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Abstract

Satellite XCO2 retrievals could improve the estimates of surface carbon fluxes, but it remains unknow on what scales these

estimates are robust. Here, we use the time-dependent Bayesian synthesis top-down method and prior net ecosystem exchanges

(NEEs) from 12 terrestrial biosphere models (TBMs) to infer the monthly carbon fluxes of 51 land regions with constraints

by GOSAT XCO2 retrievals. We find that the uncertainty (standard deviation of 12 TBMs) reduction rates (URR) decrease

significantly at decreasing spatial scales. On the continental-scale, the mean URR is about 60%, and the annual and seasonal

cycle estimates of NEE are rather robust. The evaluation shows that the posterior CO2 concentrations are significantly improved

at the continental scale. Our study suggests that the GOSAT XCO2 can only promise a robust continental-scale NEE estimate,

and improving the XCO2 accuracy is an effective way to achieve robust estimates on smaller scales under current spatial

coverage.

Hosted file

essoar.10512451.1.docx available at https://authorea.com/users/537370/articles/599310-

a-robust-estimate-of-continental-scale-terrestrial-carbon-sinks-using-gosat-xco2-

retrievals

1

https://authorea.com/users/537370/articles/599310-a-robust-estimate-of-continental-scale-terrestrial-carbon-sinks-using-gosat-xco2-retrievals
https://authorea.com/users/537370/articles/599310-a-robust-estimate-of-continental-scale-terrestrial-carbon-sinks-using-gosat-xco2-retrievals
https://authorea.com/users/537370/articles/599310-a-robust-estimate-of-continental-scale-terrestrial-carbon-sinks-using-gosat-xco2-retrievals


manuscript submitted to Geophysical Research Letters 

 

 

A robust estimate of continental-scale terrestrial carbon sinks using GOSAT XCO2 1 

retrievals 2 

Lingyu Zhang1, Fei Jiang1,2,7*, Wei He1, Mousong Wu1, Jun Wang1, Weimin Ju1,2,7, 3 

Hengmao Wang1, Yongguang Zhang1,2,7, Stephen Sitch3, Anthony P. Walker4, Xu Yue5, 4 

Shuzhuang Feng1, Mengwei Jia1, Jing M. Chen6 5 

1Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, 6 

International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China. 7 

2Jiangsu Center for Collaborative Innovation in Geographical Information Resource 8 

Development and Application, Nanjing, 210023, China. 9 

3College of Life and Environmental Sciences, University of Exeter, Exeter, UK. 10 

4Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National 11 

Laboratory, Oak Ridge, TN, USA, 12 

5School of Environmental Science and Engineering, Nanjing University of Information Science 13 

& Technology (NUIST), Nanjing, China, 14 

6Department of Geography and Planning, University of Toronto, Toronto, Ontario M5S3G3, 15 

Canada. 16 

7Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 17 

210023, China. 18 

*Corresponding author: Fei Jiang (jiangf@nju.edu.cn)  19 

This manuscript has been co-authored by UT-Battelle, LLC under Contract No. DE-AC05-20 

00OR22725with the U.S. Department of Energy. The United States Government retains and the 21 

publisher, by accepting the article for publication, acknowledges that the United States 22 

Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or 23 

reproduce the published form of this manuscript, or allow others to do so, for United States 24 

Government purposes. The Department of Energy will provide public access to these results of 25 

federally sponsored research in accordance with the DOE Public Access Plan 26 

(http://energy.gov/downloads/doe-public-access-plan). 27 

 28 

Key Points: 29 

• Terrestrial carbon sinks estimated based on GOSAT XCO2 and 12 net ecosystem 30 

exchanges using atmospheric inversion method. 31 

• The uncertainty reduction rates decrease significantly at decreasing spatial scales. 32 

• The GOSAT XCO2 can only promise a robust continental-scale net ecosystem exchange 33 

estimate. 34 
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Abstract 37 

Satellite XCO2 retrievals could improve the estimates of surface carbon fluxes, but it remains 38 

unknow on what scales these estimates are robust. Here, we use the time-dependent Bayesian 39 

synthesis top-down method and prior net ecosystem exchanges (NEEs) from 12 terrestrial 40 

biosphere models (TBMs) to infer the monthly carbon fluxes of 51 land regions with constraints 41 

by GOSAT XCO2 retrievals. We find that the uncertainty (standard deviation of 12 TBMs) 42 

reduction rates (URR) decrease significantly at decreasing spatial scales. On the continental-43 

scale, the mean URR is about 60%, and the annual and seasonal cycle estimates of NEE are 44 

rather robust. The evaluation shows that the posterior CO2 concentrations are significantly 45 

improved at the continental scale. Our study suggests that the GOSAT XCO2 can only promise a 46 

