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Abstract 

Finding optimum balances between conflicting interests in multipurpose reservoirs often 

represents an important challenge for decision makers. This study assesses the use of different 

computational tools to obtain optimal reservoir operations applied to the Hatillo dam in the 

Dominican Republic. A multi-objective optimization approach is used, in which non-dominated 

sorting genetic algorithm II (NSGAII) and multi-objective evolutionary algorithm based on 

decomposition (MOEA/D) optimizers are applied to models that simulate reservoir operations. 

Three different Machine Learning (ML) models, namely, the multilayer perceptron (MLP), the 

radial basis network (RBN) and the linear function (LF), are employed to learn the current 

operation of the system. Subsequently, a general model is proposed to simulate daily reservoir 

operations (2009-2019), integrating water balances, physical constraints of the dam components 

and the ML models, the latter defining daily controlled discharges. In the optimization process, 

the ML parameters are the decision variables, while the objectives evaluated are irrigation, 

hydropower generation and flood control. The results are compared with the actual operation of 

the reservoir. Three dimensional Pareto fronts are obtained, from which, the wide variety of 

operations can be evidenced. The flood control objective was found to have a wide room for 

improvement over the current operation of the reservoir, and several of the solutions found 

improve the current operation for the three proposed objectives. The MLP models tend to 

generate the best results for this case study and the NSGAII optimizer generates the best 

optimization results.  
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1 Introduction 

Reservoir optimization is one of the most relevant study areas within the field of water resource 

systems (Momtahen & Dariane, 2007). With the effect of climate-change, population growth, 

and basin dynamics, optimal operation of reservoirs has more relevance in water resources 

management. 

Multipurpose reservoirs are often used to attend multiple demands for domestic, industrial, 

irrigation, environment, hydropower production and flood control, among others (Sun, Luo, & 

Xie, 2018).  Therefore, considering the different interests that may exist in decision-making for 

the operation of reservoirs, as well as the mutual conflicts that these interests may present, 

finding operating policies to which all the involved parties will agree is not an easy task. For 

flood control objective, for instance, it is better if there is less water in the reservoir, allowing to 

accumulate a large additional volume of water during the flood season (Zhou et al., 2018), while 

more water in the reservoir is better for irrigation purposes (Scola et al., 2014). Regarding 

hydropower production, the stored energy in the reservoir gradually increases with the rise in 

water level (Jansen et al., 2013), and outflows might support irrigation, however, there are also 

well-known cases where hydropower production reduces water availability for irrigation (Ruijie, 

Cai, Ringler, & Zhu, 2017). Thus, finding optimal operating policies that use multi-objective 

approaches to re-focus decision-making towards a balance of interests is highly relevant to 

improve the integrated use of reservoirs. It is important to address trade-offs between multiple 

objectives to achieve the management goals (Myo Lin & Rutten, 2016).  

The literature cites different approaches for tackling multi-objective optimization problems. 

Many of these are oriented towards the search for sets of non-dominated solutions reflected in 

decision spaces or Pareto fronts. Traditional approaches aim to simplify multi-objective 

problems into several single-objective problems that can be addressed via standard optimization 

algorithms (Miettinen, 1999). For instance, the weights or weighting method converts objectives 

into scalar values by assigning subjective weights (Labadie, 2004), or the Ԑ-constrained method 

(Haimes et al., 1971) transforms all objectives into constraints except for one, to which a 

standard optimization method is applied, thus simplifying the problem. Both methods are widely 

applied in reservoir optimization (see Heydari et al., 2016; Ko et al., 1992; Khattab & Al-

Mohseen, 2020).  Another method, the Goal attainment (Gembicki & Haimes, 1975) consists of 

defining a set of specified targets associated with a set of objectives, which can be under- or 

overachieved, and are controlled by a vector of weighting coefficients (Loucks & van Beek, 

2017). In reservoir optimization, this method has been employed by Khattab & Al-Mohseen 

(2020), and Basu (2004). All these approaches, however, are limited when the complexity of the 

problem increases (e.g., greater number of objective functions, decision variables or constraints). 

Thanks to advancements in computational resources, better technologies and more robust 

equipment, metaheuristic techniques have been gaining popularity in the field of water resources. 

Such is the case for evolutionary algorithms (EA) that use the mechanisms of Darwin’s evolution 

of species (see Cámara, 2015; Loucks & van Beek, 2017). When applied to multi-objective 

optimization, EAs are efficient because of their ability to solve complex problems involving 

characteristics such as discontinuities, multi-modality, disjoint feasible spaces and noise when 

evaluating functions (Ma et al., 2015). These algorithms seek to generate a Pareto-approximate 

set of solutions to serve as a reference for decision-making in multi-criteria problems (see Kollat 

et al., 2011; Giuliani et al., 2014). Among these EAs, the Non-dominated Sorting Genetic 

Algorithm II (NSGAII) (Deb et al., 2002) and the Multi-objective Evolutionary Algorithm Based 
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on Decomposition (MOEA / D) (Zhang & Li, 2007) stand out. Some authors have used these 

algorithms to optimize multipurpose reservoirs. Castelletti et al. (2012) used the NSGAII to 

optimize the Hoa Binh reservoir on the Da River in Vietnam for hydroelectric generation, water 

supply and flood control. Myo Lin et al. (2020) also used the NSGAII within the scope of multi-

objective model predictive control for real-time operation of a multi-reservoir system in the 

Sittaung river basin in Myanmar. Similarly, Ma et al. (2015) applied the MOEA / D to optimize 

the Ankang reservoir in China for flood control.  

One approach that has gained popularity in recent years is Direct Search (DS), a term attributed 

to Rosenstein and Barto (2001). This concept is also known in water resource literature as 

parameterization-simulation-optimization, as referenced by Koutsoyiannis and Economou 

(2003). Per this method, optimizers are applied directly to approximation functions or models 

that simulate the reservoir’s operation (Ritter, 2016). Some recent studies have applied 

approximation functions or machine learning (ML) models that use artificial neural networks 

(ANNs) to represent reservoir operations (e.g., Ehsani et al., 2016; Zhang et al., 2018). Giuliani 

et al. (2014) and Giuliani et al. (2016) used radial basis networks (RBNs), demonstrating their 

benefits as universal approximation functions. Likewise, Ritter et al. (2020) applied DS using 

physically based operating models. 

