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Abstract

Gravity Recovery And Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO) global monthly measurements
of Earth’s gravity field have led to significant advances in the quantification of mass transfer on Earth. Yet, a long temporal
gap between missions prevents interpretation of long-term mass variations. Moreover, instrumental and processing errors
translate into large non-physical stripes polluting geophysical signals. We use Multichannel Singular Spectrum Analysis (M-
SSA) to overcome both issues by exploiting spatio-temporal information of multiple Level-2 GRACE/GRACE-FO solutions.
We statistically replace missing data and outliers using iterative M-SSA on Equivalent Water Height (EWH) time series
processed by CSR, GFZ, GRAZ, and JPL to form a combined evenly spaced solution. Then, M-SSA is applied to retrieve
common signals between each EWH time series and its neighbours to reduce residual spatially uncorrelated noise. We develop
a complementary filter, based on the residual noise between fully processed data and a parametric fit to observations, to
further reduce persisting stripes. Comparing GRACE/GRACE-FO M-SSA solution with SLR low-degree Earth’s gravity
field and hydrological model demonstrates its ability to statistically fill missing observations. Our solution reaches a noise
level comparable to mass concentration (mascon) solutions over oceans, without requiring \textit{a priori} information or
regularisation. While short-wavelength signals are hampered by filtering of spherical harmonics solutions or challenging to
capture using mascon solutions, we show that our technique efficiently recovers localized mass variations using well-documented

mass transfers associated with reservoir impoundments.
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Key Points:

* Gap filling and spatio-temporal filtering of the GRACE/GRACE-FO gravity fields
are performed using M-SSA

e The Lobe-Edge spectral filter, which complements the widely used DDK decor-
relation, helps reducing striping noise

e The final solution shows minimal noise content and potential for retrieving smaller
scale signals compared to others

Plain language summary

The Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-

On (GRACE-FO) satellite global measurements of changes in the Earth gravity field uniquely

observe mass variations within and between the atmosphere, oceans, continental hydrol-
ogy and ice. Yet, monthly data are polluted by noise in a North/South striping pattern,
likely related to systematic errors and imperfect correction models. Moreover, the gap
between missions prevents from measuring rates of mass changes which are essential for
quantifying and understanding the impacts of climate change and human activity on the
evolving ice and freshwater resources. To overcome both issues, we present a new post-
processing procedure of the GRACE/GRACE-FO gravity fields, that has potential for
an improved spatial resolution. This is accomplished using a mathematical method to
exploit spatio-temporal correlations in the gravity time series. We perform gap filling
based on the most statistically correlated signals and efficiently filter gravity fields by
discarding the less correlated ones. The final GRACE/GRACE-FO solution shows low
residual noise level over the oceans and is able to retrieve short-wavelengths signals such
as reservoir impoundments or small glaciers, which are often smeared out over large re-
gions or masked out by other processing methods.

Corresponding author: Louis-Marie Gauer, gauer@ipgp.fr
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Abstract

Gravity Recovery And Climate Experiment (GRACE) and GRACE-Follow On (GRACE-
FO) global monthly measurements of Earth’s gravity field have led to significant advances
in the quantification of mass transfer on Earth. Yet, a long temporal gap between mis-
sions prevents interpretation of long-term mass variations. Moreover, instrumental and
processing errors translate into large non-physical stripes polluting geophysical signals.
We use Multichannel Singular Spectrum Analysis (M-SSA) to overcome both issues by
exploiting spatio-temporal information of multiple Level-2 GRACE/GRACE-FO solu-
tions. We statistically replace missing data and outliers using iterative M-SSA on Equiv-
alent Water Height (EWH) time series processed by CSR, GFZ, GRAZ, and JPL to form
a combined evenly spaced solution. Then, M-SSA is applied to retrieve common signals
between each EWH time series and its neighbours to reduce residual spatially uncorre-
lated noise. We develop a complementary filter, based on the residual noise between fully
processed data and a parametric fit to observations, to further reduce persisting stripes.
Comparing GRACE/GRACE-FO M-SSA solution with SLR low-degree Earth’s grav-

ity field and hydrological model demonstrates its ability to statistically fill missing ob-
servations. Our solution reaches a noise level comparable to mass concentration (mas-
con) solutions over oceans, without requiring a priori information or regularisation. While
short-wavelength signals are hampered by filtering of spherical harmonics solutions or
challenging to capture using mascon solutions, we show that our technique efficiently re-
covers localized mass variations using well-documented mass transfers associated with
reservoir impoundments.

1 Introduction

From March 2002 to October 2017, the Gravity Recovery And Climate Experiment
(GRACE) has measured changes in the Earth’s gravity field (Tapley et al., 2004). The
GRACE mission included two satellites in a low, near-circular, near-polar orbit follow-
ing each other at a distance of approximately 220 km. When the leading satellite passed
over a sizeable mass, it was pulled slightly more towards the mass than the trailing satel-
lite and orbits were perturbed differently. By precisely measuring variations in the intra-
satellites distance, it was possible to weigh the Earth’s mass variations through the dif-
ferential gravitational pull on the two satellites. GRACE proved relevant and rapidly be-
came an essential tool for monitoring the movements of mass within and between Earth’s
atmosphere, oceans, land and ice sheets. In fact, over the past decades, GRACE has pro-
vided insights in various fields, from geophysics to hydrology. For example, observations
of mass variations derived from GRACE have been used to monitor global and regional
terrestrial water storage (Syed et al., 2008; Longuevergne et al., 2013; Long et al., 2015;
J. Chen et al., 2016), global ocean mass changes (Morison et al., 2007; Wouters et al.,
2011; Gardner et al., 2013), ocean bottom pressure (Johnson & Chambers, 2013), or re-
cent ice melting (Luthcke et al., 2013; Wouters et al., 2019; Velicogna et al., 2020). More-
over, GRACE revealed valuable information on processes occurring within the solid Earth,
including the seismic cycle (Panet et al., 2007; J. L. Chen et al., 2007; Bouih et al., 2022)
or Glacial Isostatic Adjustement (GIA; Steffen et al. (2008); Velicogna & Wahr (2013)).
The success of the GRACE mission overall motivated a follow-up mission, GRACE-Follow
On (GRACE-FO; (Flechtner et al., 2016; Landerer et al., 2020)), launched in May 2018.
Unfortunately a significant temporal gap between the two missions exists, in addition
to the increasing missing observations towards the end of the GRACE mission. Yet, hav-
ing a time series of measurements of sufficient length, consistency and continuity is vi-
tal to investigate long-term gravity changes occurring with the solid Earth processes and,
even more so, monitor climate-related mass variations, such as the ongoing evolution of
ice sheets and glaciers or land water storage.

Unfortunately, due to the orbital geometry of both missions, observations bear a
high-sensitivity in the North-South direction. As a result, instrumental errors, shortcom-
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ings in the oceanic and atmospheric gravity field correction models (Seo et al., 2006, 2007),
or any other processing error translate into a distinctive noise with a North-South strip-
ing pattern, limiting GRACE measurements quality and potential use for even more geo-
physical applications (Han et al., 2004; Thompson et al., 2004; Swenson & Wahr, 2006).

In order to reduce this characteristic noise, several signal processing methods have been
developed using various mathematical tools (Werth et al., 2009). First, North-South stripes
polluting the gravity fields derived from raw GRACE observations, expressed in terms

of Stokes coefficients of their Spherical Harmonics (SH) decomposition, can be removed
using different filtering methods. Examples of post-processing methods include: Gaus-

sian filters (Wahr et al., 2004; Seo et al., 2007), a combination of them (Guo et al., 2010),
or the widely used DDK decorrelation filters (Kusche, 2007; Kusche et al., 2009). DDK
filters aim at reducing correlations between Stokes coefficients of the gravity field SH de-
composition via matricial and gaussian filters. Since all filtering methods require a com-
promise between smoothing — hence spatial resolution and signal attenuation — and
reducing noise, DDK filters offer a family of filters (DDK1 to DDKS8), corresponding to
different levels of filtering. To further reduce noise in the GRACE and GRACE-FO de-
rived gravity fields, partly due to limitations in processing strategies, solutions provided

by various processing centres can be combined at the observations level (COST-G; Jaggi

et al. (2020)), or averaged during post-processing (Sakumura et al., 2014). Alternatively,
the GRACE mass concentration (mascons) solutions have been developed to propose leakage-
suppressed and ready to use solutions (Luthcke et al., 2013; Watkins et al., 2015; Save

et al., 2016). However, achieving these solutions requires the introduction of potentially
biased a priori information on the spatio-temporal distribution of the signal or noise struc-
ture, or regularisation in the least-squares gravity inversion (Loomis et al., 2019).

