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Abstract

Flood frequency analysis is a statistical approach for estimation of design flood values. Design flood values give estimates of flood

magnitude within a given return period and are essential to making adaptive decisions around land use planning, infrastructure

design, and disaster mitigation. Flood magnitude is here typically taken as peak flow from an instantaneous discharge series.

However, this univariate approach can be somewhat artificial as a flood event is not described by its peak flow alone. A relatively

simple extension of traditional flood frequency models can be found in flood-duration-frequency, or QDF, models. QDF models

take flood magnitude to be a product of peak flow and duration and are analogous to intensity-duration-frequency curves for

precipitation. In an application to 12 locations in Norway, we assess how three different QDF models capture relationships

between floods of different duration. Incorporating dependence on return period in the ratio between growth curves improves

modeling of both short-duration events and events with long return periods. This model extension further expands the models’

ability to simultaneously model a wide range of flood durations. Overall, we find the choice of durations used to fit the QDF

model is a highly influential aspect of the modeling process. Users should be aware that the choice of which durations to fit the

model with will always be a qualitative choice that is only partially mitigated by adding extra flexibility to the models.
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Abstract14

Flood frequency analysis is a statistical approach for estimation of design flood values.15

Design flood values give estimates of flood magnitude within a given return period and16

are essential to making adaptive decisions around land use planning, infrastructure de-17

sign, and disaster mitigation. Flood magnitude is here typically taken as peak flow from18

an instantaneous discharge series. However, this univariate approach can be somewhat19

artificial as a flood event is not described by its peak flow alone. A relatively simple ex-20

tension of traditional flood frequency models can be found in flood-duration-frequency,21

or QDF, models. QDF models take flood magnitude to be a product of peak flow and22

duration and are analogous to intensity-duration-frequency curves for precipitation. In23

an application to 12 locations in Norway, we assess how three different QDF models cap-24

ture relationships between floods of different duration. Incorporating dependence on re-25

turn period in the ratio between growth curves improves modeling of both short-duration26

events and events with long return periods. This model extension further expands the27

models’ ability to simultaneously model a wide range of flood durations. Overall, we find28

the choice of durations used to fit the QDF model is a highly influential aspect of the29

modeling process. Users should be aware that the choice of which durations to fit the30

model with will always be a qualitative choice that is only partially mitigated by adding31

extra flexibility to the models.32

1 Introduction33

Floods are a widespread and costly threat to society worldwide. Their destructive34

capacity is likely to increase in the near future due to a rise in both the prevalence of35

floods under climate change and an increase in the economic value of flood-prone areas36

(Alfieri et al., 2017; Field et al., 2012). Estimation of design floods is an important as-37

pect of societal adaptation to increased flooding. Such estimation can be undertaken in38

one of three general ways (Filipova et al., 2019): (1) statistical flood frequency analy-39

sis (FFA), where observed historical flood events are used to estimate the magnitude of40

flood events with a certain return period, (2) event-based hydrological modeling for a41

single design event, where rainfall records or other single realizations of initial conditions42

and precipitation are used as input to a hydrological model that simulates the desired43

flood event and (3) derived flood frequency methods, which use weather generators cou-44

pled with hydrologic models to simulate long series of synthetic discharge that can be45

used to statistically estimate the desired return periods. The first approach—statistical46

FFA—is the focus of this paper.47

Traditionally, the ‘flood events’ in FFA are simply taken to be the annual maxi-48

mum values from an instantaneous or mean daily streamflow series (Cunderlik et al., 2007).49

However, this univariate approach can be somewhat artificial as a flood event is not de-50

scribed by its peak flow alone—the volume and duration of the flood also matter in terms51

of its impact (Hettiarachchi et al., 2018) and are routinely needed in applications such52

as reservoir operation and flood damage assessment (Merz et al., 2010). Multivariate fre-53

quency analysis of flood return periods often requires large amounts of data and can be54

prohibitively complex (Gräler et al., 2013) but a relatively simple extension of FFA can55

be found in QDF, or Flood-Duration-Frequency, models. QDF models take flood mag-56

nitude to be a product of peak flow and duration and are based in the literature surround-57

ing Intensity-Duration-Frequency (IDF) curves for precipitation (Javelle et al., 2002).58

In the QDF approach, annual maxima are sampled from discharge series averaged59

over different durations. An extreme value distribution (usually the generalized extreme60

value, or GEV, distribution) is fit to these annual maxima, and a relationship between61

the durations and the fitted distributions is quantified by the QDF model. This allows62

for the quantiles of the distribution to be parametrically expressed as a continuous for-63

mulation of both return period and duration, where consistency between the quantiles64
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of the distribution at different flood durations is enforced by the QDF model (Javelle et65

al., 2002). In practice this means that, for example, the T-year flood for the mean daily66

streamflow time series will never report a higher return level than the T-year flood for67

the instantaneous streamflow time series (where T describes the return period of the flood).68

Such consistency is not guaranteed when estimating extreme value distributions individ-69

ually for several fixed durations and remains one of the main benefits of QDF model-70

ing in situations where the return level at several flood durations is of interest. In ad-71

dition, the parametric nature of the QDF model allows for extrapolation to unobserved72

flood durations and establishes the potential for prediction in ungauged basins (Javelle73

et al., 2002).74

The foundations of QDF modeling were developed in the 1990s through analysis75

of the relationships between n-day flood volumes as explored in Balocki and Burges (1994)76

and Sherwood (1994). The original QDF model is generally attributed to Javelle et al.77

(1999). QDF modeling has found most of its application in France, Canada and Britain78

in the early 2000s (Javelle et al., 2002, 2003; Zaidman et al., 2003) although it has been79

applied a handful of times in the decades since (Cunderlik et al., 2007; Crochet, 2012;80

Onyutha & Willems, 2015). In more recent years, the QDF model has been used to char-81

acterize flood events of different duration in Algeria (Renima et al., 2018), to inform de-82

velopment of a depth-duration-frequency relationship used to assess risk of rainfall-driven83

floods in Poland (Markiewicz, 2021) and as a comparison point to IDF models when as-84

sessing catchment behavior for runoff extremes in Austria (Breinl et al., 2021). As noted85

in Breinl et al. (2021), the relationship quantified by the QDF model is an analogue to86

the relationship quantified in IDF modeling for precipitation extremes: in the hypothet-87

ical situation where all rainfall becomes runoff and the time of concentration is instan-88

taneous, the QDF and IDF models have identical relationships.89

Despite its similarities to the widely adopted IDF model (Cheng & AghaKouchak,90

2014), a review of flood estimation practices in Europe, Australia and the USA reveals91

QDF models are not often applied for design flood estimation (Ball et al., 2019; Eng-92

land et al., 2019; Castellarin et al., 2012; Robson & Reed, 1999). In Australia, estimates93

of extreme floods are derived using rainfall-based flood estimation methods, where de-94

sign floods are calculated separately for each duration by utilizing critical rainfall du-95

rations that produce the maxima for flood characterizations of interest (Nathan & Wein-96

mann, 2019). In the USA, flood frequency estimates from durations other than the in-97

stantaneous flood are obtained by statistically estimating the flood frequency relation-98

ship on aggregated data (England et al., 2019; Lamontagne et al., 2012). In Europe, a99

wide variety of methodologies are used—most of which parallel those in Australia and100

the USA—to accommodate differing flood durations, but only France makes mention of101

QDF models (Castellarin et al., 2012). In Norway specifically, analysis of critical flood102

durations (typically longer duration events for dam safety analyses) is carried out via103

rainfall-runoff models where the appropriate storm duration is selected (Wilson et al.,104

2011). Note that consistency between return levels of different flood durations is not en-105

forced by any of these methods apart from the QDF model; the consistency issue is gen-106

erally addressed by noting the need to defer to expert judgement (Castellarin et al., 2012;107

England et al., 2019), by performing a comparison of flood frequency analysis and rainfall-108

runoff output (Wilson et al., 2011; Ball et al., 2019) or by post-processing of the design109

flood values (Nathan & Weinmann, 2019).110

Design flood estimation is often most concerned with estimation of the flood stem-111

ming from the instantaneous streamflow series, since this is the scenario that typically112

produces the highest return level. Statistical estimation of this design value, however,113

poses a challenge since flood series of length appropriate for flood frequency analysis of-114

ten contain segments at a daily—or coarser—time resolution. This is dealt with in prac-115

tice as a data quality issue; most national guidelines for FFA outline detailed data qual-116

ity control steps and recommend application of FFA only when fine resolution time se-117
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ries of suitable length exist, or when catchment properties are such that daily data can118

be trusted to provide a representative profile of the flood peak (Ball et al., 2019; Eng-119

land et al., 2019; Castellarin et al., 2012). However, there exist methodologies for scal-120

ing daily data to approximate the instantaneous peak flow (Ding et al., 2015; Fill & Steiner,121

