Community Science-informed Local Policy: a Case Study in Pinole Creek Litter Assessment

Win Cowger^{1,1}, Itzel Gomez^{2,2}, Norma Martinez-Rubin^{3,3}, Ann Moriarty^{4,4}, Todd Harwell^{5,5}, and Lisa Anich^{6,6}

¹Moore Institute for Plastic Pollution Research ²EarthTeam ³Pinole City Council ⁴Friends of Pinole Creek Watershed Board of Directors ⁵UC Davis Center for Community and Citizen Science ⁶Contra Costa Resource Conservation District

November 30, 2022

Abstract

California is one of the only states actively managing trash in its rivers. Several community groups in the Pinole, CA and a scientist collaborated on a Thriving Earth Exchange community science project. Its purpose was to assess the trash in Pinole Creek and identify policy opportunities for the Pinole City Council. The key scientific questions were: how much trash was in the creek, what types of trash were most abundant, and where were areas of highest concern? The team enlisted additional community volunteers at in-person local events and local nonprofit listservs. We used a randomized sampling design and a community science adapted version of The Trash Monitoring Playbook, to survey the trash in the creek. We estimated there were 37 m 3 and 47,820 pieces of total trash in the creek channel with an average concentration of 2 m 3 per km 2697 pieces per kilometer. This gave the community an understanding of the scale of the problem and the resources needed to address it. Plastic and single-use trash were most abundant, and the community members expressed high concern about plastic single-use food packaging and tobacco-related waste. The community used the data to identify locations in the creek where trash was abundant and prioritize follow-up study locations. Seven new policies were recommended to the Pinole City Council. The City Council unanimously voted for the proposed policies to be reviewed by the Municipal Code Ad-Hoc Committee. And that is when community science turned to policy.

Hosted file

manuscript_wc_final_v2.docx available at https://authorea.com/users/559464/articles/608030community-science-informed-local-policy-a-case-study-in-pinole-creek-litter-assessment

1 Title

- ² Community Science-informed Local Policy: a Case
- 3 Study in Pinole Creek Litter Assessment

4 Authors

- 5 Win Cowger^{1,2,*}, Itzel Gomez³, Norma Martinez-Rubin^{4,5}, Ann Moriarty⁶, Todd Harwell^{7,8}, Lisa
- 6 Anich⁹
- 7
- 8 Corresponding Author: Win Cowger, <u>wincowger@gmail.com</u>

9 Affiliations

- 10 1. Moore Institute for Plastic Pollution Research
- 11 2. University of California, Riverside
- 12 3. EarthTeam, 1301 S. 46th Street BLDG #155, Richmond, CA 94804, itzel@earthteam.net
- 13 4. Pinole Creek Thriving Earth Exchange
- 14 5. Pinole City Council
- 15 6. Friends of Pinole Creek Watershed Board of Directors, 2699 Samuel Street, Pinole, CA
- 16 94564, <u>anniebmoriarty@gmail.com</u>
- 17 7. Thriving Earth Exchange, American Geophysical Union
- 18 8. UC Davis Center for Community and Citizen Science

Contra Costa Resource Conservation District, 4495 River Ash Ct. Concord CA 94521,
 lisa.anich@sbcglobal.net

21 ORCIDS

- 22 Win Cowger: 0000-0001-9226-3104
- 23 Todd Harwell: 0000-0003-1437-5236

24 Keywords

- 25 Thriving Earth Exchange, Litter, Trash, Water Quality, Plastic Pollution, Assessment,
- 26 Community Science

27 Key Points

Created a framework for conducting rigorous policy informing community science
research on trash in rivers through the Thriving Earth Exchange.
Assessed river trash data in collaboration with the community who led the research
priorities and collected the data.
Used community science to inform local City Council policy.