In parallel, statistical signal-processing techniques, namely statistical decomposi-
tion methods, have been used to identify patterns of variability in the GRACE time se-
ries. Most of these methods aim at retaining only a set of patterns representing most of
the geophysical signal variability, in order to filter out less correlated parts of the sig-
nal dominated by North-South stripes. In particular, eigenspace techniques have been
commonly applied to isolate geophysical signals in GRACE derived gravity field time se-
ries. First, Principal Component Analysis (PCA; Lorenz (1956)), also called Empirical
Orthogonal Function (EOF) analysis, has been used to extract dominant orthogonal modes
from GRACE data, either for filtering noise (Chambers, 2006; Schrama et al., 2007; Cham-
bers & Willis, 2008; Wouters & Schrama, 2007), or extracting signals of interest (De Vi-
ron et al., 2006; Rangelova et al., 2007; Rangelova & Sideris, 2008; Rieser et al., 2010).
However, the physical interpretation of modes extracted using PCA can be biased by the
superposition of independent source signals in the time series. Therefore, Independent
Component Analysis (ICA), which aims at separating dominant modes based on the as-
sumed statistical independence of signal sources, has been preferred over PCA (Frap-
part et al., 2010; Forootan & Kusche, 2012). Yet, both PCA and ICA only use informa-
tion between existing time series, ignoring the potential lagged correlations between time
series, and are thus limited to stationary processes. If they are efficient at separating sig-
nals with various temporal behaviours, capturing the spatio-temporal evolving nature
of geophysical signals encompassed in the GRACE data remains challenging (Forootan
et al., 2014). Incorporating any lagged information on a single time series is fortunately
possible using Singular Spectrum Analysis (SSA; Vianna et al. (2007); X. Wang et al.
(2011)). Moreover, the Multichannel (or multivariable)-SSA (M-SSA, (Ghil et al., 2002)),
a generalization of both the PCA and SSA, which uses time-lagged observations and mul-
tiple time series, is particularly well adapted to capture the complex spatio-temporal modes
of variability of the GRACE data (Zotov & Shum, 2010; Rangelova et al., 2012; F. Wang
et al., 2020). In fact, both Prevost et al. (2019) and F. Wang et al. (2020) have shown
the potential of M-SSA as a data-adaptive filtering tool for GRACE Level-2 solutions
reducing processing-specific errors and noise content.



The large number of missing observations towards the end of the GRACE mission
and the 11-month observational gap between missions limit the potential use of GRACE
and GRACE-FO data to their full potential. Consequently, efforts have been carried out
to fill temporal observational gaps of the GRACE gravity fields. First, independent ob-
servations have been used to fill GRACE data gaps. Particularly, direct observations from
Satellite Laser Ranging (SLR) or Global Positioning System (GPS) receivers onboard
Swarm satellites can be exploited to reconstruct low-degree of the Earth’s gravity field
(Jaggi et al., 2016; Liick et al., 2018; Richter et al., 2021). Inversions of deformation fields,
as measured for example by Global Navigation Satellite System (GNSS) global networks
can also lead to low-degree gravity field estimates through loading theory (Rietbroek et
al., 2014; Chanard et al., 2018; Wu et al., 2020). Yet, independent data may contain spe-
cific technique-related errors or other physical processes that can bias GRACE gravity
field gap filling (Dong et al., 2002; Mémin et al., 2020). GRACE temporal gaps can be
reconstructed using data-adaptive statistical techniques, such as SSA and M-SSA, to de-
compose the time series into a subset of temporal or spatio-temporal components then
used to reconstruct missing observations (Kondrashov & Ghil, 2006a). SSA has been used
in an iterative approach to perform gap filling on time series of the coefficients of GRACE
gravity field SH decomposition (Prevost et al., 2019; Li et al., 2019; Yi & Sneeuw, 2021).
M-SSA has also proven its ability to reconstruct missing observations, at least for low-
degree SH coefficients of the Earth’s gravity field, using Swarm observations (F. Wang
et al., 2021), or part of the gravity variations, namely climate-driven water storage changes,
using precipitation and temperature models (Yang et al., 2021; Humphrey & Gudmunds-
son, 2019). Recently, machine learning techniques have also been employed to perform
gap filling in and between GRACE and GRACE-FO observational periods. Examples
include reconstructing the terrestrial water component of the gravity field using an hy-
droclimatic data-driven Bayesian convolutional neuronal network (Mo et al., 2022) or
an algorithm combining M-SSA with an articifial neural network (Lai et al., 2022). Un-
fortunately, these methods are more complex, computationally more challenging than
classical statistical methods, and often limited to terrestrial water storage applications
discarding mass change related to solid Earth processes.

In this study, we propose an innovative post-processing strategy for gap filling, com-
bining and filtering four Level-2 GRACE/GRACE-FO gravity field solutions using a unique
statistical method, the M-SSA. We first present, in Section 2, the GRACE/GRACE-FO
data used. In Section 3, after describing the M-SSA method, we explicit our post-processing
strategy and present results. The method includes an iterative M-SSA algorithm for ob-
servational gap filling using multiple Level-2 GRACE and GRACE-FO solutions, with
synthetic tests for validation, a new filter in the spectral domain and a M-SSA-based spatio-
temporal filtering procedure to efficiently reduce the persistent North-South stripes. Then,
in Section 4, we first validate the M-SSA gap filling algorithm by comparing results to
independent observations, namely SLR for low-degree SH coefficients and hydrological
model. Finally, we compare our results with published GRACE and GRACE-FO solu-
tions, using different processing strategies. In particular, we confront noise content of
the gravity field solutions over the oceans, and assess solutions performances for a se-
lection of regional examples, including hydrological mass balance for reservoir impound-
ments.

2 GRACE and GRACE-FO Level-2 solutions
2.1 GRACE and GRACE-FO datasets

The GRACE and more recently, the GRACE-FO missions provide monthly maps
of the Earth’s gravity field with a spatial resolution of a few hundreds kilometres (Ta-
pley et al., 2004; Landerer et al., 2020). Unfortunately a substantial 11-month tempo-
ral gap, from June 2017 to May 2018, exists between missions (Figure 1). The raw Level-
1 data are processed by several processing centres to provide monthly Level-2 solutions
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Figure 1: Temporal sampling of the Level-2 monthly GRACE and GRACE-FO solutions
provided by the CSR, GFZ, GRAZ and JPL processing centres.

of the Earth’s gravitational field. These solutions are distributed in terms of Stokes co-
efficients of the Earth’s gravity field Spherical Harmonics (SH) decomposition. Differ-
ences in processing strategies yield two major consequences. First, raw Level-1 monthly
signal to noise ratio requirements cause differences in Level-2 temporal sampling between
processing centres (Figure 1). Then, noise discrepancies arise from differences in process-
ing strategies (Swenson & Wahr, 2002; Sakumura et al., 2014). In this study, we take
advantage of Level-2 gravity field solutions from 4 different processing centres, expressed
in Stokes coefficients of the SH decomposition, for which specifications are presented in
Table 1. Note that while the maximum degree of the gravity field SH decomposition pro-
vided by the centres is 96, we use a 89 cut-off degree to ensure a corresponding 1-by-1
degree longitude and latitude grid. Since degrees 90 to 96 are low amplitude and largely
affected by noise, our solution is not impacted by the truncation. We focus our study

on the 2003-01 to 2017-06 GRACE period, discarding the noisier starting and ending pe-
riods of the mission, and on the 2018-06 to 2021-08 GRACE-FO period. The non-observable
degree-1 SH geocenter gravity coefficients are accounted for using an average of coeffi-
cients provided for each the GFZ, JPL and CSR solutions in Technical Note 13 (TN-13;
Swenson et al. (2008); Sun et al. (2016)). Moreover, Cy ¢ Earth oblateness and Cs o grav-
ity coefficients, which are difficult to observe due to the near polar orbit of the GRACE
and GRACE-FO missions, are substituted with satellite laser ranging (SLR) observa-
tions according to Technical Note 14 (TN-14; J. Chen et al. (2005); Loomis et al. (2020)).
Finally, all GRACE and GRACE-FO solutions used in this study have been corrected

for non-tidal high-frequency atmospheric and oceanic mass variation models, namely the
Atmosphere and Ocean Dealiasing Level-1B (AOD1B) model (Dobslaw et al., 2017).

2.2 GRACE and GRACE-FO data post-processing

To investigate variations in the Earth’s gravity field, we first remove its mean value,
estimated over the 2003-2021 period, from each Level-2 solution. Consequently, the char-
acteristic nonphysical North-South elongated striping patterns, arising from instrumen-
tal errors or shortcomings in the gravity field correction models of known phenomena,
dominate both GRACE and GRACE-FO solutions. Figures 2a and 2b show examples
of the resulting GRACE and GRACE-FO gravity fields, expressed in Equivalent Water
Height (EWH) for July 2008 and 2019 respetively. The large amplitude of the North-



Centre Version Max. degree Cut-off degree

CSR RL06 96 89
GFZ RL06 96 89
GRAZ ITSG 2018/ITSG operational 96 89
JPL RLO6 96 89

Table 1: GRACE and GRACE-FO Level-2 solutions from the CSR, GFZ, GRAZ and JPL
processing centres used in this study, maximum degree of the solutions spherical harmonic
decomposition and truncation degree used in this study.