2003). In Norway, scaling between daily and instantaneous peak flows is performed by122

assuming similarity between the growth curve for daily flow at the site of interest and123

the peak flow curve at another site with comparable properties. At ungauged locations,124

peak flows can be estimated via regression equations on relevant catchment properties.125

Wilson et al. (2011) notes the uncertainty in both of these methods is likely to be large126

and difficult to reconcile with the uncertainty inherent to FFA. While QDF models seek127

to consistently estimate a range of durations simultaneously and thus are formulated to128

address a slightly different question than daily to instantaneous peak flow estimation,129

their performance when estimating floods at subdaily unobserved flood durations is of130

particular interest.131

The main objective of this study is to assess how different QDF models capture re-132

lationships between floods of different duration. In particular we want to answer the fol-133

lowing questions: (i) is there one QDF model that best captures flood behavior at the134

shortest (sub-daily) durations? (ii) what are the models’ abilities when estimating in sam-135

ple and out of sample durations? and (iii) how sensitive are QDF models to input du-136

rations? To this aim, we evaluate three different models, one of which is the original QDF137

model as presented in Javelle et al. (2002). The other two models investigated are new138

QDF models that allow for the ratio between peak and daily values to dependent on re-139

turn period to different degrees. For comparison, three-parameter GEV distributions are140

fit independently to each flood duration in line with the current guidelines (Midtømme,141

2011; England et al., 2019).142

Estimation methodologies for QDF models have to cope with the typical challenges143

that come with fitting extreme value models. Extreme value models are prone to param-144

eter estimation difficulties stemming from the inherent sparsity of threshold excess data145

(Scarrott & MacDonald, 2012), and, when the GEV distribution is used, enforcement146

of a support condition that depends on all parameters and the data. This last condition147

is particularly problematic under QDF modelling since the introduction of multiple du-148

rations means the support must be enforced at each duration individually. In the QDF149

literature this has typically been dealt with by introducing a two-step estimation pro-150

cedure where a single parameter representing the “characteristic duration” is estimated151

beforehand and then used in tandem with standard frequentist estimation techniques to152

estimate the remaining parameters of the extreme value distribution (Javelle et al., 2002;153

Cunderlik et al., 2007). However, such two-step estimation does not allow for easily ac-154

cessible uncertainty estimates, and, moreover, requires additional assumptions if the model155

is to be used in a regional context (Cunderlik & Ouarda, 2006). Since the models pre-156

sented here (1) require uncertainty estimates to inform discussion around flood design157

values and (2) are intended to form the basis of a regional flood model, we adopt a Bayesian158

estimation approach. Bayesian estimation of IDF models is well established and the ad-159

vantages particular to this approach (accessible uncertainty estimation, scaling to regional160

models via hierarchical Bayesian approaches, ability to add information through prior161

distributions) have been shown to be relevant in estimation of precipitation extremes (Cheng162

& AghaKouchak, 2014; Huard et al., 2010).163

The remainder of the paper is organized as follows: Section 2 introduces the data164

and describes several data artifacts unique to QDF modeling. Section 3 presents the three165

QDF models investigated in this study and details both the Bayesian framework and Markov166

chain Monte Carlo (MCMC) sampling. To facilitate both interpretation and inference,167

a quantile-based reparameterization of the GEV distribution is proposed. Section 4 de-168

scribes QDF model behavior and assesses performance in relation to locally fit GEV dis-169

tributions. The paper finishes with a discussion (Section 5) and conclusions (Section 6).170
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2 Data171

The flood data came from 12 streamflow stations in Norway that have at least 20172

years of quality-controlled data with minimal influence from reservoirs and other instal-173

lations that might alter the natural streamflow. All streamflow data were taken from the174

Norwegian hydrological database Hydra II hosted by the Norwegian Water Resources175

and Energy Directorate (NVE).176

The locations of the gauging stations and relevant catchment properties are shown177

in Figure 1. The selected stations show a diversity of locations, catchment sizes and flood178

generating processes, allowing us to evaluate the QDF models on a diversity of flood be-179

haviours. The catchment size ranges from 6.31 km2 (Grav̊a) to 570 km2 (Etna). In Nor-180

way the two major flood generating processes are snowmelt and rain. In Figure 1 this181

is illustrated as the average fractional rain contribution to each flood event. The aver-182

age rain contribution was estimated by calculating the ratio of accumulated rain and snowmelt183

in a time window prior to each flood and then averaging these ratios over all flood events184

(for details see Engeland et al. (2020). A fraction of rain value close to one means the185

floods at this location are primarily driven by rain; a value closer to zero means snowmelt186

is the dominant flood-generating mechanism. Rain was calculated from the precipita-187

tion and temperature from SeNorge 2.0 dataset (Lussana et al., 2019). Snow melt was188

extracted from the SeNorge snow model (Saloranta, 2014). In our dataset the rain con-189

tribution varies from 0.32 at Grosettjern to 0.95 at Røykenes.190

Dyrdalsvatn

Røykenes

Viksvatn

Grosettjern

Gravå

Elgtjern

Gryta

Etna

Sjodalsvatn

Hugdal Bru

Øyungen

Manndalen Bru

Catchment Area

< 10 km2

~ 50 km2

> 200 km2

0.4 0.5 0.6 0.7 0.8 0.9

Fraction of rain

Figure 1: Locations of twelve gauging stations used in study. Catchment area and frac-
tion of rain contribution to flood are also indicated.
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2.1 Data quality control191

Each of the streamflow records encompasses a variety of collection methods. These192

differing collection methods provide data at different frequencies. Typically we find daily193

time resolution in the first part of a streamflow record and a higher frequency of mea-194

surements in the latter part of the streamflow record after adoption of digitized limn-195

igraph records and/or digital measurements.196

It is necessary to make sure that the sampling frequency of the data is high enough197

to represent peak flood magnitudes with sufficient quality. This is especially important198

at small catchments; a higher frequency of measurements is needed to capture the be-199

havior of quicker, “flashier” floods vs slower, smoother floods. In the records for the small-200

est catchments, this constraint excludes substantial parts with a daily sampling frequency.201

We used the daily data in addition to the more high-resolution data from the last five202

decades for only two stations (Etna and Viksvatn, both large, primarily snowmelt driven203

catchments). For all the remaining stations we used data from approximately 1970 to204

present day, which is collected via a combination of limnigraph and digital readings. The205

time resolution of the digital measurements and the digitization of the limnigraph records206

were selected by NVE to be frequent enough to represent flood peaks at individual sta-207

tions.208

In addition to quality control on the sampling frequency, the data have already un-209

dergone a primary quality control by the hydrometric section at NVE and are corrected210

for ice jams. Any year with less than 300 days of data was discarded.211

2.2 Data processing for QDF212

The data set for the QDF analysis is constructed from an evenly spaced stream-213

flow time series at the reference duration, where the reference duration is the finest time214

resolution of interest. Even spacing in the reference duration is enforced via regular sam-215

pling of a linear interpolation of the observed data.216

Let x0(τ) be this time series at the reference duration. A moving average of win-
dow length d was applied to x0(τ) to manufacture a new time series, xd(t):

xd(t) =
1

d

∫ t+d/2

t−d/2
x0(τ) dτ (1)

Block maxima or peak over threshold values can then be extracted from xd(t) to form
sets of maxima given as:

{Qd,1, Qd,2, . . . , Qd,k} (2)

where, in the case of annual maxima, k is the number of years of data. The width d used217

as the length of the averaging window corresponds to the flood duration of interest and218

the average in Eqn (1) can be repeatedly applied under different d to manufacture new219

sets of maxima that correspond to different durations of interest.220

These sets of maxima produced under different d are dependent. The QDF model221

does not account for this dependency. This is an intentional modeling decision. While222

methodologies exist to capture the dependence structure between extreme events in these223

types of models–for example, the copula-based methods of Singh and Zhang (2007), the224

max-stable based model of Jurado et al. (2020) and the stochastic process theory based225

model of Van de Vyver (2018), all of which are discussed in Section 5–Figure 2 illustrates226

several artifacts introduced by QDF data processing that confound our ability to model227

the dependencies between maxima, particularly at ungauged locations. The model pro-228

posed in this paper is intended to form the basis of a regional model and thus needs a229

methodology that can be extended to ungauged catchments.230
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Figure 2: Figure showing two artifacts introduced by QDF data processing: (1) annual
maxima are not guaranteed to decrease as the duration of the averaging window is in-
creased and (2) annual maxima for each duration are not always issued from the same
flood event. Here we see the annual maxima from durations less than 7 days originate in
a primarily rain-driven flood in mid-July (top panel) while annual maxima from durations
greater than 7 days come from a smoother, snowmelt-driven flood at the beginning of
July. The shaded areas in the top panel show the window of time from which the flood
generating process is calculated. Data is from Sjodalsvatn gauging station, for the year
2009.

