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Abstract

Groundwater is an important water source for evaporation, especially during dry conditions. Despite this recognition, plant

access to groundwater is often neglected in global evaporation models. This study proposes a new, conceptual approach to

incorporate plant access to groundwater in existing global evaporation models. To this end, the Global Land Evaporation

Amsterdam Model (GLEAM) is used, and the resulting influence of groundwater on global evaporation is assessed. The new

GLEAM-Hydro model relies on the linear reservoir assumption for modelling groundwater flow, and introduces a transpiration

partitioning approach to estimate groundwater contributions. Model estimates are validated globally against field observations

of evaporation, soil moisture, discharge and groundwater level for the time period 2015-2021, and compared to a regional

groundwater model. Results indicate only mild improvements in evaporation estimates, as most eddy-covariance stations

are located in energy-limited regions or regions with no plant access to groundwater. The temporal dynamics of the simulated

evaporation improves across 75% of the stations where groundwater is a relevant water source. The skill of the model for variables

such as soil moisture and runoff remains similar to GLEAM v3. Representing groundwater access influences evaporation in

22% of the continental surface, and it increases evaporation globally by 2.5 mm year-1 (0.5% of terrestrial evaporation). The

proposed approach enables a more realistic process representation of evaporation under water-limited conditions in satellite-data

driven models such as GLEAM, and sets the ground to assimilate satellite gravimetry data in the future.
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Key Points:6

• Plant access to groundwater is often ignored in global evaporation estimates, yet it7

can be crucial during dry conditions.8

• A new, conceptual approach to incorporate groundwater-sourced evaporation in ex-9

isting global, satellite-based models is presented.10

• Considering groundwater affects the dynamics of evaporation in 22% of the continental11

surface and increases global land evaporation by 0.5%.12
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Abstract13

Groundwater is an important water source for evaporation, especially during dry condi-14

tions. Despite this recognition, plant access to groundwater is often neglected in global15

evaporation models. This study proposes a new, conceptual approach to incorporate plant16

access to groundwater in existing global evaporation models. To this end, the Global Land17

Evaporation Amsterdam Model (GLEAM) is used, and the resulting influence of ground-18

water on global evaporation is assessed. The new GLEAM-Hydro model relies on the linear19

reservoir assumption for modelling groundwater flow, and introduces a transpiration par-20

titioning approach to estimate groundwater contributions. Model estimates are validated21

globally against field observations of evaporation, soil moisture, discharge and groundwater22

level for the time period 2015–2021, and compared to a regional groundwater model. Results23

indicate only mild improvements in evaporation estimates, as most eddy-covariance stations24

are located in energy-limited regions or regions with no plant access to groundwater. The25

temporal dynamics of the simulated evaporation improves across 75% of the stations where26

groundwater is a relevant water source. The skill of the model for variables such as soil27

moisture and runoff remains similar to GLEAM v3. Representing groundwater access influ-28

ences evaporation in 22% of the continental surface, and it increases evaporation globally29

by 2.5 mm year−1 (0.5% of terrestrial evaporation). The proposed approach enables a more30

realistic process representation of evaporation under water-limited conditions in satellite-31

data driven models such as GLEAM, and sets the ground to assimilate satellite gravimetry32

data in the future.33

Plain Language Summary34

Groundwater can be a crucial source of water for plants: plants that have access to35

groundwater through their root system are more likely to survive periods of rainfall scarcity.36

However, many (satellite-based) models neglect this water source and assume plants only37

depend on the unsaturated-zone soil moisture. This assumption results in underestimated38

evaporation values during dry conditions, when groundwater may become the main (or39

even the only) source of water. In this study, we propose a new approach to incorporate40

groundwater in an existing global, satellite-based evaporation model. The impact of this41

modification on the model’s accuracy and on the resulting evaporation is evaluated. Repre-42

senting groundwater increases the evaporation globally by 2.5 mm year−1 (0.5%) with much43

higher increases in certain regions.44

1 Introduction45

Land evaporation couples the energy and water cycles, cooling the surface (K. Tren-46

berth et al., 2009) and supplying 40% of terrestrial precipitation (Oki & Kanae, 2006;47

K. E. Trenberth et al., 2007; van der Ent et al., 2010). Accurate evaporation estimates are48

crucial, not only for improved understanding of the water and energy cycles (e.g. Koppa et49

al., 2021), but also for specific applications, such as irrigation planning, drought prediction,50

monitoring ecosystem health, and estimating water availability for societies (Fisher et al.,51

2017; Vicente-Serrano et al., 2010; Konapala et al., 2020). Unfortunately, in situ observa-52

tions of evaporation are often point-based and limited in space and time, making it difficult53

to obtain accurate estimates over large, heterogeneous regions and long time periods. As a54

result, evaporation is often calculated based on meteorological and surface data using either55

dedicated algorithms, or more complex land surface and hydrological models, in which evap-56

oration uncertainties will propagate to both atmospheric and hydrological variables such as57

temperature and runoff.58

During the past two decades, multiple satellite-based evaporation algorithms have been59

developed. These algorithms enable the estimation of evaporation globally, including poorly60

gauged regions, and thus facilitate global-scale applications (Kalma et al., 2008; K. Zhang et61

al., 2016; J. Zhang et al., 2020). Satellite-based evaporation algorithms often aim to close the62
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energy balance (Bastiaanssen et al., 1998; Su, 2002; Mallick et al., 2014), employ empirical63

methods based on in situ observations (Jung et al., 2009), or compute stress indicators to64

constrain potential evaporation (Miralles et al., 2011; Fisher et al., 2008). Some of these65

evaporation products also use soil moisture estimates to assess plant water availability for66

transpiration (e.g. Miralles et al., 2011; Loew et al., 2016). Similarly, many hydrological67

(e.g. Samaniego et al., 2010; Bieger et al., 2017) and land surface models (e.g. Clark et al.,68

2015; Blyth et al., 2021) estimate the evaporation as a function of soil moisture. However,69

these models often assume plants only have access to the water stored in the unsaturated70

zone which is solely replenished from the surface, i.e., they assume groundwater is not a71

relevant water source for transpiration. But in many regions of the world plant roots have72

access to groundwater (e.g. Miguez-Macho & Fan, 2021; Fan, 2015; Evaristo & McDonnell,73