This study uses the Hatillo reservoir in the Dominican Republic as a case study to propose a 

methodology for searching for optimal operations for multipurpose reservoirs. The Hatillo 

reservoir has three purposes in mutual conflict: hydroelectric generation, irrigation and flood 

control. Under the proposed methodology, three different Machine Learning (ML) models, 

namely, the multilayer perceptron (MLP), the radial basis network (RBN) and the linear function 

(LF), are employed to learn what is (to discover) the current operation of the system. 

Subsequently, a general model is proposed to simulate daily reservoir operations (2009-2019), 

integrating water balances, physical constraints of the dam components and the ML models, the 

latter defining daily controlled discharges. In the optimization process, the ML parameters are 

the decision variables, while the objectives evaluated are irrigation, hydropower generation and 

flood control. The NSGAII and MOEA/D, two EAs widely applied in multi-objective problems, 

are used to optimize the proposed models. The results are compared with the current operation of 

the reservoir for the period of analysis. Both the operation models and the optimizations are 

created using Python. 

The main contribution of this study is a proposed framework that develops optimal operations for 

the Hatillo reservoir to improve the current operation for the three proposed objectives. Three 

dimensional Pareto fronts are obtained, from which, the wide variety of operations can be 

evidenced, which could even serve as a reference for decision-making towards a balance of 

interests, thus improving the integral use of the reservoir. This methodology could be applied in 

multipurpose reservoirs in general, though the operation model must be adapted to each case. 

The study also evaluates the performance of the NSGAII and MOEA / D optimizers in searching 

for optimal reservoir operations, as well as the ML models used to parameterize the reservoir’s 

operation. The following sections describe the case study and the proposed methodology, and 

later demonstrate the results and conclusions of the study. 

 2 Case Study 

The Hatillo reservoir is in the Yuna river basin (Figure 1), Dominican Republic, about 113 

kilometers northeast of Santo Domingo. This reservoir has been used for irrigation, hydropower 
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generation, and to mitigate downstream flooding. The Yuna river basin drains an area of 5,498 

km2, flowing downstream for approximately 210 kilometers. It is the second most important 

river in the Dominican Republic, and with an average flow of 91 m3/s at its mouth (35.4 m3/s at 

the entrance of the reservoir), it is the river with the highest flow. Mean annual precipitation in 

the basin (in terms of spatial variation) ranges between 1,080 and 3,120 mm, with the area of 

greatest precipitation in the mountain region upstream of the reservoir. Most of the annual 

rainfall in the Dominican Republic occurs between the end of April and the end of October, with 

a bimodal trend that has peaks in May and around the end of August to October (CEPAL, 2020; 

Jury et al., 2007). Due to its geographical location, the country is exposed to extreme weather 

events such as hurricanes, cyclones and tropical storms. The hurricane season begins in June and 

ends in November, being the months of August to the end of October the periods of greatest 

occurrence (Jesús Encarnación, 2019). 

 

 

Figure 1. Map of the Yuna river basin. 

During periods of prolonged rain, floods occur frequently in the lower Yuna basin. The rains 

generate an increase in river flow that consequently overflows and affects low-lying populations 

downstream of the reservoir. The lower Yuna plain is subject to flooding in general, 
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characterized by a terrain of low slopes, extensive plains and a meandering river course. Several 

flood events have been reported, such as flooding in October of 2007 that occurred because of 

Tropical Storm Noel. The event affected the entire Dominican territory and resulted in losses 

exceeding 439 million US dollars (Economic Commission for Latin America and the Caribbean, 

2008). Another more recent event was the flood season between November 2016 and April 2017, 

which generated losses of 862.37 million US dollars, affecting sectors of public works, water and 

sewerage, agriculture and housing among others (MEPyD, 2017). On the other extreme, periods 

of long droughts also affect the area, reducing hydroelectric generation and putting at risk the 

water meant to supply the irrigation districts in the lower Yuna.  

 

Figure 2. Floodplain in the lower Yuna basin. 

 

At present, only 26 percent of the basin area is regulated by reservoirs. Hatillo is the most 

representative, regulating 23 percent of the total area of the basin (1,192 km2). This reservoir is 

the largest body of surface water in the Dominican Republic, covering an average area of 27.4 

km2. The system has a dam built on a 50-meters-high embankment of earth and rock. The 

reservoir has a total storage capacity of 441 million cubic meters with a maximum length of 15 

km. The minimum operating level is 70 meters above sea mean level (MAMSL). The elevation 

of the crest of the spillway is 86.5 MAMSL, which corresponds to the maximum operating level, 

while the extraordinary maximum level is 100.75 MAMSL. The main components of the dam 

are presented in Figure 3. The reservoir has an uncontrolled spillway (i.e., no gates, only free 

overflow) with a maximum capacity of 650 m3/s; there are two hollow jet valves for the bottom 

outlet, with a maximum capacity of 82 m3/s each. A powerhouse with a Francis turbine has an 

installed capacity of 8 MW and an annual energy generation of 40 GWh, the maximum flow 

capacity of the turbine is 30 m3/s. Hatillo’s installed capacity is low compared to other 

hydroelectric plants in the Dominican Republic. Examples of other plants include Tavera (96 
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MW), Valdesía (54 MW) and Aguacate (52 MW). Downstream of Hatillo, large areas of land are 

used for agriculture in the lower Yuna river basin, predominantly for rice cultivation, which is 

the main food crop in the Dominican Republic (Moquete, 2004). The reservoir supplies water for 

the irrigation of approximately 27,000 hectares of crops.  

 

 

Figure 3. Dam components: (a) location of the dam, (b) operation levels, (c) schematic 

representation of the components of the dam. 

 

The dam is operated by Empresa de Generación Hidroeléctrica Dominicana (EGEHID) and the 

Dominican Institute of Water Resources (INDRHI). The reservoir operation under normal 

conditions consists of discharging 26 m3/s through the turbine throughout the day, then, this 

water returns to the Yuna river and it is used for irrigation. However, in emergency scenarios, 

such as in heavy rainy seasons or hurricane seasons, the National Dam Committee (COPRE) 

defines the actions for the operation of the reservoir. Releases through hollow jet valves occur 

when more water needs to be released due to flood control strategies or irrigation demands. 