First, maxima are not guaranteed to decrease as the duration of the averaging win-231

dow is increased and the circumstances that produce this inconsistent behavior in max-232

ima (for example, two flood peaks of similar volume occurring within a short time pe-233

riod of each other, or a particularly wide and flat-topped flood) are not directly relat-234

able to catchment properties. Secondly, the floods for different durations are in some cases235

based on the same flood event; however, in other cases the maxima at different durations236

are based on different flood events with potentially different flood generating processes.237

In the first scenario the flood events have a strong dependency due to overlapping tem-238

poral support and serial correlation. In the second there is weak dependency. This pres-239

ence or absence of this change in across duration correlation is also not directly relat-240

able to catchment properties.241

3 Methods242

Extreme value theory allows for the estimation of extreme events by providing a243

framework for modeling the tail of probability distributions where such extreme events244

would lie. Let X1, . . . , Xn be a set of continuous, univariate random variables that are245

assumed to be independent and identically distributed. If the normalized distribution246

of the maximum max{X1, . . . , Xn} converges as n → ∞ then it converges to a GEV247

distribution (Fisher & Tippett, 1928; Jenkinson, 1955). See (Coles, 2001) for further de-248

tails.249
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In flood frequency analysis the set of values that is taken to be distributed GEV250

is typically the set of annual maxima. The GEV distribution is governed by a location,251

scale and shape parameter. The special case where the shape parameter is equal to zero252

is termed the Gumbel, or two-parameter, distribution. Both distributions are used in Eu-253

ropean FFA and an overview of country specific application can be found in Castellarin254

et al. (2012). Previous research (Castellarin et al., 2012; Midtømme, 2011; Kobierska et255

al., 2018) recommends the three-parameter GEV distribution for FFA on individual Nor-256

wegian stations with long data series. The following QDF models are thus based in the257

three-parameter form of the GEV, where the cumulative distribution function of the GEV258

is given as259

G(z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ}
(3)260

which is defined on {z : 1 + ξ(z − µ)/σ > 0} with parameter bounds −∞ < µ <261

∞, σ > 0 and −∞ < ξ < ∞ and where z would be the observed annual maximum262

streamflow for duration d for a specific year. The case where ξ = 0 is interpreted as the263

limit when ξ → 0.264

The remainder of this section is organized as follows: first, a quantile-based repa-265

rameterization of GEV distribution is adopted. Then three different QDF models–one266

established model and two new models–are introduced under this reparameterization.267

Finally, the fitting methodologies and model evaluation metrics are described.268

3.1 Reparameterization of the GEV distribution269

The parameters of a GEV model are most easily interpreted in terms of the quan-270

tile expressions; traditional descriptors such as the mean and variance are inappropri-271

ate for the skewed distribution of the GEV and, moreover, are undefined for certain val-272

ues of the ξ parameter (Coles, 2001). We reparametrize the GEV distribution using the273

α = 0.5 quantile in line with the recent work of Castro-Camilo et al. (2022). The re-274

lationship between the location parameter, µ, and the location parameter under the repa-275

rameterization, η (i.e. the median flood), is given as276

η =

{
µ+ σ log(2)−ξ−1

ξ if ξ 6= 0

µ− log (log(2)) if ξ = 0.
(4)277

Estimates of extreme quantiles are obtained by substituting η from Equation 4 for µ in278

Equation 3 and inverting the result, giving279

zp = η + σ

{
(−log(1− p))−ξ − log(2)−ξ

ξ

}
. (5)280

Here, G(zp) = 1−p and zp is the return level associated with the return period T such281

that T = 1/p. Finally, to reduce dependency between parameters, the scale parame-282

ter is decomposed as a product of the median flood and a remainder term expressed as283

an exponential function, eβ , such that the new scale parameter β is given as284

β = log

(
σ

η

)
. (6)285

The location parameter η has a more reasonable interpretation under the reparam-286

eterization in Equation 5: it is now the median of the GEV distribution, with units of287

m3/s. Consequently, it is much easier to choose informative priors under the reparam-288

eterization—an important advantage in a Bayesian framework (Gelman et al., 2013).289

In addition to providing interpretable parameters, this parameterization has the290

added benefit of aligning with the index flood approach popular in regional flood frequency291
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modeling, where the median flood for a group of catchments is taken as a typical, or “in-292

dex”, flood (Dalrymple, 1960). Explicitly including the median as a parameter in the model293

means the order of magnitude of a flood can be separated from the shape and slope of294

the growth curve. This has potential to simplify the search for regressors in a regional295

QDF model (Castro-Camilo et al., 2022).296

3.2 Models297

This section discusses three competing models. First the original QDF model from298

Javelle et al. (2002) is presented under the reparameterization in Section 3.1. Then the299

new extended QDF model is introduced. Finally, a mixture model taking components300

from both previous models is introduced. Each of these models introduces additional pa-301

rameters to the classic GEV model. The models differ in the number of additional pa-302

rameters added, but can all be classified as duration-dependent GEV, or d-GEV, mod-303

els.304

3.2.1 Original QDF model305

The annual flood maxima under the original QDF model proposed in Javelle et al.306

(2002) are independently distributed307

Qd,i ∼ GEV (ηd, β, ξ) (7)308

where309

ηd = η (1 + d∆)
−1

(8)310
311

and the quantile function under the reparameterization in Section 3.1 is given as312

zd,p =
η

1 + d∆

[
1 + eβ

{
(−log(1− p))−ξ − log(2)−ξ

ξ

}]
(9)313

where ∆ > 0. Note the inverse of ∆ from Javelle’s original QDF model is used here for314

numerical stability during estimation. The value of the ∆ parameter reflects the shape315

of the hydrograph. A high value for ∆ indicates a flashy/peaked hydrograph with a pro-316

nounced duration dependency for the median flood, whereas a value close to zero indi-317

cates a wide hydrograph with minor duration dependency for the floods. The traditional318

flood frequency curve–that is, a GEV distribution fit to an instantaneous time series–319

is recovered in the limit of the aggregation window as d→ 0.320

In Javelle’s model only η is dependent on d and ∆. This aligns with the literature321

base for IDF modeling in the sense that the model can be written as a separable func-322

tion of d and p. Notice further that if the 1+d∆ quantity in Equation 9 was replaced323

with a power relationship the model would match that of the IDF models summarized324

in Koutsoyiannis et al. (1998). The power relationship and separable functional depen-325

dence of the IDF model has its roots in stochastic process theory, although the model326

as typically applied deals only with a first-order distribution of precipitation events and327

does not rely on this theory base (Koutsoyiannis et al., 1998).328

Since only the magnitude of the flood (η) is duration-dependent in the model in329

Equation 9, the underlying assumption is that the slope of the growth curve does not330

change with flood duration. Breaking this assumption (as the extended QDF model in331

the next section does) requires breaking the separable functional dependence. However,332

as discussed in Section 5, flood events are unlikely to follow a single stochastic process333

(Viglione et al., 2010; Gaál et al., 2012), relaxing the need to draw on the related the-334

ory base.335
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3.2.2 Extended QDF model336

The extended QDF model (referred to as the Double-Delta QDF model) is struc-337

tured to be able to capture differences in slope of the growth curves coming from peak338

and daily values, or, indeed, values coming from any two different aggregation intervals.339

Changing the steepness of the growth curve dependent on flood duration requires extra340

flexibility in the tail behavior of the model, so the model allows η and β to depend on341

the aggregation interval d and additional parameters ∆1 and ∆2, respectively. The ξ pa-342

rameter is kept duration-invariant due to the difficulties in estimating the ξ parameter343

stemming from the involved parametric form of the CDF (Equation 3). Under Double-344

Delta the annual flood maxima are independently distributed as345

Qd,i ∼ GEV (ηd, βd, ξ) (10)346

where347

ηd = η (1 + d∆1)
−1

(11)348

βd = log

(
σ

ηd(1 + d∆2)

