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Abstract

Carbon fluxes from agroecosystems contribute to the variability in the carbon cycle and atmospheric [CO2]. In this study, we

used the Integrated Science Assessment Model (ISAM) equipped with a spring wheat module to study carbon fluxes and their

variability in spring wheat agroecosystems of India. First, ISAM was run in the site-scale mode to simulate the Gross Primary

Production (GPP), Total Ecosystem Respiration (TER), and Net Ecosystem Production (NEP) over an experimental spring

wheat site in the north India. Comparison with flux-tower observations showed that the spring wheat module in ISAM can match

the observed flux patterns better than generic crop models. Next, regional-scale runs were conducted to simulate carbon fluxes

across the country for the 1980-2016 period. Results showed that the fluxes vary widely, primarily due to variations in planting

dates across regions. Fluxes peak earlier in the eastern and central parts of the country, where the crops are planted earlier.

All fluxes show statistically significant increasing trends (p<.01) during the study period. The GPP, Net Primary Production

(NPP), Autotrophic respiration (Ra), and Heterotrophic Respiration (Rh) increased at 1.272, 0.945, 0.579, 0.328, and 0.366

TgC/yr2, respectively. Numerical experiments were conducted to study how natural forcings like changing temperature and

[CO2] and agricultural management practices like nitrogen fertilization and water availability could contribute to the increasing

trends. The experiments revealed that increasing [CO2], nitrogen fertilization, and water added through irrigation contributed

to the increase of carbon fluxes, with nitrogen fertilization having the strongest effect.
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Key Points: 7 

• Carbon fluxes in spring wheat agroecosystems vary widely across India due to divergent 8 

climatic conditions and management practices, primarily due to different planting dates. 9 

• All carbon fluxes showed an increasing trend during the 1980 to 2016 study period.  10 

• Providing sufficient fertilizers and water through irrigation may be able to counteract the 11 

adverse effects of high temperatures on carbon fluxes.  12 
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Abstract 13 

Carbon fluxes from agroecosystems contribute to the variability in the carbon cycle and 14 

atmospheric [CO2]. In this study, we used the Integrated Science Assessment Model (ISAM) 15 

equipped with a spring wheat module to study carbon fluxes and their variability in spring wheat 16 

agroecosystems of India. First, ISAM was run in the site-scale mode to simulate the Gross Primary 17 

Production (GPP), Total Ecosystem Respiration (TER), and Net Ecosystem Production (NEP) 18 

over an experimental spring wheat site in the north India. Comparison with flux-tower 19 

observations showed that the spring wheat module in ISAM can match the observed flux patterns 20 

better than generic crop models. Next, regional-scale runs were conducted to simulate carbon 21 

fluxes across the country for the 1980-2016 period. Results showed that the fluxes vary widely, 22 

primarily due to variations in planting dates across regions. Fluxes peak earlier in the eastern and 23 

central parts of the country, where the crops are planted earlier. All fluxes show statistically 24 

significant increasing trends (p<.01) during the study period. The GPP, Net Primary Production 25 

(NPP), Autotrophic respiration (Ra), and Heterotrophic Respiration (Rh) increased at 1.272, 0.945, 26 

0.579, 0.328, and 0.366 TgC/yr2, respectively. Numerical experiments were conducted to study 27 

how natural forcings like changing temperature and [CO2] and agricultural management practices 28 

like nitrogen fertilization and water availability could contribute to the increasing trends. The 29 

experiments revealed that increasing [CO2], nitrogen fertilization, and water added through 30 

irrigation contributed to the increase of carbon fluxes, with nitrogen fertilization having the 31 

strongest effect.  32 

1 Introduction 33 

Croplands are highly productive ecosystems that interact with the atmosphere by exchanging 34 

energy, carbon, and water (Lokupitiya et al., 2016). Croplands take up a large amount of carbon 35 

from the atmosphere during their short growing season and contribute to the seasonal-scale 36 

variability in atmospheric carbon loading. The increase in the atmosphere's carbon levels has 37 

complex impacts on agricultural productivity (Yoshimoto et al., 2005; Saha et al., 2020). 38 

Temperature, nitrogen fertilizers, and irrigation are all factors that affect crop development and 39 

therefore alter the carbon fluxes from the croplands (Lin et al., 2021). Increased temperature can 40 

counteract the beneficial effects of increased carbon in the atmosphere (Sonkar et al., 2019). 41 

Better-fertilized soils can react better to higher carbon levels (Lin et al., 2021). Lands with limited 42 
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water availability result in reduced carbon fluxes (Hatfield and Prueger, 2015; Green et al., 2019). 43 

Hence, understanding the variability and drivers of carbon fluxes from agroecosystems can help 44 

better understand the interactions between the biosphere and atmosphere. 45 

Wheat is one of the most widely farmed cereal crops globally and one of the most important staple 46 

foods for approximately 2.5 billion people worldwide (Ramadas et al., 2020). Two cultural types 47 

of wheat are grown worldwide: winter wheat and spring wheat. Winter wheat is grown in areas 48 

with cold weather across Europe, Australia, Russia, and the USA, where it undergoes vernalization 49 

during the winter season. Spring wheat is grown in tropical and sub-tropical regions during winters 50 

where the temperatures are warmer. In India, spring wheat is generally sown in October-November 51 

and harvested between March and April (Ramadas et al., 2020). Spring wheat is the second-largest 52 

crop in India in terms of production and cultivated area after paddy. India is second to China in 53 

wheat production, with about 107 Mt in 2020, contributing 13.5% of the global wheat supply 54 

(FAOSTAT, 2019). Wheat production in India has been on the rise, increasing by 25% since 2008. 55 