Unfortunately, the information about operating rules of the reservoir were not available, as well 

as target levels, power production targets, and irrigation discharges. Nevertheless, daily data of 

inflows, spills, turbine discharges, valve outlets and total outflows, for the period 2009-2019 

were provided by EGEHID, and from these data it was observed that 54% of the reservoir outlets 

are through spill, 45% are through the turbine and 1% are through the bottom valves. The fact 

that most of the reservoir releases have not been controlled (i.e., through spillway) allows us to 

hypothesize that the flood control objective can be improved. 

It is important to mention that given the lack of reservoir operation rules, this study sought to 

emulate the real operation (2009 - 2019) using ML models, which is described in the next 

section. Additionally, due to the lack of target levels, power production targets, irrigation 

demands and specific objectives of the reservoir, an operation model has been proposed to be 
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optimized by applying three objectives with which it is sought to emulate the interests in the 

operation of the reservoir.  

3 Machine Learning (ML) Models and Data 

The reservoir operations in terms of daily release can be parameterized using mathematical 

functions adjusted to the patterns or shapes that define them. To this end, some artificial 

intelligence techniques or ML models, most notably ANNs, have proven to be efficient; some 

have even been classified as universal approximation functions (Tikk et al., 2003). Several 

authors have shown the benefits of these functions in the analysis of reservoir operation. Not 

only can they learn and replicate real operating behaviours (Ehsani et al., 2016; Zhang et al. 

2018), they also adjust to artificial behaviors induced by purpose fulfilment in optimization 

problems (Momtahen & Dariane, 2007; Giuliani et al., 2016). The present study proposes two 

types of ANNs as approximation functions: the MLP and the RBN, in addition to a linear 

approximation function (LF).  

MLP: Figure 4(a) shows the general scheme of an MLP. The information that enters the network 

is propagated forward using connections with different values or weights. The MLP has an input 

layer, where the data is entered, which is processed in the neurons of the hidden layers using 

activation functions until reaching the output layer, where the results are generated. The function 

that the MLP represents is as follows: 

 

𝑦𝑡 = 𝑐 + ∑ 𝑣𝑖𝑓𝑖(𝐼𝑡 ∙ 𝑤𝑖 + 𝑏𝑖)

𝑁

𝑖=1

                                                      (1) 

where 𝑁 is the number of neurons with an activation function 𝑓(∙) (e.g., sigmoidal function); 𝐼𝑡 

is the input vector of the network; 𝑤𝑖 is the vector that represents the connections between the 

input and the hidden layer; 𝑣𝑖 is the vector for the connections between the hidden layer and the 

output layer;  𝑏𝑖 is the vector of bias for the neurons of the hidden layer and 𝑐 is the bias of the 

output layer. The number of parameters in this network is 𝑝 = 𝑁(𝑀 + 2) + 1, where 𝑀 is the 

number of input variables for the model. 

RBN: These networks use Gaussian functions for data processing, incorporating the center and 

radius parameters of processing units known as bases (instead of neurons, as in MLPs). Figure 

4(b) shows the general schematic of an RBN. The function that the RBN represents is as follows: 

 𝑔𝑖(𝐼𝑡) = 𝑒𝑥𝑝 [− ∑
[(𝐼𝑡)𝑗 − 𝑐𝑗,𝑖]

2

𝑟𝑗,𝑖
2

𝑀

𝑗=1

]                                                     (2) 

𝑦𝑡 = ∑ 𝑤𝑖, 𝑔𝑖(𝐼𝑡)

𝑁

𝑖=1

                                                                 (3) 

where, 𝑁 is the number of bases with Gaussian functions 𝑔𝑖; 𝑤𝑖 is the weight vector between the 

hidden layer and the output layer; 𝐼𝑡 is the input vector of the network; 𝑀 is the number of input 

variables and 𝑐𝑗,𝑖 and 𝑟𝑗,𝑖 are the center and radial vectors of each base with the dimension 𝑀. 

The number of parameters for an RBN is 𝑁(2𝑀 + 1). 
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LF: These are the mathematical functions used to find relationships between variables with 

linear trends. Unlike the previous functions, they do not have the ability to accurately replicate 

complex patterns. If 𝑌𝑡 is a dependent variable and 𝑋𝑃 the independent variables, the function can 

be expressed as follows: 

 

 𝑌𝑡 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑃𝑋𝑃                                               (4) 

where 𝑌𝑡 is the dependent variable; 𝑋1, 𝑋1, … 𝑋𝑃 are the independent variables (input vector) and 

𝛽0, 𝛽1, … 𝛽𝑃 are the 𝑝 parameters of the function.  

 

 

Figure 4. Architecture of the ANN: (a) MLP, (b) RBN. 

The period of analysis for the case study was defined from the information available on the 

reservoir’s operation; it corresponds to the period of 2009 to 2019, with daily time steps. These 

data consist of series of inflows, levels and outflows of the reservoir (Figure 5), in addition to 

storage elevation curve, area elevation curve and evaporation losses. A common practice carried 

out in artificial intelligence techniques is the normalization of data to improve the model 

(Emanueli Gandara, 2017). In this study, the data are standardized using the standard scoring 

method, which considers the variance and the mean of the time series as follows: 

 

 
𝑋𝑛 =

𝑋 − 𝜇

𝜎
                                                                        (5) 

where  𝑋 is the value of the variable without standardization, 𝜇 is the average of the time series 

and 𝜎  is the value of the variance of the time series.  



9 

 

Figure 5. Data of the analysis period: (a) Inflows and outflows of the reservoir, (b) Levels of the 

reservoir. 