)
(12)349

350

and the distribution’s quantiles for a duration d corresponding to exceedance probabil-351

ity p are given by352

zd,p =
η

1 + d∆1

[
1 +

eβ

1 + d∆2

{
(−log(1− p))−ξ − log(2)−ξ

ξ

}]
(13)353

with constraint354

0 < ∆2 < ∆1. (14)355

The constraint on the Delta parameters reflects the relationship between sets of flood-356

ing events; the data aggregation performed in QDF modeling (see Section 2.2) is more357

likely to have a larger effect on the flood magnitude than on the decomposed scale pa-358

rameter. Recall that the value of the ∆1 parameter reflects the “flashiness” of the floods359

measured; a narrow hydrograph will be associated with larger values of ∆1. The ∆2 pa-360

rameter does not have an equally accessible hydrologic interpretation but can be inter-361

preted as a measure of difference in growth curve slope across aggregation intervals; that362

is, if the ratio between peak and daily floods is heavily dependent on return period we363

would expect to see larger values of ∆2.364

As the aggregation window shrinks to zero, that is, as d → 0, the Double-Delta365

model is equivalent to the standard GEV model that creates the traditional flood fre-366

quency curve. Similarly, as ∆2 → 0, the Double-Delta model approaches Javelle’s QDF367

model. Double-Delta can thus be considered an extension of Javelle in the same way Javelle368

is an extension of the traditional flood frequency curve.369

3.2.3 Mixture Model370

The mixture model is proposed in an attempt to access the flexibility of the Double-371

Delta model without adding unnecessary complexity; using Bayesian methodologies and372

the reversible-jump algorithm detailed in Section 3.3, parameter estimation and selec-373

tion can be carried out simultaneously and the ∆2 parameter is only added if merited.374

The model is a weighted average of the Double-Delta and Javelle models such that375

the density of the annual maximum flood events is given by376

2∑
j=1

mj g(·|θj) (15)377
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where mj is the weight on the component model, g is the density of the GEV distribu-378

tion, θ1 = {η DD

d , β DD

d , ξDD} and θ2 = {η J

d , β
J, ξJ}. Here the superscripts on the parame-379

ter sets denote the Double-Delta and Javelle models, respectively.380

Thus Equation 15 is a representation of a non-standard density from which it is381

possible to obtain quantile estimates that are an average over the distributions given by382

the Double-Delta model in Equation 10 and the Javelle model in Equation 7.383

3.3 Bayesian Framework384

For the Javelle and Double-Delta models, Bayesian inference is performed using385

a Metropolis-Within-Gibbs algorithm (Robert & Casella, 2004). That is, samples from386

the conditional distribution of the parameters θ1 and θ2, respectively, are obtained by387

iterative sampling from the full conditional distributions of the individual parameters388

so that each component of the model is updated in turn. Prior distributions for the in-389

dividual parameters assume independence. The prior on η, which has units of m3/s, is390

a diffuse truncated normal distribution truncNormal(40,100) with lower bound at zero.391

The prior on β is a diffuse Normal(0,100). For ξ, we follow the methodology in Martins392

and Stedinger (2000) and use a shifted Beta(6,9) distribution on the interval [−0.5, 0.5].393

The prior for ∆1 in the Double-Delta model, which is equivalent to the prior for ∆ in394

the Javelle model, is a Lognormal(0,5). The same values are used in the prior for ∆2,395

which uses a truncated Lognormal where the lower bound of the prior is given by ∆1.396

The conditional distribution of the mixture model is given by397

p (m,θ|Q) ∝ p(m)p (θ|m) g(Q|θ,m) (16)398

where p(·|·) is the generic conditional distribution consistent with this joint specification399

and m ∈ {DD, J}, θ ∈ {θ1,θ2}, and Q = (Qd,i)
i=k,d=n
i=1,d=1 , where k is the number of400

years of data and n is the total number of durations. The models have equal prior prob-401

ability, with p(m = J) = p(m = DD) = 0.5. Simplification of Equation 16, consider-402

ing the model without the model specification and separate parameter sets, gives the con-403

ditional distributions of Double-Delta and Javelle.404

Moving between models changes the dimension of θ. To account for this, we em-405

ploy a reversible jump MCMC algorithm, similar to the reversible jump methodology406

for normal mixtures described in Richardson and Green (1997). The reversible jump MCMC407

proceeds as follows:408

1. updating θ:409

(a) if m = DD update η DD, else update η J;410

(b) if m = DD update β DD, else update β J;411

(c) if m = DD update ξ DD, else update ξ J;412

(d) if m = DD update ∆1 and ∆2 parameters in sequence, else update ∆;413

2. splitting one Delta into two, or combining two Deltas into one.414

Step 1 is repeated 10 times under the same model before Step 2 (proposal to jump415

between models) is taken. Repeating Step 1 for either the Javelle or Double-Delta model416

details the MCMC algorithm used to fit the respective model. To move from Double-417

Delta to Javelle we need to merge ∆1 and ∆2 into one ∆. The combine proposal is de-418

terministic and given by419

∆ = ∆1 + ∆2. (17)420

The reverse split proposal, going from Javelle to Double-Delta, involves one degree of421

freedom, so we generate a random variable u such that422

u ∼ Beta(5, 1) (18)423
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which is then used to set424

∆1 = u∆

∆2 = (1− u)∆.
(19)425

426

For this split move the acceptance probability is min {1, A} where427

A =
p(m′,θ′|Q)

p(m,θ|Q)q(u)
|J | (20)428

where q(u) is the density function of u and J is the Jacobian of the transformation de-429

scribed in Equation 19. The acceptance probability for the corresponding combine move430

is min
{

1, A−1
}

but with substitutions that adhere to the proposal in Equation 17.431

3.3.1 Posterior return levels432

The Markov chains detailed above return a collection of R samples433

θ[r], r = 1, . . . , R (21)434
435

where R is the total number of iterations in the MCMC with a suitable number of burn-436

in samples removed. Under the mixture model, θ can be either θ1 or θ2 dependent on437

iteration r, while posterior samples under Double-Delta or Javelle will return only θ1438

or θ2, respectively. This Markov sample of the parameter set directly yields, by using439

the quantile function in either (9) or (13), a sample of quantiles440 {
(zd,p)

[1], . . . , (zd,p)
[R]
}
. (22)441

442

This sample approximates the posterior distribution of the pth return level at flood du-443

ration d. From this sample it is possible to derive approximations for the posterior mean444

and its credible intervals.445

3.4 Evaluation methods446

To assess the models we compare QDF model output to GEV distributions fit lo-447

cally to each duration. Comparison is quantified first through the proper evaluation met-448

ric integrated quadratic distance (IQD) (Thorarinsdottir et al., 2013). Further, since the449

IQD is a measure of overall distributional similarity and is not always sensitive to small450

differences in tail behavior, we calculate the mean absolute percentage error (MAPE)451

for select high quantiles.452

The IQD measures the similarity between two distributions by integrating over the453

squared distance between the distribution functions. Let G be the distribution function454

defined by the local GEV fit and GQDF be the distribution function defined by the QDF455

model at the corresponding duration. In practice we approximate G and GQDF by the em-456

pirical CDF of a sample from the posterior. The distance between G and GQDF as mea-457

sured by the IQD is then given by458

IQD =

∫ +∞

−∞
(G(z)−GQDF(z))

2
dz (23)459

where lower values of the IQD indicate better overall performance.460

The MAPE provides a measure of similarity as the percent difference between the461

local GEV fit and the QDF model. Let zQDF

d,p be the return level at probability p for the462

QDF model evaluated at duration d, generated from the approximation to the posterior463

given in Equation 22. Similarly, let zGEV,d
p be the return level at probability p for the lo-464

cal GEV fit to data at duration d. Then the MAPE is given by465

MAPE =
1

n

n∑
i=1

∣∣∣∣∣zGEV,d
p − zQDF

d,p

zGEV,d
p

∣∣∣∣∣ ∗ 100 (24)466

where n is the number of stations at which we wish to calculate the MAPE.467
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4 Results468

We evaluate three models: the original QDF model (Javelle), the extended QDF469

model (Double-Delta), and the mixture model. We first assess how well the models cap-470

ture flood behavior for in-sample durations at a variety of catchments. Then we eval-471

uate which of the models is most effective at predicting out-of-sample durations, specif-472

ically short (less than 24 hour) durations from long durations (greater than or equal to473

24 hours). Finally, we compare the models’ estimation abilities at in- and out-of-sample474

durations.475

Model evaluation is carried out by comparing the QDF models to a collection of476

GEV models fit individually to each flood duration. The IQD is used to assess model477

behavior across all quantiles; since it has low tail sensitivity it best captures model be-478

havior where the bulk of our observations lie (i.e. return periods for which we have ob-479

served data). We turn to the MAPE to assess tail behavior, where both the QDF model480

and the reference model are extrapolated beyond the range of observed data.481

4.1 Model sensitivity to input durations482

The QDF models should be fit with the minimum number of flood durations needed483

to ensure converge of the MCMC sampler; feeding too many sets of dependent data into484

the model can bias return level estimates and artificially narrow the credible intervals.485

The bias is especially prevalent when the data is generated by aggregating over a longer486

time span and the goal is to predict short duration events.487

Out−of−sample In−sample

1 hour 24 hour 72 hour

2 5 10 20 50 100 250 500 2 5 10 20 50 100 250 500 2 5 10 20 50 100 250 500
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3
s )

 local GEV fit  24−120 24−72

Figure 3: Return level plots from the Dyrdalsvatn gauging station using the Double-
Delta model fit to two different data sets: one set with six durations [24, 36, 48, 72, 96,
120 hours] and one set with four durations [24, 36, 48, 72 hours]. The model fit to the
six duration set is both overconfident and biased at shorter durations; the posterior mean
return level estimates are consistently underestimated when compared to locally fit GEV
models (dashed grey lines) and the 90% credible interval is artificially narrow and fails to
capture the locally fit model for the 24 and 1 hour durations.