The area harvested has risen from 28 Mha in 2008 to 29 Mha in 2019 (FAOSTAT, 2019) making 56 

spring wheat the second-largest agroecosystem in the country. However, studies of carbon in 57 

spring wheat croplands are limited. An extensive review of the variability of carbon fluxes from 58 

terrestrial ecosystems conducted by Baldocchi et al. (2018) lacks studies from Indian subcontinent. 59 

Hence, this paper focuses on carbon dynamics and its drivers in spring wheat agroecosystems of 60 

India. 61 

Although many studies have explored carbon fluxes in various terrestrial ecosystems (Zeng et al., 62 

2020), studies on Indian agroecosystems are limited. Most studies in India estimating carbon fluxes 63 

have focused on forest biomes (Jha et al., 2013; Pillai et al., 2019). Jha et al. were the first to 64 

discuss carbon and energy fluxes across forest biomes. The authors propose that more flux towers 65 

be installed in various vegetation ecosystems to generate a robust carbon flux database (Jha et al., 66 

2013). Pillai et al. (2019) investigated the seasonal variation of NEE in the forest biome using flux 67 

tower data and a process-based model (Pillai et al., 2019). The research on forest biomes revealed 68 

information about India's forest ecosystems that act as carbon sinks. However, agroecosystems are 69 

different from the forest biomes not only because the species composition is different but also 70 

because agroecosystems are extensively managed. Human intervention in croplands occur through 71 
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fertilization, pest control activities, tillering, irrigation, and harvesting. Therefore, it is essential to 72 

understand the impact of the human management practices on carbon fluxes in agroecosystems.  73 

A few studies have looked at carbon fluxes at the site scale over spring wheat agroecosystems in 74 

northern India. These include Patel et al. (2011) for the 2008-2009 growing season, Patel et al. 75 

(2021) for the 2014-15 growing season, and Kumar et al. (2021) for the 2013-14 growing season. 76 

All studies found the typical U-shaped curve in the NEP at diurnal and seasonal scales. The average 77 

growing season NEP was in the 5-6 gC/m2/d1. Patel et al (2021) also reported a negative correlation 78 

of NEP with temperature due to higher respiratory losses at higher temperatures. The site-scale 79 

studies can only talk about the intra-annual variation of carbon fluxes. Studying interannual 80 

variability in the carbon fluxes is not possible because the flux towers are only operational for one 81 

or two years. Furthermore, there are very few flux towers, and they are all concentrated in northern 82 

India. Because climate and growing conditions vary considerably across the wheat growing 83 

regions, it is impossible to extend these studies to understand carbon fluxes at regional scale.  84 

Process-based model are widely used as an alternative to observations for studying carbon 85 

dynamics (Sándor et al., 2020). These models explicitly characterize known or hypothesized 86 

cause-effect links between physiological processes and driving forces in the environment (Chuine 87 

and Régnière, 2017). Process-based crop models, driven by atmospheric and other data as inputs, 88 

can simulate production, phenology, carbon and energy fluxes, and the interannual variability in 89 

the carbon budget of crops (Revill et al., 2019). The major advantage of using the process-based 90 

models is that they can be used to conduct numerical experiments to quantitatively evaluate the 91 

explicit effect of input parameters and external drivers on crop growth and fluxes (Jones et al., 92 

2017). There are a couple of studies on carbon fluxes in terrestrial ecosystems of India (Banger et 93 

al., 2015; Gahlot et al., 2017) but they do not focus on agroecosystems. 94 

This study used the Integrated Science Assessment Model (ISAM), a process-based land surface 95 

model with bio-geochemical and bio-geophysical components. ISAM was developed to assess the 96 

effect of variations in CO2 concentration on agroecosystems (Jain and Yang, 2005; Song et al., 97 

2013; Yang et al., 2009). ISAM was used for multiple regional and global-scale multimodel studies 98 

like the Global Carbon Budget (Le Quéré et al., 2018), the Trends in Net Land-Atmosphere Carbon 99 

Exchange (TRENDY) (Zhao et al., 2016), North American Carbon Program (NCAP) (Huntzinger 100 
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et al., 2012), Large-scale Biosphere-Atmosphere Experiment in Amazonia Data Model 101 

Intercomparison Project (LBA-DMIP) (De Gonçalves et al., 2013), and in comparing with forest 102 

FACE site observations (De Kauwe et al., 2013). 103 

The broad goal of this study is to study carbon dynamics over spring wheat croplands of India and 104 

quantitatively estimate the role of different natural and anthropogenic drivers that govern carbon 105 

fluxes. The specific objectives of this paper are  (i) to evaluate the capability of the ISAM model 106 

equipped with a spring wheat module to simulate carbon fluxes in spring wheat croplands by 107 

comparing them against field measurements; (ii) to study the spatiotemporal variation in carbon 108 

fluxes over spring wheat croplands of India over approximately four decades; and  (iii) 109 

quantitatively estimate the effect of external drivers, including natural forcings like changing 110 

temperature and [CO2] and agricultural management practices like nitrogen fertilization and water 111 

availability on carbon fluxes from spring wheat croplands of India. 112 

To the best of our knowledge, there are no long-term regional-scale studies of carbon dynamics 113 

over Indian agroecosystems. As mentioned earlier, management practices can strongly affect crop 114 

growth and the interaction of crops with land and atmosphere through exchanges of water, energy, 115 

nutrients, and carbon. No studies have explored the impact of these management practices on the 116 

carbon fluxes in Indian agroecosystems. The current study would be the first to address these issues 117 

and hence play an important role in advancing our understanding of terrestrial carbon dynamics. 118 