robust continental-scale NEE estimate, and improving the XCO2 accuracy is an effective way to 47 

achieve robust estimates on smaller scales under current spatial coverage. 48 

Plain Language Summary 49 

Satellite-based CO2 measurement can improve the estimates of surface carbon fluxes due to its 50 

relatively well global coverage, but it remains unknow on what spatial scales that the satellite 51 

observation could provide a robust estimate. Here, net ecosystem exchanges (NEEs) from 12 52 

terrestrial biosphere models (TBMs) of 51 land regions for the period of 2011-2014 are 53 

constrained using GOSAT XCO2 retrievals, and the uncertainty (standard deviation of 12 TBMs) 54 

reduction rates (URR) at different spatial scales are analyzed. We find that 1) from the whole 55 

globe to the mean of 51 regions, the URR decreases from 85% to 19%. 2) On the continental-56 

scale, the mean URR is about 60%, and the annual NEEs in Asia, N. America, Europe, S. 57 

America, Africa, and Australia are estimated to be -2.150.23, -0.960.07, -0.600.20, -58 

0.550.25, -0.490.14, and -0.060.1 PgC yr-1, respectively. Our study suggests that the GOSAT 59 

XCO2 can only promise a robust continental-scale NEE estimate, and improving the XCO2 60 

accuracy is an effective way to achieve robust estimates on smaller scales under current satellite 61 

observing capacity. 62 

1 Introduction 63 

Terrestrial ecosystems and oceans absorb about half of anthropogenic carbon 64 

emissions(Friedlingstein et al., 2020), slowing down the increase of CO2 in the atmosphere and 65 

thus mitigates climate change. Accurate estimation of terrestrial carbon sinks and sources is an 66 

indispensable step to understand the status and the potential of their roles in regulating climate 67 

change. As a major way of constraining terrestrial carbon flux estimates with observations over 68 

large scales, top-down atmospheric inversion infers carbon fluxes from atmospheric CO2 mole 69 

fraction observations and a priori flux, which can effectively reduce the uncertainty of carbon 70 

flux estimates(Thompson et al., 2016). At the global or hemisphere scale, the carbon flux 71 

estimates from various atmospheric CO2 inversions are in a relatively good agreement, but at 72 

continental or regional scales, the agreement is greatly weakened due to errors in either  73 

inversion methods or observational data(Baker et al., 2006; Deng & Chen, 2011). 74 

In situ CO2 observations have been widely used in past atmospheric CO2 inversions 75 

(Baker et al., 2006; Deng & Chen, 2011; Gurney et al., 2002; Jiang et al., 2013; Monteil et al., 76 

2020; Peylin et al., 2013). Due to the uneven distribution of global surface CO2 observations, 77 

relatively consistent results can be obtained in places where observations are densely distributed, 78 

e.g., Europe and North America (N. America). However, inversion results have high uncertainty 79 
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in areas with sparse distributions of observations(Maksyutov et al., 2013). The uneven 80 

distribution of observations leads to greatly differences in the capability of inversions to 81 

constrain the land carbon cycle in different regions(Gurney et al., 2002). Satellite-based CO2 82 

measurements provide global coverage with high spatial resolutions(Baker et al., 2010). Many 83 

studies have estimated regional carbon sources and sinks using column averaged dry air mole 84 

fractions of CO2 (XCO2) from GOSAT and OCO-2 satellites(Baker et al., 2010; Basu et al., 85 

2013; Chevallier et al., 2014; Crowell et al., 2019; Deng et al., 2014; Jiang et al., 2021; Wang et 86 

al., 2022; Wang et al., 2019), boosting the possibility of better constraining the carbon cycle at 87 

finer spatial scale(Byrne et al., 2019). Byrne et al. (2019) explored the spatial scales of 88 

interannual variability of NEE constrained using GOSAT XCO2, giving correlations between 89 

interannual variability at different scales and multiple "proxies", but the spatial scales at which 90 

the inversion results are robust remain unclear. 91 

Here, we assimilate GOSAT XCO2 observations using the time-dependent Bayesian 92 

synthesis method ("Method") to optimize terrestrial ecosystem carbon exchange (NEE) of 51 93 

land regions (Figure S1a) from multiple TBMs. The inversion is from May 2009 to 2014, the 94 

first 20 month-period is treated as the spin-up stage, and the inversion results from 2011 to 2014 95 

were analysed in this study. NEEs simulated from 12 TBMs were used as prior fluxes within the 96 

same atmospheric inversion framework and constrained with the same observations to explore on 97 

what scales the GOSAT XCO2 retrievals can provide robust NEE estimates.  98 

2 Methods 99 

2.1 Inversion method 100 

We use the time-dependent Bayesian synthesis method(Rayner et al., 1999), and the 101 