To test this, the models were fit under three different sets of data: two durations488

(24 and 36 hours); four durations (24, 36, 48, 72 hours); and six durations (24, 36, 48,489

72, 96, 120 hours). For the two-duration set the MCMC sampler failed to converge. Re-490

–13–



manuscript submitted to Water Resources Research

sults from the other two sets (“24-72” and “24-120”) are displayed in Figure 3. The 24-491

120 set provides a comparatively worse fit; the 90% credible interval for the this set fails492

to capture the locally fit GEV models (dashed grey lines) for the 24 and 1 hour dura-493

tions and the return levels are also underestimated to a greater extent than in the 24-494

72 set. This behavior is replicated across all three models and all twelve catchments (re-495

sults not shown).496

4.2 Model performance on in-sample durations497

Here, we present results where the three QDF models are compared against locally498

fit GEV models at every in-sample flood duration, where the in-sample flood durations499

are 1, 24, 48, and 72 hours. Such an in-sample comparison is useful for identifying spe-500

cific scenarios where QDF models struggle to fit the data rather than strict model-to-501

model rankings: since models with more parameters have an in-sample advantage, Double-502

Delta is expected to perform better than either Javelle or the mixture model. Return503

level plots displaying the QDF model output and the reference model at these four in-504

sample durations are displayed in Figures C1-C4.505

4.2.1 Assessing model behavior using IQD506

A comparison of in-sample IQD scores across stations, durations and methods is507

given in Figure 4. The scores are relatively similar across models–most points fall on or508

along the diagonals in the two plots in Figure 4. As expected, the scores exhibit a slight509

preference towards the Double-Delta model, which has the lowest average IQD score at510

0.034 (highest distributional similarity to the reference model when all durations and sta-511

tions are considered). The mixture model has the next lowest score at 0.037 and Javelle512

has the highest score at 0.040.513
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Figure 4: Model-to-model comparison of IQD scores for each station and in-sample dura-
tion. The extended QDF model (Double-Delta) serves as a reference to both the original
QDF model (Javelle, left panel) and the mixture model (right panel). Notable values are
indicated.
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The analysis shows duration-specific preferences between models. The Double-Delta514

model has a better average IQD score than either Javelle or the mixture model at ev-515

ery in-sample duration where the average is taken over all 12 stations considered in the516

study. However, Double-Delta’s advantage is strongest at the shortest durations. Table517

1 reports the number of stations at which Double-Delta outperforms a comparison QDF518

model at each duration.519

Table 1: Number of stations at which the extended QDF model (Double-Delta) outper-
forms a comparison QDF model as measured by IQD. Here ”MM” denotes the mixture
model.

In-sample
duration

Comparison model

Javelle MM

1 hour 10/12 10/12
24 hours 9/12 9/12
48 hours 7/12 7/12
72 hours 7/12 8/12

Double−Delta Javelle
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Figure 5: Return level plots showing two selected stations where QDF models differ sub-
stantially from the reference model on in-sample durations. (A) Hugdal Bru: the 1-hour
floods with return period under 5 years are characterized by a diurnal melt-freeze cycle
at this snowmelt-driven catchment; 1-hour floods with longer return periods come from
larger precipitation or warming events that supersede the diurnal cycle and as such have
a more consistent relationship with longer durations and are more easily characterized by
QDF models. (B) Gryta: the reference models show a change in shape parameter with
increasing duration; QDF models cannot capture this behavior as the shape parameter is
not duration dependent.

Despite QDF models showing an overall good performance, there are certain sta-520

tions where each of the three QDF models differs substantially from the reference model.521

This behavior is particularly prevalent for the 1 and 24 hour durations at Hugdal Bru,522

displayed in panel A of Figure 5. We suspect the issues with the shorter durations at Hug-523

dal Bru represent a conflict between the parameter constraints inherent in the QDF mod-524

els and the runoff-generating processes for sub-daily streamflow at this particular sta-525

tion: Hugdal Bru is heavily snowmelt driven, with a strong diurnal melt pattern. The526

data averaging used in QDF modeling smooths out this sub-daily variation, but this rel-527

atively large reduction in variance is not reflected in the parameter constraints of the QDF528

model since the primary scaling occurs on the median flood (a constraint described in529
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Equation 14). Thus the behavior of 1-hour floods with return period under 5 years is dif-530

ficult for the QDF models to fit. Floods with higher return periods tend to come from531

larger precipitation or melting events that supersede the diurnal cycle and as such have532

a more regular relationship between durations. Flood durations above 24 hours (with-533

out the diurnal cycle) also have a more regular relationship between durations.534

The QDF models assume a constant shape parameter across all durations included535

in the analysis. As shown in panel B of Figure 5, this assumption may lead to estimates536

that diverge from local duration-independent estimates where the latter analysis yields537

substantially varying shape parameter estimates across the durations. Here, the individ-538

ually fit GEV models have shape parameters ranging from 0.140 for the 1 hour duration539

to -0.037 for the 72 hour duration. The QDF models do not have duration dependence540

built into the shape parameter and as such must choose one shape parameter for the en-541

tire set (in this case 0.018 for Double-Delta, 0.021 for the mixture model and 0.036 for542

Javelle). This inflexibility of the shape parameter is a known limitation of QDF mod-543

els but is not easily solved as this parameter faces estimation difficulties due to the in-544

volved parametric form of the cumulative distribution function of the GEV. As a result,545

the QDF models tend to underestimate high quantiles for short durations and overes-546

timate high quantiles for longer durations. Specifically for Gryta, under Javelle the 1 hour547

duration is underestimated and the 48 and 72 hour durations are both overestimated to548

a greater extent than we see in the Double-Delta model.549

4.2.2 Assessing model behavior using MAPE550

The within-sample MAPE was computed for the 100 year and 1000 year flood events551

(0.99 and 0.999 quantiles). These quantiles lie beyond the observed range of data for most552

of the stations and thus require extrapolation of both the QDF models and the refer-553

ence model.554

The Double-Delta model has the lowest MAPE at both return periods when all in-555

sample durations and stations are taken into account (5.9% error at the 100 year return556

period and 10.0% error at the 1000 year return period). The mixture model has the next557

lowest MAPE with 6.5% error at the 100 year return period and 12.1% error at the 1000558

year return period. The Javelle model has the highest MAPE with 7.7% error at the 100559

year return period and 12.1% error at the 1000 year return period. As with the IQD,560

the advantage of Double-Delta is strongest at the shortest durations; Table 2 reports the561

number of stations at which Double-Delta outperforms either Javelle or the mixture model.562

Table 2: Number of stations at which the extended QDF model (Double-Delta) outper-
forms a comparison QDF model as measured by MAPE. Here ”MM” refers to the mixture
model.

In-sample

duration

Comparison model
T

Javelle MM

1 hour 11/12 11/12

100
24 hours 10/12 9/12

48 hours 4/12 4/12

72 hours 7/12 6/12

1 hour 11/12 11/12

1000
24 hours 9/12 9/12

48 hours 4/12 4/12

72 hours 6/12 6/12
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Figure 6: Model-to-model comparison of MAPE scores for each station and in-sample
duration. The extended QDF model (Double-Delta) serves as a reference to both the orig-
inal QDF model (Javelle, top panels) and the mixture model (bottom panels). Notable
values are labeled.