2 Methodology 119 

2.1 Modeling Approach 120 

Gahlot et al. (2020) had implemented a spring wheat module in ISAM and used it to simulate the 121 

phenology and production of spring wheat at the site scale for the spring wheat farm site at the 122 

Indian Agriculture Research Institute (IARI), Delhi, and regional scale for entire India. The 123 

experimental site at IARI was operational for three growing seasons- 2013-14, 2014-15, and 2015-124 

16. Carbon fluxes were measured only during 2013-14 growing season and phenology data was 125 

measured during the latter two seasons. The ISAM was calibrated and validated using phenology 126 

observations from the 2014-2015 and 2015-2016 growing seasons (Gahlot et al., 2020). Taking 127 

this work forward, we used the same model to estimate the carbon fluxes in the spring wheat 128 

croplands of India. The modeling approach used in the study is as follows. First, the ISAM model 129 
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was run in site-scale mode to simulate the carbon fluxes at the IARI site driven by prescribed 130 

management data. The simulations were evaluated against field measurements from the IARI site 131 

for the 2013-2014 growing season. Next, ISAM was run in regional-scale mode to simulate carbon 132 

fluxes over wheat-growing regions of India spanning from 1901 to 2016. Finally, we conducted 133 

numerical experiments to simulate the impacts of environmental drivers and agricultural 134 

management practices on carbon fluxes. 135 

2.2 Model Description 136 

This study used the ISAM in the same configuration as Gahlot et al. (2020) to simulate India's 137 

spring wheat phenology and production. For brevity, here we only provide a brief description of 138 

the model and its configuration. More details are available in Gahlot et al (2020). ISAM has a 139 

module for simulating generic C3 crops driven by external forcings and associated land-140 

atmosphere fluxes of carbon, nitrogen, water, and energy in the croplands (Song et al., 2013). The 141 

ISAMC3_crop module has static phenology and prescribed LAI using observations from the 142 

Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellites. 143 

The ISAMC3_crop module used static root parametrization with fixed rooting depth and fixed root 144 

fraction in each soil layer. Gahlot et al. (2020) developed and implemented ISAMdyn_wheat module 145 

that can simulate the phenology and fluxes in spring wheat croplands. ISAMdyn_wheat differs from 146 

the static version in three schemes: dynamic phenology, carbon allotment, and vegetation structure 147 

growth. ISAMdyn_wheat was equipped with dynamic planting date criteria and heat stress modules 148 

to simulate the effects of environmental factors on all aspects of spring wheat phenology. Both 149 

modules can be run at the site and regional scales at 0.5° X 0.5° spatial and one-hour temporal 150 

resolutions.  151 

ISAM simulates the processes through which external drivers can affect crop growth. For example, 152 

temperature influences maximum carboxylation rates, which regulates carbon assimilation (Song 153 

et al., 2013). The ISAM model can simulate nitrogen dynamics and the interactive effects of 154 

carbon-nitrogen cycles caused by climate change or increasing [CO2] (Yang et al., 2009b). 155 

Nitrogen fertilisation through deposition onto the soil serves as a nitrogen input to the ISAM 156 

nitrogen cycle (A. Jain et al., 2009). When water and mineral N are scarce, the carbon cycle and 157 

its assimilation suffer because of reduced carbon allocation to leaves and stems (Song et al., 2013). 158 
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Added water through irrigation reduces the water stress on crops in water-limited situations, 159 

thereby increasing carbohydrate production.  160 

2.3 Site Data 161 

Field observations on carbon fluxes are limited in India, and none are available in the public 162 

domain. We obtained field observations of carbon fluxes for the 2013-14 spring wheat growing 163 

season from the IARI, Delhi, experimental spring wheat farm (Bhatia et al., 2014: Kumar et 164 

al.,2021). The farm covering 650 square meters is located at 28o40' N, 77o12' E. The site has an 165 

EC flux tower that gave Gross Primary Production (GPP), Total Ecosystem Respiration (TER), 166 

and Net Ecosystem Production (NEP). The tower had enough area to ensure an upwind stretch of 167 

homogeneous vegetation, which was essential for measuring fluxes using the EC technique 168 

(Schmid, 1994). The spring wheat crop was planted on 16 December 2013 at the site. Nitrogen 169 

fertilizer at the rate of 120 kg N/ha was applied in three instalments of 60 kg N/ha, 30 kg N/ha, 170 

and 30 kg N/ha on the planting day and 25th and 67th days after sowing, respectively. The field 171 

was irrigated five times throughout the growing season to avert water stress.  172 

2.4 Meteorological and management data 173 

All ISAM simulations need data for both environmental and anthropogenic drivers. We used 174 

annual atmospheric [CO2] data from Le Quéré et al. (2018) and climate data from Viovy (2018) 175 

for both site scale and country scale simulations. The temporal resolution of the climate data is 6-176 

hourly, and we interpolated the climate data to hourly values. The planting date, nitrogen, and 177 

irrigation data used for the site scale runs are described in Section 2.2. 178 

For the country scale runs, we used nitrogen fertilizer data developed by Gahlot et al. (2020) by 179 

combining data from Ren et al. (2018) and Mueller et al. (2012). Data of harvested wheat area in 180 

a gridded format is needed (1980-2016) for calculating fluxes at a country scale in units of TgC/yr. 181 

We used spring wheat harvested area data developed by Gahlot et al. (2020), combining harvested 182 

area from Monfreda et al. (2008) and MAFW (2017). 183 
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2.5 Experimental Design 184 