GOSAT XCO2 retrievals, to estimate global surface CO2 net fluxes. The key of this method is to 102 

minimize the following cost function(Rayner et al., 1999): 103 

𝐽 =
𝟏

𝟐
(𝑴𝒔 − 𝒄)𝑻𝑹−𝟏(𝑴𝒔 − 𝒄) +

𝟏

𝟐
(𝒔 − 𝒔𝒑)𝑻𝑸−𝟏(𝒔 − 𝒔𝒑)                                   (1)   104 

where M is the transport operator; c is the observations; s is the vector of carbon flux combined 105 

with initial well-mixed atmospheric CO2 concentration; sp is a priori estimation of s; and R and 106 

Q are the uncertainties of c and sp, respectively. By minimizing this cost function, the posterior 107 

fluxes spost and their uncertainties Qpost could be obtained as: 108 

𝒔𝑝𝑜𝑠𝑡 = (𝑴𝑇𝑹−1𝑀 + 𝑸−1)−1(𝑴𝑇𝑹−1𝒄 + 𝑸−1𝒔𝒑)                                 (2)  109 

𝑸𝑝𝑜𝑠𝑡 = (𝑸-1 + 𝑴𝑇𝑹-1𝑴)-1                                                  (3)     110 

The global surface is separated into 69 regions, including 51 regions for land, and 18 111 

regions for ocean (Figure S1a). The partition scheme of land was adopted from Wang et al. 112 

(2021). The bias-corrected GOSAT ACOS V7.3 XCO2 for the years 2009-2014 is adopted as 113 

observations(Crisp et al., 2012; O'Dell et al., 2012; Wunch et al., 2011), and has been re-grided 114 

to 1× 1 by Jiang et al. (2021) with the best quality approach(Wang et al., 2019).  115 

Four types of a priori carbon fluxes were used in the inversion, namely terrestrial 116 

ecosystem carbon flux (NEE), ocean (OCEAN) carbon exchange, fossil fuel and cement 117 

production (FFC) carbon emissions, and biomass burning (FIRE) carbon emissions. The 118 
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OCEAN flux, FFC and FIRE emissions were adopted from the product of NOAA’s 119 

CarbonTracker, version 2017 (CT2017). In many offshore areas, the OCEAN fluxes are missing, 120 

we filled them with the fluxes of 2009 simulated by the global ocean circulation and 121 

biogeochemistry model (OPA-PISCES–T)(Buitenhuis et al., 2006; Jiang et al., 2013). The prior 122 

NEE fluxes were obtained from 12 TBMs, including BEPS(Chen et al., 1999; Ju et al., 2006), 123 

CASA(Potter et al., 1993), and 10 models from TRENDYv9(Friedlingstein et al., 2020) (i.e., 124 

CABLE-POP(Haverd et al., 2018), DLEM(Tian et al., 2015), ISAM(Meiyappan et al., 2015), 125 

LPX-Bern(Lienert & Joos, 2018), OCN(Zaehle & Friend, 2010), ORCHIDEE(Lurton et al., 126 

2020), ORCHIDEEv3(Vuichard et al., 2019), SDGVM(Walker et al., 2017), VISIT(Kato et al., 127 

2013), YIBs(Yue & Unger, 2015)). BEPS is a satellite-based TBM, which was driven by the LAI 128 

and clumping index products from MODIS. In this study, the BEPS simulations were adopted 129 

from Jiang et al. (2021). The CASA simulations were also derived from CT2017. There are 10 130 

TBMs in TRENDYv9 S3 simulations, we selected the simulations with spatial resolution greater 131 

than 11º. 132 

The transport operator M is simulated using the Model for Ozone And Related chemical 133 

Tracers, version 4 (MOZART-4)(Emmons et al., 2010). The MOZART-4 model was run at a 134 

spatial resolution of approximately 2.82.8 (128 × 64 grids), and 28 vertical layers. It was 135 

driven by the ERA-Interim reanalysis data obtained from the European Centre for Medium-136 

Range Weather Forecasts (ECMWF)(Dee et al., 2011). Using MOZART-4, we calculated the 137 

contributions of each month and each region to the XCO2 at each grid and time. Following Jiang 138 

et al. (2013), for each month and each region, the model is continuously run for three years, with 139 

1 Pg carbon emitted in the first month and no emission in the months thereafter. the spatial 140 

distribution of emissions within each land region was assigned according to the multi-year 141 

averaged net primary production (NPP), for the ocean region, no distribution was considered. 142 

The background CO2 concentration was set to 390 ppm, which is the averaged concentration of 143 

