2013 was more variable with short-lived weather pattern changes allowing235

for small snow accumulation events (Figure 4b). These events appear as intermittent break-236

downs of the ridging patterns and development of patterns (e.g., WR3) producing weak237

onshore flow (Figure 3e).238

3.5 Snow remote sensing indicates post-fire snowpack decline239

Despite similar conditions in snowpack at the beginning of each dry spell (Figure240

3b-c) and generally similar meteorological conditions (Figure 3d-e and S2), remote sens-241

ing shows widespread rapid post-wildfire snowmelt throughout the accumulation and melt242

seasons within the Caldor Fire perimeter (Figure 4). Snow covered area declined faster243

during during January and February WY2022 compared to WY2013 (Figure 4a), with244

50% less snow cover at the end of the dry spell in WY2022. Albedo resets following snow-245

fall were more common in WY2013 than WY2022 (Figure 4b), with 2022 demonstrat-246

ing the lowest basin-average snow albedos on record in early February. Consistent with247

lower albedo (Figures 2c and 4b), melt occurred faster after storms in WY2022 compared248

to WY2013 (Figure 4a). Impacts within the fire perimeter are clear with more than 50249

days less snow cover days by the end of April (Figure 4c), making WY2022 the year with250

the lowest snow cover days in the MODIS record. Dry conditions during November (Fig-251

ure 3a) and melt-out of October snowfall (Figure 3b) contributed to the initially (1 Jan-252

uary) low cumulative days of snow cover in WY2022 (Figure 4c). In contrast, WY2013253

was near-to-above average in terms of snow cover days until late April (Figure 4c).254

Spatial comparisons for February mean snow cover fractions show WY2013 had near-255

to-slightly below the 2001-2022 mean, whereas WY2022 had well-below mean snow cover256

fractions within the Caldor Fire perimeter (and Tamarack Fire perimeter; Figure 4d-e).257

By 1 March, snow cover days were 20-50 days below average only in the lowest eleva-258

tion (western-most) regions during WY2013 whereas strong correspondence between anoma-259

–9–



manuscript submitted to Geophysical Research Letters

lous below-mean snow cover days and the Caldor fire perimeter occur during WY2022260

(Figure 4f-g). These differences increased as the season progressed (Figure S4).261

Figure 4. (a) Snow covered area (km2) for Caldor Fire perimeter between 1 January and 31

May for WYs 2001-2022 (light dashed lines) with WY2013 and WY2022 shown as thick blue

and lines respectively. (b) As in (a) but for snow albedo. (c) As in (a) but for snow covered

days. February snow cover fractions, as differences from 2001-2022 mean for (d) WY2013 and

(e) WY2022. End of February snow cover days (cumulative from 1 October), as differences from

2001-2022 mean for (f) WY2013 and (g) WY2022.
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4 Discussion262

Wildfires in seasonal and ephemeral snow zones are expected. Our identified abrupt,263

near-10-fold increase in fire activity during 2020-2021 in California’s snow zones relative264

to the previous 18 years (Figure 1) is embedded in an increasing trend in California wild-265

fire activity (Alizadeh et al., 2021; Gleason et al., 2019).Conditions conducive to large,266

severe fires will increase as the climate warms (Abatzoglou & Williams, 2016; Gutier-267

rez et al., 2021; Williams et al., 2019) and becomes more volatile (Gershunov et al., 2019).268

This implies future fire activity in snow zones will more frequently resemble 2020 and269

2021.270

In moderate to high severity burned areas, the albedo decreases and canopy removal271

(Figure 2b-d) combined to enhance snowmelt during midwinter dry spells (Figure 3c)272

leading to reductions in snow covered area (Figure 4c). Similar results associated with273

local and long-range transport and deposition of fire-generated LAPs occurs in season-274

ally snow-covered regions (Gleason et al., 2019; Uecker et al., 2020) and glacial environ-275

ments (Aubry-Wake et al., 2022). However, those studies focused on the ablation sea-276

son rather than the accumulation season. Our results indicate strong potential for en-277

hanced post-fire midwinter melt under persistent high pressure (Figure 3d).278

The wavelength dependence of snow albedo reductions (Figure 2c) suggests impu-279

rities are a more dominant control on albedo changes compared to snow grain size dur-280

ing the accumulation season when snowpacks are colder and grain growth is slower (Colbeck,281

