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Abstract

Weather and climate forecast predictability relies on Land-Atmosphere (L-A) interactions occurring at different time scales.

However, evaluation of L-A coupling parameterizations in current land surface models (LSMs) is challenging since the physical

processes are complex, and large-scale observations are scarce and uncommon. Recent advancements in satellite observations,

in this light, provide a unique opportunity to evaluate the models’ performances at large spatial scales. Using 5-year soil

moisture memory (SMM) from Soil Moisture Active and Passive (SMAP) observations, we evaluate L-A coupling performances

in 4 prevailing LSMs with both coupled and offline simulations. Multi-model mean comparison at the global scale shows that

current LSMs tend to overestimate SMM that is controlled by water-limited processes and vice versa. Large model spreads in

SMM are also observed between individual models. The SMM biases are highly dependent on models’ parameterizations, while

showing minor relevance to the models’ soil layer depths or the models’ online/offline simulating schemes. Further analyses of

two important terrestrial water cycle-related variables indicate current LSMs may underestimate soil moisture that is directly

available for evapotranspiration and global flood risks. Finally, a comparison of two soil moisture thresholds indicates that

the soil parameters employed in LSMs play an essential role in producing the model’s biases. The satellite estimation of ET

at the water-limited stage and soil hydraulic parameters provides readily available information to constrain LSMs, which are

essentially important to improve the models’ L-A coupling simulations, as well as other land surface processes such as terrestrial

hydrological cycles.
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Key Points: 13 

• The four prevailing LSMs show similar misestimation of soil moisture memory 14 
compared to SMAP observation. 15 

• The differences between LSMs and SMAP are highly dependent on the models’ 16 
parameterizations. 17 

• The soil parameters may play an essential role in determining the LSMs’ L-A coupling 18 
biases. 19 
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Abstract 23 

Weather and climate forecast predictability relies on Land-Atmosphere (L-A) interactions 24 
occurring at different time scales. However, evaluation of L-A coupling parameterizations in 25 
current land surface models (LSMs) is challenging since the physical processes are complex, and 26 
large-scale observations are scarce and uncommon. Recent advancements in satellite observations, 27 
in this light, provide a unique opportunity to evaluate the models’ performances at large spatial 28 
scales. Using 5-year soil moisture memory (SMM) from Soil Moisture Active and Passive (SMAP) 29 
observations, we evaluate L-A coupling performances in 4 prevailing LSMs with both coupled 30 
and offline simulations. Multi-model mean comparison at the global scale shows that current 31 
LSMs tend to overestimate SMM that is controlled by water-limited processes and vice versa. 32 
Large model spreads in SMM are also observed between individual models. The SMM biases are 33 
highly dependent on models’ parameterizations, while showing minor relevance to the models’ 34 
soil layer depths or the models’ online/offline simulating schemes. Further analyses of two 35 
important terrestrial water cycle-related variables indicate current LSMs may underestimate soil 36 
moisture that is directly available for evapotranspiration and global flood risks. Finally, a 37 
comparison of two soil moisture thresholds indicates that the soil parameters employed in LSMs 38 
play an essential role in producing the model’s biases. The satellite estimation of ET at the water-39 
limited stage and soil hydraulic parameters provides readily available information to constrain 40 
LSMs, which are essentially important to improve the models’ L-A coupling simulations, as well 41 
as other land surface processes such as terrestrial hydrological cycles. 42 

 43 

Plain Language Summary 44 

To have a more accurate weather forecast, a better description of physical processes between Land 45 
and Atmosphere (L-A) is required. The L-A processes are often characterized by Land Surface 46 
Models (LSMs). However, because such processes are complex, and the observation records are 47 
scarce, it is difficult to evaluate the L-A simulations in current LSMs on large scale. Recent 48 
advances in satellite technology provide a unique opportunity to evaluate the LSMs’ performances 49 
on basis of observed evidence.  50 

In this study, we use SMAP-observed SMM to evaluate the four most widely-used LSMs. Results 51 
show that the four LSMs tend to overestimate SMM that is controlled by the water-limited 52 
processes and vice versa. Large differences between models are observed, showing high 53 
dependence on the model’s parameterizations. Two water cycle-related variables are also 54 
analyzed, indicating the LSMs may underestimate soil moisture that is directly available for 55 
evapotranspiration and global flood risks. Finally, a comparison of the models’ soil parameters 56 
shows that these parameters play an essential role in producing the models’ biases. This study 57 
provides a comprehensive evaluation of L-A simulating performances in several prevailing LSMs. 58 
This study also provides useful information to constrain LSMs, which are important to improve 59 
Earth’s land surface simulations. 60 

 61 

1 Introduction 62 

Land-atmosphere (L-A) interactions occurring at different timescales are important for 63 
regional weather and climate (Seneviratne et al., 2010). For example, the coupling of surface water 64 
and temperature anomalies can intensify the evolutions of extreme events such as droughts and 65 
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heatwaves (Koster et al., 2009; Miralles et al., 2019, 2014; Seneviratne et al., 2006). However, the 66 
L-A coupling processes are complex and often interact with each other. As such, current climate 67 
models often present large model uncertainties in characterizing L-A coupling strength, for 68 
example, previous studies have shown that there are large differences between soil moisture (SM) 69 
and precipitation coupling strength in several prevalently-used global climate models (Guo et al., 70 
2006; Koster et al., 2006, 2002). Similar model spreads are also found in coupling strength between 71 
SM and evapotranspiration (ET)(Berg and Sheffield, 2018; Dirmeyer et al., 2006). However, since 72 
large-scale observations of essential L-A variables (e.g., SM and ET) are scarce (Pastorello et al., 73 
2020; Seneviratne et al., 2010), recent assessments are limited to inter-model comparisons only. 74 
However, in order to improve the models’ L-A coupling performance, it is essentially important 75 
to diagnose individual models’ biases with observational evidence. In this light, recent advances 76 
in satellite technologies provide unique opportunities to investigate L-A coupling processes at 77 
large spatial scales. 78 

A diversity of methods have been developed to characterize L-A coupling strength, where 79 
algorithms based on sensitivity analyses, e.g., correlation and covariance analyses (Dirmeyer, 80 
2011; Dirmeyer et al., 2009; Miralles et al., 2014), and partial differentiation between multiple L-81 
A variables (Feldman et al., 2019; Gallego‐Elvira et al., 2016; Schwingshackl et al., 2017), are 82 
favored since they present explicit physical indications to understand. However, since the 83 
sensitivity analyses require at least two L-A variables, it is even more challenging to obtain 84 
observational records at large spatial scales. By contrast, soil moisture memory (SMM) – an L-A 85 
coupling metric that is based solely on SM time series – could facilitate L-A coupling assessment 86 
studies for less dependence on data availability, especially when a large number of models are 87 
analyzed (e.g., common variables should be selected when using multi-variable analyses, which 88 
may reduce the model numbers; using SMM instead can efficiently avoid this problem). 89 