April and May 2009 observed at the global background station of Mauna Loa (Ed Dlugokencky 144 

and Pieter Tans, NOAA/GML (gml.noaa.gov/ccgg/trends/)). The simulated XCO2 contribution 145 

per month t and per region i were calculated based on a satellite averaging kernel according to 146 

the following equation(Connor et al., 2008): 147 

 𝑋𝐶𝑂2
𝑚,𝑡,𝑖=∑ ℎ𝑗𝑘𝑗(𝐴(𝑥𝑡,𝑖) − 𝑦𝑎,𝑗)𝑗       (4) 148 

where 𝑗 represents the GOSAT XCO2 retrieval layer, 𝑥 is the simulated CO2 profile, 𝐴(𝑥) is the 149 

mapping matrix, and ℎ𝑗 𝑘𝑗, 𝑦𝑎,𝑗 are the pressure weighting function, satellite kernel function, and 150 

a priori CO2 profile provided by the GOSAT product, respectively. The OCEAN flux, FFC and 151 

FIRE emissions were assumed to be prescribed, and thus the CO2 concentrations from the 152 

contributions of these three types of fluxes also simulated using the MOZART-4 model were 153 

pre-subtracted in the inversion system. Hence, the matrix c in eq. (1) can be further expressed as 154 

                        𝑐 = 𝑐𝑜𝑏𝑠 − 𝑋𝐶𝑂2
𝑎  − ∑ ℎ𝑗𝑘𝑗(𝐴(𝑥𝑡,𝑖,𝐹𝐹𝐶 + 𝑥𝑡,𝑖,𝐹𝐼𝑅𝐸) − 𝑦𝑎,𝑗)𝑗                         (5) 155 

where cobs is the GOSAT XCO2, 𝑋𝐶𝑂2
𝑎 is the prior XCO2 provided along the XCO2 product. In 156 

order to save computational costs and reduce the size of the transport matrix M, the observations 157 

and the variables corresponding to the observations were rescaled to a resolution of 15°x15° per 158 

month in this paper.  159 
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For the uncertainties of prior fluxes, we assumed a global land uncertainty of 2.0 PgC yr-
160 

1, which was distributed to different regions based on a multi-year average annual NPP from the 161 

CASA model(Potter et al., 1993). Considering that NPP is very small in winter and large in 162 

summer, assigning uncertainty exactly according to the monthly variation in NPP would result in 163 

little uncertainty in winter, so we adopted the scheme of averaging NPP with and without 164 

monthly variation and using this result to assign uncertainty. In addition, we fixed the lowest 165 

monthly uncertainty of each region to 0.1 PgC. The annual uncertainty of global land is within 166 

the range of previous studies(Baker et al., 2006; Basu et al., 2013; Deng & Chen, 2011; 167 

Houweling et al., 2004; Rodenbeck et al., 2003). We neglected the temporal and spatial 168 

correlation of the prior flux uncertainties. The observation error is 1.9 times of the retrieval error 169 

provided by the GOSAT product, which is the same as Jiang et al. (2021). The observations were 170 

also averaged over a 15°15° grid for each month, and the minimum observation error was set to 171 

1 ppm. For the inversion results, May 2009-December 2010 is taken as the spin-up phase, and 172 

only the inversion results from 2011-2014 are analyzed and discussed. 173 

We performed two sensitivity experiments using different a priori flux uncertainty and 174 

observation error settings To investigate the impact of  prior uncertainty settings on the inversion 175 

results, we conducted a sensitive experiment in which the prior uncertainty of each land region 176 

was set to be the standard deviation of the 12 prior NEEs (Philip et al., 2019), and the rest of the 177 

settings were kept consistent with Base Case, referred to as Case Q. To explore the effect of 178 

observation error on the estimation results, we set up a sensitivity experiment, ignoring the 179 

difference in observation errors, by setting the observation error uniformly at 0.5 ppm, which 180 

may be the accuracy goal for future satellite observations(Sierk et al., 2021), and then scaling 181 

them up by a factor of 1.9, keeping the rest of the settings consistent with Base Case, called Case 182 

R. 183 

2.2 Evaluation data and method 184 

In this study, surface CO2 observations from the CO2 GLOBALVIEWplus v7.0 ObsPack 185 

dataset(Cox et al., 2021) are used for independent evaluations. We selected 168 sets of discrete 186 

(flask), and quasi-continuous (in-situ) measurements at surface and tower with observation start 187 

date earlier than 2011, and stop date later than 2014. Of these, there are 34, 37, 75, 4, 9 and 9 sets 188 

of records available for Asia, Europe, North America, S. America, Africa, and Oceania, 189 

respectively. In addition, in Asia, the ObsPack observations are mainly distributed in the middle 190 

and high latitudes. Therefore, we further chose the observations from the Comprehensive 191 

Observation Network for Trace gases by Airliner (CONTRAIL) project(Machida et al., 192 

(Reference date: 2021/10/29), 2018; Machida et al., 2008; Matsueda et al., 2008; Matsueda et al., 193 