4 Learning and Simulation of the Current Operation for the Reservoir 

For the case study, as mentioned in section 2, there are no defined operating rules. Therefore, 

what is sought with the ML models is to simulate the operation of the reservoir. That is, to 

represent the amount of water that must be released at each time step through a ML model that 

learns to make decisions to meet certain objectives or goals. Initially, the parameterization of the 

reservoir’s actual discharge 𝑅𝑡 was sought for the analysis period, in which three ML models 

were tested: MLP, RBN and LF. The outputs 𝑅𝑡 correspond to total discharges (i.e., turbine 

discharge, valves discharge and spills). Considering that correlation coefficient is commonly 

used to determine mathematical linear relations between two samples of random variables, or 

time series (Corzo, 2009), to select the input variables of the ML models, correlation analyses 

were performed between discharges at each time step 𝑡 and the other time series (i.e., inflows, 

reservoir levels and previous discharges). Correlation analysis revealed that for the inflows 𝑞, the 

levels 𝑆 and the previous discharges 𝑅, each using a lag times of 1 and 2 days (𝑞𝑡−1, 𝑞𝑡−2; 

𝑆𝑡−1, 𝑆𝑡−2; 𝑅𝑡−1, 𝑅𝑡−2) have the highest correlation values with respect to discharges 𝑅𝑡 (Figure 

6).  

 

 
 Figure 6. Correlation analyses for the selection of ML inputs: between inflows and discharges 

(blue); levels and discharges (red); and autocorrelation of discharges (green).  
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Using these six inputs for all ML models, different configurations for MLP and RBF were tested 

varying the number of Neurons (MLP) or Basis (RBF). The results revealed that a 6-7-1 MLP 

configuration (i.e., 6 inputs, 7 neurons in a hidden layer and 1 output layer), with the application 

of a sigmoid activation function (Equation 6, which variables are same as for Equation 1), 

generated the best results (MSE 26.75 and MAE 2.97). The Scikit-learn Python library 

(Pedregosa et al., 2011) was used for MLP and LF models, while for RBN, Keras was used 

(Chollet, 2015). In all ML models, 80 percent of the data was used for training and 20 percent for 

the test. In the case of MLP, configurations with several layers and different numbers of Neurons 

(Deep Learning) were tested, however, in this case, by increasing the complexity of the network 

with more hidden layers and Neurons, the results are not improved but the number of parameters 

and decision variables (weights and biases) is increased. Therefore, simple configurations of a 

single hidden layer and a maximum of 7 Neurons in the hidden layer were chosen. 

 

𝑓𝑖 =
1

(1 + 𝑒−(𝐼𝑡∙𝑤𝑖+𝑏𝑖))
                                                                     (6) 

 

Figure 7. Test Results for 6-7-1 MLP configuration. 

 

Table 1. Test Results for ML models 

Measures MLP RBN LF Naïve 

6-7-1 6-6-1 6-4-1 6-7-1 6-6-1 6-4-1 

MSE 26.75 28.46 27.59 26.90 29.93 29.99 38.74 47.54 

MAE 2.97 3.27 3.14 2.92 3.32 3.20 3.60 3.38 

Correlation 0.988 0.987 0.988 0.988 0.987 0.987 0.982 0.978 

Nash-

Nutcliffe 

0.976 0.974 0.975 0.976 0.973 0.973 0.965 0.957 

 

Table 1 shows the test results for each of the ML models, and are compared against a neutral 

model such as the inertia forecast or Naïve forecast. Note that the best results are obtained for the 

MLP and RBN models in all the performance measures used, mainly for the MSE, which is an 

indicator that penalizes large errors. However, for the other measures, there are no very large 

differences with respect to the LF and Naïve models. This could be due to the inertia of the 

system, that is, for the actual operating condition of the reservoir, the daily discharges do not 



11 

vary considerably from one day to the next. For example, when there are no spillway discharges, 

the daily outflows under normal conditions are 26 m3/s as mentioned in chapter 2 and as shown 

in Figure 7 between June 2018 and July 2019. This means that the actual operation of the 

reservoir for that period can be very predictive for any model. 

5 Reservoir operation Model 

A reservoir operation model was built from the data from the period of analysis. This model 

integrates water balances, physical constraints of the dam components and the ML models, the 

latter defining daily controlled discharges. The water balances determine the volume of the 

reservoir at each time step t, the level and the surface area are calculated by applying the storage-

elevation curve and the area-elevation curve respectively. The water balance equation is as 

follows:  

 𝑉𝑡+1 = 𝑉𝑡 + 𝑉𝑒𝑡 − 𝑉𝑠𝑝𝑖𝑙𝑙 + 𝑉𝑠𝑐 − 𝐸𝑉𝑃                                                 (7) 

where 𝑉𝑡+1 (subject to 𝑉𝑡 ≥ 0) and 𝑉𝑡 correspond, respectively, to the storage volume of the 

reservoir for the next time step (𝑡 + 1) and the present time step 𝑡; 𝑉𝑒𝑡 corresponds to the input 

volumes of the reservoir for the present time step 𝑡, taking the input discharge time series; 𝐸𝑉𝑃 

corresponds to the evaporation loses, which are calculated based on the surface area of the 

reservoir and the month of the year; 𝑉𝑠𝑝𝑖𝑙𝑙 corresponds to the spilled volume of the reservoir for 

the present time step 𝑡, which is calculated as a function of the height above the crest of the 

spillway and 𝑉𝑠𝑐 corresponds to the controlled outlet volume of the reservoir and is defined from 

the ML models.  

The three ML models of MLP, RBN and LF are defined, each using the same inputs, from those 

used to learn the current reservoir operation (see section 4). The outputs of the models 

correspond to the reservoir’s controlled discharges 𝑄𝑠𝑐 for each time step.  

 𝑄𝑠𝑐 = 𝑓(𝐼𝑡)                                                                              (8) 

𝑄𝑠𝑐 = 𝑓(𝑞𝑡−2,  𝑞𝑡−1,  𝑆𝑡−2,  𝑆𝑡−1,  𝑅𝑡−2,  𝑅𝑡−1)                                           (9)      

MLP: Three configurations are proposed. The first is equivalent to the best that was obtained to 

simulate the current reservoir operation (6-7-1). The second is an MLP with six neurons (6-6-1), 

and the third is an MLP with four neurons (6-4-1). A sigmoid function is used as the activation 

function, which corresponds to Equation 6. The initial MLP parameters are generated randomly 

for the domain −1 ≤ 𝑤𝑖, 𝑏𝑖 , 𝑣𝑖 , 𝑐 ≤ 1. 
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Figure 8. Configuration of the (a) ANN and (b) RBN proposed for the operation models. 