2017; Maxwell & Condon, 2016; Kollet & Maxwell, 2008; Taylor et al., 2013). Miguez-Macho74

and Fan (2021) use inverse modelling and isotope observations to illustrate that 32% of land75

evaporation in the Mediterranean originates from groundwater during dry months, whereas76

the globally-averaged contribution is limited to 1%. Barbeta and Peñuelas (2017) use global77

isotope data to show that groundwater uptakes constitute on average 49% of evaporation78

in dry seasons and 28% in wet seasons.79

Many studies have explored the added value of incorporating groundwater interactions80

in existing models. One popular avenue has been the coupling of land surface or hydrolog-81

ical models to a groundwater model (e.g. Tian et al., 2012; Sulis et al., 2017; Maxwell &82

Miller, 2005; Kuffour et al., 2020; de Graaf et al., 2017; Amanambu et al., 2020). These83

models typically aim to improve the simulation of soil moisture by introducing interactions84

with groundwater, which then indirectly influences evaporation estimates. While two-way85

coupling with groundwater models allows for a more accurate representation of the subsur-86

face, the increased data and computational requirements challenge the application at large87

scales (Condon et al., 2021; Gleeson et al., 2021) such that it is not routinely applied in88

global models. To overcome this challenge, several studies propose adding a single ground-89

water layer that interacts with the soil moisture in the unsaturated zone, assuming that90

lateral groundwater flow is insignificant at the chosen spatio-temporal resolution (e.g. Yeh91

& Eltahir, 2005; Lam et al., 2011; Niu et al., 2007; Sutanudjaja et al., 2018). Other ap-92

proaches include the estimation of groundwater-sourced evaporation directly, for example93

as a function of the soil moisture (Liu & Luo, 2012; Liu et al., 2015) or the fraction of roots94

accessing groundwater (Orellana et al., 2012; Laio et al., 2009).95

Modelling studies that simulate groundwater-surface interactions typically detect higher96

groundwater uptake by plant roots under dry conditions (Balugani et al., 2017; Maxwell97

& Condon, 2016; Lam et al., 2011; Miguez-Macho & Fan, 2021). This is also confirmed98

with a field experiment by Tfwala et al. (2021) who show that under dry conditions, total99

transpiration decreases while its groundwater contribution increases. Barbeta and Peñuelas100

(2017) find that the groundwater uptake is independent of the depth to the groundwater101

table in saturated soils, which is possibly due to the increased water-uptake efficiency of102

roots (Orellana et al., 2012). This is also concluded by Beyer et al. (2018) who state that103

“even if the fraction of roots reaching the water table is small, the efficiency of tap roots104

can be hundreds of times larger than roots in drier soil and large amounts of water can be105

transported”. However, uncertainty regarding the impact of groundwater on evaporation106

remains large and stems, among others, from the considered root depth that determines107

whether plants have access to the aquifer, or soil properties that influence the hydraulic108

conductivity and the corresponding groundwater level (Keune et al., 2016; Fan et al., 2017;109

Sulis et al., 2019).110

In this study, we propose a novel, conceptual approach to incorporate plant access to111

groundwater in large-scale models, that is globally applicable owing to limited additional112

data and computational requirements. The proposed approach is based on two concepts:113

(i) a linear reservoir for the groundwater flow (e.g. Sutanudjaja et al., 2018; Fenicia et al.,114

2006; Gao et al., 2014), and (ii) a partitioning of transpiration into contributions from the115
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unsaturated zone and groundwater that reflects an increased groundwater uptake during116

dry conditions (Liu & Luo, 2012; Liu et al., 2015). The approach is incorporated in the117

satellite-based Global Land Evaporation Amsterdam Model (GLEAM), and its impact on118

land evaporation estimates is evaluated. The structure of the paper is as follows: Section119

2 describes the new GLEAM-Hydro model. Sections 3 and 4 describe the input data and120

validation strategy. Results are presented and discussed in Sections 5 and 6, respectively,121

before conclusions are drawn in Section 7.122

123

2 Methods124

This study introduces groundwater-sourced evaporation via plant access to groundwa-125

ter in GLEAM, creating a new version of the model, hereafter referred to as GLEAM-Hydro.126

The original GLEAM v3, which does not consider groundwater–vegetation interactions, is127

used as reference. GLEAM-Hydro is validated regionally over the Netherlands, where a128

reliable groundwater model and abundant in situ groundwater level observations are avail-129

able, and globally using in situ observations of evaporation, soil moisture, discharge and130

groundwater levels. After validation, the effect of representing plant access to groundwater131

on global evaporation is assessed by comparing GLEAM-Hydro to the baseline GLEAM v3.132

2.1 GLEAM-Hydro133

2.1.1 Baseline GLEAM v3134

The baseline model for GLEAM-Hydro is GLEAM (Miralles et al., 2011) on its current135

version 3 (v3) (Martens et al., 2017). GLEAM v3 estimates the total evaporation as the sum136

of interception loss, transpiration, bare soil evaporation, open-water evaporation, and subli-137

mation. Transpiration (Et) is estimated by constraining potential evaporation (Ep) with a138

stress factor St (i.e., Et = St ·Ep) which is a function of soil moisture and vegetation optical139

depth (VOD) to account for changes in phenology. Similarly, bare soil evaporation (Eb) is140

estimated using a stress factor which is a function of the soil moisture only (Martens et al.,141

2017). Potential evaporation is estimated with the Priestley and Taylor (1972) equation.142

Within each grid cell, the following four land cover types are distinguished: tall vegetation,143

short vegetation, bare soil, and open water bodies. The root zone is divided into three soil144

layers (0–0.1 m, 0.1–1 m, 1–2.5 m) depending on the land cover fraction, i.e., tall vegetation145

has three soil layers, short vegetation two, and bare soil a single layer. Below the bottom soil146

layer, the water content is assumed to be at field capacity at all times, and a free drainage147

approach is applied. Thus, in GLEAM v3 Et and Eb depend only on the energy demand148

(i.e., Ep) and water availability in each soil layer (i.e., w) — see Martens et al. (2017) for149

more information.150

2.1.2 Groundwater reservoir: water balance151

In GLEAM-Hydro, the groundwater system is represented by a single reservoir with152

only one inflow (i.e., recharge) and multiple fluxes leaving the system (i.e., baseflow, evapo-153

ration and overland flow), assuming lateral groundwater flows are insignificant. The ground-154

water reservoir is implemented at the grid cell level, i.e., the groundwater level is assumed155

to be the same for all land cover classes, and comprises the entire soil column. The imple-156

mentation further allows to differentiate between the water volumes stored in the saturated157

zone in and/or below the three soil layers (Ss), and the groundwater levels (GWL).158