2015) to evaluate the posterior CO2 over Southeast Asia. The CONTRAIL project measures CO2 194 

concentrations on two passenger aircrafts along their flight paths. Vertical profiles of CO2 195 

concentrations near airports were observed during the taking off and landing. We selected 196 

observations between 2000 m to 6000 m heights, since the CO2 concentrations below 2000m 197 

could be highly influenced by airport pollution, and above 6000 m CO2 are fully mixed. At the 198 

heights of 2000m to 6000m, every 500 m was divided into one layer, and in each layer, the 199 

observations were averaged and compared with the simulations. 200 

Two forward simulations from May 2009 to Dec 2014 using the MOZART-4 model and 201 

the prior and posterior fluxes of the 12 TBMs were conducted to create prior and posterior CO2 202 

concentrations, respectively. The initial field at 00:00 UTC May 01, 2009 is obtained from the 203 
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reanalysis concentration of Carbon Tracker CT2019B (CT2019B)(Jacobson et al., 2020).  The 204 

mean deviation (BIAS) and root mean square error (RMSE) were used as reference indicators for 205 

the evaluation results. The monthly mean BIAS and RMSE at each continent were calculated.  206 

3 Results 207 

3.1 Uncertainty reductions on different spatial scales 208 

Generally, there are big differences in the NEE simulated using different TBMs(Monteil 209 

et al., 2020). In this study, 12 TBMs (see Methods) were used as prior fluxes. The NEE of these 210 

12 TBMs also has large differences. On the global scale, the mean annual NEEs from 2011 to 211 

2014 are in the range of -2.66 (CASA model) to -9.97 (LPX-Bern model) PgC yr-1 (Figure S2). 212 

We treat the standard deviation of the 12 TBMs’ NEE as the 1-σ uncertainty, and the mean of the 213 

12 TBMs as the best estimate of NEE for one region. To explore the spatial scales at which 214 

GOSAT XCO2 retrievals can provide robust NEE estimates, we analyse the relative prior 215 

uncertainty and uncertainty reduction rate (URR) after constraints at the global scale, the 216 

hemispheric scale (northern mid to high latitudes, tropical latitudes, southern middle latitudes), 217 

the continental scale, the half of continental scale (1/2 continent), the quarter of continental scale 218 

(1/4 continent), and small regions. The definition of the hemispheric scale and the latter three 219 

scales is given in Figure S1b-d.  220 

Figure 1 shows the relative uncertainties of the prior and posterior NEEs and their URRs 221 

after constraint using GOSAT XCO2 on different spatial scales. Clearly, the relative prior 222 

uncertainty increases with decreasing spatial scale. On the global scale, the relative prior 223 

uncertainty is about 40%; on the continent, 1/2 continent, and 1/4 continent scales, the mean 224 

relative prior uncertainties are 47%, 53%, and 54%, respectively. On small regions (51 regions 225 

for global land, same thereafter), the mean relative prior uncertainty reaches 61%, with a range 226 

from 29% to 345%, and the Figure S3 presents relative a priori uncertainty views for small 227 

regions. The continent-scale relative prior uncertainty ranges from 36% to 88%, with 46%, 50%, 228 

48%, 36%, 48% and 88% for Asia, North America, Europe, South America, Africa and Australia 229 

respectively. 230 

After being constrained by the GOSAT XCO2 retrievals, the uncertainty of the posterior 231 

NEE is substantially reduced. We find that the URR is significantly related to the spatial scale. 232 

The larger the spatial scale, the larger the URR, and vice versa. From the whole globe to the 233 

mean of 51 regions, the URR decreases from 85% to 19%.  On the continental scale, the mean 234 

URR is 60%. N. America has the largest URR, with a value of 85%, followed by Asia (75%), S. 235 

America (64%) and Australia (50%), and Europe has the smallest URR, with a value of only 236 

41%. On small regions, posterior uncertainty decreased in most regions (0 to 55%), except for 6 237 

regions (located in northern Asia, eastern North America, Amazonia, and Southeast Asia) where 238 

posterior uncertainty increased to some extent (3% to 48%), which may be related to the settings 239 

of prior uncertainty and observation errors (Figure S4). Moreover, the relative posterior 240 

uncertainty is lower than the prior on global to ¼ continental scales, while in small regions, the 241 

relative posterior uncertainty is comparable to the prior. This suggests that the GOSAT XCO2 242 

retrievals can constrain the terrestrial’s NEE well at the continental scale, but has limited ability 243 

to constrain carbon fluxes at subcontinental or smaller scales, implying that the inversion results 244 

on sub-continental scales are highly related to the adopted prior NEE.  245 
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 246 

Figure 1. Uncertainty at different scales and terrestrial carbon sink on the continental scale. (a) 247 