2.5.1 Site scale simulations at the IARI site 185 

The ISAM model was calibrated and validated by Gahlot et al. (2020) using the phenology 186 

observations from the 2014-2015 and 2015-2016 growing seasons. We designed the site 187 

scale carbon flux experiment to evaluate the capability of ISAM model to replicate the 188 

carbon fluxes from field observations for the growing season 2013-14. To simulate the 189 

carbon fluxes at a site scale, the ISAM model was spun up for the 2013-14 growing season 190 

using climate data from Viovy (2018), annual atmospheric [CO2] data from Le Quéré et al. 191 

(2018), and airborne nitrogen deposition data (Dentener, 2006) until the soil parameters 192 

reached a steady state. Further details on the site scale spin-up are available in Gahlot et al. 193 

(2020). 194 

We used both variants of the ISAM, the C3 generic crop module (ISAMC3_crop) and the 195 

dynamic spring wheat crop module (ISAMdyn_wheat) developed by Gahlot et al. (2020), to 196 

simulate crop phenology and carbon fluxes for the 2013-14 growing season. For these 197 

simulations, we used the planting date, irrigation, and nitrogen fertilization schedule 198 

applied at the IARI site (Section 2.2). 199 

2.5.2 Country-wide simulations over wheat-growing regions of India 200 

The country-wide simulations were designed to understand the spatial variation of carbon 201 

fluxes across India's wheat growing regions by utilising the ISAMdyn_wheat module. To 202 

simulate the carbon fluxes at a regional scale, ISAM was spun up for 1901 to maintain 203 

constant soil parameters such as temperature, moisture, and carbon and nitrogen pools. For 204 

the spin-up, we used the climate data from Viovy (2018) for the years 1901–1920, with 205 

airborne nitrogen deposition (Dentener 2006) and [CO2] (Le Quéré et al., 2018) held at 206 

levels of 1901 and neglecting nitrogen fertilizer and irrigation.  207 

After a steady-state was observed in the soil parameters, we used ISAM to conduct 208 

regional-scale simulations over wheat-growing regions of India to understand the 209 

variability of carbon fluxes across diverse climate and management conditions (Ortiz et al. 210 

2008) from 1901 to 2016. First, we conducted a control run (SCON) driven by the annual 211 

[CO2] data, climate data, nitrogen fertilizer data, and full irrigation to meet crop water 212 
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needs. Irrigation is a crucial factor in spring wheat cultivation, where 93.6 % of the wheat 213 

area is equipped with irrigation (MOA 2016), and the Indo-Gangetic plains contribute a 214 

significant part to the total wheat area irrigated in India (Gahlot et al., 2020). Data on the 215 

exact volume of irrigation water was not available. Therefore, in the SCON simulation, each 216 

grid cell was considered 100% irrigated so that there was no water stress on the crops 217 

(Gahlot et al. 2020).  218 

Our analysis focused on the years 1980 to 2016. We analyzed country-scale model results 219 

as inter-decadal changes from the 1980s to the 2010s. We calculated decadal averages for 220 

various fluxes by dividing the total period into 1980s – 1980 to 1989, 1990s – 1990 to 221 

1999, 2000s - 2000 to 2009, and 2010s - 2010 to 2016. 222 

2.5.3 Experiments to estimate the effect of external drivers on carbon fluxes. 223 

Environmental drivers like temperature and [CO2] and agricultural management practices 224 

like applying nitrogen fertilizers and irrigation influence spring wheat growth and are likely 225 

to influence carbon fluxes. We conducted four additional experimental simulations to 226 

quantitatively estimate the effect of these forcings. The details of the experiments are given 227 

in Table 1. In the Control run (SCON), the model was driven by inputs based on observations 228 

that vary over time. In the experimental simulations, value of an input driver was kept 229 

constant during the study period, while others were allowed to vary as in the SCON 230 

simulation. For example, in STemp, the input data for [CO2], nitrogen, and irrigation were 231 

identical to that in SCON, except for temperature, for which we used the de-trended 1900 – 232 

1930 climatology. In the SN_Fert case, the [CO2], temperature and irrigation were identical 233 

to that in SCON, and nitrogen fertilization is absent. The SWater case is like SCON, with the 234 

only difference that precipitation climatology was used, and no additional water was 235 

provided to the soil through irrigation. We calculated the effect of the individual driver as 236 

the difference between the SCON run and the numerical experiments. 237 
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Table 1 238 

Numerical experiments conducted to evaluate the effect of external drivers on carbon fluxes using 239 

ISAM dynamic wheat crop for 1901 – 2016. 240 

Numerical 

Experiment 
Temperature [CO2] 

Nitrogen 

Fertilization 
Irrigation 

Control 

(SCON) 
Six hourly CRU-NCEP 

Yearly values 

from Global 

Carbon Project 

Budget 2017 

Grid-cell 

specific 

fertilizer 

amount  

Hourly values 

to ensure no 

water stress 

STemp 

Climatological daily 

temperature prepared 

from the period 1900-

1930 

Identical to SCON 
Identical to 

SCON 

Identical to 

SCON 

SCO2 Identical to SCON 
Fixed at 1901 

level 

Identical to 

SCON 

Identical to 

SCON 

SN_Fert Identical to SCON Identical to SCON No fertilizer 
Identical to 

SCON 

SWater Identical to SCON Identical to SCON 
Identical to 

SCON 

No irrigation + 

No 

precipitation 

change 

3 Results 241 

3.1 Evaluation of ISAM site-scale simulations 242 

Site scale simulations were required to evaluate the performance of the dynamic spring wheat 243 

module (ISAMdyn_wheat) implemented in ISAM by Gahlot et al. (2020) in simulating carbon fluxes. 244 