South striping artefacts emphasizes the necessity for filtering the GRACE and GRACE-
FO gravity fields prior to any geophysical application (Sakumura et al., 2014). Here, we
start by using the non-isotropic decorrelation filter, known as DDK (Swenson & Wahr,
2006; Kusche, 2007; Kusche et al., 2009). DDK is based on a regularisation using both
the error and signal covariance information. The filter results in a single filtering ma-
trix derived from the a priori error covariance of the August 2003 GRACE solution, that
we apply to all GRACE and GRACE-FO monthly gravity fields. The filter offers 8 lev-
els, from the strongest DDK1 to weakest DDKS level, and impacts mainly the high de-
gree coefficients of the SH decomposition which contain most of the stripping noise. An
increase in the level of DDK filtering yield larger signal attenuation and leakage caus-
ing geophysical signals to smear out over larger regions. Thus, a compromise between
solution filtering and noise reduction must be made. The usual compromise for geophys-
ical applications is to use the mean of Level-2 solutions from the 3 official processing cen-
tres, CSR, GFZ and JPL, filtered by DDK5 (Sakumura et al., 2014) to efficiently remove
North-South stripes while retaining geophysical signals at wavelengths A/2 ~ 180 km
(Figures 2c and 2d). Here, we rather apply the DDK7 filter, with A\/2 ~ 145 km (Fig-
ures 2e and 2f). Figure 3 shows an example of the impact of applying DDK5, compared
to DDKY7, on the intensity spectrum of the SH decomposition for the July 2008 GRACE
CSR gravity field. DDK5H removes a larger part of the signal at high degrees which, while
largely polluted by North-South striping artefacts, may still contain valuable geophys-
ical information. Here, we first combine the DDK?7 filter with a complementary filter,
the Lobe-Edge (LE) filter presented in Section 3.4, that we develop based on the resid-
ual noise between fully processed data and a parametric fit to observations, to further
reduce persisting stripes. All results presented in the following are based on a DDK7+LE
filtering of the GRACE/GRACE-FO solutions, and results based on a DDK?7 filtering
only can be found in supplementary material. Next, we propose to perform additional
filtering where no a priori information on the signal or noise structure is required to fur-
ther reduce spurious noise while retaining smaller wavelengths signals and limit signal
attenuation compared to the usual filtering compromise (Sakumura et al., 2014). By do-
ing so, we intend to broaden possibilities of using GRACE and GRACE-FO in various
geophysical domains.

3 Methodology

Once the GRACE and GRACE-FO data have been pre-processed with DDK7 fil-
tering, solutions still contain significant North-South striping artefacts and missing data
remain an issue for geophysical applications. The aim of the methodology developed in
this study is to address both issues using a unique mathematical tool, namely the Multichannel-
Singular Spectrum Analysis (M-SSA). The post-processing method is separated in two
major steps: (1) data gap filling and (2) spatial filtering. In the following Section, we
first briefly describe the M-SSA, and then detail both steps of the proposed methodol-
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Figure 3: Stokes coefficients intensity spectra of the July 2008 GRACE CSR gravity fil-
tered using (a) DDK5 and (b) DDK7 decorrelation filter. (c) shows the difference between
DDK?7 and DDXKS35 filtering applied to July 2008 GRACE gravity field.

ogy to fill and filter the pre-processed GRACE and GRACE-FO data as objectively as
possible.

3.1 Multichannel Singular Spectrum Analysis (M-SSA)

The aim of M-SSA (Keppenne & Ghil, 1993; Plaut & Vautard, 1994) is to extract
spatially and temporally correlated modes of the input signal channels, or time series,
by using the covariance between them and between lagged delayed copies of them. Here,
M-SSA is particularly interesting to (1) fill the GRACE and GRACE-FO data tempo-
ral gaps by using the correlations between multiple time series, and (2) reduce spurious
uncorrelated noise in the data by retaining only the most correlated parts of the signal
in space and time, without a priori information on the signal or noise structure. A brief
description of the method is proposed in the following, and further information is pro-
vided by Ghil et al. (2002) in a more complete review of the methodology, including var-
ious examples of application.

Embedding procedure to estimate the multichannel trajectory matriz

A multichannel time series with L channels of length N, evenly spaced with sampling
interval AT is defined as:

X = {Xl(t)at € [I)N]}al € [LL] (1)

We first conduct the embedding, which maps one dimensional time series X; into a multi-
dimensional series of copies of the original time series delayed over a sliding window of
length M.

The embedding procedures leads to a trajectory matrix 5(/1 defined for each time series
X B

Xi(1) X2y - Xi(M)

— Xi(2) Xi(3) e X (M +1)

X = : : : (2)
Xl(NI) Xl(N/-i-l) Xl(N)

Each row of the trajectory matrix relates to observations included in the sliding window
of length M, and is delayed by AT from the preceding time row. This window is shifted
until the last observation N is reached. The trajectory matrix has a dimension of N’x
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M, where N' = N — M + 1 is the number of overlapping views of the series for each
point in the channel (Ghil et al., 2002; Broomhead & King, 1986; Broomhead et al., 1986;
Allen & Robertson, 1996). The multichannel trajectory matrix X can then be estimated
as the concatenation of trajectory matrices for all [ time series included in the dataset

as:

X (%0 XL 3

Estimating of the grand lag-covariance matriz

Then, the grand lag-covariance matrix can be computed as:

Cin Cig2 -+ Cig

~ 1, Cy1 Coo -+ Cop

¢= vaX=1. S (4)
Cri Cra -+ Crp

where each block € is the covariance matrix between two time series X; and X/, given
by:

1 >t
Cry = i X Xv (5)

Decomposing the grand lag-covariance matrixz to determine eigenvalues
and eigenvectors

We solve the eigenvalues problem by diagonalising the LM x LM grand lag-covariance
matrix C' using singular value decomposition in order to compute eigenvalues )\, and eigen-
vectors E¥ as:

E*C = A\ E* (6)

The LM eigenvectors E* are called Spatio-Temporal Empirical Orthogonal Functions
(ST-EOFs or EOFs for simplicity), and represent L consecutive M-long segments EF.

Determining the Principal Components (PCs) of single-channel time se-
ries

The k" spatio-temporal Principal Components (ST-PCs or PCs for simplicity), {A*(t),t €
[1,N'],k € [1,M x L]} are computed by projecting the k*" row vector of X; time se-
ries onto the EOFs as:

L
S Xi(t+j—1)- EF() (7)

=1

tnﬁs

I
-

J

The k" PCs represent the common temporal modes of variability of the time series, with
variance equal to the k" eigenvalues )y, sorted in decreasing order of the amount of the
entire dataset variance captured by the corresponding PC.

Computing the Reconstructed Components (RCs) and reconstructed time
series

Finally, the time series X; can be partially reconstructed using the PCs and EOFs (Plaut
& Vautard, 1994). RF, the partially reconstructed signal associated with the k' PC and



300 EOF is given by:

1jilA’“(t—j+1)~Ezk(J), if 12tzM-1
1 M
Ri(t) = M;Ak(t*jJrl)'Ef(j), if M2t<N-M+1 (8)
. % AF(t—j+1)-EF(j), if N—-M+2<2t<N
N—=t+1;2184m
310 The original time series can be reconstructed, with no information loss, by summing all

311 the RC as:
LxM

Xi(t) =Y Ri() 9)
k=1

312 For filtering purposes, only the most correlated portion of the signal can be reconstructed
313 by retaining only the N, first RCs. Note that, in that case, the choice of the number of
314 RCs, N., must be done according to the eigenvalues values in order to retain most of the
315 variance of the original signal.

316 In summary, M-SSA offers the possibility of analysing spatial and temporal cor-

317 relations between different time series. The common modes of variability of the set of

318 time series are described by empirical basic functions onto which each time series can

310 be projected. Reconstructing time series using only a subset of these spatio-temporal modes
320 offers the possibility to filter the signal by discarding the less correlated part of the sig-
321 nal. However, in order to perform M-SSA filtering, we first need to efficiently fill obser-
322 vational gaps in the time series (Figure 1). Here, we also take advantage of the M-SSA
323 to perform temporal gap filling based on the information on the temporal structure of

324 several time series.

325 3.2 Gap filling with M-SSA

326 We use a data-adaptative gap-filling algorithm based on single-channel SSA (Kon-

327 drashov & Ghil, 2006a,b; Kondrashov et al., 2010), and recently extended to M-SSA for
328 GRACE and GRACE-FO applications (Prevost et al., 2019). To fill gaps in and between
320 the GRACE and GRACE-FO observational periods, we take advantage of temporal cor-

330 relations in the time series (F. Wang et al., 2020, 2021), to capture temporal modes of
331 variability, and correlation between solutions processed by 4 different centres to limit pro-
332 cessing artefacts (Prevost et al., 2019). Contrary to these recent studies, we perform gap

333 filling on spatially distributed time series of Equivalent Water Height (EWH) rather than
334 on their spherical harmonics equivalent (Prevost et al., 2019; F. Wang et al., 2021) in

335 order to simplify the method overall by performing both gap filling and spatial filtering

336 on time series of EWH. Consequently, we first convert Level-2 GRACE and GRACE-

337 FO Stokes coefficients of the Earth’s gravity field for each processing center ¢, at each

338 date t, into global grids of surface mass anomaly o°(t, A, ¢), where, ¢ € [CSR, GFZ, GRAZ,
330 JPL], A and ¢ are the longitude and latitude. o¢(t, A, ) is expressed in EWH.