Relative uncertainties of the prior and posterior fluxes and uncertainty reduction rates after 248 

constrained using GOSAT XCO2 in different spatial scales, and (b) annual prior and posterior 249 

NEEs on the global and continental scales. The uncertainty is depicted as the standard deviation 250 

of the simulated NEEs by the 12 TBMs. 251 

3.2 Annual and seasonal cycles of NEE on the continental scale 252 

As mentioned above, on the continental scale, the posterior fluxes converge significantly. 253 

For prior fluxes, in Asia, N. America, Europe, S. America, Africa, and Australia, their averaged 254 

NEEs during the study period are in the range of -0.25 to -3.27, -0.13 to -1.76, -0.24 to -1.26, -255 

0.29 to -1.62, -0.31 to -2.14, and -0.01 to -0.69 PgC yr-1, with mean of -2.000.91, -0.990.50, -256 

0.700.34, -1.100.40, -1.200.58, and -0.230.21 PgC yr-1, respectively.  After constraining 257 

using XCO2 retrievals, we obtain the mean NEEs of -2.150.23, -0.960.07, -0.600.20, -258 

0.550.25, -0.490.14, and -0.060.1 PgC yr-1, respectively.  259 

We further explore whether the seasonal cycles of continental-scale NEE also converged 260 

significantly. As shown in Figure 2, for the prior fluxes, the monthly NEEs of different TBMs 261 

varies largely in all continents. In Asia, Europe, and N. America, although all models show 262 
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strong land carbon sinks in warm seasons (May to September), and clear land carbon sources 263 

during the cold seasons, however, the seasonal magnitudes vary significantly across models, 264 

which are in the range of 0.39 to 2.88 PgC mo-1, 0.29 to 1.41 PgC mo-1, and 0.17 to 1.92 PgC 265 

mo-1, respectively, with corresponding mean seasonal magnitudes of 1.340.62, 0.810.26, 266 

0.960.44 PgC mo-1. Moreover, in Africa, S. America, and Australia, the different TBMs show 267 

very inconsistent seasonal cycles. For example, in Australia, some models show carbon sinks 268 

from April to October, some models show the opposite, and there are individual models that 269 

show carbon sinks throughout the year. The mean seasonal magnitudes of Africa, S. America, 270 

and Australia are 0.380.13, 0.510.29, and 0.190.16 PgC mo-1, respectively. 271 

For the posterior fluxes, the seasonal cycles of different TBMs are in a narrow spread. 272 

Compared to the prior magnitudes, the posterior magnitudes have increased in Asia, N. America, 273 

Europe, and Africa, with Africa in particular more than doubling, while in S. America and 274 

Australia, they have decreased. The mean seasonal magnitudes of Asia, N. America, Europe, 275 

Africa, S. America, and Australia are 1.300.21, 1.060.12, 0.900.13, 0.390.08, 0.320.08, 276 

and 0.130.07 PgC mo-1, respectively. Uncertainties of their magnitudes are reduced by a range 277 

from 34 to 73%.  In addition to more unified amplitudes, basically all TBMs also present a 278 

consistent phase in their seasonal cycle. Particularly, in the prior NEEs, there are individual 279 

models whose results deviate significantly from others. For example, in Asia, North America, 280 

and Europe, one model shows abnormally high sources in autumn, and in S. America and 281 

Australia, there is a model showing abnormally high sources in June-October. After constraint by 282 

GOSAT observations, these anomalies of individual patterns disappear. 283 

When comparing the multi-model mean prior and posterior seasonal cycles, in Asia, 284 

Europe, and North America, the posterior seasonal cycle is consistent with the prior results, but 285 

the carbon sink is stronger in summer and the carbon source is stronger in autumn. In Africa, 286 

South America, and Australia, the posterior and prior seasonal cycles are quite different. In 287 

Africa, the prior NEEs show carbon sinks throughout the year, with the strongest carbon sinks in 288 

July-August and the weakest sinks in February and November; while the posterior NEE shows 289 

that there are significant carbon sources from March to June and from October to November, and 290 

significant carbon sinks in December-January and July-September, with the strongest sink in 291 

August. In South America, the prior NEEs show a unimodal distribution, with the strongest sink 292 

and source in January and September, respectively; but the posterior results show that the carbon 293 

sink increases significantly in every month except August-September, and the months with 294 

stronger sources appear in June and September. In Australia, the prior NEEs show carbon sinks 295 

from December to May, with the strongest in March, and carbon sources from June to 296 

November, with the strongest in October; while the posterior NEE shows a significant increase 297 

in carbon sources from November to June, and an obvious decrease from August to October, 298 

displaying a double-peak and double-valley pattern. 299 
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 300 

Figure 2 Averaged prior and posterior seasonal cycle of NEE in different continents during 301 