33 Abstract

- 34 California is one of the only states actively managing trash in its rivers. Several community
- 35 groups in the Pinole, CA and a scientist collaborated on a Thriving Earth Exchange community
- 36 science project. Its purpose was to assess the trash in Pinole Creek and identify policy

37 opportunities for the Pinole City Council. The key scientific questions were: how much trash was 38 in the creek, what types of trash were most abundant, and where were areas of highest concern? The team enlisted additional community volunteers at in-person local events and local 39 40 nonprofit listservs. We used a randomized sampling design and a community science adapted 41 version of The Trash Monitoring Playbook, to survey the trash in the creek. We estimated there 42 were 37 m³ and 47,820 pieces of total trash in the creek channel with an average concentration 43 of 2 m³ per km 2697 pieces per kilometer. This gave the community an understanding of the 44 scale of the problem and the resources needed to address it. Plastic and single-use trash were 45 most abundant, and the community members expressed high concern about plastic single-use 46 food packaging and tobacco-related waste. The community used the data to identify locations in 47 the creek where trash was abundant and prioritize follow-up study locations. Seven new policies 48 were recommended to the Pinole City Council. The City Council unanimously voted for the 49 proposed policies to be reviewed by the Municipal Code Ad-Hoc Committee. And that is when 50 community science turned to policy.

51 Introduction

52 Community

53 Community Motivation

- In the fall of 2019, over coffee at a local shop, three stakeholders, Lisa Anich, Watershed
- 55 Manager, Contra Costa Resource Conservation District (CCRCD); Norma Martinez-Rubin,
- 56 Community member and Pinole Council member; and Ann Moriarty, Board member, Friends of
- 57 Pinole Creek Watershed, met to discuss how they might work together and address an ongoing
- 58 set of problems: trash in Pinole Creek and unconsolidated local action. The aforementioned

59 members are referred to as "The Core Community Team" throughout. When "The Community" 60 is mentioned it is to refer to The Core Community Team and their networks and partners in 61 Pinole. The Core Community Team, composed of environmentally conscious and civically 62 oriented volunteers, saw the value in using a standardized methodology to survey trash in the 63 creek, using a method that would later be defensible among others. The group decided to 64 submit a proposal to Thriving Earth Exchange for support and assistance in direction. Thriving Earth Exchange (TEX), an initiative and program within the American Geophysical Union 65 66 (AGU), strives to unite communities, scientists, partners, and stakeholders to engage in a 67 community science process that addresses community-level issues related to natural hazards, 68 natural resources, and climate change. The group formalized their project with Thriving Earth 69 Exchange with the title "Engaging community to protect the Pinole Creek Watershed: 70 Assessment of trash impacts to promote a thriving ecosystem."

71 Pinole Creek Trash Policies

72 As a Municipal Separate Storm Sewer System (MS4) permittee, Pinole is responsible for 73 compliance with the state of California Trash Amendments (State Water Resources Control 74 Board, 2015). Pinole opted to use track 1 compliance which requires the City to identify 75 locations of priority (high waste generation) on the roadsides and capture trash that runs into the 76 storm drain system using "Total Trash Capture Devices." Total trash capture devices are metal 77 grates inside the storm drain that filter trash out of the storm drains down to 5 mm in size and 78 are periodically cleaned out. Before this project began, Pinole was in full compliance with the 79 trash amendments but at one point was the subject of a Grand Jury Report that revealed they 80 were out of compliance, which they subsequently corrected (Nakano, 2019). In addition to the 81 trash amendment regulations, Pinole is active in trash abatement and supports community-run 82 cleanup service days, organizes annual "dumpster days" in partnership with its trash hauling 83 franchisee, operates a street sweeper, and has an ordinance that bans Styrofoam. A Pinole

84 beautification ad-hoc committee, composed of council members and planning commissioners,

recommended targeted placement of solar-powered trash bins at popular recreational sites.

86 Pinole is an exemplary permittee in this regard, going above and beyond to improve its water

87 quality.

88 Community Objectives

The Core Community Teams' primary goals were to improve the Pinole Creek Watershed's environmental stewardship and make it as clean as possible. Critical to the success of these goals was using a sound methodology to collect data to inform the creation of new policies at the Pinole City Council.

93 Scientific

94 Stream Trash Research Background

95 Riparian river trash research is still nascent (Emmerik & Schwarz, 2020). We know that there is 96 variability in the abundance of trash from river to river (Baldwin et al., 2016) and that trash 97 abundance correlates with urban land use near the stream and within the entire watershed 98 upstream from the river corridor (Cowger et al., 2019). We also know that there can be some 99 variation in the trash composition from reach to reach of the same river, but the mechanisms 100 controlling litter composition within a river are not clearly understood (McCormick & Hoellein, 101 2016). Areas of concern (i.e., highly abundant locations of trash) exist due to river process 102 (Hoellein & Rochman, 2021) and variation in human input processes (Meijer et al., 2021) and 103 are commonly prioritized as locations for mitigation of trash in rivers (Helinski et al., 2021). 104 Trash composition and concentration are highly variable; therefore priorities for mitigation 105 should be acted on locally (Rochman et al., 2020). To apply science in its fullest sense,