340 Our gap filling algorithm consists first in filling the observational gaps (Figure 1)

3a1 for each point of geographic coordinates (A, ¢) and each solution by performing a lin-

342 ear interpolation using data in the surrounding 50 months (centred on the data gap when
343 possible). An example of linear interpolation of EWH is shown in Figure 4a for a point
344 located in the Caspian sea (more examples are provided in Figure S1). Using a data win-
345 dow of 50 months rather than the entire time series for linear interpolation allows to cap-
346 ture potential regional or global variations in EWH trends (e.g.: large earthquakes sig-
3a7 natures, changes in lake exploitation, acceleration of ice mass loss, etc.). For instance,

3a8 the variation in trend in the Caspian sea, likely due to hydrological processes, between
340 the artificially missing 2008 year, for method validation, and the 2017-2018 inter-mission
350 period can be better recovered (Figure 4a). Here, we choose a linear interpolation over
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Figure 4: Example of M-SSA gap filling method for time series of CSR
GRACE/GRACE-FO surface mass density anomalies, expressed in Equivalent Water
Height (cm), for a point located in the Caspian Sea (51°E, 41°N). Observational gaps are
highlighted in light blue. (a) shows the original EWH time series filtered by DDK7 and
the Lobe-Edge filter (green, Lobe-Edge filter is presented in 3.4), and its evenly sampled
version filled by a linear interpolation using a 50-month moving window (orange). (b)
shows outliers identification, when they exists, based on a 3 times the standard deviation
of a mean M-SSA based EWH time series of solutions processed by CSR, GFZ, GRAZ
and JPL (orange, pink, khaki and cyan) criterion (light gray). Outliers are replaced by
their mean M-SSA based EWH time series value to build a filtered version of the EWH
time series (dark blue). (c) illustrates the iterative scheme to perform gap filling (blue to
red). (d) Method performance is evaluated for year 2008, artificially removed from the
original dataset and reconstructed, by comparing the final reconstruction (red) with the
original GRACE observations (gray). Differences between the reconstructed and original
signals for year 2008 are shown in dotted black line, and Root-Mean-Square value of the
difference over 1 year is provided.
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a mean or zero value gap filling to optimise M-SSA performances (Walwer et al., 2016;
Prevost et al., 2019).

Once EWH times series are evenly spaced, thanks to the linear interpolation, it is
possible to apply the M-SSA algorithm. However, because the reconstructed data gaps
are highly influenced by the entire EWH time series, we first identify and replace out-
liers from EWH time series. For this purpose, we start by retrieving, for EWH time se-
ries of each point of coordinates (\,p), the principal modes of variability of the 4 solu-
tions used in this study. To do so, we perform a M-SSA analysis on the 4 EWH time se-
ries simultaneously, using a sliding window of M = N/2, where N = 224 is the length
of the evenly sampled GRACE/GRACE-FO time series for the period considered. We
retain the first 8 PCs to reconstruct the signal for each solution, i.e. the first N, = 8
RCs for each processing center c. A detailed analysis of M-SSA parameters selection is
provided in the following for the gap filling method rather than the outliers detection,
leading to similar results. We then average the reconstructed EWH time series of all pro-
cessing centres to obtain a unique mean M-SSA-based EWH time series, o5; g4 (¢, A, ),
capturing the principal modes of variability of the signal processed by the 4 different cen-
tres. The average is defined as:

4 8
1
ohrssalt, A ) = EZZRQ (t, A ) (10)

c=1i=1

Finally, we identify outliers in EWH time series processed by individual centres as larger
than three times the standard deviation of the mean M-SSA EWH time series, o};gg4
(see Figure S2 for tests on outliers detection criterion). Outliers, if they exists, are re-
placed by the corresponding value of o} gg 4, While the rest of the time series remains
identical for each processing center (Figure 4b and Figure S1 for additional examples).

Once outliers have been identified and replaced, we seek to improve the gap fill-
ing values, initially linearly interpolated, in the observational gaps. Therefore, we per-
form a M-SSA in an iterative scheme for each of the resulting 4 EWH times series simul-
taneously, corresponding to the 4 processing centres, filtered of their outliers and evenly
spaced by linear interpolation. We use, once again, a sliding window of size M = N/2,
half the length N of the GRACE/GRACE-FO period considered. M is chosen in order
to capture the annual and long-term trends dominating the GRACE/GRACE-FO ob-
servations. To our knowledge, there is no optimal criterion to select M, but to provide
separability of the series. Our value is chosen according to sensitivity tests summarised
in Figure S3a. Data gaps are then iteratively replaced, in all solutions, by the sum of the
first N. RCs resulting from the M-SSA on their combination. The value of N, is cho-
sen based on Figure 5, which shows the box plots of normalised eigenvalues obtained from
M-SSA analyses for all 4 centres for a selected subset of 3295 EWH time series encom-
passing a variety of signals of interests (see Figure S4 for location of the chosen EWH).
Eigenvalues rapidly decrease until a noticeable drop after rank 8, with the first 8 EOFs
capturing 73% of the original EWH time series variance, motivating the choice of N, =
8 (see also Figure S3b for additional tests on parameter N.). Note that adding EWH time
series of nearby points at the same latitude in the M-SSA gap filling procedure has only
little impact on the reconstruction and is therefore not considered (Figure S3c). Itera-
tions are then performed until a convergence criterion, x., between the reconstructed sig-
nal at iteration k, og(t, A, ), associated with standard deviation ¢(oy), and its previ-
ous iteration k—1 is reached. x. is defined, at iteration k, for n missing observations,
n << N, as:

] (szl(t’ /\’ QO) - Ulcc(tv >‘7 @))2
s(ok1) -<(op) D

NgE!

t

Xe(As ) =
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Figure 5: Normalised first 113 eigenvalues of the M-SSA analyses performed on a selected
subset 3295 Equivalent Water Height (EWH) time series of the Level-2 GRACE and
GRACE-FO gravity field processed by the CSR, GRAZ, GFZ and JPL centres simulta-
neously, after applying the DDK7 and Lobe-Edge filters and M-SSA gap fillings. Selected
time series encompass a variety of signals of interest (see Figure S4 for a map of the cho-
sen locations). The box plot shows the portion of the initial EWH time series variability
explained by each Reconstructed Component (RC), according to its corresponding eigen-
value. The dotted red line shows the cumulative portion of the initial EWH time series
explained by the sum of RCs. The red line highlights a drop in eigenvalues after rank 8,
i.e. the limit of eigenvectors we used for signal reconstruction.

and satisfied for . < 0.1 or n > 100. Figure 4¢ shows an example, for a single pro-
cessing center, of the successive signal reconstruction iterations until the convergence cri-
terion, typically ranging between 7 and 16, is met (see Figure S1 for more examples).

The proposed gap filling method benefits from using solutions arising from 4 dif-
ferent processing centres by reconstructing observational gaps using only common sig-
nals retrieved by all solutions, thus limiting potential processing artefacts. In order to
validate the method for filling the long 11-month gap between GRACE and GRACE-
FO missions, we perform a synthetic test. Because modelling GRACE or GRACE-FO
noise content is challenging due to its unknown exact structure, we artificially remove
year 2008 of the GRACE dataset and test our gap filling method by reconstructing this
missing year, in addition to existing missing dates. Figure 4d shows that the reconstruc-
tion for year 2008 of an EWH time series located in the Caspian Sea is consistent with
the original signal, with differences between the original and reconstructed signals of the
order of differences between different GRACE solutions (Figures 4d). The reconstructed
time series captures particularly well the strong annual variations over the Caspian Sea,
as well as the regional trend of decreasing mass. However only signals based on the sta-
tistical content of the entire time series can be reconstructed, discarding unusual events
(ex: heavy rainfall, earthquakes, etc.). Additional examples are provided in Figure S1,
and effects of the M-SSA parameters on the reconstruction of year 2008 are assessed in
Figures S2 and S3. Once gaps in the EWH time series have been satisfyingly filled to
obtain evenly sampled time series, spatio-temporal filtering using M-SSA can be performed.
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3.3 M-SSA Spatial filtering

The second step of our method consists in performing a spatial filtering using the
M-SSA to remove the remaining spatial noise. First, we average the 4 EWH time series
obtained after gap filling, resulting from the 4 processing centres, into a single time se-
ries. Note that retaining or averaging these 4 EWH time series leads to similar M-SSA
filtering results, but averaging them provides a computational advantage (Figure S5).
Then, as we aim at removing residual spatially correlated noise, namely the spurious North-
South stripes, we apply the M-SSA on the EWH time series at each point of the global
1°x1° grid and, simultaneously, and its 3 neighbouring EWH time series in both east
and west directions, at the same latitude, spaced 2° apart (Prevost et al., 2019). Thus,
to filter a single EWH time series, 7 EWH time series are used. The number, distribu-
tion and distance between the neighbours of the reconstructed time series is defined by
the spatial wavelength and shape of the spatially uncorrelated North-South stripes in
order to extract only the correlated geophysical signals from the EWH time series through
the M-SSA analysis. Parameters of the M-SSA for the spatial filtering step include a win-
dow size of M = 13 and a number of components for the reconstruction of N, = 8.
Note that M for M-SSA filtering is significantly smaller than for gap filling since we are
now more interested in retaining high frequency variations in the gravity fields rather
than capturing its main features for reconstruction. Sensitivity tests on M-SSA filter-
ing parameters M, N., number and distance of neighbouring EWH time series are pro-
vided in Figure S6. Note that N, is defined similarly to the M-SSA reconstruction method,
but now based on the eigenvalues of the M-SSA analysis of a EWH time series and its
neighbouring time series (see Figure S7).