SMM measures the time when soil moisture recovers to equilibrium from perturbations (a 90 
perturbation can refer to either a wet anomaly such as precipitation or a dry anomaly such as 91 
drought). Methods such as e-folding time based on the Markov process (Delworth and Manabe, 92 
1988; Koster and Suarez, 2001) and time scale based on soil moisture integral (Ghannam et al., 93 
2016; Katul et al., 2007) are developed to quantify SMM. In these studies, shorter SMM time 94 
indicates more rapid water and energy exchanges between land and near-surface atmosphere – 95 
thus stronger L-A coupling strength. However, while the methods based on Markov processes 96 
provide overall L-A coupling indications, they do not characterize land processes occurring at 97 
different time scales (e.g., drainage occuring within hours or days and ET processes occuring at 98 
subweekly to weekly after precipitation events). In other words, SMM based on Markov processes 99 
does not provide explicit physical indications for calibrating models’ parameterizations. A recently 100 
developed hybrid model does so by separating the effects of water- and energy-limitations on 101 
surface processes (McColl et al., 2019). By comparing the satellite estimates with one example 102 
land surface model (LSM), the study demonstrates that the LSM tends to overestimate SMM time 103 
at long-term scales whereas underestimates SMM at short-term time scales. 104 

However, it is still unknown whether the above conclusion is a common nature in most 105 
LSMs – the L-A coupling parameterization schemes in LSMs are usually highly model-dependent, 106 
and can be susceptible to individual models’ configurations, e.g., soil layer depth, online/offline 107 
simulating schemes, critical L-A parameters, etc. Moreover, in McColl et al. (2019) the satellite-108 
based SMM are estimated from single-year soil moisture time series due to limitations in data 109 
availability. However, the annual variability of soil moisture could influence the conclusions. In 110 
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this light, multi-model assessments of L-A coupling characteristics at different time scales are 111 
necessary to diagnose biases and further provide a reference to improve L-A coupling simulations 112 
in current LSMs. 113 

In this study, we provide a comprehensive evaluation of L-A coupling characteristics in 114 
several prevalently-used LSMs (i.e., Noah LSM, Catchment LSM, HTESSEL and SiB) by using 115 
SMM estimated from 5-year satellite observations. We intend to address the two following 116 
questions: (1) Compared to large-scale satellite observations, how do the prevailing LSMs perform 117 
in simulating L-A coupling characteristics? (2) Despite the models’ spreads, do the LSMs show 118 
common characteristics in L-A simulations and what might be the essential factors that contribute 119 
to them? To answer these questions, spatial patterns and annual variability of SMM from satellite 120 
estimations are first analyzed to provide a robust reference for multi-model assessments. Multi-121 
model performances and influences of individual model’s configurations including soil layer 122 
depths and coupling schemes are then evaluated. In order to diagnose possible reasons that may 123 
result in the models’ biases, satellite-observed terrestrial water cycle parameters (i.e., precipitation 124 
stored in surface soil layer and ET at the water-limited stage) and soil moisture thresholds (i.e., 125 
soil wilting point 𝜃! and soil critical point 𝜃∗) indicated from soil moisture memory are extracted 126 
and further compared with LSMs. The analyses provide satellite-based reference to diagnose L-A 127 
coupling characteristics in several prevailing LSMs, and provide readily available datasets to 128 
constrain the models’ simulations at the global scale.  129 

 130 

2 Materials and Methods 131 

     In this section, we will first give a brief review of basic concepts relevant to SMM. Explicit 132 
equations of the analyzed variables in this study are then given to address their physical indications.  133 

     SMM refers to the time between a perturbation starts and ceases in the time domain. Taking 134 
the wet scenario for example, when a perturbation occurs soil moisture loses water to the near-135 
surface atmosphere through flux exchanges. The water loss persists with several sub-processes in 136 
order: (i) Drainage and runoff start to happen immediately after the precipitation when soil 137 
moisture is saturated; the two subprocesses cease when soil moisture is below the level when soil 138 
capillary is not able to hold water (field capacity, 𝜃#$); (ii) when soil moisture is below 𝜃#$, but is 139 
above a certain level (typically defined as the critical point, 𝜃$), the soil starts to evaporate at the 140 
maximum ET rate (also called Stage-I ET); (iii) When soil moisture is below 𝜃$, ET starts to 141 
happen at the water-limited rate (also named as Stage-II ET; the water-limited ET rate is typically 142 
determined by soil moisture content by first-order); (iv) the soil ceases to lose water when soil 143 
moisture is below soil wilting point 𝜃!. The entire loss can be defined as a function of soil 144 
moisture, i.e., Loss Function. The loss function can then be divided into two broad categories. 145 
When soil moisture is wet (i.e., above 𝜃$), the function is controlled by energy terms; otherwise, 146 
the function is limited by water conditions. The above processes can be described in Figure 1. 147 

 The energy-limited processes (i.e., drainage and stage-I ET) generally occur on timescales 148 
of hours to days. To identify these processes, soil moisture datasets with the comparable temporal 149 
resolution are required. Traditional SMM methods based on Markov processes (or other red-noise 150 
processes) were mostly developed based on soil moisture data with rather coarse temporal 151 
resolutions (e.g., monthly) due to data limitations. They generally combine the above physical 152 
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processes at different stages. Therefore, the derived SMM only represents the overall L-A coupling 153 
strength without explicit physical indication. This impedes LSMs development since such L-A 154 
strength cannot be readily used for models’ calibration. 155 

The recently developed method based on a hybrid model instead characterizes SMM by 156 
considering energy- and water-limitations separately. The hybrid model is developed by using 157 
satellite soil moisture data with a temporal resolution of 3 days. Compared to traditional SMM 158 
results, the SMM at the energy- and water-limited stage can provide detailed references for 159 
calibration in LSMs, e.g., diagnosing which specific processes the L-A coupling biases come from. 160 
The hybrid model separates Loss Function by surface water conditions (i.e., the occurrence of 161 
precipitation events), and explicit equations for SMM at different regimes as well as relevant 162 
diagnoses are given in the following context.  163 

 164 

 165 
Figure 1 Schematic of surface water loss process (a) and soil moisture memory at 166 

different loss regimes (b). Figures are adapted from McColl et al. (2017b). Note that the x-axis 167 
in (a) refers to soil moisture (m3 m-3), and y-axis refers to surface water loss rate (𝐿(𝜃), e.g., 168 

mm s-1); 𝐸!"# is the maximum evapotranspiration rate (the same unit as 𝐿(𝜃)). While in (b), x-169 
axis refers to time (e.g., days) and y-axis refers to soil moisture content (m3 m-3). 𝜃!, 𝜃∗, and 𝜃#$ 170 

refers to soil wilting point, critical point, and field capacity, respectively. 171 

2.1 Soil moisture memory time at water-limited regime (𝜏%) and energy-limited regime (𝜏&) 172 

Soil moisture memory in the water-limited regime (𝜏%, 𝐿 for the water-limited processes 173 
that usually occur at long time scales) and energy-limited regime (𝜏&, 𝑆 for the water-limited 174 
processes that usually occur at short time scales) are estimated from the hybrid model following 175 
McColl et al. (2019). The water-limited regime (i.e., Stage-II ET) is characterized by a 176 
deterministic equation since the processes at this stage usually occur in multi-days, a time scale 177 
that modern satellite measurements can characteristically resolve. Correspondingly, the water 178 
losses during the energy-limited stage often occur much more rapidly (e.g., hours to half a day). 179 
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In this case, a stochastic model is developed to describe a combination of unresolved processes 180 
(e.g., drainage, runoff and Stage-I ET). The hybrid model can be written as: 181 

                     '((*)
'*

=	'
− ((*),(!