The water balance for Ss is estimated with159

dSs

dt
= Qr −Qs − EGW −QOF (1)160
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with Qr recharge into saturated zone [mm d−1], Qs groundwater flow [mm d−1], EGW161

groundwater-sourced evaporation [mm d−1], and QOF overland flow [mm d−1]. The ground-162

water level GWL is then estimated using the specific yield (θy) to obtain absolute levels163

rather than water volumes (Lv et al., 2021; Healy & Cook, 2002):164

GWL =
1

θy
· Ss (2)165

θy = θpor − θflc (3)166
167

with θy specific yield [m3 m−3], θpor soil porosity [m3 m−3], and θflc field capacity [m3 m−3].168

2.1.3 Groundwater fluxes: Recharge, baseflow and overland flow169

The recharge is assumed to be equal to the drainage leaving the bottom soil layer170

across all land cover classes. The groundwater flow is estimated with the linear reservoir171

assumption, as commonly used in (global) hydrological models (e.g. Sutanudjaja et al.,172

2018; Gao et al., 2014; Samaniego et al., 2010):173

Qs = max(0, Ss) ·Ks (4)174

with the recession constant Ks [d−1]. When plant roots have access to groundwater,175

groundwater-sourced evaporation is greater than zero and estimated with Eq. 6 and 9176

(see Section 2.1.4). Overland flow occurs when groundwater levels exceed the surface level:177

QOF =
max(0, GWL · θy)

∆t
(5)178

with ∆t is the time step which is equal to one day [d]. Note that the land surface is used179

as reference for the groundwater level, which is defined as negative below the surface and180

positive above the surface.181

2.1.4 Groundwater fluxes: Groundwater-sourced evaporation182

When plants do not have access to groundwater, then all the water stored in the root183

zone comes from the surface through infiltration (see Fig. 1a). However, when plants184

have access to groundwater, then water for evaporation originates from both infiltration185

(Et,nonGW) and groundwater (Et,GW, see Fig. 1b). We assume that plants extract water186

first from the groundwater system, assuming water is more easily accessible there, after187

which plants extract water from soil moisture stored above the water table. Note that the188

maximum rooting depths considered here are 0.1–2.5 m depending on the land cover class189

(see Section 2.1.1), and that plants cannot access the groundwater system beyond that depth190

in GLEAM-Hydro.191

To distinguish between the uptake of groundwater and infiltrated water for transpira-192

tion, the groundwater contribution fraction (fGW, [-]) is introduced as:193

fGW = min(1,max(0,
1

lsat,max
·
lsat,max∑
l=1

θl,flc − wl

θl,flc − θl,crt
)) (6)194

with l soil layer number [-], lsat,max maximum number of soil layers in the root zone affected195

by groundwater [-], θflc field capacity [m3 m−3], w soil moisture [m3 m−3], and θcrt critical196

soil moisture [m3 m−3]. The relative contribution of groundwater to transpiration is defined197

such that it is highest under dry conditions and lowest under wet conditions; i.e., fGW = 1198

if w ≤ θcrit (dry soil) and fGW = 0 if w ≥ θflc (wet soil). If the groundwater affects multiple199

soil layers, then the fraction is averaged over the affected layers.200

Transpiration is divided into Et,GW and Et,nonGW by incorporating fGW into the evap-201

orative stress factor:202

St = fGW · St,GW + (1− fGW) · St,nonGW (7)203
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a)

Drainage/
recharge

Infil-
tration

Evapo-
ration

b)

Drainage/
recharge

Infil-
tration

Evapo-
ration

Legend

Unsaturated
zone

Saturated
zone

Root
zone

Figure 1. Scheme of plant water sources available for evaporation. a) Deep groundwater: water

in the root zone originates only from infiltration (for example rainwater, irrigation, snow melt etc.),

b) Shallow groundwater: water in the root zone originates from infiltration and groundwater.

with St combined stress factor [-], St,GW groundwater stress factor [-], and St,nonGW non-204

groundwater stress factor [-]. By definition, St,GW = 1 since there is no stress in the205

saturated zone. Analogous to GLEAM v3, St,nonGW is a function of soil moisture in the206

unsaturated zone (Martens et al., 2017).207

Transpiration Et [mm d−1] is then calculated as208

Et = fGW · St,GW · Ep + (1− fGW) · St,nonGW · Ep (8)209

with210

Et,GW = fGW · St,GW · Ep (9)211

the transpiration that is sourced from groundwater [mm d−1], and212

Et,nonGW = (1− fGW) · St,nonGW · Ep (10)213

the transpiration sourced from soil moisture in the unsaturated zone [mm d−1].214

This approach is applied for all land cover fractions individually, i.e., for tall vegetation,215

short vegetation and bare soil. The latter is included to represent water evaporating from216

shallow groundwater directly without root extraction (Balugani et al., 2017). The aggre-217

gated groundwater-sourced evaporation (EGW) is then used in the water balance equation218

(Eq. 1).219

With this approach, the total stress factor St cannot exceed 1, meaning that the total220

transpiration is always equal to or below potential evaporation. In addition, we assume that221
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there is unlimited groundwater available for EGW, hence it does not depend on Ss. As a222

result, EGW can potentially surpass the water volume stored in the groundwater reservoir,223

resulting in negative Ss values and groundwater levels lower than the initial condition (see224

Section 2.2). In that case, there is no groundwater flow until the reservoir is refilled and225

Ss values are positive again (see Eq. 4). Furthermore, the two water sources available for226

evaporation in the root zone (infiltrated water and groundwater) are treated separately for227

simplicity. In other words, groundwater does not directly influence the unsaturated-zone228

soil moisture reservoir, i.e., that reservoir is not saturated at or below the groundwater229

level, which allows retaining the original drainage function in GLEAM. Nevertheless, this230

approach indirectly mimics the interaction between the unsaturated and saturated zone:231

With shallow groundwater levels, the water content in the unsaturated zone becomes com-232

paratively higher, as plants partly extract water from the groundwater instead of extracting233

only from the unsaturated zone.234

2.2 Experiments set-up235

GLEAM v3 and GLEAM-Hydro are run on daily timescale at 0.25◦ resolution and for236

the time period 2015–2021. Global analyses cover all land regions within 90◦N–90◦S and237

180◦E–180◦W, whereas analyses for the Netherlands cover the region 3◦E–7.5◦E and 50.5◦N–238

54◦N. In GLEAM-Hydro, initial conditions for GWL are based on the global water table239

depth from Fan et al. (2013) using the monthly mean values for January. Initial conditions240

for Ss are obtained through a spin-up, in which the model is run over the full period (2015–241