106 scientists must work with community members during the scientific process (McKinley et al., 107 2017; Watkins, 2022). Plastic pollution research has a long history of community collaboration 108 on data collection (Cârstea et al., 2022; Cook et al., 2021; Rambonnet et al., 2019). Still, much 109 of this appears to be driven by researchers, not the community itself, as in this project. We want 110 to make a clear distinction that this research project was not led by the scientists involved. The 111 Community led it. We will go into more detail about this paradigm in our methodology and 112 results to demonstrate what we mean by community science. At the start of the Pinole litter 113 assessment, we were not aware of other cases where community driven science on river trash 114 was leveraged to inform local policies focused on reducing river trash. We aim for this study to 115 lay the groundwork for similar studies elsewhere.

116 Trash Monitoring Playbook

117 The Community decided that they wanted to survey for trash using the most robust 118 standardized methodology available. By doing so they could compare their results with other 119 studies in California and have results that would be publishable in scientific literature. River 120 trash methodologies are recently beginning to be standardized. The Trash Monitoring Playbook 121 was designed and published in 2021 by the San Francisco Estuary Institute to allow for a 122 California-wide assessment of trash in rivers in a way that is rapidly compared with other studies 123 throughout the state (Moore et al., 2020). We aim for this study to improve the utility of the 124 Trash Monitoring Playbook for community science projects by modifying it for community use 125 (Rambonnet et al., 2019).

126 Scientific Questions

- 127 The Community identified three scientific questions to guide data collection: 1) How much trash
- 128 was in the creek at the time of the study? 2) What types of trash were most abundant? 3) Where
- 129 should the Community be most concerned about trash in the creek?

130 Methods

131 Community

132 Project Team Meetings and Roles

133 Project leader meetings happened twice a month starting on March 8, 2021 and ending on June 134 30, 2022. Lisa Anich represented the Contra Costa Resource Conservation District (CCRCD) 135 which provides staff support for the Friends of Pinole Creek Watershed and conducts trash 136 assessments for Contra Costa County's Watershed Program. Itzel Gomez represented Earth 137 Team, introducing youth to the environment and previously conducted many cleanups with 138 youth. Norma Martinez-Rubin was city mayor and acted in the capacity of a concerned citizen 139 while also functioning as a liaison between the groups and city staff to facilitate communication 140 and presentations. Ann Moriarty represented Friends of Pinole Creek Watershed which 141 engages with The Community to improve the watershed health of Pinole creek. Todd Harwell 142 was the Community Science Fellow who convened the meetings and kept the group 143 progressing toward its goals. Win Cowger was the Scientist who developed the scientific 144 methodology based on The Community objectives and conducted the data analysis. All 145 aforementioned members are referred to as "The Thriving Earth Team" or "We" throughout.

146 Public Engagement Strategy

Pinole is an ethnically diverse community; to engage volunteers in assessing trash, The Core Community Team employed several strategies. They set up a table at the local Coastal Cleanup Day in September 2020 and took down names and contact information. They met cars bringing trash to a Dumpster Day, asking for contact info, and passing out flyers. They reached out to two local elementary schools adjacent to the creek. Lastly, they gave presentations to city commissions and other political groups.

153 Fieldwork Preparation

The fieldwork was relatively inexpensive to conduct. We purchased waders, buckets, trash grabbers, and gloves for project participants and paid for transportation to the field site and meetings. The estimated total cost for the fieldwork was \$9,500 which was funded by the Thriving Earth Exchange.

158

The Trash Monitoring Playbook included useful resources for planning, equipping, and training trash assessment teams but was not specifically designed for community members who may not all be experts in fieldwork or research. We modified and expanded these materials to suit our unique training and assessment situations by creating simplified layperson variations of the materials along with detailed instructions for use (Supplemental Information).

164

Assessment sites were each evaluated by the project team by conducting site visits and taking photos to ensure accessibility and safety for the volunteers. Evaluations assessed how accessible each site was, how safe it was, and if it was on private or public property. Private landowners were contacted when possible to discuss entering their property. Any sites deemed inaccessible, unsafe, or illegal to enter were removed from the list of sites to visit.