For example, Figure 6 shows the M-SSA decomposition of the CSR EWH time se-
ries obtained after gap filling, for a point located in the Caspian Sea. The first 8 RCs
show the potential of the method to separate and retrieve the dominant long term vari-
ation of the Caspian Sea (RC 1), strong annual (RC2, RC3, RC5) and semi-annual (RC6)
variations as well as multi-annual variations (RC4). In fact, most of the variance of the
filtered and evenly sampled EWH time series can be explained by the first 8 components
as shown by Figure 6f. The final EWH time series, after both the gap filling and spa-
tial filtering steps of the method is shown on 6a, and compared to the gap filling step
and the initial DDK7-filtered time series. The method efficiently removes high frequency
noise, unlikely related to changes in the Caspian sea level as supported by satellite al-
timetry measurements (J. Chen et al., 2017). Other examples of locations are provided
in Figure S8.

3.4 Complementary filtering in the spherical harmonics domain: Lobe-
Edge filter

In order to refine a first DDK7 M-SSA solution, we have designed an additional
filter to reduce the remaining lobes of spurious errors detected, down to the amplitude
level observed for lower orders, and same degree of the spherical harmonics decompo-
sition (Figure 7a). This filter has been applied after the decorrelation filter, here DDK?7,
and before the M-SSA gap filling and filtering procedures. To build the filter, we used
the average GRACE/GRACE-FO surface mass density anomalies, after an initial DDK7
filtering, M-SSA gap filling and spatial filtering, and once dominant geophysical signals
have been removed using parametric functions. A degree-3 polynomial function, repre-
senting linear trends and multi-annual signals, is removed while dominant seasonal sig-
nals are subtracting the monthly averaged throughout the observational period from each
monthly solution. Residuals are expressed in terms of Stokes coefficients X, , which is
the mean value of C7, and 5], for a given degree [ and order m. We define the Lobe-
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Figure 6: M-SSA spatio-temporal decomposition of the surface mass density anomalies
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for a point located in the Caspian Sea (51°E, 41°N). Time series (a) shows the final CSR
Equivalent Water Height (EWH) time series, after the DDK7 and Lobe-Edge filtering
(Lobe-Edge filter, presented in Section 3.4, further reduces striping noise) , M-SSA gap

filling, using information from 4 processing centres, and spatial filtering, using an EWH

time series and its neighbours located at the same latitude (red), compared to the gap fill-
ing procedure only (blue), and the initial DDK7-filtered (dotted gray) time series. (b)-(f)

display the first 8 RCs of the decomposition, sorted by their corresponding eigenvalue. (g)
shows the normalised eigenvalues obtained from the M-SSA spatial filtering.
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Figure 7: (a) Intensity spectrum of Stokes coeflicients of the average of
GRACE/GRACE-FO monthly surface mass density anomaly, after DDK7 and M-SSA
gap filling and spatial filtering, and once dominant geophysical signals have been removed
using parametric functions. These signals include a degree-3 polynomial function, reflect-
ing linear trends and multi-annual signals. Dominant seasonal signals are accounted for by
removing from each monthly solution, its monthly averaged over the observational period.
(b) Intensity spectrum of the Lobe-Edge coefficients designed based on (a) and Equation
12, for a = 1.5.

Edge (LE) filter, for which each coefficient, Fl,ﬁf, for a given exponent « is :

[e3%

1 1
E : _Zlabs(Xlr—n,m—n +Xlr—n n—m)
FLE = n=- 5 for F,,>1, 1>25 m>25
2
Fﬁf = otherwise.

(12)
By averaging the residual signal X', , for I > 25,m > 25 and dividing its amplitude

by the mean amplitude of X Lms —20 < m < 20, we design a filter that is adapted to
dampen the amplitude of the lobes of residual signal detected. Value of exponent «, here
equal to 1.5, is chosen to ensure that the signal amplitude in the lobes for a given de-
gree [, after Lobe-Edge filter has been applied, is comparable to its value over all orders
m. Outside of the lobes, no additional filtering is performed. Coefficients of the Lobe-
Edge filter are shown on Figure 7b (see Figure S9 for Lobe-Edge filters coefficients for
various values of alpha). By design, coefficients of order —20 < m < 20 are not im-
pacted by lobe-edge filtering, whereas coefficients of degrees [=40 to 50 and orders m >
25 can reach values up to 5 to efficiently filter persistent non-physical noise detected by
our approach.

The LE filter is applied to monthly GRACE and GRACE-FO solutions X ,,, af-
ter DDKY filtering, as:

Xim
xLe _ Zbm (13)

l,m LE
Fl m
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Figure 8: Map of the differences between the combined DDK7 + Lobe-Edge, with filter
exponent « = 1.5, and DDKT7 only filtered GRACE-FO July 2019 monthly solutions,
expressed in Equivalent Water Height.

Figure 8 shows an example of the impact of applying the additional LE filter to the
DDKT7-filtered GRACE-FO July 2019 monthly solution in the spatial domain. LE fil-
tering efficiently removes spurious North-South stripes with significant amplitude, reach-
ing up to ~10 cm. In fact, the amplitude of North-South stripes removal is determined
by the choice of LE filter exponent parameter « and lies in a compromise between ef-
ficiently filtering noise and preserving signals of geophysical origin. In particular, we no-
tice that the stripes amplitude is higher in the region affected by the 2004 Mw 9.1 Sumatra-
Andaman earthquake (Figure 8), indicating that the LE filter could possibly absorbing
part of the gravity signals resulting from the regional seismic cycle. However, the gain
in removing noise is larger than the loss of signal improving the global signal to noise
ratio. Examples of results for other values of « are provided in Figures S10 for July 2019,
and a particular attention is given to the 2004 Mw 9.1 Sumatra-Adaman earthquake re-
gion (Figure S11).

However, overall, the LE filter proves efficient at removing residual North-South

striping noise, after DDK filtering. We therefore include the LE filter in our GRACE/GRACE-

FO post-processing strategy, after applying DDK7 and prior to perform M-SSA gap fill-
ing and filtering procedures. Figure 9 shows an example of the effect of adding LE fil-
tering to our post-processing strategy on final EWH time series for a point located in
the Caspian sea. LE filtering helps removing part of the residual high frequency noise
in the Caspian sea EWH time series. Examples of the full M-SSA spatio-temporal de-
composition, after DDK7 and LE filtering, M-SSA gap filling and spatial filtering, are
provided in Figure S12. Our final GRACE/GRACE-FO M-SSA solution, for which re-
sults are presented and discussed in following, is therefore a combination of DDK7 and
LE filtering, with M-SSA gap filling and local filtering.
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Figure 9: Comparison of GRACE/GRACE-FO Equivalent Water Height (EWH) time
series after DDKT filtering, M-SSA gap filling and spatial filtering (black) or DDK7 and
Lobe-Edge filtering, M-SSA gap filling and spatial filtering (red) for a point located in the
Caspian Sea (51°E, 46°N).

3.5 Results

We compare our final GRACE/GRACE-FO M-SSA solution with two other solu-
tions in spherical harmonics (SH), all corrected for Glacial Isostatic Adjustment contri-
butions using the ICE-6G model (Argus et al., 2014; Peltier et al., 2015, 2018). The first
one is the average of SH solutions processed by CSR, GRAZ, GFZ and JPL, filtered us-
ing DDK5, which is recommended and commonly used for geophysical applications (Saku-
mura et al.; 2014). The second one uses DDK7, which is the initial filtering of the GRACE
and GRACE-FO gravity fields before Lobe-Edge filtering, M-SSA gap filling and filter-
ing procedures developed in this study.