-"
,											𝑃 = 0

− ((*),(.

-#
+ 𝜀(𝑡),			𝑃 > 0

                   (1) 182 

where, 𝑃 refers to precipitation occurrence (a binary variable); 𝜃 is the volumetric soil moisture, 183 
and 𝜃̅ refers to the time average soil moisture; 𝜀 is an independent random variable with a mean 184 
of zero;  𝜏% and 𝜏& refers to the soil moisture memory at the water-limited stage and energy-limited 185 
stage, respectively. Solving the above equations yields the explicit expressions of 𝜏% and 𝜏&, as: 186 

   𝜃(𝑡) = '
∆𝜃 exp 7− *,∆*$

-"
8 + 𝜃! ,									𝑃 = 0																																														(2a)

𝜃(𝑡 − ∆𝑡0);;;;;;;;;;;;;; + 1
∆2
exp 7− ∆*$

3-#
8 , 𝑃 > 0																																											(2b)

   187 

where, 𝛥𝜃 refers to the soil moisture change during each soil drying event; 𝜃! refers to the 188 
minimum soil moisture value; 𝛼 is the precipitation intensity; ∆𝑧 is the depth of surface soil layer, 189 
and 𝑡 = ∆𝑡0 refers to the time when the soil moisture drying starts to occur. 190 

 The energy-limited memory 𝜏& can then be calculated directly by rearranging the 191 
expression in (2b), as: 192 

        	𝜏& = −
∆&
'

4567∆()*+
,,,,,-
. 8

                 (3) 193 

where [𝜃9;;;] = 	𝜃(𝑡) − 𝜃(𝑡 − ∆𝑡);;;;;;;;;;;; refers to the positive increments of soil moisture; ∆𝑡 refers to the 194 
temporal resolution of the input data.  195 

However, since soil moisture is the only observation in (2a), and there are multiple 196 
unknowns (i.e., 𝜏%and 𝜃!) to be parametrized, 𝜏% is then estimated by fitting the function to the 197 
soil moisture samples that are subject to water-limitation, namely, the drydown events. Drydown 198 
events here are identified as an event when the soil moisture changes are consistently negative. 199 
Additional rules including (1) 𝜃! is limited to be lower than the minimum value of the soil moisture 200 
time series; and (2) drydown events with less than 3 observation samples and events with 𝑅3 <201 
0.7 are filtered are applied to ensure credible fitting performance, consistent to McColl et al. 202 
(2017).  203 

2.2 Terrestrial water cycle diagnostics informed from SMM 204 

In addition to informing L-A coupling strength, another important role of soil memory is 205 
to provide relevant diagnostics of terrestrial water cycles. Specifically, the stored precipitation 206 
fraction 𝐹: in 𝜏& provides an explicit estimation of how much precipitation can be retained by the 207 
surface soil layer. Therefore, it reflects the water-holding capacity of the soil. A decrease of 𝐹: 208 
indicates the loss of soil water-holding capacity – thus more water will be stored in the near-surface 209 
atmosphere and induce the positive anomaly of rainfall and surface runoff (Liu et al., 2021). In 210 
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this light, 𝐹: can be viewed as a reasonable proxy for assessing flood risks in terrestrial water 211 
cycles.  𝐹: can be described as the sum of positive soil moisture increments normalized by the total 212 
precipitation during a contemporary period and calculated as: 213 

       𝐹0(𝑓) = 	
∆2 ∑ ∆(/+

01
/23

∫ 0(*)'*1
4

,                   (4) 214 

where, 𝑓 refers to the sampling frequency of the input data (d-1) and 𝑇 refers to the analyzed time 215 
period (days); ∆𝑧 refers to soil layer depth (mm), ∆𝜃=9 refers to positive soil moisture increments 216 

(m3 m-3); ∫ 𝑃(𝑡)𝑑𝑡>
?  is the accumulated precipitation (mm). 217 

 By using one-year SMAP soil moisture retrieval, McColl et al. (2017) has demonstrated a 218 
global median estimation of 0.14, that is, a thin 50mm soil layer (SMAP’s nominal detecting depth) 219 
can retain approximately 14% of the precipitation falling on land. Subsequent studies have since 220 
referred to this amount as a benchmark to evaluate 𝐹: in varying soil and climate conditions or 221 
how 𝐹: will change in the future climate (Kim and Lakshmi, 2019; Liu et al., 2021; Martínez-222 
Fernández et al., 2020). However, since soil moisture and precipitation both show annual 223 
variabilities, and the original SMAP products can contain larger noises compared to recent SMAP 224 
versions using an improved algorithm (e.g., Dual Channel Algorithm, MTDCA), it is necessary to 225 
examine the robustness of 𝐹: distribution originally reported in McColl et al. (2017). 226 

In terrestrial water cycles, ET is a core but difficult-to-estimate variable. Initially, gridded 227 
ET products have been developed to validate and improve simulations of soil moisture and other 228 
water-related variables in LSMs. At this phase, diverse ET products based on satellite estimations 229 
(Hu and Jia, 2015; Mu et al., 2014, 2007) and biophysical-constrained model datasets (Zhang et 230 
al., 2019; Zhao et al., 2019) have been developed, while most of them have shown moderate data 231 
accuracy compared to in-situ observations. However, few current ET products provide the ET 232 
information limited by surface water and energy availability, which plays an increasingly 233 
important role in the latest generation of LSMs. However, by integrating the surface water loss in 234 
the water-limited soil drying stage, the Stage-II ET can be readily estimated in this study to 235 
calibrate models’ representations of surface water and energy variables. Annual accumulated 236 
Stage-II ET is calculated as: 237 

𝐸𝑇@@ =	∑ ∆𝑧𝜃∗(1 − exp	(
∆''/
-"
))A

=BC  ,           (5) 238 

where, ∆𝑧 is the soil layer depth (mm); 𝜃∗ refers to soil critical point (m3 m-3), ∆𝑑𝑑= refers to 239 
duration each drydown event persists (days), where 𝑛 refers to the total soil moisture drydown 240 
number within the analyzed year, and 𝑖 refers to the drydown event; 𝜏% indicates water-limited 241 
SMM (days). 242 