The COVID-19 pandemic restrictions were in constant flux throughout the project due to local
and state regulations. We adapted to them while prioritizing the health and safety of The
Community. We primarily conducted outdoor site meetings with groups of 5-6 people.
Workshops were virtual due to restrictions on having many people indoors.

175 Council Engagement

We wanted the Pinole City Council as a partner in the project. Two presentations about the project were given to the City Council. The first presentation was given on October 19, 2021, to introduce the City Council to the project and seek their input on directions at early project onset. On April 22, 2022, a presentation was given to the City Council where we presented the final results of the study and The Community joined to provide verbal testimony and support for the proposed policies.

182 Community Workshop

Before a presentation to the City Council, a workshop conducted via Zoom was conducted to
share the study results with The Community. The workshop's goal was to form policy
recommendations based on the study findings in collaboration with The Community members
that participated in the study and others. The Thriving Earth Exchange team presented the
study findings and the entire group broke into small groups to discuss policies that might
prevent or mitigate the problems we observed. Groups highlighted areas for further research.
Afterward, policy recommendations were finalized by the Pinole Thriving Earth Exchange team.

190 Scientific

191 Site Description

192 The Pinole Creek watershed is a small (39 km²) coastal watershed that hosts a perennial 193 stream (Figure 1). The climate in Pinole is Mediterranean with most of the rainfall occurring in 194 the winter and dry hot summers. Pinole creek is the 18 km mainstem of the watershed and is 195 home to steelhead trout. Pinole Creek flows directly into the San Pablo Bay without dams or 196 other impeding structures. Approximately one-quarter (10 km²) of the creek watershed is within 197 the Pinole city limits. Pinole city is 13 km² so most of the City is within the Pinole creek 198 watershed. The rest of the creek watershed upstream is in county jurisdiction. Approximately 199 19,343 people live in Pinole. Most of the City is contained within the bottom highly urbanized 200 quarter of the watershed with the top three-quarters being rural county land with low population 201 density and agriculture. Pinole conducts street sweeping, trash capture in priority storm drains, 202 and streetside collection of waste to prevent trash from entering the creek.

Figure 1: Pinole Watershed outlined in orange. 23 Sample locations were randomized acrossthe Pinole creek channel.

206

207 Description of Trash Monitoring Playbook Methodology

208 The Trash Monitoring Playbook method consists of 4 tiers of methodologies: qualitative,

209 quantitative, semi-quantitative, and drone imaging. Using the playbook, a project team will

210 choose the suite of methods that help them achieve their study objectives. We decided that the

- 211 quantitative and semi-quantitative approaches would be the most useful to address The
- 212 Community's questions because we felt that quantitative data provided the most detailed
- 213 information about the source of the trash. The quantitative approach would provide a count of the
- trash and the semi-qualitative would provide its volume, both metrics were thought important.

215 These methods include surveying a 30 m stretch of the river corridor from high water line to high 216 water line in the water and outside of the water in the adjacent floodplain. The survey is conducted to assess the entire area within the high water line for trash. Trash was categorized 217 218 using the terms established in the Trash Monitoring Playbook. Three volunteers worked 219 together to measure and flag the assessment area, the bankfull width and transect cross 220 sections, to take photos, and record coordinates. The other volunteers were tasked with 221 documenting vegetation, storm drains, and encampments. All team members collected and 222 tallied trash. Trash was tallied when found and collected if not submerged or embedded in soil 223 or substrate. If objects were present in number larger than 10 then counts they were allowed to 224 be estimated as between 11-100 or between 100-200 and this happened on 4 occasions. Those 225 counts were estimated afterward using a uniform probability density function. Collected trash 226 was sorted into the categories used for volume assessment in the Trash Monitoring Playbook 227 using buckets. Buckets were visually assessed for volume using the semi-guantitative 228 methodology. Large items were estimated for volume visually.

229 Randomized Sampling

230 Survey locations were randomized throughout the Pinole creek main channel. Tributaries in the 231 watershed were not assessed because access was too difficult in these smaller channels, they 232 were mostly either on private property or overgrown. 23 locations were selected based on 233 available effort from the volunteers. There is no guidance currently on the minimum number of 234 survey locations to sample for a given river but we felt this was adequate for a single channel 235 based on the variability that had been observed in other studies (Moore et al., 2016). 236 Randomized locations were created along Pinole creek using QGIS (version 2.24.3) and the 237 random points along line function. Another randomized site was generated and assessed if a 238 site was deemed unsuitable or inaccessible to survey. Six locations were moved a maximum of 239 295 meters, in line with the recommendations from the Trash Monitoring Playbook, to increase
240 accessibility since the other randomized locations were on private property.