 

RBN: Like the MLPs, 6-7-1, 6-6-1 and 6-4-1 configurations are proposed. Figure 8(b) illustrates 

these three networks. The initial parameters of the RBNs, like the MLPs, are generated randomly 

for the domain −10 ≤ 𝑐𝑖, 𝑟𝑖, 𝑤𝑖 ≤ 10. 

LF: The linear function is proposed to evaluate linear patterns in the behavior of the reservoir 

operations, and to compare against the other proposed functions. The parameters of the LF, like 

those of the previous functions, are initially generated randomly for the domain  

−5 ≤ 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6 ≤ 5. 

Each of the ML models are coupled to the reservoir operation model to define the controlled 

discharges at each time step t. The physical constraints of the dam components are also 

incorporated. These defines turbine capacities, exhaust capacities, discharge limits, and 

minimum and maximum operating levels. In summary, a reservoir operation model is built in 

which seven different ML model configurations are tested, each one elaborated in Python. The 

parameters of the ML models are the decision variables of the optimization process, described 

later. 
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Figure 9. Flow diagram of the reservoir operation model built for the Hatillo reservoir. 

Figure 9 summarizes the step by step of the reservoir operation model. Starting with the storage 

volume of the first day of analysis, reservoir level and surface areas are determined applying the 

storage-elevation curve and the area-elevation curve.  

The outflows of the reservoir can be controlled through the Francis turbine and the two hollow 

jet valves. The controlled discharges of the reservoir are defined by the ML models taking into 

account the respective capacity constraints (Equation 10 and 11). Therefore, conditional rules are 

used to limit minimum and maximum controlled outflows.  

Limits of the reservoir levels are proposed. A minimum level (75 m.a.s.l) is considered to 

guarantee that when there are low levels during dry periods, the turbine discharges a minimum 

flow during the day. Unfortunately, there is no information available on critical flow thresholds, 

below which significant environmental impacts occur. Berge et al. (2003) proposed downstream 

of the dam a minimum flow of 3 m3/s to have the necessary recipient capacity for pollutants, and 

to support aquatic life. However, in this study the minimum flow is assumed based on the 

historical data of outflows from the reservoir taking the flow that is statistically exceeded 95% of 

the time (7.5 m3/s).  

On the other hand, a maximum level value (87.5 m.a.s.l) is proposed from which the maximum 

flow capacity of the turbine can be released. So then:  
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𝑄𝑠𝑐 = {

𝑄𝑠𝑐_𝑚𝑖𝑛                      𝑖𝑓 𝑆𝑡 <  𝑆𝑚𝑖𝑛

𝑄𝑡𝑢𝑟𝑏_𝑚𝑎𝑥                 𝑖𝑓 𝑆𝑡 >  𝑆𝑚𝑎𝑥

𝑄𝑀𝐿            𝑖𝑓 𝑆𝑚𝑖𝑛 < 𝑆𝑡 <  𝑆𝑚𝑎𝑥

                                                (10) 

𝑄𝑠𝑐 =    𝑄𝑡𝑢𝑟𝑏 + 𝑄𝑣𝑎𝑙𝑣                                                              (11) 

Where 𝑆𝑡 is reservoir level at time 𝑡;  𝑆𝑚𝑖𝑛 is the proposed minimum threshold level; 𝑆𝑚𝑎𝑥 is the 

proposed maximum threshold level;  𝑄𝑠𝑐_𝑚𝑖𝑛 is the minimum discharge (7.5 m3/s); 𝑄𝑡𝑢𝑟𝑏_𝑚𝑎𝑥 is 

the maximum discharge through the turbine (30 m3/s); 𝑄𝑠𝑐 are the controlled discharges of the 

reservoir at 𝑡; 𝑄𝑀𝐿 are the discharges obtained with the ML model. 𝑄𝑡𝑢𝑟𝑏 are the turbine 

discharges at 𝑡 subject to 7.5 𝑚3/s < 𝑄𝑡𝑢𝑟𝑏 < 30 𝑚3/s. 𝑄𝑣𝑎𝑙𝑣 are the hollow jet valves 

discharges at 𝑡 subject to 0 𝑚3/s < 𝑄𝑣𝑎𝑙𝑣 < 164 𝑚3/s. 

Once the controlled discharges have been defined, reservoir level is verified with respect to 

spillway crest level, if this is exceeded, the spillway release is calculated as a function of the 

height above the crest of the spillway. The specific rating curve of the spillway for Hatillo 

reservoir is available at Viparelli (1983). After all outflows (i.e., controlled and un-controlled) 

are defined, including the evaporation losses, reservoir volume for the next time step is obtained 

by means of water balance, starting the process again and so the cycle continues until the 

analysis period is completed. The route shaded in orange in the flow diagram (Figure 9) 

corresponds to the main operating route in this proposed model (i.e., when the levels are within 

the defined threshold), where the segmented red rectangle highlights the component of ML 

models. 

6 Optimization 

The optimization process uses the reservoir operation model to identify what parameters of the 

ML models represent the best solutions (i.e., non-dominated solutions). There are three 

objectives: to control flooding, to supply water for irrigation and to generate hydroelectricity. 

OF1. Flood control: The goal is to minimize excess flow 𝑄𝑡
𝑓𝑙𝑜

 in each time step 𝑡 from the 

reservoir’s daily discharge 𝑞𝑡
𝑅 (𝑚3/𝑠) with respect to a proposed limit flood flow 𝑞. The 

following function defines OF1 for the entire analysis period 𝑇: 

 

𝑂𝐹1 = ∑(𝑄𝑡
𝑓𝑙𝑜

)

𝑇

𝑡=0

                                                                 (12) 

𝑄𝑡
𝑓𝑙𝑜

= {
0             𝑖𝑓 𝑞𝑡

𝑅 ≤ 𝑞

(𝑞𝑡
𝑅 − 𝑞)2 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

                                                  (13) 

 
In the present study, a flow limit is proposed from which the optimizer seeks to punish the 

discharges. Similarly to Saavedra et al., (2010), this limit flow is set as the average of all the 

daily discharge values (𝑄𝑖) of the reservoir that exceeded the average discharge flow of the 

series (𝑄𝑚𝑒𝑎𝑛). Therefore, using equation 14 the flow limit 𝑞 is obtained, where 𝑛 = number of 

records. 
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𝑞 = ∑
𝑄𝑖

𝑛

𝑁

𝑖=1

;    𝑄𝑖 > 𝑄𝑚𝑒𝑎𝑛                                                        (14) 