2.3 Critical Soil moisture thresholds  243 

Recall that soil moisture wilting point 𝜃! refers to the soil moisture level when ET ceases 244 
to occur, and the critical point 𝜃$ refers to the soil moisture value that ET transforms from the 245 
energy-limited regime to water-limitation. In this case, the two thresholds correspond reasonably 246 
to the soil moisture values at both ends of the drydown events, i.e., 𝜃! and 𝜃$ can be approximated 247 
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by statistics (e.g., median or mean) of 𝜃!P  in (2b) and the initial soil moisture (𝜃:P) at the beginning 248 
of each identified drydown event, when the total number of identified drydown events are 249 
statistically sufficient (e.g., more than 50 events within 5 years at each grid). We here use multi-250 
year medians of 𝜃!P  and 𝜃:P instead of their means because they represent the majority of the 251 
analyzed variables (as opposed to mean values that could be biased by extremes) (Feldman et al., 252 
2021), although we acknowledge that theoretically the truth of 𝜃! and 𝜃∗ can hardly be obtained 253 
by using observations only. 254 

We also note that the soil moisture thresholds retrieved from soil moisture time series may 255 
not facilitate direct comparisons with those encoded in LSMs, which are typically prescribed or 256 
calculated dependent on soil texture data (e.g., through Pedo-Transfer Functions, PTF hereafter). 257 
Therefore, we also compare 𝜃!P  and 𝜃:P with the soil moisture thresholds calculated from the Global 258 
Soil Dataset for Earth System Modeling (GSDE, Shangguan et al., 2014), a soil texture dataset 259 
that is prevalently used in many LSMs (e.g., Noah LSM with Multiple Parameters, Noah-MP (Niu 260 
et al., 2011; Yang et al., 2011)). We use the PTF from Saxton and Rawls (2006) to include the 261 
organic matter effects. Additional PTF function from Clapp and Hornberger (1978) is also 262 
analyzed. Details of PTF function can be found in Supplementary Materials (Table S1). 263 

 264 

3 Data 265 

3.1 SMAP Surface Soil Moisture Data 266 

Five annual cycles (i.e., April 1, 2015 to March 31, 2020) of soil moisture retrievals from Soil 267 
Moisture Active and Passive Mission (SMAP, (Entekhabi et al., 2010)) are used to obtain satellite 268 
estimation of 𝜏& and 𝜏% respectively. SMAP measures soil moisture at the surface soil layer (i.e., 269 
0 – 5cm) from the L-band microwave radiometer. Validated by a large number of ground 270 
observations, SMAP SSM has been shown to have high accuracy to capture soil moisture 271 
timeseries compared to other microwave soil moisture products. SMAP has a nominal revisiting 272 
period of 3 days at the equator (1~2 days in polar regions), therefore it performs well in 273 
characterizing land-atmosphere coupling processes at weekly and sub-weekly time scales. Here 274 
we choose soil moisture products derived from the Multi-Temporal Dual Channel Algorithm 275 
(MTDCA) (Konings et al., 2016) since it uses time-invariant scattering albedo, and therefore 276 
reduces high-frequency noises. The spatial resolution of MTDCA product used in this study is 277 
36km with EASE projections. 278 

Prior to conducting the analysis, a quality control procedure has been applied to reduce the 279 
influences of noise encoded in satellite measurement. Consistent with several previous studies 280 
(McColl et al., 2019, 2017), soil moisture data over areas with dense vegetation cover (e.g., 281 
vegetation water content ≥ 5	𝑘𝑔	𝑚,3), intense Radio Frequency Interference (RFI), water bodies, 282 
and frozen landscapes are filtered. In addition, since the surface water balance is easily affected 283 
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by the temporal resolution of the analyzed SSM data, the SMAP soil moisture data are then 284 
resampled to a uniform sampling frequency of 1/3	𝑑,C at each pixel (McColl et al., 2017).  285 

3.2 Reanalysis Datasets 286 

Surface soil moisture from six prevalent reanalysis datasets including Global Land Data 287 
Assimilation System v2.2 Catchment Land Surface Model (GLDAS-CLSM (Li et al., 2020) ) and 288 
Global Land Data Assimilation System v2.1 Noah Model (GLDAS-Noah (Beaudoing, et al., 2020) 289 
) from Goddard Earth Science Data Information and Services Center (GES DISC) at the National 290 
Aeronautics and Space Administration (NASA), Modern-Era Retrospective Analysis for Research 291 
and Applications version2 (Merra2, (Gelaro et al., 2017)) from NASA’s Global Modeling and 292 
Assimilation (GMAO), National Centers for Environmental Prediction Final Operational Global 293 
Analysis (NCEP-FNL, DOI: 10.5065/D6M043C6), European Center for Mesoscale Weather 294 
Forecast, version5 (ERA5(Hersbach et al., 2020)), and Japanese 55-year Reanalysis (JRA55, 295 
(Kobayashi et al., 2015)) from Japan Meteorological Agency are used to estimate soil moisture 296 
memory at different time scales.  297 

All reanalysis datasets employed in this study are listed in Table 1. Among them, four 298 
distinctive LSMs, namely, the Catchment LSM, Noah LSM, (H)TSSEL and SiB are run with 299 
coupling scheme (to atmosphere model) to produce soil moisture simulations for MERRA2, 300 
NCEP, ERA5 and JRA55, respectively. Comparing soil memory analysis between these datasets 301 
could inform the model-dependent L-A coupling characteristics (e.g., consistency and divergence 302 
of LSMs’ performance in L-A interactions). Two LSMs (i.e., Catchment and Noah LSMs) are run 303 
with offline coupling scheme to provide soil moisture data for GLDAS-Catchment and GLDAS-304 
Noah. Comparing results from these two datasets with analyses from other LSMs can diagnose the 305 
effects of atmospheric processes (e.g., moist convection and turbulence mixing) on L-A 306 
interactions. We note that the soil layer depth is 10 cm in all datasets in this study, except for the 307 
GLDAS-CLSM and JRA55, which has a topsoil layer of 2cm. Comparing memory results 308 
estimated from these two models with others could inform the influence of soil depths on flux 309 
exchanges at the land-atmosphere interface. All the soil moisture data are aggregated to a common 310 
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36 km spatial resolution, and their temporal resolutions are resampled to 1/3 day-1, consistent to 311 
SMAP observations.  312 