241 Trash Abundance

242 Mean trash abundance was assessed by dividing the number of pieces of trash found at each

site by the total site length and taking the mean from all sites. This was used to calculate the

total trash volume in the whole river by multiplying the mean abundance by the total river length.

245 Mean trash abundance was bootstrapped with replacement (n = 10,000) to derive the

246 confidence intervals around the total and mean abundance of trash in Pinole creek.

247 Composition

248 Trash composition was categorized using the categories defined in the Trash Monitoring

249 Playbook. Mean trash composition proportions were assessed using bootstrapping of the trash

250 composition proportions at each site (resampling with replacement n = 10,000). Trash

251 compositions were determined distinguishable if confidence intervals did not overlap.

252 Areas of Concern

The random locations were visually assessed for areas of concern (i.e., areas with elevated levels of trash) by looking for locations where trash was elevated above other nearby locations and where high concentrations were close together. We wanted a unit that could account for count and volume concentration simultaneously, so we min-max normalized the count and volume concentrations separately and then multiplied them. We visualized these values as quantiles (n = 5) on a map and drew bounding boxes around regions that appeared amplified. These regions would be recommended for future targeted research and management.

260 **Results and Discussion**

261 Community

262 New Community Science Materials Developed

263 The Friends of Pinole Creek Watershed and CCRCD trained adult volunteers to conduct 264 assessments. Earth Team trained high school student interns to conduct assessments; interns 265 also planned and supervised an assessment engaging elementary students. For the adult team, 266 we created a double-sided handout illustrating two types of roles for volunteers. We also 267 streamlined the Trash Monitoring Playbook's trash tally spreadsheet for use as both field 268 worksheet (hard copy) and data tabulation (online) (Supplemental Material). Materials were 269 adapted from the trash monitoring playbook to make them simpler without compromising the 270 richness or compatibility of the data.

271 Data-informed Policy Recommendations and Proposed Actions

272 The Pinole City Council's involvement was on October 19, 2021 ("Pinole City Council Meeting," 273 2021) and April 22 2022 ("Pinole City Council Meeting," 2022) as an audience to project 274 presentations. During the October 19, 2021 meeting, the council expressed support for the 275 project and interest in a follow-up presentation when the team had results to share. At its April 276 19, 2022 meeting, the consensus among the Council was that ordinance-related 277 recommendations presented by the Pinole Thriving Earth Exchange Project team members be 278 considered by its Municipal Code Ad-Hoc Committee. Other recommended actions, listed 279 below, await future City Council deliberation and decisions to become publicly funded items 280 and/or operational policies.

282	Recommended	Actions
-----	-------------	---------

- Develop and/or update city food packaging and cigarette ordinances.
- Characterize areas of concern and address the problem.
- Create a city-owned trash bin inventory. Use our data to inform new trash bin locations
 in areas of concern.
- Initiate monthly trash cleanups harnessing the power of community groups.
- Institute an "Adopt-a-Street" or "Adopt-a-Spot" Program (Create Pinole Creek Allies).
- Initiate litter-awareness outreach & educational programs in schools and community
- 290 (creative media campaign).
- Fund a follow-up trash assessment in 5 years (2026).

292 Scientific

293 Abundance

294 Trash abundance was first assessed as the mean count and volume of trash at each site

surveyed (Figures 2 & 3). Mean trash count was 2697 (95% CI 1237-4890) pieces of trash per

kilometer. Mean trash volume was 2 (95% Cl 0.7 - 4) cubic meters per kilometer. We estimated

that there were 47820 (21933-86712) pieces and 37 (13 - 68) cubic meters of trash in the creek

in 2021-2022. Some of the highest count concentrations were located within the city limits, while

- some of the highest volume concentrations were found above the city limits (Figures 4 & 5).
- 300 Both spatial relationships had high variability.

301

302 Using this information, The Community learned that the amount of waste in Pinole Creek was

not a situation of everyone throwing all their waste into it. Divided by the entire population of

304 Pinole, the waste was only 2 L per person. Additionally, dumping (high volume concentration)

305 was less often observed in the city limits. These facts encouraged proposing and supporting

308

309 Figure 2: The cumulative density function for the counts of trash per kilometer found at each

311 concentrations. The line connects the continuous values at the sites.