Our results show that the spring wheat module can simulate the magnitude and seasonality of 245 

carbon fluxes in spring wheat croplands better than the generic crop growth module in ISAM 246 

(ISAMC3_crop). Figure 1 and Table 2 compare ISAMdyn_wheat and ISAMC3_crop against site 247 

observations for monthly average fluxes for the 2013-2014 growing season. Figure 1 shows that 248 
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the observed carbon fluxes started increasing from leaf emergence in mid-December 2013. The 249 

fluxes increased till they reach their peaks in March, after which they declined till the harvest in 250 

April. 251 

 252 

Figure 1: Comparison of observation and ISAM model fluxes (a) GPP, (b) TER, and (c) 253 

NEP. 254 

The simulated fluxes followed the observed pattern. ISAMdyn_wheat model run was in better 255 

agreement with site observations than the ISAMC3_crop model. ISAMdyn_wheat captured the 256 

seasonality and accumulated GPP, TER, and NEP for the growing season better than the 257 

ISAMC3_crop model (Table 2). The ISAMdyn_wheat peak coincided with the observations, whereas 258 

the fluxes simulated by the ISAMC3_crop model peaked about a month earlier. The ISAMdyn_wheat 259 

model in ISAM compares better with site measurements for plant biomass at harvest and maximum 260 

LAI than the ISAMC3_crop model (Table 2). 261 

Table 2  262 

Various crop parameters of ISAMdyn_wheat and ISAMC3_crop against site measurements. We 263 

compared field observations at the IARI experimental wheat farm site and ISAM crop varieties, 264 

the dynamic crop and C3 generic crop, for the growing season of 2013-2014. 265 

Variable Site ISAMdyn_wheat ISAMC3 

Cumulative GPP (gC/m2) 882 799.90 335.65 

Cumulative TER (gC/m2) 304 278.59 176.63 

Cumulative NEP (gC/m2) 576 523.30 159.02 

TER/GPP 0.34 0.35 0.53 
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Plant Biomass at harvest (t/ha) 13.92 11.71 -- 

Correlation coefficient TER and GPP 0.86 0.81 0.24 

Maximum LAI 4.6 6.0 1.10 

Table 3 shows the Willmott index and RMSE for the two ISAM runs against the site observations. 266 

The Willmott index is a more sophisticated tool for evaluating the efficiency of land surface 267 

models compared to the usual statistical data comparison indices (Song et al., 2013; Willmott et 268 

al., 2012). The Willmott index (Eq. 1) ranges from -1 to 1, where -1 indicates no agreement while 269 

+1 indicates perfect agreement. The Wilmott index for GPP, TER, and NEP for the ISAMdyn_wheat 270 

model are 0.85, 0.73, and 0.83, respectively. The corresponding values for the ISAMC3_crop model 271 

are much lower at 0.47, 0.46, and 0.47, respectively. The higher index value for the dynamic crop 272 

suggested a better agreement of ISAMdyn_wheat over ISAMC3_crop with the site scale observations. 273 

Therefore, the ISAMdyn_wheat model is more appropriate for representing spring wheat dynamics in 274 

the ISAM land model. 275 

𝑊𝑖𝑙𝑙𝑚𝑜𝑡 𝑖𝑛𝑑𝑒𝑥 =  {
1 −

∑ |𝑀𝑜𝑑𝑒𝑙𝑖−𝑂𝑏𝑠𝑖|𝑛
𝑖=1

𝑐∗ ∑ |𝑂𝑏𝑠𝑖− 𝑂𝑏𝑠̅̅ ̅̅ ̅̅ |𝑛
𝑖=1

, 𝑖𝑓 ∑ |𝑀𝑜𝑑𝑒𝑙𝑖 − 𝑂𝑏𝑠𝑖|𝑛
𝑖=1  ≤  𝑐 ∗  ∑ |𝑂𝑏𝑠𝑖 − 𝑂𝑏𝑠̅̅ ̅̅ ̅|𝑛

𝑖=1  

𝑐∗ ∑ |𝑂𝑏𝑠𝑖− 𝑂𝑏𝑠̅̅ ̅̅ ̅̅ |𝑛
𝑖=1

∑ |𝑀𝑜𝑑𝑒𝑙𝑖−𝑂𝑏𝑠𝑖|𝑛
𝑖=1

− 1, 𝑖𝑓 ∑ |𝑀𝑜𝑑𝑒𝑙𝑖 − 𝑂𝑏𝑠𝑖|𝑛
𝑖=1  >  𝑐 ∗  ∑ |𝑂𝑏𝑠𝑖 −  𝑂𝑏𝑠̅̅ ̅̅ ̅|𝑛

𝑖=1

          (1) 276 

RMSE =  √∑ (Modeli− Obsi)n
i=1

2

n
                                                                                     (2) 277 

 where c = 2, n = number of observations, Modeli represents the ISAM simulated carbon 278 

fluxes, and Obsi represents the site scale observations. 279 

Table 3 280 

Willmott index and RMSE (gC/m2/mon) of monthly carbon fluxes (GPP, NEP, and TER).  281 

 
Willmott index RMSE 

ISAMdyn_wheat ISAMC3_crop ISAMdyn_wheat ISAMC3_crop 

GPP 0.85 0.47 42.14 162.62 

TER 0.73 0.46 20.82 45.90 

NEP 0.83 0.47 36.05 120.44 
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3.2 Spatio-temporal variability of carbon fluxes from spring wheat agro-ecosystems in India 282 

 283 

Figure 2: Comparison of the ISAM SCON with the observations from Meerut (Patel et al., 2011) 284 

and Saharanpur (Patel et al., 2021). 285 

The country-scale SCON run described in Section 2.4b were designed to provide a quantitative 286 

understanding of the spatiotemporal variability of carbon fluxes across the wheat-growing regions 287 

of India. Before evaluating the regional scale ISAM runs, we decided to compare the simulated 288 