The addition of the second delta parameter has the most impact when estimating563

events with long return periods. We see this in the differences in behavior of the model-564

to-model comparisons between the IQD and MAPE Figures 4 and 6. Javelle and the mix-565

ture model appear more similar when evaluated by the IQD than they do under the MAPE;566

that is, using the IQD score the two models have about the same amount of clustering567

around the diagonal when compared to Double-Delta. But using MAPE–which measures568

differences in tail behavior between the QDF models and reference model–we see a dif-569

ference between Javelle and mixture model when compared to Double-Delta: the val-570

ues for the mixture model are much more closely clustered around the diagonal in Fig-571

ure 6 than the values for Javelle. These stations that show an improvement in MAPE572

under the mixture model are those that have a high weight on the second delta param-573

eter.574

One of the stations that is most improved by the addition of the second delta is575

Gryta (marked in Figure 6). The return level plots in panel (B) of Figure 5 show this576

station in particular benefits from the adjustment of growth curve slope afforded by the577

second delta. The second delta somewhat mitigates the effect of the assumption of a con-578

stant shape parameter across durations. However, even with this adjustment in growth579

curve slope both Double-Delta and the mixture model have high error values for the 1580

hour duration at Gryta–around 20-30%.581
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4.3 Model performance on out-of-sample durations582

Here, the models were fit with four durations (24, 36, 48 and 60 hours) and the re-583

sulting parameter estimates were used to predict the 1 and 12 hour durations. The QDF584

predictions were compared to locally fit GEV models using both the IQD and MAPE.585

Return level plots showing the reference and QDF models at both out of sample dura-586

tions are displayed in Figures D1-D4.587

Double-Delta has the best average IQD score on the out of sample durations, re-588

porting a score of 0.34 while the mixture model reports a score of 0.42 and Javelle re-589

ports 0.44. Figure 7 shows a model-to-model comparison on the out of sample durations.590

There are only three station and duration combinations (both the 1 and 12 hour dura-591

tions at Sjodalsvatn and the 1 hour duration at Dyrdalsvatn and Øyungen) where Double-592

Delta performs worse, as measured by the IQD, than the other two models. At every other593

station and duration Double-Delta performs the same or better.594

All three QDF models provide a poor distributional fit for the sub-daily durations595

at Hugdal Bru and the 1 hour duration at Røykenes. Difficulties fitting the sub-daily du-596

rations of Hugdal Bru are discussed in Section 4.2.1. The 1 hour duration at Røykenes597

exhibits a large change in shape parameter with an increase in duration like the station598

Gryta shown in panel B of Figure 5.599

Hugdal Bru

Hugdal Bru

Røykenes

0.2

1.0

5.0

0.2 1.0 5.0
Double−Delta(IQD score)

Ja
ve

lle
(I

Q
D

sc
or

e)

Hugdal Bru

Hugdal Bru

Røykenes

0.2

1.0

5.0

0.2 1.0 5.0
Double−Delta(IQD score)

M
ix

tu
re

M
od

el
(I

Q
D

sc
or

e)

Dyrdalsvatn Øyungen Sjodalsvatn Flood Duration (hours)a a1 12

Figure 7: Model-to-model comparison of IQD scores for each station and both out-of-
sample durations. The extended QDF model (Double-Delta) serves as a reference to both
the original QDF model (Javelle, left panel) and the mixture model (right panel). Notable
values are labeled.

Double-Delta has the best average MAPE score on the out of sample durations (11.1%600

error at the 100 year return period and 15.4% error at the 1000 year return period). The601

mixture model has the next lowest MAPE with 12.2% error at the 100 year return pe-602

riod and 16.9% error at the 1000 year return period. The Javelle model has the high-603

est MAPE with 12.8% error at the 100 year return period and 17.4% error at the 1000604

year return period. Double-Delta provides an equal or better fit at around 80% of the605

stations and durations at both return periods. Stations and durations where Double-Delta606

is outperformed by either Javelle or the mixture model are marked in red in Figure 8.607
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Figure 8: Model-to-model comparison of MAPE scores for each station and both out-of-
sample durations. The extended QDF model (Double-Delta) serves as a reference to both
the original QDF model (Javelle, top panels) and the mixture model (bottom panels).
Notable values are labeled.

Several of the smallest catchments (Grav̊a, Gryta and Grosettjern) have high out-608

of-sample MAPE values. These three catchments have some of the highest variation in609

the shape and slope of the individually fit GEV models (see Tables A1 and B1, where610

the β parameter is taken as a proxy for slope).611

A highly duration-dependent shape parameter is a known challenge for QDF mod-612

els (see the scenario in panel B of Figure 5) and we would expect the QDF models to613

struggle to find a shape parameter value that approximates both the longest and short-614

est durations even when these durations are in-sample. Furthermore, not only do we ob-615

serve a large shape parameter range but this range crosses zero for both Gryta and Groset-616

tjern, with the longer durations having a negative shape parameter while the shorter du-617

rations have a positive shape parameter. This is a substantial difference; a negative shape618

parameter corresponds to an entirely different distribution family (Weibull) than a pos-619

itive shape parameter (Fréchet) within the GEV family.620
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Additionally, these three catchments experience the biggest change in growth curve621

slope between either the 1 and 24 hour duration or the 12 and 24 hour duration while622

the rate of change of growth curve slope is less for durations above 24 hours; that is, there623

is a change in growth curve slope in the sub-daily durations that is not replicated in the624

longer durations. In summary, we observe high error for out of sample durations at Grav̊a,625

Gryta and Grosettjern because the relationship between the longer floods used to fit the626

model does not strongly inform the relationship between sub-daily floods for these catch-627

ments.628

4.4 Comparison of in- and out-of-sample sub-daily estimates629

Here, the models were fit with six durations (1, 12, 24, 36, 48, 60 hours) where the630

1 and 12 hour durations are evaluated as in-sample durations. The output from these631

models is then compared to the output from the previous section, where the models are632

fit on four durations (24, 36, 48, 60 hours) that are used to predict the 1 and 12 hour633

durations. The performance of each of these sets is evaluated at the 1 and 12 hour du-634

rations using both the IQD, as shown in Figure 9, and MAPE, as shown in Figure 10.635

The stations that have the greatest loss when going from in-sample to out-of-sample636

tend to be stations that already had high IQD or MAPE values. This means that if there637

is already a significant difference between the the QDF and reference models this dif-638

ference is likely to be amplified when predicting out of sample durations. Most stations639

and durations, however, have a relatively moderate loss when moving from in- to out-640

of-sample on both the IQD and MAPE (the exceptions to this are labeled in Figures 9641

and 10). For the MAPE, this difference is on the order of ±5%.642
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Figure 9: Comparison of IQD score when durations are either predicted (out of sample)
or included in the model fitting set (in sample). The out-of-sample set was fit with dura-
tions 24, 36, 48, 60 hours and used to predict the 1 and 12 hour durations. The in-sample
set was fit with durations 1, 12, 24, 36, 48, 60 hours. Notable values are labeled.

5 Discussion643

We have, in accordance with our main objective, analyzed how different QDF mod-644

els capture the relationship between floods of different duration at 12 locations in Nor-645

way. By examining differences in model fit between the three models studied, we iden-646
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Figure 10: Comparison of mean absolute percent error when durations are either pre-
dicted (out of sample) or included in the model fitting set (in sample). The out-of-sample
set was fit with durations 24, 36, 48, 60 hours and used to predict the 1 and 12 hour dura-
tions. The in-sample set was fit with durations 1, 12, 24, 36, 48, 60 hours. Notable values
are labeled and dashed lines indicate ±5% difference from the diagonal.

tified reasoning to explain why the extended QDF model (“Double-Delta”) outperforms647

the other two models on the particular stations and durations studied, and why this per-648

formance advantage is particularly pronounced for events with long return periods and/or649

short flood durations. Additionally, we tested the out-of-sample performance of QDF mod-650

els on sub-daily floods by comparing to models fit with the sub-daily data included; we651

observed situations where the out-of-sample set returned evaluation scores that were in652

line with the in-sample set but also situations where the ability of QDF models to pre-653

dict sub-daily, out-of-sample durations was severely limited. Finally, we assessed whether654

the choice of durations used to fit the QDF models impacts model estimation and con-655

cluded QDF models are sensitive to the durations used to fit them.656

The main contribution of the proposed Double-Delta model is the ability to adjust657

to certain types of changes in dependence structure with respect to return period. Specif-658

ically, it can account for the situation where the ratio between growth curves increases659

with increasing return period. The original QDF model (Javelle), on the other hand, as-660

sumes this ratio to be constant. As evidenced by the return level plots in Figures C1-661

C4, the assumption of a constant ratio will commonly not hold, in particular, if the short-662

est duration of 1 hour is included in the comparison. The additional parameter in the663
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Double-Delta model allows for a better approximation of the tail behavior, especially for664

short durations. Selectively adding the second delta–as the mixture model does–is not665

advantageous at the shortest durations as these durations tend to need maximum flex-666

ibility from the QDF models.667

The Double-Delta model assumes that the magnitude of the differences in return668

level either stays the same or increases with increasing return period. However, this be-669

havior is not the only dependence structure we observe in our data, as illustrated in panel670