2021). The spin-up starts with long-term mean values for Ss which is estimated with the242

water balance equation (Eq. 1) assuming dS̄s

dt ≈ 0, zero groundwater-sourced evaporation243

and overland flow, applying Eq. 4 for Qs, and using recharge (Qr) from GLEAM v3. Initial244

conditions for Ss to run GLEAM-Hydro are then based on the median Ss in January from245

the spin-up period.246

3 Input data247

Satellite observations and reanalysis datasets are used as input. Air temperature is248

obtained from Atmospheric Infrared Sounder (AIRS) level 3 version 7.0 (Aumann et al.,249

2003). Net radiation and shortwave outgoing radiation are obtained from Clouds and the250

Earth’s Radiant Energy System (CERES) Edition 4.1 (Wielicki et al., 1996). Precipita-251

tion data are obtained from the Multi-Source Weighted-Ensemble Precipitation (MSWEP)252

version 2.8 (Beck et al., 2019). Snow water equivalent is based on GLOBSNOW v2.0 obser-253

vations (Takala et al., 2011). Vegetation optical depth (VOD) is based on the Vegetation254

Optical Depth Climate Archive (VODCA, Moesinger et al., 2020). Finally, land cover class255

fractions are derived from MOD44B version 6 Vegetation Continuous Fields (VCF, DiMiceli256

et al., 2015). All observations are available globally and, if needed, interpolated bi-linearly257

to 0.25◦ resolution. These observations are used in both GLEAM v3 and GLEAM-Hydro258

consistently. In addition, GLEAM-Hydro includes recession constant data which are de-259

rived globally by Sutanudjaja et al. (2018) for the PCRaster GLOBal Water Balance model260

(PCR-GLOBWB). Furthermore, global water table depth observations according to Fan et261

al. (2013) are employed for the initial conditions as mentioned in Section 2.2.262

4 Validation263

4.1 In situ observations264

Global in situ observations with respect to evaporation, soil moisture, discharge and265

groundwater level are collected for the study period 2015–2021 from 10,951 sites. These266

observations are obtained from multiple platforms including AmeriFLUX, European Fluxes267

Database Cluster (EFDC), FLUXNET-CH4, Global Runoff Data Centre (GRDC), Inte-268

grated Carbon Observation System (ICOS), International Groundwater Resources Assess-269
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ment Centre (IGRAC), and International Soil Moisture Network (ISMN). See Table A1 for270

more information regarding observation type, number of sites per source, website links and271

references. These observations include not only variables directly used for validation, but272

also additional variables used, for example, to filter rain and snow days (i.e., precipitation,273

air temperature, snow depth, net radiation, surface heat flux and ground heat flux) — see274

below. For the Netherlands, the above-mentioned global databases provide data to validate275

evaporation and soil moisture. In addition, groundwater level observations at 2750 sites are276

available from the DINO (Data en Informatie van de Nederlandse Ondergrond) database.277

In situ observations are pre-processed to remove outliers (values smaller or larger than278

the 1st or 99th percentile, respectively), duplicates, and daily observations with low qual-279

ity flag or coverage (<25%) at sub-daily scale where available. When validating evapora-280

tion, rain days (> 0 mm d−1) and stations with a poor energy balance closure are removed281

(Rn−G−H
LE > 0.2 with Rn net radiation, G ground heat flux, H surface heat flux, and LE282

latent heat flux). Evaporation is calculated from latent heat flux observations using air283

temperature data. When validating with respect to soil moisture, days with snowfall (> 10284

mm) or low temperature (< 0◦C) are removed. GLEAM-based soil moisture estimates are285

linearly interpolated to the depth of the observation. Sites with less than 365 observation286

points within the study period are removed. In case of gaps in the in situ observations used287

for the filtering procedure — i.e., gaps in precipitation, snow or temperature data at the288

station — GLEAM forcing data are used too. For the validation of runoff, stations with a289

temporal coverage of less than 75% are removed. In addition, discharge stations are removed290

when the corresponding gridded basin area at 0.25◦resolution deviates substantially from the291

actual area as provided by GRDC (i.e., |Agridded−Aactual

Aactual
| > 0.2). Also, stations with a basin292

area smaller than 2500 km2 are not considered. Further, nested river basins are avoided293

by favouring downstream stations. Similar approaches for in situ data pre-processing have294

been applied in previous studies (Martens et al., 2020, 2017). Appendix Fig. A1 visualises295

all the stations available for validation after pre-processing.296

4.2 Regional validation: The Netherlands297

Regional simulations of GLEAM v3 and GLEAM-Hydro for the Netherlands are val-298

idated using in situ data from 4 eddy-covariance, 22 soil moisture and 1714 groundwater299

level sites. See Section 4.1 for more information on the in situ observations used.300

To assess the accuracy of the groundwater level estimates of GLEAM-Hydro, ground-301

water levels from the groundwater model LHM version 4.1 (Landelijk Hydrologisch Model,302

https://www.nhi.nu/nl/index.php/modellen/lhm/) are used as a reference. LHM v4.1303

uses MODFLOW (Langevin et al., 2017) for the saturated zone, and other models for the304

remaining components such as the unsaturated zone, surface water and routing (Janssen et305

al., 2020). Note that this model does not consider feedbacks of evaporation on groundwater306

levels. LHM-based groundwater level estimates are also validated against the same 1714307

groundwater level sites. As LHM simulations are only available until 2018, groundwater308

level validations over the Netherlands are done for the time period 2015–2018. The remain-309

ing variables are validated over the entire study period (2015–2021), depending on in situ310

data availability.311

4.3 Global validation312

Global simulations of GLEAM v3 and GLEAM-Hydro are validated for the time period313

2015–2021 using 100 eddy-covariance, 3422 soil moisture, 97 discharge and 1329 groundwater314

level sites (Fig. A1 in the Appendix). See Section 4.1 for more information on the in situ315

observations used.316
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4.4 Performance metrics317

Evaporation, soil moisture and groundwater levels are validated by comparing observa-318

tions and simulated time series from the respective grid cells where the stations are located.319