NEP from SCON run with the carbon flux data from Patel et al. (2011, 2021). The monthly averaged 289 

carbon flux data was digitized from the figures. Patel et al. (2011) measured the carbon fluxes 290 

from Jan-Apr 2009 over a spring wheat farmland in Meerut in northern India. The measurements 291 

provided a diurnal variation of NEE during four growing stages- tillering, anthesis, post-anthesis, 292 

and at maturity. The diurnal data at a growing stage was averaged, and a value representing a 293 

monthly NEE was calculated and converted to NEP. Patel et al. (2021) provided daily NEE values 294 

at a spring wheat farmland in Saharanpur in northern India. The Patel et al. (2021) data was used 295 

to generate the monthly average fluxes for the growing season 2014-2015. The simulated NEP at 296 

the grid cells where Meerut and Saharanpur are located are extracted from the SCON output. Figure 297 

2 represents the comparison of simulated monthly average NEP (NEPISAM) and NEPOBS measured 298 
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at Meerut (2009) and Saharanpur (2014-2015). The R2 value for the stations is high, showing that 299 

the ISAM simulated NEP captures the variation in observed NEP. The significance of the R2 is 300 

calculated using the two-tailed t-test, and the results reveal that R2 is significant at p<.01 at 301 

Saharanpur and p<.1 at Meerut. The mean absolute bias between observed and simulated NEP at 302 

Saharanpur and Meerut are 90.61 gC/m2/mon and 50.227 gC/m2/mon, respectively. The bias is 303 

perhaps because we are comparing site-scale observations with simulated values that are averaged 304 

over the 0.5o x 0.5o (~ 2500 km2) grid cell area. Nonetheless, the high correlations with site 305 

observations points to the robustness of the ISAM simulations. 306 

Figure 3 shows the spatial maps of GPP, TER, and NEP for the growing season (December to 307 

March). The fluxes for each month of the growing season were averaged over sixteen years (2000 308 

- 2016) for that specific month. Because the climatic conditions across wheat-growing regions of 309 

India are diverse, the wheat crops are sown on different dates, which was reflected in the ISAM 310 

model using the dynamic planting day criteria. Spring wheat is planted in late October in Central 311 

India and in early November in Eastern India. The planting dates for Northern and North-western 312 

regions are late November to early December. Consequently, there are regional variations in the 313 

seasonal flux dynamics. The central and eastern parts of the wheat-growing region show the 314 

maximum value of fluxes in January and February, respectively, while the northern and western 315 

parts show the maxima in March. The spatial plots show very low values of GPP and NEP during 316 

December because the crops are still in early growth. The croplands show very low values of NEP 317 

during March in the central and eastern parts of wheat-growing regions. Even though the croplands 318 

are not active, heterotrophic respiration leads to moderate values of TER in March for the eastern 319 

and central parts of India. 320 
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 321 

Figure 3: A spatial variation of (a) GPP, (b) TER, and (c) NEP over the wheat-growing regions of 322 

India averaged over the period 2000 to 2016. 323 

Figure 4(a) depicts the temporal pattern of annual and decadal fluxes. From 1980 to 2016, the GPP, 324 

NEP, NPP, Ra, and Rh over the spring wheat croplands increased at 1.272, 0.945, 0.579, 0.328, 325 

and 0.366 TgC/yr2, respectively. The trends represent the slope of the linear trend line, and the 326 

trends are significant at p<.01 calculated using a two-tailed test. Figure 4(b) shows the box-whisker 327 

plots. The box represents the 25-75 percentile of the data, and the whisker shows three times the 328 

interquartile range (3IQR). The data outside this 3IQR whisker is an extreme outlier. The median 329 

of all the fluxes showed a greater increase from the 1980s to 1990s compared to the 1990s to 330 

2000s. The rise was again steep from the 2000s to the 2010s. Numerical experiments (Table 1) 331 

were conducted to explain the reasons for such behaviour. The results are described in the next 332 

section. 333 

 334 
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 335 

Figure 4: Carbon fluxes simulated by ISAM model. (a) The time series of fluxes from 1980 to 336 

2016, (b) Decadal averages of fluxes.  337 

3.3 Effects of external drivers on carbon fluxes 338 

We investigated the impact of two climate drivers, changing temperature and [CO2], and two 339 

agricultural practices, nitrogen fertilizer and water availability due to irrigation, on carbon fluxes 340 

from spring wheat croplands. Figure 5 depicts the variation of these variables. Figure 5(a) shows 341 

the temperature anomaly between the SCON and STemp. The temperatures are always warmer in SCON 342 

compared to STemp. During the study period, the temperature anomaly increased at 0.038 oC/yr 343 

(Figure 5:(a)). [CO2] has also shown a consistent rise and increased at 1.743 ppm/yr (Figure 5:(b)). 344 

The nitrogen fertilizer added to the C3 crops increased at 1.86 kg/ha/yr over 36 years from 1980 345 

to 2016 (Figure 5:(c)) (Hurtt et al. 2011). Figure 5(d) displays the anomaly in water present in the 346 

root zone during the growing season, estimated as the difference between SCON and SWater. 347 

Irrigation increases the amount of water available to crops during the growing season in the SCON 348 

run. The SCON run provides ~120 mm/season more water to the crop than the SWater run, which is 349 

~50% of the wheat crop water requirement during the growing season. 350 
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 351 