A of Figure 5. The example from Hugdal Bru shows that cases exist where the magni-671

tude of differences between return levels of different duration may decrease rather than672

increase. This is one of two scenarios (the other being duration dependence in the shape673

parameter) where we observe large discrepancies between the QDF models and the ref-674

erence model.675

Methods exist to model the dependence structure between durations. These meth-676

ods—which typically build dependence relationships into a dGEV model via use of a cop-677

ula or a max-stable process—are an active area of research in the IDF modeling com-678

munity (Jurado et al., 2020; Tyralis et al., 2019; Vinnarasi & Dhanya, 2019; Singh & Zhang,679

2007). However, none of these methods explicitly address changes in dependence struc-680

ture with return period, which is our observed source of difficulty with QDF models. It681

is possible that, if the dependency between events is greatest at high return periods, max-682

stable or copula based methods could provide an improvement in accuracy at these high683

quantiles as a by-product of modeling the dependence structure at all quantiles. Unfor-684

tunately, artifacts introduced by processing of the data for QDF modeling (described in685

Section 2.2, Figure 2) limit our ability to make statements about the increase or decrease686

of event dependence with return period and with duration. Other copula-based approaches687

to multivariate flood frequency analysis sidestep these artifacts by avoiding data aver-688

aging and instead work with extensive observed data series (Zhang & Singh, 2006) or689

long series of synthetic data (Gräler et al., 2013); peak discharge events from these se-690

ries are then characterized by their discharge and duration, where the association be-691

tween discharge and duration is then modelled by the copula. These approaches, how-692

ever, are data-intensive, reliant on observing events of relevant duration, and sensitive693

to the choice of copula (Gräler et al., 2013; Zhang & Singh, 2006). This increases the694

burden on the practitioner and complicates the extension to ungauged catchments and695

unobserved flood durations.696

In addition to the scenario described above, a second scenario where QDF mod-697

els struggle to fit the data are situations where the shape parameter changes with du-698

ration. This situation, illustrated in panel B of Figure 5, is a known limitation of QDF699

modeling as these models assume a constant shape parameter across all durations. It would700

be technically possible to add duration dependence to the shape parameter of the mod-701

els in Equations 9, 13, and 15. However, the observed difficulties in estimating the shape702

parameter in Section 4.3 and the issues documented in Martins and Stedinger (2000) in-703

dicate this approach may be very complex and pose severe estimation problems. Addi-704

tionally, observation of the shape parameter values from individually fit GEV distribu-705

tions demonstrate the shape parameter does not appear to change with duration in as706

structured a way as either the median flood (η) or the change in slope of the growth curves707

(where this change is described in part by β).708

The ability of QDF models to predict sub-daily unobserved flood durations using709

daily or longer data is of particular interest due to the relevance of the instantaneous,710

or hourly, flood to design flood estimation and the prevalence of daily data in many of711

the longer flood records. When this behavior was tested in Sections 4.3 and 4.4, most712

stations returned results we find promising: the out-of-sample results are similar to the713

results obtained when the sub-daily durations are in-sample. However, a few stations demon-714

strated that the ability of QDF models to predict out-of-sample durations can be severely715

limited. Simply put, in certain situations the relationship between the in-sample floods716
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does not inform the relationship at the out-of-sample floods. We suspect such situations717

arise in connection with the temporal scaling properties of flooding events.718

The ways in which flood properties change with increasing event duration are com-719

plex. Flood duration incorporates many aspects of runoff generation and precipitation720

characteristics. This relationship is further complicated under FFA since all flood events721

are grouped regardless of their generating process and under QDF modeling since av-722

eraging introduces the possibility that flood events from different durations are not nec-723

essarily from the same flooding event.724

The disconnect between sub-daily and long-duration flood events observed at some725

stations in this study parallels the work of Viglione et al. (2010). They found that short726

duration flood events tend to be controlled by temporal and spatial components work-727

ing in concert with properties of the specific storm that generated the flood. Longer du-728

ration events, by contrast, are primarily controlled by temporal components. That is,729

different processes—that likely produce different dependency relationships between flood730

events—control floods at different durations. Corroborating this is the work of Gaál et731

al. (2012), which found different generating processes for the shortest and longest floods732

in an analysis of nearly 10,000 flood events at a variety of catchments in Austria. What733

is “short” and what is “long” will be specific to the catchment in question and defies an734

easy definition; however, it seems likely that we have found the boundary between “long”735

and “short” floods for the three stations that struggle to use QDF models to estimate736

sub-daily floods from daily data.737

We note that this observed disconnect in temporal scaling properties of flood events,738

along with the work of Viglione et al. (2010) and Gaál et al. (2012), indicate that it is739

unlikely floods at different timescales are generated from the same stochastic process.740

As such a “multiscaling” model that attempts to relate the probabilistic properties of741

floods at two different timescales (such as the IDF model proposed in Van de Vyver (2018))742

is not appropriate here.743

Importantly, we found that the choice of durations used to fit the QDF model was744

a highly influential aspect of the modeling process. The particular durations chosen will745

impact what relationship between floods the QDF models can identify; as discussed in746

the previous paragraphs, it is possible to select in-sample durations that do not inform747

the duration of interest. Avoiding this situation requires careful selection of appropri-748

ate in-sample durations. Such selection can be guided by design value application; for749

example, it is unlikely we would need the 60 or 72 hour flood duration on the smallest750

catchments in this study and can therefore avoid the somewhat contrived scenarios where751

we use what are, for these catchments, only long-duration flood events to estimate the752

shortest durations.753

The range of the selected durations also influences the QDF model estimates. If754

the durations selected do not span a wide enough range the QDF models will struggle755

to converge (Section 4.1). However, too wide a range of durations can be challenging for756

QDF models if the statistical properties of the floods change significantly between du-757

rations (Section 4.2). We note that problems associated with the latter situation can be758

partially mitigated through the extra flexibility afforded by the extended QDF model759

(Double-Delta). Additionally, we found that generating too many sets of dependent data760

to fit the model can produce results that are both biased and overconfident, particularly761

when the generated data is aggregated over a longer time span than the duration of in-762

terest (Figure 3).763

The Double-Delta model is a promising avenue for improved modeling of short-duration764

events and events with long return periods under a QDF modeling framework. We iden-765

tify several areas of future research. Of particular interest is how this extended QDF model766

will function in a regional setting; many of the design flood values needed for operational767
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use in Norway are at ungauged sites or at sites with incomplete or very short datasets.768

Extending the analysis presented in this paper to include more gauging stations is also769

a priority and an important component of developing a regional model. In addition to770

regionalization of the model, a potential area of improvement for predicting short du-771

rations when the majority of the data is at a daily (or longer) time resolution is to al-772

low the QDF models to take data where the length of the data record varies by dura-773

tion, such that some information on short durations can be included even if the data for774

these durations is relatively scant. And, finally, a natural follow-up question to this anal-775

ysis using QDF models to predict sub-daily out-of-sample durations is “How good are776

QDF models at predicting short durations when compared to other methodologies de-777

signed for the purpose of estimating the instantaneous design flood?”.778

6 Conclusions779

This paper proposes a five parameter (Double-Delta) QDF model based on the GEV780

distribution, where both flood magnitude and the ratio between growth curves may vary781

across flood durations. A Bayesian inference algorithm is developed where a four param-782

eter QDF model, a five parameter QDF model, or a mixture of the two may be estimated.783

In a case study comprising 12 study locations in Norway, we analyze how the different784

QDF models capture the relationship between floods of different duration. The results785

suggest it is advantageous to include an adaptive tail behaviour in the QDF model. This786

advantage is particularly pronounced for events with long return periods and/or short787

flood durations. The Double-Delta model is also better at handling changes in the un-788

derlying statistical properties of floods at different durations, allowing for a wider range789

of durations to be included in the analysis. Overall, we found the QDF framework to be790

highly sensitive to the choice of durations used to fit the models. Users should be aware791

that the choice of input durations will always be a qualitative choice that is only par-792

tially mitigated by adding extra flexibility to the models. In particular, care should be793

taken to fit the QDF models with the minimum number of durations needed for the in-794

ference algorithm to converge. On the other hand, generating too many sets of depen-795

dent data to fit the model can produce results that are both biased and overconfident.796

When care is taken with these aspects, the QDF models are generally able to predict out-797

of-sample durations with a relatively moderate loss in accuracy when compared to in-798

sample estimates for the same durations.799
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Appendix A Shape parameter values for QDF and reference mod-974

els975

Table A1: Posterior mean shape parameter values with 90% credible intervals for QDF
model fit on durations (24, 36, 48, 60 hours) and posterior mean shape parameter values
for individually fit GEV distributions. Stations are in order of catchment area.