Figure 3: The cumulative density function for the volume of trash in cubic meters per kilometer
at sites. The X-axis is the volume concentration, the y-axis is the proportion of sites with lower
concentrations. The line connects the continuous values at the sites.

Distance to Bay (m)

319 Figure 4: Litter count per kilometer at each of the sites. The x-axis is the distance the survey

320 location is from the outlet at the bay. The y-axis is the count concentration of trash at the site.

321 The points are the values at the sites. The line connects the sites as a tool for visual

322 interpolation. Everything to the left of the line is within the city limits; everything to the right is

above the city limits.

Distance to Bay (m)

Figure 5: Volume per kilometer at each of the survey locations. The x-axis is the distance the survey location is from the outlet at the bay. The y-axis is the volume concentration of trash at the site. The points are the values at the sites. The line connects the sites as a tool for visual interpolation. Everything to the left of the line is within the city limits and everything to the right is above.

330 Composition

Trash composition was assessed to identify the sites' most common types of trash by
bootstrapping the mean count proportions for each type of trash (Figure 6). The most prevalent
morphologies were fragments of bags, wrappers, foam, glass, and soft plastic. Generally, there
is wide variability around the mean estimates and few comparisons between the morphology

- 335 types are significantly different. By material type, plastic stood out as the most prevalent
- 336 material for count and volume proportions.

Mean Percent

Figure 6: Morphology composition by mean count percent. Highly abundant trash types in
Pinole Creek by morphology type. Error bars represent uncertainty around the mean percent of
these trash types (bootstrapped 95% confidence intervals). The x-axis represents each
morphology's mean percent from all the survey sites. The y-axis is the morphology type.

Mean Percentage

Figure 7: Material composition by count and volume. X-axis is the mean percent of the material type at all sites. Y-axis is the material type. Top axis is the data split up by count or volume respectively. The point is the mean and the whiskers are the 95% confidence intervals from the bootstrap simulation.

348

The Community determined that their top priorities were to reduce cigarette-related litter and single-use plastic food packaging, which seemed prevalent by material and morphological type (Figures 6 & 7). We produced spatial graphs for each of these categories so that The Community could identify regions where preventative measures would likely be successful due to focus on elevated levels of litter (Figures 8 & 9). We did not observe a specific region where single-use food packaging was most abundant, it was prevalent throughout the watershed. This suggested that broad-scale measures like bans might be successful in reducing waste.
However, we did observe elevated levels of tobacco product waste isolated near the mouth of
the creek. The Community decided that combining cleanup/education activities focused on
those locations and updated cigarette ordinances would likely be the most effective at improving
environmental and human health.

360

Distance to Bay (m)

Figure 8: Food related morphologies and their percent found in the creek. X axis is the distance in meters upstream from the outlet at the bay. Y axis is the percentage of all morphologies found that were in the category listed on the right axis. Points are survey locations. Vertical line is the city limits. Everything to the left is in the City and everything to the right is outside of the City.

367

Distance to Bay (m)

368

Figure 9: Tobacco related morphologies found at the survey locations. X axis is the distance in meters upstream from the outlet at the bay. Y axis is the percentage of all morphologies found in the category listed on the right axis. Points are survey locations. The vertical line is the city limits. Everything to the left is in the City and everything to the right is outside of the City.

373 Areas of Concern

374 The Community wanted to identify areas of concern with high litter load in the creek that they 375 could prioritize for future mitigation and policy efforts (Figure 10). We identified near the mouth 376 of the stream, near where the highway intersects the creek, and near the top of the city limit as 377 locations with elevated concentrations of count and volume combined. The Community 378 recommended these sites to be further investigated in future studies and prioritized by the City 379 Council for mitigation activities. Sites above the city limits also could be classified as areas of 380 concern but were not focused on for this study because we did not have a policy partner with 381 jurisdiction there.

Figure 10: Areas of concern were identified by transforming count and volume concentrations
using maximum normalization, multiplying them together, and mapping the 5 quartiles as
different-sized circles (multiple quartile). Blue line is the Pinole Creek mainstem. Yellow area is

the Pinole watershed. Pink area is the Pinole city limits. Both areas are slightly transparent, so their overlap can be visualized in the orange area. Locations with large circles near each other were outlined with a black box and described as an area of concern that warrants future investigation. Basemap is satellite imagery from QGIS basemaps. North arrow points to the top of the image.