Figure 5: Time series of climate variables (a) Temperature anomaly, (b) Carbon Dioxide and 352 

management practice, (c) Nitrogen fertilization, and (d) Anomaly in water available in the root 353 

zone (SCON - SWater) during the growing season. 354 

The effects of these factors are estimated by analyzing the difference in simulated carbon fluxes 355 

between the control and experimental simulation (Figure 6 and Table 4). Results show that the 356 

increase in temperature has a negative effect on all the fluxes. The temperature anomaly rose at 357 

0.038 oC/yr, and yearly GPP decreased at 0.597 TgC/yr2 during the study period. The temperature 358 

has varied less between the 1980s and 1990s; therefore, a slight difference in median GPP between 359 

these two decades is observed (Figure 6: (a)), although a higher spread in GPP is observed in the 360 

1990s which is reflective of a few growing seasons with considerable temperature variation. The 361 

consistent higher temperatures during the 2000s and 2010s have caused a significant decrease in 362 

GPP. Since the temperatures considerably varied during the 2000s and 2010s, a large spread in 363 

simulated GPP can be observed. Similar trends in NPP and NEP can be observed with a decrease 364 

of 21.9 and 13.9 TgC/yr, respectively, per degree rise in temperature. Due to a temperature rise, 365 

the growing period and the crop phenology shortens (Koehler et al., 2013); hence a decrease in 366 

fluxes is observed. As the growth of the crop decreases, the TER and NEP also decreases. 367 

Results showed that the increase in [CO2] alone has led to a rise in annual GPP, NEP, Ra, and Rh 368 

at 0.805, 0.422, 0.201, and 0.175 TgC/yr2, respectively (Table 4). During the study period, [CO2] 369 

rose at 1.743 ppm/yr, causing an increase in GPP by 462 GgC per year for a unit ppm rise in [CO2]. 370 

The GPP had a consistent rise each decade. A large spread in GPP was observed in the 1980s. The 371 

[CO2] has consistently increased (Figure 5:(b)), but the temperature anomaly in the 1980s was 372 

below zero for a few growing seasons. Therefore, a significant variation in GPP and other fluxes 373 
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was observed (Figure 4:(a)) in this decade. Similarly, due to a higher CO2 availability for the wheat 374 

crops, NPP, NEP, and TER have increased by 202, 100, and 173 GgC/yr per ppm rise in [CO2]. 375 

As the [CO2] level increases in the environment, more carbon is available for crop uptake by 376 

photosynthesis (Saha et al., 2020).  377 

 378 

Figure 6: The Impact of various drivers (red- natural drivers: CO2 and temperature, and blue- 379 

agricultural practices: irrigation and nitrogen fertilization) on wheat carbon fluxes. The impact of 380 

CO2 is SCON – SCO2. Similarly, the impact of temperature is SCON-STemp, nitrogen fertilization is 381 

SCON-SN_Fert, and irrigation is SCON-SWater. 382 

Nitrogen fertilization has led to an increase in NEP, Ra, and Rh at 0.468, 0.231, and 0.197 TgC/yr2, 383 

respectively. The impact of nitrogen fertilization on GPP at 0.897 TgC/yr2 was the highest among 384 

all the factors. Nitrogen fertilization caused an increase in GPP by ~33 TgC on an annual basis. 385 
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Similarly, NEP increased by ~17 TgC/yr, Ra and Rh by ~8 and ~7 TgC/yr, respectively. Nitrogen 386 

fertilization is essential in India due to its tropical climate and multiple cropping systems (Gahlot 387 

et al., 2020). Studies have shown that nitrogen availability impacts the carbon uptake through the 388 

process of progressive Nitrogen limitation (A. Jain et al., 2009). Though the progressive nitrogen 389 

limitation is observed over longer timescales than the growing period of the crops, the decadal 390 

carbon flux simulations revealed some interesting results. Under excess [CO2] but nitrogen limited 391 

conditions, the crop growth does not show large difference and therefore the carbon uptake 392 

decreases (A. Jain et al., 2009; Luo et al., 2006). Under excess [CO2], if sufficient nitrogen is 393 

available then the carbon uptake by the ecosystem increases and therefore the maximum increase 394 

in fluxes was observed in the nitrogen fertilization case (Table 4). Nitrogen fertilization was 395 

consistent over the decades leading to a constant rise in GPP, but the variation in GPP in the 2000s 396 

was the least (Figure 6) caused by high temperatures during this decade (Figure 5). A similar 397 

pattern of low variation was observed in NEP, Ra, Rh and NEP during this period.   398 

Table 4 399 

The impact of each driver (TgC/yr2) on various fluxes of the spring wheat crop in India. The 400 

values show the slope giving the linear trend of individual fluxes. *The trend has a significance 401 

level of p < .01. 402 

Driver GPP Ra NPP Rh NEP 

Temperature -0.597* -0.159* -0.438* -0.185* -0.278* 

[CO2] 0.805* 0.201* 0.597* 0.175* 0.422* 

Nitrogen 

Fertilization 
0.897* 0.231* 0.666* 0.197* 0.468* 

Water 0.243 0.062 0.182 0.173 0.01 

The impact of water added through irrigation led to an annual increase of ~9 TgC in GPP, ~6.5 403 

TgC in NPP, ~2 TgC in Ra, and ~6 TgC in Rh. The reason for a small trend was that the fluxes 404 

have increased through the 1980s, 1990s, and 2000s, but declined in the 2010s. The reason for the 405 

decline was less water availability for the crops during this period, as shown in Figure 5(d). 406 