Figure 10 shows maps of the GRACE EWH for the month of July 2007, relative
to January 2007, for all three solutions, after removing the linear trend estimated over
the 2003-2021 period. Differences between gravity fields, which highlight the noise con-
tent of solutions, proves the efficiency of the method proposed in this study to remove
characteristic nonphysical North-South striping patterns in the GRACE gravity fields.
While both the DDK5 (Figure 10a) and DDK7 (Figure 10b) filtered 2007 GRACE July-
January solutions display persisting stripes, particularly visible in the oceans, the final
M-SSA solution (Figure 10c) shows only negligible striping patterns. Moreover, compared
with the recommended solution for geophysical applications (Sakumura et al., 2014), the
final M-SSA solution is initially filtered using DDK7 rather than DDKS5, which further
attenuates signals and smears them out signals over larger regions. While a simple DDK?7
filtering of the gravity fields may retain smaller spatial wavelengths signals, the high noise
content of the resulting solutions prevents geophysical interpretations (Figure 10b). Since
the final GRACE-MSSA is initially filtered using DDK7, in combination with an objec-
tive filtering approach through M-SSA, it successfully retains a higher spatial resolution
than DDKb5-filtered solutions, while removing sufficient North-South stripes to allow for
geophysical interpretation. For example, the gravity signature of seasonal variations in
surface and groundwater in the Lena basin in west part of Russia or Mississippi river basin
in Central United States (J. Chen et al., 2007; Rodell et al., 2007; Larochelle et al., 2022)
appears spatially more focused in the M-SSA GRACE solution than in the DDK5 av-
eraged solution, and is undetectable in the DDK?7 averaged solution.
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Figure 10: GRACE surface mass density anomaly for the month of July 2007, relative
to January 2007, expressed in Equivalent Water Height, corrected for Glacial Isostatic
Adjustment contributions (ICE-6G, Peltier et al. (2018)) for the average of CSR, GFZ,
GRAZ and JPL solutions after applying (a) DDKS5 filter, (b) DDKTY filter, and (c) the
final GRACE M-SSA solution presented in this study.
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Figure 11: (a) Mean rate of surface mass density anomaly of the final GRACE M-SSA
solution presented in this study, from January 2003 to December 2021, expressed in
Equivalent Water Height (EWH) per year. (b) Comparisons of EWH time series at points
located in Greenland, the Caspian sea, the Amazonian basin and in the region of the 2011
Mw 9.1 Tohoku-Oki earthquake, pointed out on (a). EWH are shown for the average of
CSR, GFZ, GRAZ and JPL solutions after applying DDKS5 filter (green), DDK7 filter
(blue), and the final GRACE M-SSA solution presented in this study (red).
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Figure 11a shows the mean rate of surface mass density anomaly of the final GRACE
M-SSA solution, from January 2003 to December 2021. While the noise content of the
GRACE M-SSA trend solution reaches a level comparable to the trend of the average
of CSR, GFZ, GRAZ and JPL solutions filtered by DDKS5, its spatial resolution, and there-
fore signal attenuation, is comparable to the DDK7-filtered one (Figure S13). Indeed,
while major large scale long-term evolving phenomena, such as recent ice-sheets melt-
ing (ex: Greenland) or large variations in continental hydrology (ex: Caspian sea), are
seen in all solutions, smaller spatial scales features consistent with regional geophysical
processes are visible in the GRACE M-SSA solution including smaller magnitude earth-
quakes (ex: 2009 Mw 8.0 Samoa outer-rise earthquake) or smaller glaciers ice mass loss
(ex: South Georgia) (Prevost et al., 2019). Consequently, long-term trends between the
commonly used average of CSR, GFZ, GRAZ and JPL solutions filtered by DDK5 and
the GRACE M-SSA solution may locally differ. For example, Figure 11b shows compar-
isons of EWH times series for all solutions at a selected set of locations. While trends
may agree in hydrological basins where mass variations occur at large scale such as the
Amazonian basin, they tend to disagree in regions with more heterogeneity including for
example Greenland coastal area and the Caspian sea, potentially leading to an improve-
ment in regional mass balance such as in Greenland using solutions with a higher spa-
tial resolution. Unfortunately, the GRACE M-SSA solution does not retrieve abrupt mass
change related for example, to the co-seismic gravity signal of the 2011 Mw 9.1 Tohoku-
Oki earthquake, as well average of CSR, GFZ, GRAZ and JPL solutions filtered by DDK?7.
This is due to temporal filtering associated with the M-SSA method. A specific process-
ing over regions affected by large earthquakes would be required to improve the final GRACE-
M-SSA solution but is beyond the scope of this study.

Overall, the GRACE/GRACE-FO M-SSA solution, including DDK7, LE filtering,
M-SSA gap filling and spatio-temporal filtering, efficiently removes characteristic North-
South striping pattern, while retaining a higher spatial resolution than the widely used
average of gravity fields SH solutions filtered by DDK5. Main features in trend and an-
nual variability of the final GRACE/GRACE-FO M-SSA time series are comparable to
those of DDKT filtered gravity fields, consistent with the rest of the time series over re-
constructed missing observations, and show a significantly lower noise content. In the
following Section, we attempt at assessing the GRACE/GRACE-FO M-SSA solution through
comparisons with independent observations and GRACE/GRACE-FO processing tech-
niques.

4 Discussion

We now focus on verifying consistency between our final GRACE/GRACE-FO M-

SSA solution and independent datasets, including observations, models and different GRACE/GRACE-

FO processing strategies, to assess the quality of both gap filling and spatio-temporal
filtering at the global and local scale using the method developed in this study.

4.1 Global scale comparisons

4.1.1 Gap filling validation for low spherical harmonics gravity field co-
efficients: a comparison with SLR data

We first seek to compare the final GRACE M-SSA solution with Satellite Laser Rang-
ing (SLR) observations. SLR orbits are determined through the measure of the round
trip time of a laser beam between satellites and ground tracking stations. Due to their
spherical geometry and favorable area-to-mass ratio limiting a number of sources of un-
certainties, SLR satellites are optimal for deriving accurate information on the Earth’s
gravity field. Unfortunately, due to the limited distribution of ground tracking stations,
SLR only gives access to temporal variations of the low spherical harmonic degrees of
the gravity field (Soénica et al., 2015).
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Figure 12: Time dependent Root Mean Square Deviation (RMSD) of the difference
between low degree Stokes coefficients of the GRACE M-SSA solution and CSR SLR es-
timates (left), and a time series of their cumulative variation over the 2003-2021 period
(right). Coeflicients C3 o and Cj5 ¢ have been replaced according to the Technical Note 14
(TN-14; J. Chen et al. (2005); Loomis et al. (2020)), starting in January 2003 and March
2012 respectively. GRACE and GRACE-FO observational gaps, reconstructed using the
M-SSA approach proposed in this study, are highlighted in blue.

Thus, here we compare the final GRACE/GRACE-FO M-SSA solution with the
SLR Stokes coefficients of the gravity field provided by CSR up to the degree 6 order 1
(excepted the degree 6 order 0) (Cheng et al., 2011). Figure 12 shows variations in the
Root Mean Square Deviation (RMSD) of the difference between low degree Stokes co-
efficients of the GRACE/GRACE-FO M-SSA solution and CSR SLR estimates, and a
time series of their cumulative variation over the 2003-2021 period. As a reminder, we
have replaced the C3 9 and ('3 coeflicients, starting in January 2003 and March 2012
respectively, according to the Technical Note 14 (TN-14; J. Chen et al. (2005); Loomis
et al. (2020)). RMSD between our final GRACE/GRACE-FO M-SSA solution and SLR-
derived Stokes coeflicients are negligible except for C3 ¢ and C5 o over the January 2003-
February 2012 period. We attribute the abnormal high amplitude of C3 o prior to Febru-
ary 2012 to its replacement recommendation only after March 2012 and suggest that it
is extended to the entire time series. Established anti-correlated resonance between Cj
and Cs o may explain the large discrepancies between the GRACE M-SSA and SLR so-
lutions for C5 o before March 2012 (Sosnica et al., 2015; Loomis et al., 2020). As a re-
sult, the annual mean amplitude of the RMSD between GRACE/GRACE-FO M-SSA
and SLR Stokes coefficients (Figure 12) decreases after March 2012 and more interest-
ingly, remains at similar level during observational gaps filled by the method proposed
in this study. This suggests that observational gaps filled by M-SSA are comparable to
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independent SLR observations for low degree Stokes coefficients. Existing GRACE and
GRACE-FO observations for low degree Stokes coefficients, which are unlikely impacted

by our post-processing filtering approach, remain consistent with SLR observations through-
out the entire time series.