1982). During the melt season, wet snow causes rapid grain growth (Colbeck, 1982), and282

these increases in grain size strongly decrease snow albedo in the near-infrared wavelengths283

(Warren, 1982). Also during the melt season, the concentration of LAPs decreases snow284

albedo in the visible wavelengths (Warren, 1982; Sterle et al., 2013). The combined ef-285

fect is a significant overall decrease in snow albedo across the solar spectrum. Similar286

to dust-on-snow (Skiles & Painter, 2019), in post-fire environments, radiative forcing-287

induced positive feedbacks likely occur between grain size growth, albedo decline from288

melt-driven LAP accumulation, and larger-scale land surface albedo decline as the land289

surface becomes snow-free (Huang et al., 2022; Koshkin et al., 2022).290

Guirguis et al. (2022) found increasing frequencies of three midwinter dry patterns291

that parallel observed declines in California snowpack and water availability (Mote et292

al., 2018; Siirila-Woodburn et al., 2021). These same atmospheric circulation patterns293

are associated with the midwinter dry spells in WY2013 and WY2022. While both years294

demonstrate similar weather patterns to one another, WY2013 had slightly more active295

weather compared to WY2022 (Figure S2).This implies observed melt resulted predom-296

inantly from altered land surface conditions (e.g., burned canopy) rather than meteo-297

rological differences. It is also likely that feedbacks between grain size and snow albedo298

(Koshkin et al., 2022) further accelerated melt, especially at lower elevations (Figure 4j).299

Amplified midwinter melt in burned areas during midwinter dry spells raises con-300

cern for hydrologic resources and hazards. Enhanced radiation-driven midwinter melt301

with greater snow accumulation (Maxwell & Clair, 2019) has the potential to elevate soil302

moisture earlier in the water year and make snowpacks more hydrologically active (Brandt303

et al., 2022). Additional soil moisture increases runoff efficiency and soil pore water pres-304

sures, leading to elevated runoff during rain-on-snow events and higher probabilities for305

shallow landslides.306

Midwinter runoff affects reservoir operations as traditional regulatory frameworks307

may not allow for additional reservoir storage when flood risk reduction is the primary308

management concern (Maina & Siirila-Woodburn, 2020; Williams et al., 2022a). More-309

over, higher rates of sediment influx from burned areas entering reservoirs (Sankey et310

al., 2017; Murphy et al., 2018) reduce water quality (Murpyh et al., 2012) and can dam-311

age infrastructure (Randle et al., 2021).312
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The compounding effects of post-fire impacts on snow and midwinter dry spells pose313

challenges for climate projections and operational forecasts. More frequent fire activity314

in snow zones and additional dry days are both expectations of a warming climate (Westerling,315

2018; Polade et al., 2014; Hatchett et al., 2022). Midwinter snowpack loss may enhance316

intraseasonal climate variability towards drought by shifting peak SWE earlier and caus-317

ing earlier snow disappearance (Gleason et al., 2019; Uecker et al., 2020; Smoot & Glea-318

son, 2021) leading to drier late-season soil and vegetation conditions (Harpold & Molotch,319

2015). Less efficient spring runoff in exchange for more efficient midwinter runoff (Maina320

& Siirila-Woodburn, 2020) may offsetting slower melt in unburned areas (Musselman et321

al., 2017). Skillfully predicting weather regimes associated with high-impact weather (anoma-322

lous wet or dry conditions) at subseasonal-to-seasonal scales provides lead-time to im-323

plement mitigation measures for altered hydrology (Guirguis et al., 2022). However, mit-324

igation hinges upon skillful hydrologic forecasts. If post-fire effects on snow exacerbates325

emerging trends towards elevated runoff (Uzun et al., 2021; Williams et al., 2022b), di-326

rect updates of snow albedo to operational hydrologic models and improved parameter-327

izations of fire-snow relationships in Earth system models is required (Hao et al., 2022).328

5 Conclusions329

The societal connection between mountains and humans will be strained as moun-330

tains face increasing climate-related stressors (Immerzeel et al., 2020). Midwinter drought,331

snow loss, and increasing wildfire are expectations of a warming world. Addressing these332

challenges requires innovative water and forest management paradigms (Millar & Stephen-333

son, 2015; Sterle et al., 2019; Siirila-Woodburn et al., 2021). We identified abrupt increases334

in wildfire activity in California’s snow zones that reduced snow albedo and accelerated335

melt during extended midwinter drought. To enhance water supply reliability, reduce336

flood hazards, and inform adaptation strategies–aspects impacted by wildfire’s effects337

on mountain snowpacks–we recommend improving our process-based representation and338

inclusion of wildfire’s impacts in the snow zone in short- and long-term operational hy-339

drologic and Earth system models.340

6 Open Research341

MODIS fire detections are available from the NASA Fire Information for Resources342