For this purpose, the following performance metrics are used: Spearman correlation coeffi-320

cient (R), root mean square error (RMSE), and Kling-Gupta efficiency (KGE, Gupta et321

al., 2009). R ranges between -1 and 1, RMSE between 0 and ∞, and KGE between −∞322

and 1. A ”perfect” performance is represented by R = 1, RMSE = 0 and KGE = 1. If the323

reference level of groundwater observations is unknown, performance metrics are estimated324

using groundwater level anomalies, i.e., the observed and estimated data are subtracted by325

their mean using identical observation days.326

Runoff from GLEAM is estimated based on the long-term water balance, assuming327

storage changes are insignificant compared to the magnitude of the fluxes over the simulation328

period, i.e., Q̄ = P̄ − Ē. Runoff estimates are compared to discharge observations and329

their accuracy is evaluated with the mean difference (MD = Q̄GLEAM − Q̄In situ) and the330

percentage bias (PBIAS = |Q̄GLEAM−Q̄In situ|
Q̄In situ

· 100%).331

5 Results332

5.1 GLEAM-Hydro validation333

5.1.1 Regional validation: The Netherlands334

Evaporation335

In the Netherlands and the near surroundings, evaporation is represented well by the refer-336

ence model, GLEAM v3, with a median correlation of Rmedian = 0.90. The other perfor-337

mance metrics agree with the skill indicated by the correlation, with RMSEmedian = 0.85338

mm d−1 and KGEmedian = 0.78 for GLEAM v3. Incorporating plant access to groundwa-339

ter with GLEAM-Hydro does not affect these performance metrics and retains the median340

accuracy of the simulations (Table 1 and Fig. 2). However, this assessment is based on341

only 4 eddy-covariance stations of which only 1 station (at Cabauw, 51.97◦N and 4.93◦E) is342

located in a region with shallow groundwater levels (above -2.5 m). In addition, this station343

is located in a region that is primarily energy-limited, as any other station in the Nether-344

lands. During the simulation period, 94% of the days at Cabauw show no or only little345

water limitation, i.e., Ep − E < 0.5 mm d−1, which results in a small evaporation increase346

from 617.2 mm year−1 (GLEAM v3) to 630.4 mm year−1 (GLEAM-Hydro). Hence, over347

the Netherlands, groundwater barely affects the magnitude of transpiration.348

Soil moisture349

The soil moisture is represented reasonably well by the reference model GLEAM v3 with a350

median correlation of Rmedian = 0.74. The remaining performance metrics are RMSEmedian351

= 7.69% and KGEmedian = 0.49 for GLEAM v3 (Table 1). Incorporating plant access to352

groundwater with GLEAM-Hydro does not affect the skill of the simulated soil moisture353

over the Netherlands (Table 1 and Fig. 2c). This assessment is based on 22 sites, yet only354

1 site is located in a region with shallow groundwater levels (in Bergambacht near Cabauw,355

51.93◦N and 4.79◦E). Also this station is located in an energy-limited region where 94% of356

the days show no water limitation and where the impact of groundwater on evaporation is357

small.358

Groundwater level359

The groundwater level dynamics over the Netherlands are represented well by GLEAM-360

Hydro with a median correlation of Rmedian = 0.78 (Table 1). The median correlation361

is only slightly better with LHM, despite the latter being calibrated for the Netherlands362

(Table 1 and Fig. 2d). In both models, correlations are greater than 0.5 at 88% of the sites,363

with a standard deviation (σ) in the correlations of Rσ = 0.21. LHM shows slightly better364

median RMSE and KGE values than GLEAM-Hydro (Table 1). Based on the correlation365

–9–



manuscript submitted to Water Resources Research

Figure 2. a)–b) Taylor diagrams illustrating the performance of (a) GLEAM v3 and (b)

GLEAM-Hydro with respect to evaporation for the Netherlands. The standard deviation and

RMSE are normalised using the standard deviation of the observed time series such that the red

star serves as reference point. c)–d) Violin plots illustrating the validation of (c) soil moisture and

(d) groundwater level based on the correlation.

coefficients, 44% of the sites perform better or similarly well with GLEAM-Hydro compared366

to LHM (62% based on RMSE, 34% based on KGE). Fig. 3a shows an example of367

a station where groundwater levels are estimated better with GLEAM-Hydro than LHM368

(GLEAM-Hydro: R = 0.64, RMSE = 0.05 m, KGE = 0.62, LHM: R = 0.22, RMSE =369

1.37 m, KGE = -1.36), whereas Fig. 3b illustrates the opposite (GLEAM-Hydro: R = 0.85,370

RMSE = 0.67 m, KGE = 0.45, LHM: R = 0.92, RMSE = 0.12 m, KGE = 0.80).371

At multiple sites, significant biases are detected in the simulated groundwater level (see372

Fig. A2 in the Appendix). The groundwater level bias in GLEAM-Hydro is a result of the373

bias in the initial conditions. In GLEAM-Hydro (LHM), RMSE is smaller than 5 m at374

97% (96%) of the sites.375
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Table 1. Median statistics for the Netherlands for different variables and GLEAM versions.

Performance metrics include correlation (R), root mean square error (RMSE), and Kling-Gupta

Efficiency (KGE).

Median values GLEAM v3 GLEAM-Hydro LHM Unit

Evaporation R 0.90 0.90 n/a -
RMSE 0.85 0.85 n/a mm d−1

KGE 0.78 0.79 n/a -
Soil moisture R 0.74 0.74 n/a -

RMSE 7.69 7.94 n/a %
KGE 0.49 0.49 n/a -

Groundwater R n/a 0.78 0.79 -
RMSE n/a 0.98 0.73 m
KGE n/a -0.18 0.02 -

Overall, the groundwater representation in GLEAM-Hydro is able to mimic the skill of376

LHM in simulating groundwater levels. The degree of uncertainty, i.e., the variation in the377

performance metrics, in GLEAM-Hydro is comparable to LHM (Fig. 2d).378

Figure 3. Time series of groundwater levels at two sample locations in the Netherlands, com-

paring GLEAM-Hydro and LHM with observations from corresponding well observations. The sites

are located in (a) the province North-Holland (52.33◦N and 4.64◦E), and (b) the province Drenthe

(52.72◦N and 6.53◦E).
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5.1.2 Global validation379

Evaporation380

Across all eddy-covariance stations available globally, evaporation from GLEAM v3 is al-381

ready represented well with a median correlation of Rmedian = 0.81, which is similar to382

previous studies (Martens et al., 2017). The remaining performance metrics amount to383

RMSEmedian = 1.01 mm d−1 and KGEmedian = 0.49 for GLEAM v3 (Table 2). Incorporat-384

ing groundwater in GLEAM-Hydro does not influence the median performances significantly385

(see Fig. 4 and Table 2) as, again, many stations are located in regions with energy-limited386

conditions or deep groundwater levels (see Fig. A1a in the Appendix). Note that in only387