Table 1. Detailed information of six reanalysis datasets in this study 313 

Data Names LSMs Surface Soil 
Layer Depth Spatial Resolution Temporal 

Resolution 

GLDAS-
CLSMv2.2 Catchment (offline) 0-2cm 0.25° ×0.25° 1 day 

GLDAS-
Noahv2.1 Noah (offline) 0-10cm 0.25° ×0.25° 3 hours 

MERRA2 Catchment (coupled) 0-10cm 0.625° ×0.5° 1hour 

NCEP Noah (coupled) 0-10cm 1° ×1° 6 hours 

ERA5 (H)TESSEL (coupled) 0-10cm 0.25° ×0.25° 1 hour 

JRA55* SiB (coupled) 0-2cm 0.5° ×0.5° 3hours 

 314 

3.3 GPM Precipitation Data 315 

Precipitation information is needed when calculating soil memory in the energy-limited 316 
regime (𝜏&). Here, we use Late-Run Integrated Multi-Satellite Retrievals (IMERG) from NASA’s 317 
Global Precipitation Mission (GPM) (Huffman et al., 2019). The IMERG product has a spatial 318 
resolution of 0.1°, and is regridded to 36km. The half-hourly data are then converted from UTC to 319 
daily 6 a.m. local time to be consistent with SMAP’s overpass time. Similar to (McColl et al., 320 
2019), the satellite-observed precipitation data, rather than the precipitation forcing that drives 321 
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LSMs, are used when estimating 𝜏& for the reanalysis datasets to isolate the impact of soil moisture 322 
on the comparison between observations and models.  323 

 324 
Figure 2 Global distribution of energy-limited soil moisture memory (𝜏$, (a)) and water-325 

limited memory (𝜏%, (b)) estimated from 5-year SMAP datasets. Inserted texts refer to global 326 
mean and median values. 327 

4 Results 328 

4.1 𝜏& and 𝜏% estimated from SMAP SSM data 329 

 Figure 2 shows the global distribution of median 𝜏% and 𝜏& estimated from 5-yr SMAP 330 
observations. At the global scale, the energy-limited soil memory time 𝜏& is longer over arid 331 
regions (such as the Midwest of the United States and central Australia) whereas the water-limited 332 
soil memory time 𝜏% is longer over wet areas, corresponding reasonably to the spatial distribution 333 
of soil hydraulic properties – the wet areas tend to have higher soil hydraulic conductivity thus 334 
precipitation drains more rapidly into the deep soils. The Spearman’s correlation (𝜌 = 0.51, 𝑝 <335 
0.05) further suggests these two memory scales are spatially anti-correlated (Figure S1), which 336 
compare consistently to analyses reported in previous studies (McColl et al., 2017b, 2019). 337 

 In addition to the spatial pattern, we also analyze the temporal variability of 𝜏% and 𝜏&, 338 
which has not yet gained particular concern in literature. We emphasize that the soil memory time 339 
discussed in this study are two proxies for measuring L-A coupling strength, therefore their 340 
temporal variability (e.g., year-to-year variations) may significantly change the spatial pattern and 341 
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frequency of the occurrences of extreme events. Figure 3 shows that annual variations of the soil 342 
memory time within the study period (i.e., 2015-2019). Results show that both 𝜏% and 𝜏& remain 343 
consistently unchanged within a rather long-term. Although the 𝜏% shows the longer-tailed 344 
distribution in the year 2019, the low density of 𝜏% with “extreme” values indicates this does not 345 
influence the overall distribution. These results indicate that the spatial pattern of different soil 346 
drying regimes remains qualitatively fixed and the drying rates do not change over time. Moreover, 347 
these results also suggest that the satellite estimates of 𝜏% and 𝜏& are robust and can serve as credible 348 
references to examine the L-A coupling strength in the reanalysis datasets. 349 

 350 

Figure 3 Annual variability of statistics for 𝜏$ (above) and 𝜏% (below) estimated from SMAP observation. 351 
Polygons indicate Probability Density (PDF) curves. 352 

4.2 𝜏& and 𝜏% from reanalysis data  353 

 Figure 4 shows the scatterplots of the multi-model mean of 𝜏% and 𝜏& estimates, and their 354 
comparison with the SMAP observations, respectively. The global maps of multi-model means are 355 
shown in Figure S2 of the supplementary material. The results show that current LSMs can present 356 
reasonable anti-correlated patterns of 𝜏% and 𝜏& with Spearman’s correlation of -0.37. The global 357 
multi-model mean maps also show that 𝜏& is longer in arid areas while long 𝜏% occurs in wet areas 358 
(Figure S2). However, by comparing 𝜏% and 𝜏& with satellite estimates, respectively, Figure 4a and 359 
Figure 4b show that the energy-limited soil memory is underestimated while the memory time at 360 
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the water-limited regime is overestimated, indicating that L-A processes at different time scales 361 
are generally misrepresented by LSMs.  362 

 363 

Figure 4 Scatterplots of multi-model mean of 𝜏$ (a) and 𝜏% (b) versus SMAP estimation. (c) refer to the 364 
scatterplot between 𝜏$ versus 𝜏%. Inserted texts are correlations between each pair of the analyzed 365 

variables. Colorbars indicates probability density. 366 

 There could be multiple reasons (e.g., model’s physical parameterizations, coupling 367 
schemes, etc.) that can lead to memory biases in current LSMs. Individual models may thus 368 
perform strong disagreement in capturing L-A characteristics. Figure 5 and Figure 6 show the 369 
inter-comparison of 𝜏% and 𝜏& between six reanalysis datasets as well as SMAP observations, 370 
respectively. Consistent to the multi-model mean results, the six analyzed datasets all show 371 
substantial underestimations of 𝜏& and overestimation of 𝜏% compared to satellite estimates. 372 
However, the biases in model-estimated memory time show large model spreads. Specifically, 373 
GLDAS-CLSM and JRA55 present the two largest underestimations for the energy-limited 374 
memory time, with a median of 0.57 and 0.7 day compared to 1.4 days of SMAP estimates, 375 
respectively. The other four datasets show similar underestimations (Figure 5, b - e) of the 𝜏& 376 
results; however, the 𝜏& estimations of these four datasets compare more closely to SMAP, relevant 377 
to GLDAS-CLSM and JRA55. This could be relevant to soil depth. The topsoil depth prescribed 378 
in GLDAS-CLSM and JRA55 is 2cm, only one-fifth of those in other LSMs. Since 𝜏& reflects the 379 
soil water-holding capacity and is a direct function of soil layer thickness, it is not strange that a 380 
model with a thinner soil layer would exhibit more rapid drainage or ET-I drying rates. However, 381 
for the other models such as GLDAS-Noah, MERRA2, NCEP-FNL and ERA5, in which the soil 382 
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depths are twice as much as the nominal detecting depth of SMAP, 𝜏& estimates are still 383 
underestimated with medians around 0.3 day.  384 