OF2. Water supply for irrigation: The goal is to minimize deficits in the irrigation water 

supply 𝑄𝑡
𝑖𝑟𝑟 in each time step 𝑡 from the reservoir’s daily discharge 𝑞𝑡

𝑅  (𝑚3/𝑠) with respect to the 

water demand for irrigation 𝑑𝑡. The following function defines the OF2 for the entire period of 

analysis 𝑇: 

 

𝑂𝐹2 = ∑(𝑄𝑡
𝑖𝑟𝑟)                                                               (15)

𝑇

𝑡=0

 

𝑄𝑡
𝑖𝑟𝑟 = {

0             𝑖𝑓 𝑞𝑡
𝑅 > 𝑑𝑡

(𝑑𝑡 − 𝑞𝑡
𝑅)2 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

                                                (16) 

 

 

Figure 10. Demand for irrigation downstream of the reservoir. 

Irrigation demands were obtained using the CROPWAT program (Smith, 1992). Taking into 

account that the cultivation of rice demands the greatest amount of water and covers the largest 

area of crops in the lower Yuna, irrigation demand calculations were made from the 

requirements and the cycle of the rice cultivation. Rice in the Dominican Republic has two 

sowing periods in the year, the first, from December to April, and the second, covers the months 

of June, July and August (Moquete, 2004). Climatic data (Temperature, Humidity, Wind speed, 

hours of sunshine), and rainfall data were provided by INDRHI (taking monthly mean data for 

the analysis period). From the cultivation areas, the monthly average demands for the analysis 

period (2009-2019) were calculated, which are shown in Figure 10.  

 

OF3. Hydropower generation (Total): The goal is to maximize the power generated (KW) for 

the entire analysis period 𝑇 from the powers generated in each time step 𝑃𝑡. The following 

function defines the OF3: 

𝑂𝐹3 = ∑ 𝑃𝑡

𝑇

𝑡=0

                                                               (17) 
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𝑃𝑡 = 𝜂 𝛾𝐻𝑡𝑞𝑡
𝑡𝑢𝑟𝑏                                                             (18) 

 
𝜂 =  𝑓(𝑞𝑡

𝑡𝑢𝑟𝑏)                                                               (19) 

where 𝛾 is the specific weight of water; 𝐻𝑡 is the hydraulic head, which depends on the 

reservoir’s water level and the elevation of the turbine axis; 𝜂 is the efficiency of the turbine as a 

function of the discharge; and 𝑞𝑡
𝑡𝑢𝑟𝑏 is the discharge through turbine (m3/s).  It is important to 

mention that a conversion factor of -1 is applied to the OF3 (equation 17) within the optimizer in 

this study, since the modules used by the program (JMETALPY) work only for minimization 

objectives (Benítez-Hidalgo et al., 2019).  

In hydroelectric plants, there are other important indicators such as firm energy, with which the 

energy security of a system can be evaluated. Due to the fact that Hatillo hydroelectric plant has 

a low installed capacity compared to the large hydroelectric plants in the Dominican Republic, 

total energy is the only objective considered in this study. This simplifies the optimization 

process; however, a firm energy indicator is evaluated in the results obtained (chapter 8). 

7 Computational Experiments 

Optimization was performed using the analysis period (2009-2019). Two EAs were used to 

optimize the operation model: the NSGAII and the MOEA / D. JMETALPY (Benítez-Hidalgo et 

al., 2019), a multi-objective optimization environment (developed in Python) that contains a set 

of modules with different multi-objective and single-objective optimization algorithms, was also 

used. With JMETALPY, a set of problems were used to evaluate the optimization algorithms. 

The operation model was inserted into JMETALPY as a subclass of floating problems. The 

values for population size and individual parameters in the algorithms largely depended on the 

optimization problem (Ritter, 2016). Trial and error tests were carried out using various 

population ranges to select the population size; populations greater than 100 individuals did not 

improve the results and increased the computational time needed for the NSGA II. For the 

MOEA / D, the population was defined as 300 individuals. For the other parameters, trial and 

error tests were performed using small populations (up to 50 individuals) so that the program 

could converge rapidly. Default values were taken as a basis for the algorithms.  

The optimization process was developed by a computer with 16 GB of RAM and eight 2.6 GHz 

cores. The codes were executed by implementing the MultiprocessEvaluator module, which 

allowed faster calculations and for different individuals within the same generation to be 

calculated in parallel. On average, the program reported convergence for each operating model 

after eight hours in 10,000 evaluation processes.  

Using the JMETALPY display module, the Pareto fronts were obtained for each of the program 

executions. For each model, a 3D Pareto front was generated, having been optimized by both the 

NSGAII algorithm and the MOEA / D. A total of 14 models were simulated. As mentioned 

above, the decision variables were the parameters of the ML models. Therefore, the optimized 

parameters for MLP were weights and biases; In RBN models they were centers, radii and 

weights; and for LF the coefficients. The parameters are summarized in table 2. 
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Table 2. Parameters of the optimization process. 

 MLP RBN FL 

Parameters 6-7-1 6-6-1 6-4-1 6-7-1 6-6-1 6-4-1 

Weights (𝑤𝑖, 𝑣𝑖) 42+7 36+6 24+4 7 6 4 - 

Bias (𝑏𝑖) 7+1 6+1 4+1 - - - - 

Radius (𝑟𝑗,𝑖) - - - 42 36 24 - 

Centers (𝑐𝑗,𝑖) - - - 42 36 24 - 

LF Coef. - - - - - - 7 

Total  57 49 33 91 78 52 7 

8 Results 

After compiling the Pareto fronts generated by the optimizers, non-dominated solutions were 

obtained. These represent different reservoir operations in terms of daily releases. Figure 11 

shows the 3D Pareto front that compiles all the optimal solutions from the reservoir operation 

model. Each graph point corresponds to a different reservoir operation obtained by the 

optimizers. The solutions constructed by the MLP are the closest to the ideal optimum solution 

(black point). The real reservoir operation from the analysis period is represented by the yellow 

point; the rectangles shaded in red represent decisions space regarding reservoir operations that 

equaled or improved the real operation per the three objectives. For the objective function OF3 (a 

maximization function), a minimization function with a conversion factor of -1 was used; since 

the modules used by JMETALPY in the present study work only for minimization objectives.  