39% of the continental surface, average groundwater levels simulated by GLEAM-Hydro388

are shallower than -2.5 m. When considering only stations where groundwater becomes a389

relevant water source for transpiration (8 out of 100 stations), then the median correlation390

improves from RGLEAMv3 = 0.66 to RGLEAM−Hydro = 0.69 (Fig. 4c and Table 2), indicating391

the temporal dynamics of evaporation are better simulated if groundwater is considered392

as a source for transpiration. However, this improvement is not reflected in the median393

KGE and RMSE values (see Table 2), as only 4 of the 8 stations improved with respect394

to RMSE and KGE. See Fig. 5 for an example eddy-covariance station in Italy, where395

the incorporation of groundwater in the model influences evaporation and increases the396

accuracy of the estimates. There, the maximum evaporation increase due to groundwater397

access is 2.5 mm d−1. The correlation increases from R = 0.82 in GLEAM v3 to R = 0.89398

in GLEAM-Hydro, and the RMSE and KGE change from RMSE = 0.82 mm d−1 and399

KGE = 0.82 (GLEAM v3) to RMSE = 0.89 mm d−1 and KGE = 0.68 (GLEAM-Hydro).400

Table 2. Median statistics for different variables and GLEAM versions with respect to all stations

globally, and in brackets with respect to stations where groundwater is a relevant water source.

Performance metrics include correlation (R), root mean square error (RMSE), and Kling-Gupta

Efficiency (KGE).

Median values GLEAM v3 GLEAM-Hydro Unit

Evaporation R 0.81 (0.66) 0.81 (0.69) -
RMSE 1.01 (1.20) 1.02 (1.32) mm d−1

KGE 0.49 (0.32) 0.48 (0.19) -
Soil moisture R 0.71 (0.67) 0.71 (0.63) -

RMSE 9.49 (9.44) 9.51 (9.13) %
KGE 0.26 (0.30) 0.26 (0.26) -

Groundwater R n/a 0.22 (-0.03) -
RMSE n/a 1.60 (0.75) m
KGE n/a -0.87 (-0.86) -

Soil moisture401

The soil moisture from GLEAM v3 is represented well at most sites with Rmedian = 0.71402

(Table 2), which is similar to previous studies (Martens et al., 2017; Beck et al., 2021). The403

remaining performance metrics amount to RMSEmedian = 9.49% and KGEmedian = 0.26.404

Similar to evaporation, the soil moisture performance does not change substantially when405

incorporating plant access to groundwater (see Fig. 4d and Table 2). The differences remain406

small also when validating only for sites where groundwater becomes a relevant water source407

for transpiration (Table 2), which is the case for 143 out of 3422 sites (see Fig. A1b in the408

Appendix). At those sites, the performance metrics change slightly, without clear signals409

for improvement, from R = 0.67, RMSE = 9.44% and KGE = 0.30 for GLEAM v3 to R =410

0.63, RMSE = 9.13% and KGE = 0.26 for GLEAM-Hydro (Table 2). Note, that changes411

in the soil moisture only occur indirectly through altered transpiration (see Section 2.1.4).412
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Figure 4. a)–b) Taylor diagrams illustrating the global performance of (a) GLEAM v3 and (b)

GLEAM-Hydro with respect to evaporation. The standard deviation and RMSE are normalised

using the standard deviation of the observed time series such that the red star serves as reference

point. c) Correlation of evaporation simulated with GLEAM v3 (blue) and GLEAM-Hydro (red)

against observations at those eddy-covariance stations that are influenced by groundwater. The

dashed line indicates the median correlation over the selected stations. d)–e) Violin plots illustrating

the validation of (d) soil moisture and (e) groundwater level based on the correlation.
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Figure 5. Evaporation at the eddy-covariance tower San Rossore 2 in Italy (IT-SR2 at 43.73◦N

and 10.29◦E) and as simulated with GLEAM v3 and GLEAM-Hydro.

Runoff413

Over all stations, the average runoff over the simulation period is represented reasonably well414

with GLEAM v3 compared to the discharge observations, with R = 0.84 (Fig. A3a in the415

Appendix). The median MD is equal to MDmedian = -123.2 mm year−1 (Fig. A3b in the416

Appendix), largely reflecting biases in precipitation and/or the simulated evaporation. The417

median percent bias amounts to PBIASmedian = 40.4%. Overall, runoff is overestimated418

at 11 of the 97 stations with GLEAM v3, and underestimated at 81 stations. Runoff is419

simulated well at 5 stations, where only small biases (i.e., |MD| < 10 mm year−1) are420

found.421

Incorporating plant access to groundwater in GLEAM-Hydro leads to a slight corre-422

lation increase (R = 0.85), and the MD changes between ∆MD = 0.0–30.7 mm year−1
423

with ∆MD = MDGLEAM v3 − MDGLEAM−Hydro. Changes in the percent bias range be-424

tween ∆PBIAS = -105.6–40.6% (∆PBIAS = PBIASGLEAM v3 − PBIASGLEAM−Hydro)425

with positive values indicating runoff improved with GLEAM-Hydro (Fig. A3c and d in426

the Appendix). At 61 of the 97 stations, runoff changes are small (∆|PBIAS| < 1%) as427

groundwater access is limited in the basins associated with these stations.428

Compared to GLEAM v3, evaporation in GLEAM-Hydro either increases when ground-429

water is a relevant source for transpiration, or remains the same when the groundwater level430

is too deep. Hence, the long-term averaged runoff can only decrease or remain the same.431

Therefore, the skill of those stations that overestimate runoff with GLEAM v3 (11 of 97432

stations) improve (8 stations) or remain the same (3 stations). On the other hand, at433

those stations that already underestimate runoff with GLEAM v3 (81 of 97 stations), the434

bias further increases with GLEAM-Hydro, except when the roots have no access to the435

groundwater level. This results in a decreased accuracy at 24 of the 81 stations that already436

underestimate runoff with GLEAM v3.437

Groundwater level438

The global groundwater level performance varies considerably among the 1329 sites (Fig.439

4e). The median correlation of simulated groundwater levels in GLEAM-Hydro with obser-440

vations is equal to Rmedian = 0.22. This increases to Rmedian = 0.54 when considering only441

those sites with shallow water table depths, i.e., where plants have access to the groundwater442

system based on the modelled or observed groundwater levels. The remaining performance443
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metrics amount to RMSEmedian = 1.60 m and KGEmedian = -0.87 when considering all444

sites (Table 2). The correlation is greater than 0.5 at 31% of the sites (Fig. A4 in the445

Appendix) and RMSE is smaller than 5 m at 62% of the sites (Fig. A5 in the Appendix).446