 385 

Figure 5 Global distribution of 𝜏$ for each individual model (a – f) and the annual 386 
variability of their statistics (g). Inserted texts in (a – f) refer to global mean and median 387 

values for each model. 388 

Compared to 𝜏& results, the models show an overall overestimation of 𝜏%. In contrast to 𝜏& 389 
results, the model estimated 𝜏% also shows a large model spread but the inter-model comparison 390 
does not show high relevance to soil layer thickness. This may indicate that the water-limited 391 
processes, in particular, the stage-II ET process at the surface soil layer is more tightly related to 392 
deeper soils than the energy-limited processes such as drainage and runoff. The largest 𝜏% median 393 
overestimation is presented by MERRA2 instead of GLDAS-CLSM. Moderate 𝜏% biases are 394 
presented in GLDAS-Noah, NCEP-FNL and ERA5, with their medians more than twice as 395 
compared to SMAP observations. 𝜏% estimation from JRA55 shows to be the closest to SMAP 396 
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estimate, verifying that the parameterizations in SiB LSM perform better in the characterizations 397 
of water-limited soil drying processes.  398 

 399 

Figure 6 Same as Figure 5 Global distribution of 𝜏$ for each individual model (a – f) and the 400 
annual variability of their statistics (g). Inserted texts in (a – f) refer to global mean and 401 

median values for each model.but for 𝜏%. 402 

 In addition to the model dependence and soil layer depth, we also find that neither 𝜏& nor 403 
𝜏% estimate is highly sensitive to the models’ coupling schemes. For example, for GLDAS-Noah 404 
and NCEP-FNL, both of which use Noah LSM but are run with different coupling schemes, e.g., 405 
the LSM is run offline in GLDAS-Noah while is coupled to the atmospheric model in NCEP-FNL, 406 
𝜏& and 𝜏% both show similar statistics (e.g., medians, quantiles and ranges). While the memory 407 
results in the other pair (i.e., GLDAS-Catchment and MERRA2) show relatively larger 408 
differences, this discrepancy can be possibly attributed to the model’s inconsistencies in soil layer 409 
thickness. By comparison, previous studies have shown that land properties (i.e., soil organic 410 
matter) can have different effects on surface states (e.g., soil temperature and near-surface air 411 
temperature) in coupled and uncoupled LSMs, respectively (citations, Sun et al., 202?). However, 412 



manuscript submitted to Earth’s Future 

 

we note that these analyses only focus on surface state variables rather than diagnostics related to 413 
time-variant processes. Our results, by analyzing the soil drying time, show that the atmospheric 414 
processes play minor roles in regulating land surface processes at time scales of hours to 415 
subweekly. The above analyses suggest that the underestimation of SMM in current LSMs is not 416 
caused by soil layer depths or the models’ online/offline simulating schemes, but by other factors 417 
such as the models’ employment of physical parametrizations and static parameters (such as soil 418 
and vegetation properties).  419 

4.3 Terrestrial water cycle diagnostics informed by 𝜏& and 𝜏% 420 

Figure 7 shows the comparison of 𝐹: (left column) and Stage-II ET (right column) 421 
estimation between multi-model mean and satellite-based estimations. Only four datasets with 422 
equal soil layer depth (10 cm) are chosen here to represent the majority of the analyzed models 423 
since ET is accumulated with soil layer depths. Results including GLDAS-CLSM and JRA55 are 424 
shown in Figure S3 in the supplementary materials. 425 

𝐹: estimate based on five-year SMAP SSM retrievals presents a similar global pattern, but 426 
with a median of 23% compared to 14.4% reported in McColl et al (2017). Since 𝐹: is essentially 427 
relevant to “wet” risks (e.g., floods) at synoptic time scales (Liu et al., 2021), a 7% difference in 428 
𝐹: may result in a different global pattern of water-related extreme events. This means the 429 
comparison of 𝐹: between the original SMAP soil moisture estimation and results from other 430 
remote sensing products and climate models should be further validated. For example, Liu et al. 431 
(2021) show that one current LSM (i.e., CLM) produces consistent 𝐹: to satellite estimation. 432 
Therefore, they use historical simulations from CLM as a baseline to compare with 𝐹: projections 433 
in future climate, and conclude that the precipitation retained in the surface soil layer could 434 
possibly decrease. However, the multi-model mean estimate from four reanalysis datasets suggests 435 
that current LSMs present an underestimation of 𝐹: evaluated by both mean (21% of models vs. 436 
28% of satellite) and median (18% of models vs. 23% of satellite) statistics. Results including all 437 
datasets lead to a consistent conclusion. This result indicates that assessments of future 𝐹: 438 
projections may be re-examined with the historical reference redefined. 439 

The annual Stage-II ET from a five-year SMAP estimation presents a global median of 440 
47.91 mm yr-1, showing several hotspots (e.g., Stage-II ET > 100 mm yr-1) occurring in the central 441 
US, South America, and eastern Australia. By comparison, the multi-model mean (of four analyzed 442 
datasets) shows an underestimation of Stage-II ET with a global median of 39.67 mm yr-1. Stage-443 
II ET of six-model-mean is even lower, with a global median of only 35.75 mm yr-1. Particularly, 444 
Stage-II ET hotspots (including the central US, which has previously been identified as one of the 445 
regions that have the strongest L-A coupling strength on the globe by Koster et al. (2004)) are 446 
muted in the multi-model mean results. The above results suggest that the flood risks are 447 
underestimated in current LSMs, and the observed water-limitations on Stage-II ET are more 448 
severe than characterized in models. As such, calibrating models’ surface energy partitioning 449 
processes (e.g., soil moisture and ET coupling regimes) with observed evidence may help to 450 
improve models’ representations of L-A interactions. 451 

The 𝐹: results show consistent model spread to Stage-II ET results as well as spread in 452 
energy-limited soil moisture memory 𝜏& (Figure S4 and Figure S5). Still, the results are highly 453 
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sensitive to soil depth and models’ parameterization schemes, but show insignificant sensitivity to 454 
models’ coupling schemes. For example, both 𝐹: and Stage-II ET from GLDAS-CLSM and JRA55 455 
are much lower than other models due to the soil depth configuration, and the differences between 456 
ERA5 and other models with consistent soil depth (i.e., GLDAS-Noah, MERRA2 and NCEP-457 
FNL) are more distinctive than those between models with different coupling schemes (e.g., 458 
MERRA2 and NCEP-FNL).  459 

 460 

Figure 7 Global distribution of precipitation fraction (𝐹:, left column) and stage-II ET (right 461 
column) for multi-model mean (a – d), and their scatterplot versus SMAP estimations. Since ET 462 
is accumulated with soil layer depths, only four models with 10 cm soil layers are shown here. 463 

Results of including all models are shown in Figure S3. 464 

4.4 Critical soil moisture thresholds 465 

 The above results suggest that current LSMs’ biases in L-A simulation are highly 466 
dependent on the models’ parameterizations (including the physical schemes and the models’ static 467 
parameters). However, systematically evaluating the effects of the models’ physical schemes on 468 
the L-A coupling biases could be highly labor-intensive and time-consuming. Therefore, we chose 469 
to first evaluate one core component of the LSMs’ static parameters, the soil hydraulic thresholds 470 
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because of their high relevance to SMM, to explore the essential factors that might contribute to 471 
the models’ L-A simulating biases. 472 