2011-2014. The lighter lines correspond to the NEEs of different TBMs, and the darker lines 302 

represent the multiple models mean. 303 

3.3 Evaluation for the inversion results 304 

We evaluated the inversion results using independent surface CO2 observations over the 305 

globe. Figure 3 shows the continental averaged monthly mean observed CO2 concentrations and 306 

the 12 TBMs averaged prior and posterior CO2 concentrations. Compared to the prior CO2 307 

concentrations, except for Asia, the posterior concentrations are much closer to the observed 308 

values over all continents. The root mean square error (RMSE) between the observations and 309 

simulations in Europe, N. America, S. America, Africa, and Australia decrease from a priori of 310 

2.32, 2.58, 2.45, 1.96, and 1.80 ppm to a posteriori of 1.43, 1.51, 1.00, 0.72, and 0.57 ppm, 311 

respectively, with reduction rates of RMSE in the range of 40% ~ 68%. For the individual 312 

models (Figure S5), the mean bias (BIAS) and RMSE of the posterior CO2 are also lower than 313 

those of the prior CO2 for almost all models and in all the continents. Generally, the prior CO2 of 314 

the LPX-Bern, ORCHIDEE, ORCHIDEEv3, SDGVM, and VISIT models have larger RMSE 315 

than the other models in all continents. After being constrained with XCO2 data, the posterior 316 

CO2 RMSE of these 5 models are similar with those of the others. In Asia, for the prior CO2 317 

concentrations, there are about half of the models with negative biases, and the rest with positive 318 

biases, with values in the range of -4.29 ~ 5.27 ppm, which results in a very small BIAS in the 319 

mean prior CO2 of -0.08 ppm, while for the posterior CO2, almost all models have small positive 320 

biases, with values in the range of -0.72 ~ 2.35 ppm and average bias of 1.20 ppm. In Southeast 321 

Asia, compared with the aircraft observations, the prior CO2 have large negative bias (about -3 322 

ppm), while the posterior CO2 have a much smaller bias, with a value about -1 ppm (Figure S6). 323 

This indicates that the inversion results in Asia of all TBMs are also improved.  324 

It can be found that the posterior CO2 in Asia agrees well with the observation in 325 

summer, but in winter, the posterior concentration is higher than the observation, indicating that 326 

the carbon source in Asia was overestimated in winter. Although the posterior concentrations in 327 

N. America and Europe match the observations better overall, similar characteristics to Asia 328 

were observed, i.e., the differences between the posterior concentrations and the observations are 329 
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greater in winter than in summer, suggesting it might be caused by poor observations in winter 330 

(Figure S7).  331 

 332 

Figure 3 Time series of modeled and observed monthly mean CO2 concentrations for a, Asia, b, 333 

Africa, c, N. America, d, S. America, e, Europe, and f, Oceania. The embedded map in the upper 334 

left corner shows the location of the stations used in each continent. 335 

4 Discussion and conclusion 336 

With NEEs from 12 different TBMs, our work produces a robust estimate at the 337 

continental scale using GOSAT XCO2, with very consistent annual mean carbon fluxes and 338 

seasonal cycles. The assessment of the results by independent observations shows that the 339 

posteriori concentrations are closer to the observations. Compared to previous estimates, the 340 

estimated net biosphere exchanges (NBE, =NEE+FIRE) in N. America, Europe, S. America, 341 

Africa, and Australia are close to or between the estimates of GCAS2021 (Jiang et al., 2022) and 342 

CMS-Flux NBE 2020 (Liu et al., 2021) during the same period (Figure S8), which were inferred 343 

from the same satellite retrievals as this study; while in Asia, the land sink of this study is 344 

significantly stronger than both. Compared to the NBEs constrained using surface air-sample 345 

measurements (i.e., CT2019B, Jacobson et al., 2020; Jena CarboScope s10oc_v2020, Rodenbeck 346 

et al., 2018; CAMS v18r2, Chevallier et al., 2010) (Figure S8), in Asia, N. America, and Europe, 347 

our results are in the range of these three estimates, while in S. America, we show a stonger land 348 

sink, and in Afirca and Australia, we show a stonger source. For the Asia’s NEE, it is also 349 

comparable to the estimate of Zhang et al. (2014), who used Asia’s ground and aircraft 350 

observations as many as possible, and less than the estimate based on eddy covariance 351 

measurements (Ichii et al., 2017). Compared to the state-of-the-art bottom up estimate for the 352 



manuscript submitted to Geophysical Research Letters 

 

period of 2000-2009 (Ciais et al., 2021) , this study shows a stronger sink in N. America, 353 