4.1.2 Comparison with hydrological model

We now want to assess performances of our final GRACE M-SSA solution gap fill-
ing method with an independent dataset of higher spatial resolution. Since a large por-
tion of the gravity field variations recorded by GRACE/GRACE-FO signal are driven
by continental hydrology (Syed et al., 2008), GRACE solutions are commonly compared
to independent estimates of variations in land hydrology such as the Global Land Data
Assimilation System (GLDAS) (Longuevergne et al., 2013). GLDAS provides estimates
of land surface hydrology based on satellite and in-situ observations, combined with ad-
vanced land surface modelling and data assimilation techniques (Rodell et al., 2004). In
particular, GLDAS provides 1° x 1° grids of estimated variations in snow, canopy wa-
ter and soil water components between the surface and 2 meters depth but not deeper
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Figure 13: Root Mean Square Deviation (RMSD) over continental areas between the final
GRACE/GRACE-FO M-SSA solution and the Global Land Data Assimilation System
(GLDAS) (Rodell et al., 2004), expressed in Equivalent Water Height (EWH). Yearly av-
eraged RMSD (top) and monthly RMSD (bottom) are shown over the 2003-2021 period.
Missing periods of GRACE/GRACE-FO observations, reconstructed using the M-SSA
procedure proposed in this study are highlighted in light blue (top) and white crosses
(bottom).
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groundwater. We convert the GLDAS datasets into EWH, sum, and compare to the fi-
nal GRACE/GRACE-FO M-SSA solution.

Figure 13 shows the RMSD between GRACE/GRACE-FO M-SSA and GLDAS av-
eraged over continental areas. Significant discrepancies, reaching up to 10 cm of EWH
on global continental average, occur during the summer months, likely due to the ab-
sence of groundwater and ice components in GLDAS that bear large seasonal variations.
Reconstructed months, through the M-SSA gap filling procedure, tend to reflect this fea-
ture, particularly during the 11-month gap between missions. Note that during this pe-
riod, and toward the erratic end of the GRACE mission, GRACE/GRACE-FO M-SSA
reconstructions also show large discrepancies with GLDAS from January to April, which
are not annually recurrent, but do reach similar values in 2010 and 2011. In fact, the yearly
RMSD between the final GRACE/GRACE-FO M-SSA solution and GLDAS, averaged
over continental areas shows comparable values over the entire 2003-2021 time series, in-
cluding M-SSA filled GRACE observational missing periods. While we do not argue that
statistically reconstructed GRACE observations over missing months should be geophys-
ically interpreted, the final GRACE/GRACE-FO solution offers a continuous record of
gravity field variations, that can help, for example, recovering the long-term evolution
of some processes (earthquake cycle, GIA, recent ice melting, water depletion, etc.).

The gap filling procedure used to process the GRACE/GRACE-FO M-SSA is con-
sistent, to first order, with independent observations including low degree Stokes coef-
ficients derived from SLR and estimations of variations in land hydrology. We now seek
to compare the quality of the GRACE/GRACE-FO M-SSA with other GRACE/GRACE-
FO solutions to assess the potential of our final solution to efficiently remove North-South
stripes while retaining smaller spatial wavelength geophysical signals.

4.1.3 Comparison with other GRACE/GRACE-FO solutions

A metric commonly used to quantify noise level in GRACE and GRACE-FO so-
lutions is to compute the Root-Mean-Square (RMS) value over the ocean (Bonin et al.,

2012; Meyer et al., 2016). Since gravity fields have been corrected for non-tidal high-frequency

atmospheric and oceanic mass variation models (AOD1B; Dobslaw et al. (2017)), sig-
nal over the ocean should be small, and dominated by remaining random errors. To fur-
ther reduce any signal of geophysical origin, we first fit and remove a degree-3 polyno-
mial, annual and semi-annual sine functions to EWH time series at each point of a global
1°x1° grid. This functions account for potential geophysical signals in the GRACE and
GRACE-FO over the oceans, including leakage signals in coastal areas related to con-
tinental mass smeared out over large regions due to the missions intrinsic spatial reso-
lution and filtering approach. Note that we exclude regions of major earthquakes, by re-
moving oceanic areas of observations around epicenters which size is determined based
on the GRACE/GRACE-FO M-SSA mean rate of surface density anomaly. Earthquakes
considered are the 2004 Mw 8.8 Sumatra-Andaman, 2010 Mw 9.1 Maule and 2011 Mw
9.1 Tohoku-Oki eartquakes. Finally, we exclude latitudes above 45° and below -45°, where
non-tidal ocean signals are more challenging to predict. Figure S14 shows a map of the
ocean region considered used to compute RMS. Figure 14a shows consistent low noise
level of the final GRACE/GRACE-FO M-SSA solution, with EWH values remaining be-
low ~1 cm. To compare performances with other solutions, we also compute the RMS
over the ocean of the difference between the final GRACE/GRACE-FO M-SSA solution
and the average of DDK7-filtered SH CSR, GFZ, GRAZ and JPL solutions, the DDK5-
filtered COST-G combination solution (Meyer et al., 2019; Jaggi et al., 2020) and the
CSR mascons independent processing strategy . Absolute RMS values over the oceans
for all solutions are shown in Figure S16. The GRACE/GRACE-FO M-SSA solution ef-
ficiently removes noise compared to DDK7-filtered solutions, which are the starting point
of the method (Figure 14b), and contain lower noise level than the combined COST-G
even if it is filtered at a higher level, using DDK5 (Figure 14¢). More importantly, the
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GRACE/GRACE-FO M-SSA solution noise level over the ocean reaches the CSR mas-
cons noise level, which is low by construction due to strong regularisation in oceans, but
with no a priori constraints or regularisation on the noise or signal distribution (Figure
14d). Comparison with the average of DDK5-filtered SH CSR, GFZ, GRAZ and JPL
solutions and JPL mascons solution yield similar conclusions (Figure S15).
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Figure 14: (a) Root-Mean-Square (RMS) value of the final GRACE/GRACE-FO M-

SSA solution over the ocean, expressed in terms of Equivalent Water Height (EWH),

after fitting and removing a degree-3 polynomial, annual and semi-annual sine functions
from EWH time series at each point of a global 1° x 1° grid. This functions account for
potential signals of geophysical or leakage origin in the ocean. Regions of large earth-
quakes and latitudes below and above 45° are excluded from the RMS computation (see
Figure S14 for a map of the region considered). RMS of the difference between the final
GRACE/GRACE-FO M-SSA solution and (a) the average of DDK7-filtered CSR, GFZ,
GRAZ and JPL solutions, (b) the DDK5-filtered COST-G combination solution and (c)
the CSR mascons independent processing strategy.

Overall, the M-SSA based gap filling and filtering methods lead to a final GRACE/GRACE-

FO M-SSA solution that is consitent with independent datasets and contains a lower noise
level than the other SH solutions presented here, independently of the choice of a DDK7
or DDKS5 filter. However, any filtering of the GRACE/GRACE-FO gravity fields gen-
erated from SH Stokes coefficients necessarily causes signal attenuation and leakage. Thus,
at the local and regional scales, we compare the final GRACE/GRACE-FO solution, as
well as other SH solutions, with the independent mascons processing technique.
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4.2 Local and regional scale comparisons
4.2.1 Comparisons of Equivalent Water Height time series

We compare EWH time series at a selected set of locations in regions of geophys-
ical interest (Figure 15). On one hand, the overall features retrieved with the GRACE/GRACE-
FO M-SSA solution agree with all SH solutions, despite discrepancies in the higher fre-
quency content of the time series, likely due to the noise content of each solution. In par-
ticular, the method proposed in this study agrees well with the initial method proposed
by Prevost et al. (2019), with a larger portion of the North-South stripes removed thanks
to the Lobe-Edge filter, and a simplified processing with M-SSA applied on EWH only.
On the other hand, major differences between SH solutions and the CSR mascons so-
lution appear. First, for a point located on the western central coast of Greenland (Fig-
ure 15a), the rate of surface mass density loss is surprisingly twice larger for the CSR
mascons solution than for SH solutions, all corrected for GIA contribution, in a region
that is not covered by ice and thus where no mass variation related to recent ice melt-
ing is expected. Furthermore, for a point located in the region of the 2011 Mw 9.1 Tohoku-
Oki earthquake (Figure 15b), the co-seismic gravity signal is 4 times larger in the CSR
mascons than in the SH solutions, driven by the parametrization of the regularisation
matrix used to develop the mascons solution (Save et al., 2012, 2016). Such differences
raise the question of GRACE and GRACE-FO mass variations validation to ground truth
independent measurements to quantitatively assess solutions performances.
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Figure 15: Time series of surface mass density anomaly, expressed in Equivalent Wa-
ter Height (EWH), at points located in Greenland, in the Caspian sea, in the Ama-
zonian basin and in the region of the 2011 Mw 9.1 Tohoku-Oki earthquake (see lo-
cation map on Figure 11). EWH times series are compared for 4 different solutions:
the final GRACE/GRACE-FO M-SSA solution presented in this study (red), the
GRACE/GRACE-FO M-SSA solution based on Prevost et al. (2019) (blue), the com-
bined COST-G solution after applying DDK5 (orange) and the CSR mascons solution

(green).
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4.2.2 Method validation through regional hydrological mass balance

To assess performances of our final GRACE/GRACE-FO M-SSA solution, com-
pared to others, we seek validation through comparison with independent information
at the regional scale, with the example of hydrological mass balance over reservoir im-
poundments. However, validating GRACE/GRACE-FO SH solutions comes with two
major challenges.