Figure 12 shows the envelope of hydrographs generated by simulating all the obtained reservoir 

operations reflected in Figure 11. The envelope of levels is presented in the same way. The mean 

values of the reservoir operations for the entire population are shown in dark blue, and the 

gradient color shows the quintiles. The red line represents the real operation of the system; here, 

the peaks of the hydrographs approach the maximum values of the envelope, maintaining high 

operation levels compared to the mean of the optimized reservoir operations. This could be due 

to the fact that the current operation gives more priority to OF2 and OF3, which may be more 

associated with high levels of the reservoir. Note that in dry periods such as the one between the 

middle of 2014 and the end of 2016, most of the solutions obtained were close at certain times to 

the minimum level defined for the reservoir (75 m.a.s.l). This can be understood as the 

consequence of water discharges to meet irrigation demands (OF2), in addition to having more 

capacity to buffer the volumes of the following wet season (OF1). In this study, the analysis 

period was evaluated globally, without distinguishing between dry and wet periods. Therefore, 

optimizers look for the best solutions by taking stock of the entire analysis period. Future works 

could incorporate different operations for the reservoir depending on the seasons of the analysis 

period. 
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Figure 11. Unified Pareto fronts. (a) all the operation models; (b) operation models OF1–OF2; 

(c) operation models OF1–OF3; (d) operation models OF2–OF3. 
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Figure 12. Envelope for hydrographs generated by all reservoir operations obtained from 

optimization. (a) flow rates and (b) levels. The mean values of the reservoir operations for the 

entire population are shown in dark blue, and the gradient color shows the quintiles. 

 

Figure 13 shows the comparative values (Parallel graphic) of the different solutions for each of 

the three objectives. Additionally, the maximum peak flow and a firm energy indicator generated 

by each reservoir operation for the entire time series have been added. The firm energy (𝐹. 𝐸) is 

evaluated considering the daily power that can statistically be exceeded 95% of the time, or in 

other words, the 5th percentile of all daily power generation: 𝐹. 𝐸 = 𝑃𝐶𝑇𝐿5(𝑃𝑡,1, 𝑃𝑡,2, … , 𝑃𝑡,𝑇). 

The segmented black line reflects the evaluation of the three objectives plus firm energy and 

peak flow for the actual operation of the reservoir in the analysis period. As shown in the 

hydrograph and level envelope (Figure 12), and it is also reflected in figure 13, the current 

reservoir operation aims to meet the objectives OF2 and OF3 (i.e., water for irrigation and 

hydroelectric generation), but leaves considerable room for improvement in flood control OF1. 

Note that the firm energy is greater as the generated power increases (OF3), presenting 

correlation, however, certain reservoir operations are observed that considerably reduce the firm 

energy, this can be associated with the fact that these solutions generate minimal discharges 

when there are low levels in the reservoir at certain times (dry periods). 

 

 
Figure 13. Comparison of results of all the solutions to reservoir operations for the three 

objectives, firm energy and peak flow. 
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Figure 14. Parallel graphic. (a) Reservoir operations that improve the three objectives proposed 

for the current operation. (b) Reservoir operations that improve the three objectives, firm energy 

and peak flow for the current operation. (c) Reservoir operations that improve OF1 by reducing 

hydropower production. (d) Reservoir operations that improve OF1 by affecting both irrigation 

and hydropower production. 
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Figure 14 shows different groups of solutions: Figure 14(a) represents all the reservoir operations 

that equal or improve each of the three proposed objectives with respect to the current reservoir 

operation. As can be seen, these solutions also improve firm energy, however, some present peak 

flows above the peak of the current operation. Therefore, figure 14(b) illustrates the reservoir 

operations that improve the three objectives, firm energy and peak flows.  

 

Given that for the current reservoir operation, flood control is the objective that has the greatest 

margin for improvement, as can be seen in figure 13, in another group of solutions, it is observed 

that by reducing hydropower production, greater benefits are obtained for the OF1. Figure 14(c) 

shows reservoir operations where energy production is decreased by 2 million KW. Note that 

this decrease allows for considerable improvements in flood control without affecting firm power 

and irrigation. Finally, for another group of solutions, it is observed that by affecting both 

irrigation and hydropower production, even better operations are obtained for flood control 

without affecting firm energy as can be seen in figure 14(d). The above, increasing the OF2 to 

50,000 (𝑚3/𝑠)2 and reducing the OF3 to 26 million KW. 

Table 3. Hypervolume indicator for optimized models 

  Hypervolume (1019) 

Operation 

Model NSGAII MOEA/D 

Lineal Function 1.06 1.03 

MLP 

4N 1.33 1.26 

6N 1.31 1.26 

7N 1.34 1.26 

RBN 

4B 1.26 - 

6B 1.27 - 

7B 1.19 - 

 

Figure 15. Pareto front for models with MLP and NSGAII optimizers. 

O.F.3 
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Based on the hypervolume indicator and the compiled Pareto fronts (Figure 11), the ANN 

models offer the best results overall. It is evident that the MLP models tend to generate the best 

results for this case study. This may be due to the fact that RBN models use a greater number of 

parameters (decision variables), which implies greater difficulty for optimization. The results 

were similar regardless of the settings used for each ML model. The 6-7-1 MLP configuration 

had the best results overall, being better when using the NSGAII algorithm. For the RBN, the 6-

6-1 configuration (using the same algorithm) yielded the best results. When comparing the two 

optimizers, similar results were observed between the MLP functions, with better outcomes from 

the NSGAII. This may be because the decision space in this study was not oriented towards a 

specific area of preference; however, the MOEA / D results may be improved by narrowing the 

decision space (Ma et al., 2015). Biasing the Pareto Front towards a specific area, better 

convergence could be achieved by covering an area of interest.  Regarding the RBN functions, 

the MOEA / D optimizer did not converge. In the case of the LF, the results were considerably 

lower according to the hypervolume indicator, which shows that this function does not simulate 

reservoir operations in the best way. 