Figure 8a and Figure 8c show the comparison of global soil wilting point 𝜃! between 473 
SMAP observation and multi-model mean. The results show an overall similar global pattern, with 474 
𝜃! higher in strong L-A coupling hotspots. However, the SMAP observed 𝜃! shows much less 475 
spatial heterogeneity, e.g., it has a narrower range (except for the hotspots, 𝜃! in most areas are 476 
between 0.04 m3 m-3 and 0.06 m3 m-3). Comparison between the multi-model mean and the SMAP 477 
observation shows that the models present a substantial overestimation of 𝜃! – the multi-model 478 
mean shows a global median of 0.13 m3 m-3 versus 0.05 m3 m-3 of SMAP. The scatterplot further 479 
validates the conclusion (Figure 8e). Similar overestimation is also observed in models’ soil 480 
moisture critical point 𝜃$ (Figure 8b and Figure 8d). The global median 𝜃$ of satellite-estimated 481 
and multi-model mean are 0.24 m3 m-3 and 0.27 m3 m-3 respectively. In contrast to 𝜃!, the multi-482 
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model mean of 𝜃$ shows a particularly large overestimation in the strong L-A coupling areas. 483 

 484 

Figure 8 Global distribution of soil wilting point (𝜃!, left column) and critical point (𝜃$, 485 
right column) for multi-model mean (a – d), and their scatterplot versus SMAP estimations. 486 

Areas where 𝜃! < 0.04 m3 m-3 are masked to mitigate noises induced by data quality. 487 

Figure 9 shows the intercomparison of model spreads as well as the annual variability of 488 
𝜃! and 𝜃$. Overall, the soil moisture thresholds estimated from models and satellite observation 489 
are robust within the five annual cycles. 𝜃! and 𝜃$ of the models compare consistently 490 
overestimated to the SMAP observations. Intercomparison between individual models further 491 
shows that in contrast to soil memory and water cycle diagnostics, the soil moisture thresholds 492 
show minor sensitivity to models’ soil layer depth or parameterization schemes. This indicates that 493 
the LSMs’ L-A simulating biases may be commonly dominated by misrepresentations of soil 494 
hydraulic characteristics.  495 

We note again the 𝜃! and 𝜃$ retrieved from models’ SM time series are not exactly the one 496 
that drives LSMs – soil parameters are often calculated from soil texture data in LSMs. Therefore, 497 
we compare the soil texture-based thresholds in order to diagnose possible reasons that may be 498 
responsible for uncertainties in models’ L-A presentations. Figures S6-S7 show the global 499 
distribution of soil moisture thresholds calculated from GSDE soil texture data. The texture-based 500 
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𝜃! and 𝜃$ compare similarly to the thresholds retrieved from models’ soil moisture timeseries and 501 
show consistent differences to the SMAP estimations. Comparison with thresholds calculated from 502 
Clapp and Hornberger (1978) scheme results in a consistent conclusion (Figure S8-S9). The 503 
similarity between retrieved- and texture-based results and their differences from satellite 504 
estimations suggest that the soil moisture thresholds could be highly relevant to the models’ L-A 505 
coupling simulations, especially for simulations related to the energy-limited processes. Therefore, 506 
calibrating the soil texture datasets based on large-scale observational soil hydraulic thresholds 507 
may provide an efficient approach to improve the models’ performances in L-A coupling 508 
simulations. 509 

 510 

Figure 9 Annual variability of statistics for 𝜃! (above) and 𝜃$ (below) of each individual models. 511 

5 Conclusions 512 

This study provides global evaluations of surface soil memory in six prevalently-used 513 
reanalysis datasets by using multi-year satellite estimations. The results show that the multi-model 514 
mean presents an overestimation of water-limited soil memory 𝜏% whereas tends to underestimate 515 
the energy-limited soil memory 𝜏&, suggesting that the soil memory biases reported previously in 516 
one or two example model(s) are prevalent in current LSMs. Large model spreads are observed 517 
between individual models, where the soil memory biases are highly dependent on models’ 518 
parameterizations such as the static soil hydraulic property data, while showing minor relevance 519 
to the models’ soil layer depth or online/offline simulating schemes.  520 

Our study also provides a satellite-based estimation of two important terrestrial water 521 
cycle-related variables (i.e., the precipitation fraction 𝐹: for assessing flood risks and water-limited 522 
evapotranspiration ET-II) at the global scale. The five-year mean 𝐹: presents a 7% increase (i.e., 523 
the newly estimated 𝐹: is 23%) in the global median to the originally reported results, indicating 524 
moderate sensitivity of observed flood risks to the remote sensing products. This also suggests that 525 
future assessments of 𝐹:, as well as flood risks in climate models, should consider factors such as 526 
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the robustness of the reference 𝐹: datasets. The satellite estimation of ET-II shows reasonable 527 
spatial distribution compared to the observed pattern of strong L-A coupling regions. Compared 528 
to prevailing ET products, the advantage of ET-II in our study is that we separate ET limited by 529 
surface water availability from the ET partitioning processes with explicit physical meaning. As 530 
ET partitioning regulates carbon redistribution of plants, and energy and water exchanges between 531 
land and near-surface atmosphere (Akbar et al., 2019; Feldman et al., 2020, 2019; Williams and 532 
Torn, 2015; Zhou et al., 2016), calibrating the physical parameterizations such as surface resistance 533 
or carbon assimilation schemes with satellite-observed Stage-II ET may improve the simulations 534 
of L-A coupling variables (e.g., soil moisture and temperature) and vegetation dynamics (e.g., 535 
Gross Primary Production, Transpiration-ET ratio) in LSMs. 536 

Global satellite-based soil hydraulic parameters (i.e., the soil moisture wilting point 𝜃! and 537 
critical point 𝜃$) are finally provided. The 𝜃! and 𝜃$ statistics are robust within five annual cycles. 538 
The multi-model results show substantial differences in both  𝜃! and 𝜃$ from the satellite 539 
estimates. Comparison with texture-based analysis confirms the conclusion. Large-scale products 540 
of soil hydraulic parameters are typically provided by extrapolating in-situ measurements from 541 
geographical survey records, where the data quality is only vaguely defined (Bouma, 1989; Dai et 542 
al., 2019). Our study, by comparing global observational evidence, further shows that the texture-543 
based estimations of 𝜃! and 𝜃$ are both overestimated. Furthermore, the soil hydraulic parameters 544 
are directly related to soil texture. As such, the results indicate the soil texture information may be 545 
improved by optimizing from satellite-observed 𝜃! and 𝜃$, and thus could enable considerable 546 
improvements of the equilibrium soil moisture simulation biases in many LSMs.   547 