As an example, Fig. A6 in the Appendix shows the time series of observed and simulated447

groundwater level for a well represented station near Philadelphia in the United States (at448

74.84◦W and 39.99◦N, R = 0.85, RMSE = 0.21 m, KGE = 0.83).449

5.2 Global influence of groundwater on evaporation450

Representing plant access to groundwater increases the annual-mean, globally-averaged451

terrestrial evaporation from 392.4 mm year−1 to 394.8 mm year−1. This corresponds to452

an increase of 2.5 mm year−1 globally-averaged; the standard deviation of all land pixels453

amounts to 11.0 mm year−1. In other words, the terrestrial evaporation increases with 404454

km3 year−1 over the continental surface, from 74,064 km3 year−1 (GLEAM v3) to 74,468455

km3 year−1 (GLEAM-Hydro). Relative to GLEAM v3, the annual-mean, globally-averaged456

evaporation increases with 0.5% with a standard deviation of 2.2%. The globally-averaged457

groundwater contribution to evaporation fGW is equal to 0.008 with a standard deviation458

of 0.03.459

The maximum local increase of annual-mean evaporation is 245.2 mm year−1 (Fig.460

6) or 149.7% relative to GLEAM v3 (Fig. A7 in the Appendix). The aggregated mean461

groundwater contribution to evaporation fGW reaches up to 0.36. At daily-scale, the evap-462

oration increases locally up to 5.5 mm d−1. Large evaporation increases are observed in463

for example Canada, Russia, and several regions in Congo and South America. In those464

regions, the groundwater level is shallow (Fan et al., 2013) as illustrated in Fig. A8 in the465

Appendix. Hence, groundwater-sourced evaporation is, as expected, strongly influenced by466

the groundwater level (Fig. 7a–f).467

Finally, groundwater-sourced evaporation is the highest in drylands, i.e., in regions with468

an aridity index larger than 0.65 (Fig. 7). Moreover, groundwater-sourced evaporation is469

higher for tall vegetation compared to short vegetation and bare soil (Fig. 7h) — which is470

expected given the deeper roots of tall vegetation (see Section 2.1.1).471

Figure 6. Average evaporation increase due to the incorporation of plant access to groundwater

in GLEAM (∆E = EGLEAM−Hydro − EGLEAM v3) averaged over the study period.
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Figure 7. Groundwater contribution fraction (fGW) and groundwater-sourced evaporation

(EGW) for tall vegetation, short vegetation and bare soil (a)–(f) as a function of aridity (Ep/P)

and groundwater levels (GWL), and (g)–(h) distinguishing between drylands (Ep/P > 0.65) and

non-drylands (Ep/P < 0.65). Results are averaged over the study period.

6 Discussion472

This study has introduced groundwater-sourced evaporation in the satellite-based evap-473

oration model GLEAM. A novel, conceptual approach of groundwater–vegetation interac-474

tions has been developed building upon already-existing approaches: Water table fluctu-475

ations are estimated by introducing a groundwater reservoir below the soil layers (Yeh &476

Eltahir, 2005; Niu et al., 2007) and using specific yield to derive absolute groundwater levels477

(Lv et al., 2021; Healy & Cook, 2002). The groundwater flow is estimated by applying the478

linear reservoir assumption analogous to Lam et al. (2011); Sutanudjaja et al. (2018); Fenicia479

et al. (2006). The contribution of groundwater to evaporation is modelled by introducing a480

groundwater contribution fraction in the stress function of GLEAM; this fraction is defined481

as a function of soil moisture similar to Liu and Luo (2012).482
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Incorporating groundwater interactions increases the annual-mean, globally-averaged483

evaporation by 2.5 mm year−1. The contribution of groundwater-sourced evaporation is es-484

timated such that it is higher under dry conditions and for tall vegetation, in agreement with485

previous studies (Balugani et al., 2017; Miguez-Macho & Fan, 2021; Maxwell & Condon,486

2016; Tfwala et al., 2021; Barbeta & Peñuelas, 2017). The globally-averaged contribution487

of groundwater to evaporation in GLEAM-Hydro (fGW = 0.008) is similar to findings by488

Miguez-Macho and Fan (2021), who estimate that approximately 1% of the global evapora-489

tion is sourced from groundwater. However, Barbeta and Peñuelas (2017) show a median490

fGW = 0.56 for tall vegetation in dry seasons which is almost twice as large compared to491

the findings of this study (fGW = 0.31, Fig. 7g). The spatial pattern of the groundwater492

contribution in this study differs considerably from previous studies (e.g. Miguez-Macho &493

Fan, 2021) and shows higher contributions in for example Canada, Russia and Congo where494

the groundwater levels are shallow (Fig. A8 in the Appendix). These differences may be495

attributed to uncertainties in the evaporation estimates in both this study (as discussed496

below) and previous studies.497

There are several sources of uncertainty in the proposed approach to incorporate plant498

access to groundwater. First, this approach assumes lateral groundwater flow is insignificant499

at the chosen spatial resolution, which is plausible based on findings in previous studies500

(Krakauer et al., 2014). Second, this approach does not include capillary rise nor the501

existence of roots deeper than 2.5 m tapping into the groundwater system. Furthermore, we502

assume that there is no direct interaction between groundwater and the unsaturated zone503

(see also Section 2.1.4). These interactions are only mimicked through plants extracting504

(part of the) water from the groundwater, provided they have access to it, resulting in less505

extraction from the unsaturated zone and hence an increased soil moisture. That is also506

why the simulated soil moisture changes only marginally and the skill of soil moisture does507

not improve from GLEAM v3 to GLEAM-Hydro at the limited observation sites available508

(see Section 5.1.2). Moreover, results are sensitive to data uncertainties, including initial509

groundwater levels and soil properties. Last but not least, results here are constrained to510

the processes represented in GLEAM, which neglects human impacts such as pumping and511

irrigation. These are all potential avenues for improvements in the future, but are considered512

outside the scope of this study.513

Alternatively, to reduce uncertainties related to the groundwater representation of514

GLEAM-Hydro, GLEAM could be coupled to a groundwater model. Its impact on the evap-515

oration is illustrated for the Netherlands by using LHM-based groundwater levels as forcing516

in GLEAM (i.e., GLEAM-LHM). Compared to GLEAM-Hydro, GLEAM-LHM reproduces517

the spatial pattern of evaporation (Fig. A9 in the Appendix). However, the annual-mean518

evaporation for the region increases even more with GLEAM-LHM (4.8 mm year−1 or 0.2%519

relative to GLEAM v3) than with GLEAM-Hydro (2.4 mm year−1 or 0.1%). It is noted,520

however, that two-way coupling between evaporation and groundwater were not considered521

in GLEAM-LHM.522

Future studies should address the limitations mentioned above. In addition, estimated523

groundwater level dynamics could be improved further by using total water storage anoma-524

lies as observed from satellites (Landerer & Swenson, 2012; Swenson & Wahr, 2006) for data525

assimilation. The proposed approach for groundwater–vegetation interactions could further526

be tested at higher resolutions. However, note that this may require additional modifica-527

tions, since lateral groundwater flow may become significant at finer scales (de Graaf &528