Station

Individually fit GEV QDF

Duration (hours) Model Type

1 12 24 36 48 60 DD RJ J

Dyrdalsvatn 0.14 0.08 0.06 0.09 0.09 0.08 0.05 [-0.06, 0.17] 0.05 [-0.07, 0.17] 0.05 [-0.07, 0.17]

Grav̊a 0.18 0.12 0.10 0.07 0.06 0.05 0.04 [-0.07, 0.16] 0.04 [-0.06, 0.16] 0.04 [-0.06, 0.16]

Grosettjern 0.07 0.06 0.05 0.01 -0.01 -0.02 -0.04 [-0.11, 0.04] -0.04 [-0.1, 0.04] -0.03 [-0.1, 0.04]

Elgtjern 0.17 0.16 0.17 0.17 0.16 0.15 0.22 [0.1, 0.33] 0.22 [0.1, 0.33] 0.22 [0.1, 0.33]

Gryta 0.14 0.07 0.03 0 -0.02 -0.03 -0.07 [-0.16, 0.02] -0.07 [-0.16, 0.02] -0.07 [-0.16, 0.03]

Røykenes -0.02 -0.03 -0.05 -0.06 -0.07 -0.07 -0.13 [-0.2, -0.06] -0.13 [-0.19, -0.06] -0.13 [-0.19, -0.06]

Manndalen Bru 0.03 0.04 0.05 0.05 0.06 0.05 0.01 [-0.08, 0.12] 0.01 [-0.08, 0.12] 0.01 [-0.08, 0.11]

Øyungen 0.03 0.03 0.04 0.05 0.05 0.07 0.02 [-0.04, 0.10] 0.02 [-0.04, 0.10] 0.02 [-0.04, 0.10]

Sjodalsvatn 0.11 0.1 0.11 0.11 0.11 0.12 0.11 [0.01, 0.22] 0.11 [0.01, 0.23] 0.12 [0.01, 0.23]

Viksvatn -0.08 -0.08 -0.08 -0.09 -0.1 -0.11 -0.13 [-0.17, -0.08] -0.13 [-0.17, -0.08] -0.13 [-0.17, -0.08]

Hugdal Bru 0.02 0.05 0.05 0.09 0.09 0.09 0.05 [-0.04, 0.15] 0.05 [-0.04, 0.15] 0.05 [-0.04, 0.15]

Etna -0.04 -0.05 -0.06 -0.06 -0.07 -0.08 -0.11 [-0.16, -0.05] -0.11 [-0.16, -0.05] -0.11 [-0.16, -0.05]

Table A2: Posterior mean shape parameter values with 90% credible intervals for QDF
model fit on durations (1, 24, 48, 72 hours) and posterior mean shape parameter values
for individually fit GEV distributions. Stations are in order of catchment area.

Station

Individually fit GEV QDF

Duration (hours) Model Type

1 24 48 72 DD RJ J

Dyrdalsvatn 0.14 0.06 0.09 0.06 0.06 [-0.05, 0.17] 0.06 [-0.04, 0.17] 0.06 [-0.04, 0.17]

Grav̊a 0.18 0.10 0.06 0.05 0.13 [0.03, 0.24] 0.14 [0.05, 0.26] 0.15 [0.03, 0.25]

Grosettjern 0.07 0.05 -0.01 -0.03 -0.01 [-0.09, 0.07] -0.01 [-0.08, 0.07] -0.01 [-0.08, 0.07]

Elgtjern 0.17 0.17 0.16 0.14 0.21 [0.10, 0.33] 0.21 [0.10, 0.32] 0.21 [0.10, 0.33]

Gryta 0.14 0.03 -0.02 -0.04 0.02 [-0.07, 0.11] 0.02 [-0.04, 0.12] 0.04 [-0.06, 0.11]

Røykenes -0.02 -0.05 -0.07 -0.07 -0.11 [-0.17, -0.04] -0.11 [-0.16, -0.04] -0.10 [-0.17, -0.04]

Manndalen Bru 0.03 0.05 0.06 0.04 0.003 [-0.09, 0.11] 0.002 [-0.09, 0.1] 0.002 [-0.09, 0.1]

Øyungen 0.03 0.04 0.05 0.08 0.02 [-0.04, 0.09] 0.02 [-0.05, 0.09] 0.02 [-0.05, 0.09]

Sjodalsvatn 0.11 0.11 0.11 0.12 0.12 [0.01, 0.22] 0.12 [0.01, 0.23] 0.12 [0.01, 0.22]

Viksvatn -0.08 -0.08 -0.10 -0.12 -0.13 [-0.17, -0.08] -0.12 [-0.17, -0.08] -0.12 [-0.17, -0.08]

Hugdal Bru 0.02 0.05 0.09 0.07 0.03 [-0.06, 0.13] 0.03 [-0.06, 0.13] 0.03 [-0.06, 0.13]

Etna -0.04 -0.06 -0.07 -0.07 -0.10 [-0.15, -0.04] -0.10 [-0.15, -0.04] -0.10 [-0.15, -0.04]
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Appendix B β parameter values for reference models976

Table B1: Posterior mean beta parameter values for individually fit GEV distributions.
Stations are in order of catchment area.

Station

Individually fit GEV

Duration (hours)

1 12 24 36 48 60 72

Dyrdalsvatn -1.56 -1.51 -1.4 -1.47 -1.5 -1.51 -1.55

Grav̊a -1.19 -1.37 -1.46 -1.5 -1.53 -1.53 -1.55

Grosettjern -1.22 -1.25 -1.28 -1.32 -1.34 -1.37 -1.37

Elgtjern -0.98 -1.00 -1.02 -1.06 -1.08 -1.09 -1.12

Gryta -0.92 -0.99 -1.07 -1.14 -1.18 -1.21 -1.25

Røykenes -1.28 -1.29 -1.31 -1.37 -1.44 -1.49 -1.55

Manndalen Bru -1.43 -1.47 -1.47 -1.50 -1.52 -1.51 -1.5

Øyungen -1.06 -1.07 -1.08 -1.10 -1.10 -1.11 -1.13

Sjodalsvatn -1.39 -1.39 -1.41 -1.42 -1.44 -1.47 -1.49

Viksvatn -1.59 -1.59 -1.60 -1.60 -1.61 -1.62 -1.63

Hugdal Bru -1.30 -1.38 -1.35 -1.37 -1.36 -1.34 -1.31

Etna -1.10 -1.11 -1.13 -1.13 -1.14 -1.15 -1.15
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Appendix C In-sample return level plots977
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Local GEV fit QDF model 90% CI 1 72 hours 1 24 48 72
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Local GEV fit QDF model 90% CI 1 72 hours 1 24 48 72

Double−Delta RJD Mixture Model Javelle
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Local GEV fit QDF model 90% CI 1 72 hours 1 24 48 72

Double−Delta RJD Mixture Model Javelle
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Appendix D Out-of-sample return level plots978

Local GEV fit QDF model hours 1
12

24
48

36
60

in−sample

Double−Delta RJD Mixture Model Javelle

2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000

5

10

15

20

25

Dyrdalsvatn

Double−Delta RJD Mixture Model Javelle

2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000

3

6

9

12

Gravå

Double−Delta RJD Mixture Model Javelle

2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000

1

2

3

4

5

Grosettjern

Return period (years)

R
et

ur
n 

le
ve

l ( 
m

3
s )

Figure D1

–34–



manuscript submitted to Water Resources Research

Local GEV fit QDF model hours 1
12

24
48

36
60

in−sample

Double−Delta RJD Mixture Model Javelle

2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000

2.5

5.0

7.5

10.0

12.5

Elgtjern

Double−Delta RJD Mixture Model Javelle

2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000

3

6

9

Gryta

Double−Delta RJD Mixture Model Javelle

2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000

50

100

150

Røykenes

Return period (years)

R
et

ur
n 

le
ve

l ( 
m

3
s )

Figure D2

–35–



manuscript submitted to Water Resources Research

Local GEV fit QDF model hours 1
12

24
48

36
60

in−sample

Double−Delta RJD Mixture Model Javelle

2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000

50

100

150

Manndalen Bru

Double−Delta RJD Mixture Model Javelle

2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000

100

200

300

400

500

Øyungen

Double−Delta RJD Mixture Model Javelle

2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000

100

200

300

400

Sjodalsvatn

Return period (years)

R
et

ur
n 

le
ve

l ( 
m

3
s )

Figure D3

–36–



manuscript submitted to Water Resources Research

Local GEV fit QDF model hours 1
12

24
48

36
60

in−sample

Double−Delta RJD Mixture Model Javelle

2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000

100

150

200

250

300

350

Viksvatn

Double−Delta RJD Mixture Model Javelle

2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000

100

200

300

400

Hugdal Bru

Double−Delta RJD Mixture Model Javelle

2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000 2 5 10 20 50 100 250 1000

100

200

Etna

Return period (years)

R
et

ur
n 

le
ve

l ( 
m

3
s )

Figure D4

–37–