391 Next Steps

392 Community

393 Continued community - policy engagement

394 The work is certainly not over after this initial assessment. The Core Community Team will 395 follow up with City Council, Public Works Director, and staff to request policy recommendations 396 be put in the City's Capital Improvement Plan (CIP). This plan aligns projects with public funding 397 by the City and other agency partners and assists in collaborative decision-making. At the time 398 of this writing, the CIP included recommendations made years prior by the Pinole Beautification 399 Ad-hoc committee. It recommended the installation of new solar-powered trash bins for a budget of approximately \$425,000 and a community education program with a budget of 400 401 approximately \$60,000. The group continues to be active in Pinole, engaging through 402 presentations to local nonprofits and scientific conferences, and conducting multiple cleanups 403 monthly. 404

Although we assessed land on county property outside of the City's jurisdiction, we could not

406 adequately engage with management at the county to propose policies for that level of

407 government. Community members noted elevated levels of illegal dumping on the county

408 property compared to the city property. This was reflected in the data (Figure 5). Litter there
409 ultimately flows to Pinole City creeks. Therefore, The Community would welcome a collaborative
410 relationship with county management. Community members recommend the Pinole City
411 Council's policy actions as examples the county could follow to improve litter conditions on
412 county property.

413 Scientific

414 Follow-up study in 5 years

We know that trash conditions in creeks can change over time. Those changes could inform us about how effective the policy actions were at improving the creek quality. The Community recommended a follow-up study to be conducted in 5 years to assess changes resulting from the policy actions.

419 Targeted focus on areas of concern and sources

A limitation of the study design was not being able to thoroughly assess the trash sources at some of the most problematic areas of concern. For example, the location near the highway had homeless encampments, highway runoff, parking lot windblown trash, and upstream sources all interacting at that location. To identify the most important sources at that site, we would need to conduct a site-specific study. In such a study, we would look at the composition of the trash coming from each source and compare that to the trash in the creek.

426 Acknowledgment

427 We are thankful for the volunteers who helped in data collection, analysis, and reporting, Sherry Engberg, Charlotte Blodwynne-Heart, Arthur Blodwynne-Heart, Kelly Britton, Damien Grace, 428 429 Megan Murphy, Mary Moffitt, Kent Moriarity, Paula Jarvis, Job Jarvis, Becky Robinson, Analucia 430 Urias-Lopez, Angella Dayrit, Derek Manahan, Isabel Fernandez, Luis Fernandez, Natalie 431 Szumlas, Nicole Castillo, Randy Snook, Samantha Zapanta, Simran Gurung, Sophia Ly, 432 Terrence Clark Tecala, Vannapa Douangphrachanh, and Victoria Corona Espinosa. We would 433 also like to thank Angela Howe from Surfrider, Miram Gordon from Upstream, and Pinole City 434 Council Staff, who provided policy consultations. This work was primarily funded through the 435 Thriving Earth Exchange a project of the American Geophysical Union with funds from the 436 Gordon and Betty Moore Foundation, WC was funded in part by the McPike Zima Charitable 437 Foundation and in part by the University of California Riverside.

438 Open Research

All training, survey, and data collection resources mentioned in the text are available on OSF at
 https://osf.io/ghswp/. All raw data and data analysis from the survey is available on Github at

441 <u>https://github.com/wincowgerDEV/pinole_creek</u>.

442 References

Baldwin, A. K., Corsi, S. R., & Mason, S. A. (2016). Plastic Debris in 29 Great Lakes Tributaries:
Relations to Watershed Attributes and Hydrology. *Environmental Science and Technology*, *50*(19), 10377–10385. https://doi.org/10.1021/acs.est.6b02917