Management System: https://firms.modaps.eosdis.nasa.gov/. Weather regime data343

(Guirguis et al., 2022) is available from the UCSD library digital collections at: https://344

doi.org/10.6075/J089161B. The University of Arizona Snow Water Equivalent Prod-345

uct is available from the NASA National Snow and Ice Data Center Distributed Active346

Archive Center at: https://doi.org/10.5067/0GGPB220EX6A. Station data is publicly347

available for SNOTEL stations from the United States Natural Resources Conservation348

Agency: https://wcc.sc.egov.usda.gov/reportGenerator/ with RAWS data avail-349

able from the Desert Research Institute: https://raws.dri.edu. The MODIS data is350

available from the Dryad repository at:351

https://datadryad.org/stash/share/xWCdmAowGgAjlyISPY9jirfiYmvm2bqTYNJz77mG352

-OE; upon acceptance this link will be archived as: https://doi.org/10.5061/dryad353

.7wm37pvx7. Spectrometer data is available in the Supporting Materials.354
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Additional Supporting Information (Files uploaded separately)

1. Caption for Dataset S1

Introduction The supporting information provides five figures (S1-S5) that utilize the

data described in the main text to extend and further support the primary results of the

study. The supporting dataset S1 presents the spectral albedo measurements collected

from the Creek and Caldor Fires used in Figure 2 and discussed in the main text. Upon

accceptance, Dataset S1 will be uploaded to a permanently available FAIR repository for

public use.

Figure S1.
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Figure S2.

Figure S3.

Figure S4.

Figure S5.

Dataset S1. Comma-separated value (.csv) file of spectral albedo measurements for

the three measured transects presented in Figure 2 of the main text. Columns include

”ID”,”wavelength”,”Date”,”Albedo”,”month”,”burn”. The Creek Fire observations were

performed in February and April and the Caldor Fire observations were performed in

January. Burn severities were estimated using United States Forest Service Burned Area

Emergency Response maps.
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Figure S1. Accumulated hourly solar radiation (kWm
−2) from the Red Baron remote

automated weather station (RAWS) for 28 December to 1 March period of WY2013 and

WY2022. See Figure 2a for the location of the Red Baron RAWS. The total difference in

accumulated radiation for the period is 5% higher during WY2022.
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Figure S2. Seasonal evolution of snow water equivalent for the Alpha site, color-coded

by the daily observed atmospheric weather regime to indicate the synoptic scale weather

patterns driving snow accumulation and depletion. Grey shading highlights the December

30-February 18 dry-spell The mid-winter drought was brought about by a large-scale

shift in atmospheric circulation that persisted throughout January and February. The

bulk of the snow build-up that occurred in December during both years was associated

with weather regimes 8-14 (shown as green or blue), with most accumulation brought by

WR9, WR10 or WR12. These weather regimes, all identified by a deep trough positioned

offshore from California (Figure S3), have previously been linked to historic atmospheric

river landfalls and wet conditions over California, as well as snowpack in the Central

Sierra Nevada (Guirguis et al. 2022). Beginning in late December (WY2013) or early

January (WY2022) a weather regime shift occurred that brought atmospheric ridging

conditions over/offshore from California. This is seen in Figure S3 as a cessation in SWE

accumulation associated with the onset and persistence of weather regimes 1-5 (orange-

red-pink markers) that brought about the mid-winter drought.
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Figure S3. Composites of 500 mb geopotential height anomalies associated with

each weather regime based on the methods developed by (Guirguis et al. 2022). The

climatological sample size (n) for each weather regime is shown in the title as a percent

of days in the historical record.
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Figure S4. Snow cover days, as differences from WY2001-2022 means, for WY2013

(left column) and WY2022 (right column) for January, February, March, and April.
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Figure S5. Snow cover fractions, as differences from WY2001-2022 means, for WY2013

(left column) and WY2022 (right column) for January, February, March, and April.
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