Some of the solutions obtained for the reservoir operations are selected and simulated in order to 

evaluate their performance. Figure 16 shows in detail the Pareto front OF1–OF2 and OF1–OF3, 

where red shaded rectangles indicate the decision space of the solutions that equal or exceed the 

reservoir’s actual operations towards the three objectives. Some points located inside and outside 

the decision space are simulated and compared with the real operation: four reservoir operations 

shown in figure 14(b) are simulated (MLP_7N_23; MLP_7N_37; MLP_7N_41; MLP_7N_72), 

as well as two solutions shown in figure 14(c) (MLP_7N_40; MLP_7N_43) and two shown in 

figure 14(d) (MLP_7N_40; MLP_7N_43). Figure 16 (c) shows the selected solutions. 
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Figure 16. Zoomed-in Pareto front: (a) OF1–OF2; (b) OF1–OF3; (c) Parallel graphic of the 

selected solutions 

Results are shown in Figure 17, which confirms that it is possible to reduce the peaks of the 

hydrograph of the current operation, as they are more to the left in the Pareto front. The 

MLP_7N_77 reservoir operation, as expected, had the best result in reducing all the peaks of the 

reference hydrograph (current operation), followed by MLP_7N_73. However, the effect 

negatively affected irrigation and power generation, keeping firm energy. Reservoir operations 

such as MLP_7N_40 and RN_7N_43, located within the shaded rectangle for the OF1 and OF2 

(figure 16) allow to reduce peak flows by slightly affecting the total power (OF3) but improving 

the irrigation objective and keeping the firm energy. And finally, the MLP_7N_23, MLP_7N_37, 

MLP_7N_41, MLP_7N_72 solutions, located within the shaded rectangle for the three objectives 

despite not having the same peak flow reduction capacity as the previous ones, managed to 

reduce the reference hydrograph while increasing power generation and guaranteeing the supply 

of water for irrigation. Figure 18 shows the hydrographs of the reservoir operations selected for 

the wettest portion of the analysis period, which spanned from November 2016 to May 2017.  
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Note that all the selected operations improve the current operation in terms of flood control and 

firm energy, however, as expected, the operations with the best performance in flood control 

(i.e., MLP_7N_77 and MLP_7N_73) present some intermittence (i.e., presence of minimum 

values) in power generation and irrigation in dry periods, as can be seen in Figure 17, for 

example, in the months of February to March 2010 and in the months of July to September 2014. 

The MLP_7N_40 and MLP_7N_43 solutions present less intermittence than the previous 

solutions in these terms, even improving the irrigation objective and having a considerable 

improvement in flood control (see Figure 18). Regarding the solutions located within the red 

rectangles both in Figure 16 (a) and Figure 16 (b), they considerably improved the current 

operation in terms of intermittence in power generation and irrigation, and also improving the 

flood control objective (although not in the same magnitude as the previous solutions: 

MLP_7N_40 and MLP_7N_43). 

 

 
Figure 17. Simulation of the selected reservoir operations for the analysis period (2009–2019). 

(a) hydrographs of output flow; (b) generated power; (c) deficit in irrigation water supply. 
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Figure 18. Hydrograph of the selected reservoir operations for the wet period (2016–

2018). 

9 Conclusions 

This study compiled some artificial intelligence techniques and EAs to offer a methodology for 

obtaining optimal operations for multipurpose reservoirs. The approach was applied to a case 

study on the Hatillo reservoir in the Dominican Republic, which has three purposes: 

hydroelectric generation, irrigation and flood control. Through this study, reservoir operations 

were obtained that improved the current operation of the reservoir for each of the three proposed 

objectives. Through the Pareto fronts obtained, the wide variety of operations for the Hatillo 

reservoir can be evidenced, which could even serve as a reference for decision-making towards a 

balance of interests, thus improving the integral use of the reservoir. 

Notably, the flood control objective of the reservoir’s current operation was found to have wide 

room for improvement. Several reservoir operations were obtained that reduced the discharge 

peaks of the reservoir (as evidenced in the wet period from November 2016 to May 2017), 

equaling or even improving the objectives for irrigation and hydroelectric generation with 

respect to the current operation (e.g., MLP_7N_23; MLP_7N_37; MLP_7N_41; MLP_7N_72). 

Other reservoir operations, such as MLP_7N_77, considerably reduced the discharge peaks of 

the dam and only slightly affected the other purposes.  

Overall, these results demonstrate that reservoir operation can be parameterized using ML 

models such as ANNs, which can accurately replicate the patterns and policies that govern 

reservoir operation. The 6-7-1 MLP configuration using the NSGAII optimizer had the best 

results overall. The MLP models tend to generate the best results for this case study. This may be 

due to the fact that RBN models use a greater number of parameters, making the optimization 

process more difficult. Results were similar regardless of the settings used for each ML model 

(i.e., varying the number of neurons). When the two optimizers were compared, similar results 

were observed for the MLP functions, with the NSGAII results being better. This may be 

because of the decision space in the present study was not oriented towards a specific area of 

preference; however, the MOEA / D results could be improved by narrowing the decision space 

(Ma et al., 2015). In the case of the LF, the results were considerably lower according to the 

hypervolume indicator, which showed that the reservoir operations did not adequately adjust to 

linear patterns.  
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The lack of information was one of the main limitations for the development of this research, 

although it was possible to have data from the reservoir for the period 2009-2019. For models 

based on data, such as those of the present study, it is desirable to have with longer time series. 

Unfortunately, the reservoir operation rules as well as target levels, power production targets, 

and irrigation discharges were not available, which would have served as a reference for the 

elaboration of the reservoir operation model and for the definition of the objectives of 

optimization, reducing some assumptions. 

Future works in this area are recommended to evaluate different multi-objective optimizers and 

ML models. For the Hatillo reservoir, new objectives can be included such as firm energy, or the 

flow regime alteration downstream of the dam. Further, if the necessary information were 

available, the models could be expanded to include economic variables that allow the reservoir’s 

operation to be evaluated directly in terms of decision-making costs. Likewise, the performance 

of the operation models incorporating forecasting reservoir inflows, as well as the incorporation 

of rainfall data as input variables, should be evaluated. It would also be contemplated to evaluate 

different scenarios including possible changes in the components of the system, such as the 

increase in its installed hydropower capacity. Finally, future research could evaluate different 

optimization formulation for different seasons (i.e., dry seasons or wet seasons). 
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