Several limitations, however, should also be addressed in this study. ET-II and soil 548 
moisture thresholds 𝜃! and 𝜃$ are both estimated by characterizing soil moisture drydown curves. 549 
The method itself contains uncertainty. For example, when fitting the drydown timeseries, the 550 
functional forms, e.g., using the logarithmic function instead of the exponential function, may lead 551 
to different estimations. However, updating the fitting function would need additional hypotheses 552 
and may bring in extra uncertainty, and the derivation of a new method to characterize the drydown 553 
processes is beyond the scope of this study. The parameter boundaries (e.g., the minimum soil 554 
moisture values, and upper and lower boundary limits of constants in the fitting procedure) would 555 
also lead to different results. However, we have tested the fitting procedure by changing boundary 556 
limits, and the results show that the influence on parameters is minor (not shown).  557 

Another factor that may affect the results is the soil moisture sampling frequency. The 558 
sampling frequency used in this study is 1/3 d-1(reverse of SMAP’s nominal revisiting period), 559 
therefore different estimations of soil memory as well as relevant diagnostics should be expected 560 
when land processes occurred within 3 days are included. In addition, 5-year soil moisture data 561 
may still be insufficient to produce a robust estimate of these variables. Sensitivity of ET-II and 562 
soil moisture thresholds to these factors are thus expected by using soil moisture datasets with 563 
higher sampling frequency and long temporal coverage available (e.g., a recently developed soil 564 
moisture datasets from the neural network (Yao et al., 2021) provides daily satellite-based soil 565 
moisture products with 20-year temporal coverage). However, we emphasize that the primary aim 566 
of this study is to provide evaluations of L-A coupling performance in several prevalently-used 567 
reanalysis datasets with satellite-observed evidence. However, since credible L-A products are 568 
essentially important for improvements in current LSMs, future practices are heartily expected to 569 
produce such datasets with high and robust data quality.  570 
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Figure S1. Scatter plot of energy-limited (𝜏!) and water-limited soil memory (𝜏") 
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Figure S2. Global distribution of multi-model-mean 𝜏! (a) and 𝜏" (b) from six reanalysis 
datasets 
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Figure S3. Same as Figure 7 but for all datasets.  
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Figure S4 Global distribution of precipitation fraction 𝐹# from individual dataset (a – f) 
and comparison of their annual variability (g) 
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Figure S5 Same as Figure S4 but for Stage-II ET 
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Figure S6 Global distribution of soil wilting point 𝜃$ from satellite estimation (a), multi-
model means(b), and from texture-based result (c); (d) and (e) indicates scatter plot of 
multi-model mean against satellite estimation and texture-based (SR06 scheme) result, 
respectively. 
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Figure S7 Same as Figure S6 but for soil critical point 𝜃%  
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Figure S8 Global distribution of soil wilting point 𝜃$ from satellite estimation (a), multi-
model means(b), and from texture-based result (c); (d) and (e) indicates scatter plot of 
multi-model mean against satellite estimation and texture-based (Clapp and Hornberger 
(1978) scheme) result, respectively. 
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Figure S9 Same as Figure S8 but the texture-based 𝜃%  is calculated from Clapp and 
Hornberger (1978) scheme. 
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Table S1 Pedotransfer Function from Saxton and Rawls (2006) (left column) and Clapp 
and Hornberger (1978) (right column). C, S, OC refers to soil clay content (%), sand 
content (%), and organic carbon (%) respectively. 

 PTF-SR06 PTF-CH 

Soil Wilting 
Point𝜃! 

𝜃! =	𝜃"#$$% + (0.14𝜃"#$$% − 0.02) 
𝜃"#$$% =	−0.024𝑆 + 0.487𝐶

+ 0.006𝑂𝐶
+ 0.005(𝑆 ∗ 𝑂𝐶)
− 0.013(𝐶 ∗ 𝑂𝐶)
+ 0.068(𝑆 ∗ 𝑂𝐶)
+ 0.031 

𝜃! = (
15.0
𝛼
)(
"
') 

𝛼 = 	exp	(−4.36 − 0.0715𝐶 − 4.88𝑒
− 4𝑆) − 4.285𝑒
− 5𝑆)𝐶) 

𝛽 = 	−3.140 − 0.0022𝐶) − 3.484𝑒
− 5𝑆)𝐶 

Critical 
Point 𝜃*+, 

𝜃*+, =	𝜃--% + 1.283𝜃--%)

− 0.374𝜃--% − 0.015 
𝜃--% =	−0.251𝑆 + 0.195𝐶

+ 0.011𝑂𝐶
+ 0.006(𝑆 ∗ 𝑂𝐶)
− 0.027(𝐶 ∗ 𝑂𝐶)
+ 0.452(𝑆 ∗ 𝑂𝐶)
+ 0.299 

𝜃*+, = 0.01(11.83 + 0.96𝐶
− 0.008𝐶)) 

Saturated 
Point 𝜃./% 

𝜃./% =	𝜃-- + 𝜃.0-- − 0.097𝑆
+ 0.043 

𝜃.0-- = 𝜃(.0--)% + 0.636𝜃(.0--)% −
0.107 
𝜃(.0--)% = 	0.278𝑆 + 0.034𝐶

+ 0.022𝑂𝐶
+ 0.018(𝑆 ∗ 𝑂𝐶)
− 0.027(𝐶 ∗ 𝑂𝐶)
− 0.584(𝑆 ∗ 𝑂𝐶)
+ 0.078 

𝜃./% = 0.489 − 0.00126𝑆 

bexp(−) bexp = -.2"34
56789!"#:0567	(9$)

 𝑏𝑒𝑥𝑝 = 2.91 + 0.159𝐶 

Saturated 
Soil Matric 
Potential 

𝜓./% 
(𝑚) 

𝜓./% = 𝜓+% + 0.02𝜓+%) − 0.113𝜓+%
− 0.70 

𝜓./% =	𝜓./% ∗ 0.101997 
𝜓+% =	−21.67𝑆 − 27.93𝐶

− 81.97𝜃.0--
+ 71.12(𝑆 ∗ 𝜃.0--)
+ 8.29(𝐶 ∗ 𝜃.0--)
+ 14.05(𝑆 ∗ 𝐶)
+ 27.16 

𝜓./% = 10(10(".220$."-"<))/1000 
 

Saturated 
soil 
conductivity 
𝜅./% 
(𝑚/𝑠) 

𝜅./% = 1930(𝜃./% − 𝜃--)"0=+>? 
𝜅./% = 𝜅./%/3600000 

𝜅./% = 0.0070556(10(0$.22@0$.$"#-<)) 
𝜅./% =	𝜅./%/1000 



 
 

12 
 

Saturated 
soil 
diffusivity	
𝜆./%(𝑚2/𝑠) 

𝜆./% =	
𝜅./% ∙ 𝜓./% ∙ 𝑏𝑒𝑥𝑝

𝜃./%
 𝜆./% =	

𝜅./% ∙ 𝜓./% ∙ 𝑏𝑒𝑥𝑝
𝜃./%

 

Quartz Quartz = sand/2 Quartz = sand/2 

 
 