Therefore, the trends in these fluxes are not significant (Table 4). The higher GPP, NPP, and NEE 407 

in the 2000s compared to 1990s even though the temperatures were higher in 2000s suggested that 408 



manuscript submitted to Journal of Geophysical Research: Biogeosciences 

 

the adverse effects of high temperatures can be overcome if the crops are provided with enough 409 

water.   410 

4 Discussions 411 

The ISAM simulations and especially the numerical experiments examining the impact of 412 

temperature, [CO2], nitrogen fertilization, and irrigation revealed some interesting features of the 413 

spring wheat agroecosystem in India. All the fluxes have a similar pattern of high rise from 1980s 414 

to 1990s, a small increase from 1990s to 2000s, and then a steep rise between 2000s and 2010s 415 

(Figure 4:(b)). Although [CO2] and Nitrogen fertilization increased at a constant rate throughout 416 

the study period, the temperature and irrigation varied in an irregular manner. Higher temperatures 417 

during the 2000s limited the rise in fluxes during this decade, and the lower water availability 418 

during the 2010s caused a large spread in carbon fluxes in 2010s. The impact of [CO2] measured 419 

through the difference between SCON and SCO2 emphasised that with higher [CO2] the carbon taken 420 

up for photosynthesis increases and the overall ecosystem exchange from the croplands was higher 421 

than the limited [CO2] case. During the 2000s, a sudden dip in fluxes (Figure 4:(a)) was observed 422 

that coincides with the higher temperature anomaly (Figure 5:(a)). However, the impact of added 423 

water during this decade damped the negative effect of higher temperatures, which was evident 424 

from the large spread seen in positive impact during this decade (Figure 6:(a-d)). Thus, the study 425 

suggests that providing sufficient fertilizers and water through irrigation may be able to counteract 426 

the adverse effects of high temperatures. 427 

The simulated carbon fluxes are comparable to published values. The cumulative GPP and NEP 428 

for the wheat-growing season observed at the Saharanpur site are 621 gC/m2 and 192 gC/m2 (Patel 429 

et al., 2021). The GPP and NEP values simulated at the IARI site are 729.9 gC/m2 and 523.3 430 

gC/m2. Although the GPP is comparable with Patel et al. (2021), NEP values simulated by ISAM 431 

are not in the same range. The smaller NEP in Patel et al. (2021) is perhaps because the wheat crop 432 

is grown immediately after sugarcane harvest with a fallow period of 30 days.   433 

Additional work is required to overcome some of the limitations of this study. Perhaps the biggest 434 

limitation of this study was in model evaluation. Ideally, multi-year data from numerous stations 435 

across the study domain should be used for evaluation. However, carbon flux observations from 436 

cropland in India were not available in the public domain. We used data from three agricultural 437 
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experimental sites in north India to evaluate the carbon fluxes simulated by ISAM. Even though 438 

the model evaluation was sub-optimal, this study is a step in the right direction because this is the 439 

first study to evaluate all terrestrial carbon fluxes simulated by a process-based model using site-440 

scale observations.  441 

Second, we estimated the effect of water availability on carbon fluxes by comparing the control 442 

simulation SCON, where the crops do not experience any water stress, with the SWater simulation, 443 

where no irrigation is applied. The best way to understand the effect of irrigation would be to 444 

conduct simulations driven by actual irrigation data. For this purpose, we need a gridded irrigation 445 

time-series dataset. Unfortunately, such data does not exist (Gahlot et al., 2020) or is unrealistic in 446 

magnitude and timing (Mathur and AchutaRao, 2020).  447 

Finally, our simulations were conducted with a land model driven by externally imposed forcings. 448 

In this approach, we ignored the feedback between the land surface and the atmosphere that can 449 

be important, especially for the natural drivers like [CO2] and temperature. The next step moving 450 

ahead would be to use a coupled land-atmosphere model that includes the feedback between the 451 

terrestrial and atmospheric components of the carbon cycle. 452 

5 Conclusions 453 

We used the ISAM model equipped with a spring wheat module to study the carbon fluxes in 454 

spring wheat agroecosystems across the wheat-growing regions of India for the last four decades. 455 

The main conclusions from this study are as follows: 456 

• The ISAM spring wheat module ISAMdyn_wheat was able to simulate the temporal patterns 457 

of GPP, TER, and NEP at the site scale for the IARI experimental wheat farm. The 458 

ISAMdyn_wheat model performed better compared to the generic ISAMC3_crop module.  459 

• Carbon fluxes in spring wheat agro-ecosystems varied widely across the country due to 460 

divergent climatic conditions and management practices, primarily due to difference in 461 

planting dates. While central and eastern parts of the spring wheat-growing regions showed 462 

high carbon fluxes during January, the northern parts exhibited their maximum carbon flux 463 

values during March. 464 

• The effects of increasing [CO2], nitrogen fertilization, and irrigation led to positive trends 465 

in carbon fluxes in the last four decades. Nitrogen fertilization had the strongest effects, 466 
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followed by [CO2] and then water availability. Providing sufficient fertilizers and water 467 

through irrigation can counteract the adverse effects of high temperatures. 468 

Understanding the variability in terrestrial carbon fluxes is essential for understanding the carbon 469 

cycle. Agroecosystems cover large parts of the terrestrial biosphere, with the spring wheat 470 

agroecosystem being one of India's largest land use types. This paper is one of the first long-term 471 

regional-scale studies to look at carbon dynamics in an Indian agroecosystem. The model 472 

developed in this study, after appropriate calibration, can be used to study other agroecosystems 473 

as well. Very importantly, it can serve as a tool to conduct numerical experiments to study future 474 

scenarios and the effects of external drivers. Thus, this study is likely to play a crucial role in 475 

advancing our understanding of terrestrial carbon dynamics and our ability to simulate its 476 

behaviour.   477 
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