EuroAsia, and S. America, but a weaker one in Africa and Australia. On globe land, the NEE is 354 

reduced from a priori of -6.222.48 PgC yr-1 to a posteriori of -4.790.12 PgC yr-1. Combined 355 

with the prescribed fluxes of ocean (-2.45 PgC yr-1), fire (1.93 PgC yr-1), and fossil fuel and 356 

cement (9.68 PgC yr-1), the posterior global net flux to the atmosphere is 4.37 PgC yr-1, which is 357 

very close to the observed mean atmospheric CO2 growth rate of 4.51 PgC yr-1 (Friedlingstein et 358 

al., 2020). 359 

The setting of prior uncertainties and observation errors can affect the estimates of NEE. 360 

When using the standard deviations of the 12 TBMs as the prior uncertainties in each region 361 

(Case Q, as described in 'Method'), the URRs in most regions of high and low latitudes are lower 362 

than those of the Base case. The reason is that with this scheme, the given uncertainty for each 363 

prior flux at high latitude regions is greater, that is, for each prior flux, the degree of adjustment 364 

freedom has increased, but the observation constraint is insufficient in this area, thus the 365 

convergence of the 12 NEEs has become poorer; on the contrary, the prior uncertainty in the 366 

tropics has become smaller, and there are relatively more observations, as a result, the range that 367 

each prior flux can be adjusted is reduced, and the convergence of the 12 NEEs is also reduced 368 

(Figure S4 and Figure S9). Besides, we also find a significant increase of URR in the tropical 369 

regions of Amazon and Indochina, indicating that a suitable prior uncertainty setting is very 370 

important. On the continental scale, the URRs decrease on all continents except Europe, while 371 

the estimated NEE in all continents do not change much compared with the Base case (Figure 372 

S10). When using a uniform and much smaller observation error (Case R, as described in 373 

'Method'), the URRs have increased in most regions, especially at high latitudes (Figure S4). 374 

Overall, the different prior uncertainty and observation error settings do not change the situation 375 

that URR decreases significantly as the spatial scale decreases, but with the different prior 376 

uncertainty setting, the decrease is more rapid, while with small observation error, the decline 377 

rate is reduced. In Case R, the URR of 1/4 continent could reach more than 40%, and that of the 378 

51 regions mean reaches about 25% (Figure S11).  We conclude that currently, the GOSAT 379 

XCO2 can only give a robust estimate of the carbon flux on the continental scale, and under the 380 

current satellite observing capacity, improving the XCO2 accuracy can effectively reduce the 381 

spatial scale of robust carbon flux estimates.  382 
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Figure S1. Zoning map at different scales. (a) The global land and ocean are divided into 

51 and 18 regions, respectively. (b) Three global latitudinal zones. (c) 1/2 continental 

scale zoning map. (d) 1/4 continental scale zoning map.   
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Figure S2. The global land NEE of the terrestrial biosphere models (TBMs) used in this 

paper.  
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Figure S3. Distribution of relative prior uncertainty of the 51 terrestrial regions. Relative 

prior uncertainty is equal to the standard deviation of 12 TBMs NEE divided by the mean 

of 12 TBMs NEE.  
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Figure S4. Distribution of relative uncertainty reduction ratios ([prior uncertainty - 

posterior uncertainty] / prior uncertainty). (a) Base Case, (b) Case Q, based on Base Case, 

but its prior flux uncertainties were set using the standard deviation of the 12 prior NEEs, 

and (c) Case R, based on Base Case, but the distribution of observation error was 

ignored.  
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Figure S5. Comparison of simulated and observed concentrations for multiple models. 

The horizontal coordinates show individual model and multi-model averages.  

 

 

Figure S6. Comparison of tropical Asia simulated concentrations with CONTRAIL 

observations. The left panel a shows the distribution of COTRAIL observations, and the 

right panel b shows the evaluation results.  
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Figure S7. Seasonal distribution of GOSAT XCO2 observations between 2011-2014. a for 

MAM and b for DJF.  
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Figure S8. Net biosphere exchanges (NBE) derived on the continental scale from 2011 to 

2014. Each atmospheric inversion is represented by bars showing the NBE averaged 

between 2011 and 2014 in each continent.  
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Figure S9. The setting of prior flux uncertainty used in the inversions with each NEE 

model (PgC yr-1). a and b correspond to Base Case and Case Q, respectively.   
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b 



 

 

10 

 

 

Figure S10. Annual prior and posterior NEEs on the global and continental scale 

(uncertainty is described using the standard deviation of the 12 TBMs).  

 

 

Figure S11. The variation of the uncertainty reduction ratio and relative uncertainty with 

different scales. The solid line marked with a circle is the posterior uncertainty reduction 

ratio curve. The solid line marked with a square is the relative posterior uncertainty curve. 

The dashed line marked with a square is the relative prior uncertainty curve.   
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Figure S12. The distributions of the 12-model mean posterior NEE from 2011-2014. a is 

Base Case, b is Case Q, and c is Case R.   

 