Firstly, finding independent measurements of mass variations comparable to GRACE/GRACE-
FO is difficult. Indeed, GRACE/GRACE-FO measures large scale combined variations
in surface and groundwater, as well as within the solid Earth. In some regions, with min-
imal solid Earth related gravity variations, dense networks of groundwater measurements
and available estimates of surface water components (snow, canopy, soil moisture) from
other sources, namely models of land surface hydrology (ex: GLDAS, Rodell et al. (2004)),
it has been possible to validate GRACE/GRACE-FO measurements (Scanlon et al., 2012;
Feng et al., 2013). In addition, comparison with satellite altimetry, offers interesting op-
portunities to validate GRACE/GRACE-FO solutions. In particular, due its large spa-
tial extent, significant signal amplitude and minimal groundwater variations in the re-
gion, the Caspian sea has become an ideal candidate to seek validation of mass change
measurements with sea level variations measured by satellite altimetry (Swenson & Wahr,
2007; J. Chen et al., 2017). Unfortunately, the comparison of GRACE/GRACE-FO SH
estimates at the regional scale with independent datasets suffers another challenge.

Any filtering strategy of the GRACE/GRACE-FO solutions, which is necessary to
reduce North-South striping noise, causes spatial leakage error. This error is responsi-
ble for signal amplitude attenuation and causes geophysical signals to smear out over large
regions. Reducing leakage bias is therefore essential to quantify mass variations at the
regional scale, and requires independent sources of information. A commonly used method
is the model-derived scaling factors, which model-dependency (Landerer & Swenson, 2012)
can be overcome using data-driven methods (Vishwakarma et al., 2017; Dobslaw et al.,
2020). Another well established method is forward modelling which uses a priori infor-
mation on the source location to estimate the amplitude of the mass change through an
iterative numerical scheme by minimising differences of the truncated and filtered GRACE/GRACE-
FO data and a priori model until an arbitrary threshold criterion is met (J. Chen, Wil-
son, & Tapley, 2006; J. Chen, Wilson, Blankenship, & Tapley, 2006; J. Chen et al., 2015).
The latter method has been used for various geophysical applications, from changes in
ice mass (Wouters et al., 2008), lake water storage (J. Chen et al., 2017) or ocean mass
(Jeon et al., 2018).

Here, we develop a modified forward modelling approach and apply it to reservoir
impoundments, for which the shape and maximum volume capacity are well known. We
first apply both filters used in our GRACE/GRACE-FO processing, namely DDK7 and
LE, to the reservoir impoundment shape to obtain its theoretical filtered shape in the
GRACE/GRACE-FO solution. We then perform, for each monthly gravity field, a lin-
ear regression between the DDK7+LE filtered GRACE/GRACE-FO observations and
the filtered reservoir impoundment shape. The "true" reservoir impoundment volume
variations are given by its actual surface times the time-dependent coefficient of the lin-
ear regression, and can be easily compared to its known capacity and date of commis-
sioning.

In particular, we first consider the Boguchany Reservoir, impounded by a dam at
Kodinsk, Russia, which is part of a major water storage system, including multiple dams
on the Angara River, which flows out from Lake Baikal. The dam began to fill its reser-
voir in May 2012, with an expected maximum capacity of 58.2 km? of water (Jagus et
al., 2015). We also consider the Bakun embankment dam in Sarawak, Malaysia, on the
Balui River (Oh et al., 2010, 2018), which started to be filled in late 2010, and reached
its maximum capacity of 43.8 km? in 2011 (Tangdamrongsub et al., 2019). The Bakun
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Figure 16: Volume variations of the (a) Boguchany Reservoir, impounded by a dam

at Kodinsk, Russia, which reservoir began to be filled its reservoir in May 2012, with

an expected maximum water capacity of 58.2 km? and (b) Bakun embankment dam in
Sarawak, Malaysia, which started to be filled in late 2010, and maximum capacity of 43.8
km?, associated with the close by Murum reservoir, which filling started in late 2014 for
a maximum capacity of 12 km3. Volume variations are computed using the modified for-
ward model method proposed in this study, for the average of SH solutions processed

by CSR, GRAZ, GFZ and JPL, filtered using DDK5 (gray), the M-SSA SH solution
proposed by Prevost et al. (2019) and extended to GRACE-FO (blue), and our final
GRACE/GRACE-FO M-SSA solution (red). Estimates are compared to volume vari-
ations derived from the CSR mascons solution at its expected spatial resolution (solid
green), and using a larger area accounting for leakage error (dashed green), based on the
forward model proposed for SH solutions.

—28—



783

dam has to be associated with the close by Murum reservoir, leading to non distinguish-
able signals at the GRACE/GRACE-FO spatial resolution. The Murum dam started to
be filled in December 2014, up to its maximum capacity of 12.0 km 3. Figure 16 shows
results of the method applied to several GRACE/GRACE-FO solutions for both reser-
voir impoundments. Particularly, we compared SH solutions using various filtering strate-
gies, including the average of SH solutions processed by CSR, GRAZ, GFZ and JPL, fil-
tered using DDK5, the M-SSA SH solution proposed by Prevost et al. (2019) and ex-
tended to GRACE-FO, and our final GRACE/GRACE-FO M-SSA solution. We also com-
pare hydrological mass balance to CSR mascons solution, at its expected spatial reso-
lution, and extending the mass balance over the same area used for SH solutions, i.e. ac-
counting for leakage. SH solutions detect large mass variations related to reservoir im-
poundments for both Boguchany and Bakun reservoirs and the maximum volumes re-
trieved for the GRACE/GRACE-FO solution, over observing periods only, are 57.65 and
37.44 km?. These results agree best with the true maximum capacity of the reservoirs,
down to the 5 km? level. Note that we estimate the Bakun maximum capacity from GRACE/GRACE-
FO solutions prior to the Murum lake filling to isolate its contribution. Moreover, since
it is possible to characterize exactly the effect of both the DDK and LE filters on atten-
uation and leakage of a known source, regional mass balance based on SH solutions are
consistent with independent datasets once corrected for these effects. Volumes retrieved
using our final GRACE/GRACE-FO M-SSA solution are also larger than more filtered
solutions, which emphasizes the ability of the method to recover smaller spatial wave-
length signals with geophysical meaning. In contrast, volume retrieved by the CSR mas-
cons solution at their expected spatial resolution are close to zero. When hydrological
mass balance are performed over a larger area for CSR mascons, similar to the area used
for SH solutions, we observe signals consistent with reservoir impoundments, but with

a much lower amplitude than expected. This may be related to a significant regularisa-
tion of the CSR mascons solution in a region with little mass variations, and unexpected
anthropogenic activity, and unknown exact transfer function between a known source
and its mascons description which could impact regional mass budgets.

5 Conclusions

In this article we develop a post-processing strategy for gap filling, combining and
filtering multiple GRACE/GRACE-FO Level-2 SH gravity field solutions, inspired by
Prevost et al. (2019), with minimal a priori constraints on the signal or noise spatio-temporal
evolution. First, we combine the DDK?Y filter with a new Lobe-Edge filter, built to fur-
ther reduce the remaining lobes of spurious errors, detected around spherical harmonic
40. We then perform gap filling of missing observations in times series of Equivalent Wa-
ter Height (EWH) processed by 4 processing centres (CSR, GRAZ, GFZ, JPL), after iden-
tifying and removing outliers, and taking advantage of their common modes of variabil-
ity using an iterative Multichannel Singular Spectrum Analysis (M-SSA). We then pro-
ceed to spatial filtering by applying the M-SSA on each averaged EWH time series, ob-
tained from the 4 different solutions, and its near neighbours in the eastern and west-
ern directions to remove local striping artefacts.

We compare our final GRACE/GRACE-FO M-SSA solution with other solutions
and seek ground truth through comparisons with independent observations. First, we
ensure that gap filled periods, solely based on the iterative M-SSA scheme, are in agree-
ment with low-degree Earth’s gravity field derived from Satellite Laser Ranging and GLDAS,
a surface land hydrology model. Comparisons show the M-SSA method ability to sta-
tistically reconstruct missing observations. Then, we investigate the noise content of the
GRACE/GRACE-FO M-SSA solution over the oceans, which shows improvements com-
pared to other spherical harmonic (SH) solutions, and a level similar to masons type so-
lutions, that are regularized and/or constrained by construction. Finally, we show the
potential of the method to retrieve short-wavelengths geophysical signals, often smeared
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out over large regions by highly filtered SH solutions or masked out by mascons solu-

tions, using the example of hydrological mass balance of the Boguchany (Russia) and

Bakun (Malaysia) reservoir impoundments. In turn, the GRACE/GRACE-FO M-SSA
solution can reveal smaller spatial scale signals, including gravity changes induced by smaller
melting glaciers or smaller magnitudes earthquakes.
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