- 446 Cârstea, E. M., Popa, C. L., & Donțu, S. I. (2022). Citizen Science for the Danube River-
- 447 Knowledge Transfer, Challenges and Perspectives. In A. Negm, L. Zaharia, & G. Ioana-
- 448 Toroimac (Eds.), *The Lower Danube River* (pp. 527–554). Cham: Springer International
- 449 Publishing. https://doi.org/10.1007/978-3-031-03865-5_18
- 450 Cook, S., Abolfathi, S., & Gilbert, N. I. (2021). Goals and approaches in the use of citizen
- 451 science for exploring plastic pollution in freshwater ecosystems: A review. *Freshwater*
- 452 *Science*, *40*(4), 567–579. https://doi.org/10.1086/717227
- 453 Cowger, W., Gray, A. B., & Schultz, R. C. (2019). Anthropogenic litter cleanups in Iowa riparian
- 454 areas reveal the importance of near-stream and watershed scale land use.
- 455 *Environmental Pollution*, 250, 981–989. https://doi.org/10.1016/j.envpol.2019.04.052
- 456 Emmerik, T., & Schwarz, A. (2020). Plastic debris in rivers. *WIREs Water*, 7(1).
- 457 https://doi.org/10.1002/wat2.1398
- Helinski, O. K., Poor, C. J., & Wolfand, J. M. (2021). Ridding our rivers of plastic: A framework
 for plastic pollution capture device selection. *Mar. Pollut. Bull.*, *165*, 112095.
- 460 Hoellein, T. J., & Rochman, C. M. (2021). The "plastic cycle": a watershed-scale model of plastic
- 461 pools and fluxes. *Frontiers in Ecology and the Environment*, *19*(3), 176–183.
- 462 https://doi.org/10.1002/fee.2294
- 463 McCormick, A. R., & Hoellein, T. J. (2016). Anthropogenic litter is abundant, diverse, and mobile
- 464 in urban rivers: Insights from cross-ecosystem analyses using ecosystem and

465 community ecology tools. *Limnol. Oceanogr.*, *61*(5), 1718–1734.

- 466 McKinley, D. C., Miller-Rushing, A. J., Ballard, H. L., Bonney, R., Brown, H., Cook-Patton, S. C.,
- 467 et al. (2017). Citizen science can improve conservation science, natural resource
 468 management, and environmental protection. *Biol. Conserv.*, *208*, 15–28.
- 469 Meijer, L. J. J., van Emmerik, T., van der Ent, R., Schmidt, C., & Lebreton, L. (2021). More than
- 470 1000 rivers account for 80\% of global riverine plastic emissions into the ocean. *Sci Adv*,
- 471 *7*(18).

472	Moore, S., Sutula, M., Von Bitner, T., Lattin, G., & Schiff, K. (2016). Southern California Bight 20
473	Regional Monitoring Program: Volume {III}. Trash and Marine Debris.
474	Moore, S., Hale, T., Weisberg, S. B., Flores, L., & Kauhanen, P. (2020). California Trash
475	Monitoring Methods and Assessments Playbook.
476	Nakano, R. (2019). Stormwater Trash Reduction Are We Doing All That We Can? (Grand Jury
477	Report). Contra Costa County Grand Jury. Retrieved from
478	https://pleasanthill.granicus.com/MetaViewer.php?view_id=&clip_id=1663&meta_id=126
479	584
480	Pinole City Council Meeting. (2021, October 19). Retrieved from
481	http://pinole.granicus.com/MediaPlayer.php?view_id=2&clip_id=1891
482	Pinole City Council Meeting. (2022, April 22). Retrieved from
483	http://pinole.granicus.com/MediaPlayer.php?view_id=2&clip_id=1950&meta_id=54685
484	Rambonnet, L., Vink, S. C., Land-Zandstra, A. M., & Bosker, T. (2019). Making citizen science
485	count: Best practices and challenges of citizen science projects on plastics in aquatic
486	environments. Marine Pollution Bulletin, 145, 271–277.
487	https://doi.org/10.1016/j.marpolbul.2019.05.056
488	Rochman, C. M., Munno, K., Box, C., Cummins, A., Zhu, X., & Sutton, R. (2020). Think Global,
489	Act Local: Local Knowledge Is Critical to Inform Positive Change When It Comes to
490	Microplastics. Environ. Sci. Technol.
491	State Water Resources Control Board. (2015). Amendment to the Water Quality Control Plan for
492	the Ocean Waters of California to Control Trash and Part 1 Trash Provisions of the
493	Water Quality Control Plan for Inland Surface Waters, Enclosed Bays, and Estuaries of
494	California.
495	Watkins, L. (2022). Quantifying Plastic Pollution: An assessment of traditional and community
496	science methods. Cornell University Library. Retrieved from
497	https://hdl.handle.net/1813/111811