Stahl, 2022). Furthermore, it would be very valuable if new eddy-covariance stations, lo-529

cated in dry regions and combined with groundwater level and root depth field observations,530

are available. This would benefit the verification of groundwater access and validation of531

evaporation at locations where groundwater becomes relevant. Unfortunately, most eddy-532

covariance stations used here are located in regions with deep water tables (according to533

Fan et al. (2013)) or in energy-limited regions with abundant water. As such, the effect of534

groundwater on evaporation could only be validated at a limited number of in situ stations.535
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7 Conclusion536

The goal of this study was to incorporate plant access to groundwater in existing large-537

scale evaporation estimates, and to assess the impact of groundwater on evaporation globally.538

To that end, a novel, conceptual approach to estimate groundwater–vegetation interactions539

was developed. It connected conceptual elements of groundwater reservoirs and (observed)540

groundwater contributions to transpiration. This approach was incorporated into GLEAM,541

yielding the GLEAM-Hydro version of the model.542

The impact of groundwater on evaporation was analysed globally by comparing543

GLEAM v3 with GLEAM-Hydro: While the globally-averaged annual-mean evaporation544

increased only by 2.5 mm year−1 (0.5%), local changes in regions with a shallow water table545

were much higher (up to 245.2 mm year−1). In general, little improvements were found in546

the simulation of evaporation as the majority of the eddy-covariance stations was located in547

regions with no groundwater access or energy-limited regions, where the impact of ground-548

water on evaporation was marginal. However, at 75% of the stations where groundwater549

was a relevant water source, the temporal dynamics of the simulated evaporation improved.550

The skill of the model, also for other variables such as soil moisture and discharge, remained551

more or less unaltered. The skill of GLEAM-Hydro to simulate groundwater levels was552

further demonstrated through the comparison to a dedicated regional groundwater model553

(LHM). For the Netherlands, where abundant water table observations were available, both554

models showed considerable skill. However, LHM performed better in terms of RMSE and555

KGE which was to be expected for a groundwater model calibrated for the Netherlands.556

The presented approach paves the way towards the integration of groundwater in, for557

example, land surface and hydrological models and other algorithms that aim to derive558

evaporation from, for example, satellite-based observations. Representing groundwater in559

GLEAM also sets the ground to assimilate satellite gravimetry data in the future (Girotto et560

al., 2017). Even though the validation in this study could not unambiguously demonstrate561

the improved skill of the model, this approach is a first step towards a more realistic process562

representation in models that aim to incorporate groundwater processes at low computa-563

tional costs.564
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Appendix A574

Table A1. In situ observations used in this study

Source Long name Data type Nr sta-

tions

Website, Citation Coverage

AmeriFlux - Radiation, meteorolog-

ical & soil moisture

data

512 https://ameriflux

.lbl.gov/

Global

DINO Data en Informatie

van de Nederlandse

Ondergrond

Groundwater level

data

2750 https://www

.dinoloket.nl/

standen

The Nether-

lands

EFDC European Fluxes

Database Cluster

Radiation, meteorolog-

ical & soil moisture

data

88 http://www.europe

-fluxdata.eu/

Global

FLUXNET-CH4 - Radiation, meteorolog-

ical & soil moisture

data

67 https://fluxnet

.org/, (Pastorello et

al., 2020; Delwiche et

al., 2021; Knox et al.,

2019)

Global

GRDC Global Runoff Data

Centre

Discharge data 108 https://www.bafg.de/

GRDC/EN/Home/

homepage node.html

Global

ICOS Integrated Carbon Ob-

servation System

Radiation, meteorolog-

ical & soil moisture

data

145 https://www.icos-cp

.eu/, (ICOS RI, 2021)

Global

IGRAC International Ground-

water Resources As-

sessment Centre

Groundwater level

data

5359 https://ggis.un

-igrac.org/view/ggmn

Global

ISMN International Soil

Moisture Network

Meteorological & soil

moisture data

4672 https://ismn.geo

.tuwien.ac.at/en/,

(W. A. Dorigo et al.,

2011; W. Dorigo et al.,

2013, 2021)

Global
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Figure A1. Map of stations with (a) evaporation, (b) soil moisture, (c) groundwater level, and

(d) discharge stations (including basin outline in blue) used in this study. Black dots indicate

all stations used, and red dots indicate stations where groundwater becomes a relevant source for

evaporation.

Figure A2. Groundwater level validation results in the Netherlands: a) correlation and b)

RMSE
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Figure A3. Runoff performance. a) Long-term average runoff according to in situ data (x-axis)

vs. GLEAM v3 (y-axis) and with ∆QGLEAM = QGLEAMv3−QGLEAM−Hydro for the colors. b) Mean

difference (MD) for GLEAM v3 and GLEAM-Hydro with positive values indicating the GLEAM-

based runoff are overestimated. c) Difference in PBIAS (i.e., ∆PBIAS = PBIASGLEAMv3 −
PBIASGLEAM−Hydro). d) Spatial pattern of ∆PBIAS with positive values indicating the bias

improves in GLEAM-Hydro.

Figure A4. Global groundwater level validation results: Correlation
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Figure A5. Global groundwater level validation results: RMSE

Figure A6. Groundwater levels at a well represented station near Philadelphia in the United

States (74.84◦W and 39.99◦N).
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Figure A7. Average evaporation increase due to the incorporation of plant access to ground-

water in GLEAM (∆E = EGLEAM−Hydro − EGLEAMv3) relative to GLEAM v3 averaged over the

study period.

Figure A8. Initial groundwater level based on (Fan et al., 2013)
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Figure A9. Average evaporation increase in the Netherlands due to the incorporation of plant

access to groundwater in GLEAM. Subplots (a)–(b) illustrate absolute differences, subplots (c)–(d)

relative differences. Suplots a) and c) use GLEAM-Hydro, subplots b) and d) use GLEAM-LHM.

Absolute difference: ∆E = EGLEAM−Hydro/LHM − EGLEAMv3, relative difference: ∆E
EGLEAMv3
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