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Abstract

A set of LSE observations from field experiments were conducted on 16-18 Oct 2013 along a south/north desert road in the

Taklimakan Desert (TD), China. The observed LSEs (EOBS) are thus used in this study as the reference to evaluate the

quality of Combined ASTER MODIS Emissivity over Land (CAMEL). Analysis of these data shows four main results. Firstly,

the CAMEL appears to capture the spatial variations of LSE from the oasis to the hinterland of TD well, especially in the

quartz reststrahlen band 8.1 mm, 8.6 mm and 9.1 mm. From site 1 at the south edge of the TD to site 10 at the north edge,

the EOBS and the corresponding CAMEL in the quartz reststrahlen band firstly decrease and reach their minimum around

sites 4-6 at the hinterland of the TD. Then the LSE increases gradually and finally gets their maximum at site 10 with clay

ground surface, which is higher at the edges of the desert and lower in the center. Second, the CAMEL at 8.3 mm has a

Zonal distribution characteristic of northeast-southwest strike. Third, the unrealistic variation of original EOBS can be filtered

out with useful signals remaining by the first 6 principal components from PCA upon the laboratory measured hyperspectral

emissivity spectra (ELAB). Fourth, the CAMEL correlates well with the measured LSE at the ten observation sites, with the

EOBS slightly smaller than CAMEL in general.
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1Abstract—Infrared (IR) land surface emissivity (LSE) plays an im-
portant role in numerical weather prediction (NWP) models through
the satellite radiances assimilation. However, due to the large uncer-
tainties in LSE over the desert, many land-surface sensitive channels
of satellite IR sensors are not assimilated. This calls for further assess-
ments of the satellite retrieved LSE quality in these desert regions.
A set of LSE observations from field experiments were conducted on
16-18 Oct 2013 along a south/north desert road in the Taklimakan
Desert (TD), China. The observed LSEs (EOBS) are thus used in this
study as the reference to evaluate the quality of Combined ASTER
MODIS Emissivity over Land (CAMEL). Analysis of these data shows
four main results. Firstly, the CAMEL appears to capture the spa-
tial variations of LSE from the oasis to the hinterland of TD well,
especially in the quartz reststrahlen band 8.1 �m, 8.6 �m and 9.1 �m.
From site 1 at the south edge of the TD to site 10 at the north edge,
the EOBS and the corresponding CAMEL in the quartz reststrahlen
band firstly decrease and reach their minimum around sites 4-6 at
the hinterland of the TD. Then the LSE increases gradually and fi-
nally gets their maximum at site 10 with clay ground surface, which is
higher at the edges of the desert and lower in the center. For the four
sets of LSE with wavelengths 10.6 �m, 10.8 �m 11.3 �m, and 12.1 �m re-
spectively, the LSE remains almost the same at all 10 observing sites.
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Second, the CAMEL at 8.3 �m has a Zonal distribution characteristic
of northeast-southwest strike; such an artifact might be caused by
ASTER LSE through the merging process to create CAMEL. Third,
the unrealistic variation of original EOBS can be filtered out with
useful signals remaining by the first 6 principal components from
PCA upon the laboratory measured hyperspectral emissivity spec-
tra (ELAB). Fourth, the CAMEL correlates well with the measured
LSE at the ten observation sites, with the EOBS slightly smaller than
CAMEL in general. The quartz reststrahlen band around 9.1 �m has
the most significant discrepancy, possibly due to the diurnal varia-
tions associated with soil moisture change. In addition, the variations
of the EOBS and CAMEL between different wavelength bands at the
last two observing sites with clay ground surfaces are smaller than
that from sheer desert sites.

Key words: Infrared land surface emissivity; the Taklimakan desert;
CAMEL; field observation; laboratory measurement

1. INTRODUCTION
The TD in China is the second largest desert in the world, which plays an
important role in regional climate change and energy exchange between the
land surface and atmosphere. In recent years, extremely heavy precipitation
events in and around TD become more frequent than ever before [1]. Due to
the special geography and land-surface type as well as soil texture, local severe
storms (LSSs) with tens of millimeters of precipitation in several hours may
induce mountain torrent or debris flow on the hillside of Mt. Tianshan and Mt.
Kulun around TD, causing serious casualties and economic losses [2]. Accurate
and timely weather forecasts are thus rather critical in this region. Numerical
Weather Prediction (NWP) modeling with high temporal and spatial resolution
can be a useful tool to achieve this goal [3].

The accuracy of NWP models highly depends on the initial condition [4]. The
assimilation of observations with high quality and proper spatial distribution
density is essential. However, only seven conventional synoptic stations and
three synoptic radars are located at oasis regions around the TD without any
meteorological stations in the hinterland of the grand desert regions, an area
of 330,000 square kilometers [5]. That is far from enough to provide accurate
initial conditions. Satellite data can and should be used to fill the data gap in
this region [6].

With the improvement of instrumentation and data assimilation technologies,
satellite data has been playing an increasingly important role in improving the
NWP [7]. At present, the number of satellite data used by operational centers
in Europe and the United States has reached more than 90% [8]. The use of
satellite data has improved the lead time of prediction in the southern hemi-
sphere for more than two days and nearly one day in the northern hemisphere
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[7].

Even with the overwhelming use of satellite measurements by NWP centers [8],
the forecast of when and where LSSs are going to form is still challenging. Part
of the reason is due to the lack of accurate initial conditions of the boundary
layer and the land surface [9, 10]. In recent years, progress has been made on
assimilating IR surface channel radiances [11, 12]. However, most NWP centers
are still not assimilating those radiances, partly due to the complexity of the
land surface.

As two important characteristics of the land surface, land surface temperature
(LST) and land surface emissivity (LSE), are difficult to estimate accurately, re-
sulting in limited use of surface channels in assimilation system [13]. The LST
and LSE are two important terms in the radiative transfer equation (RTE).
They together characterize how large the surface emission is. This term has a
significant contribution to the RTE [14]. In addition, the LSE also affects how
large the atmospheric downwelling radiances are reflected back by the surface.
While this term usually has a minor contribution in the RTE, it is not negligible,
especially when LSE is substantially smaller than 1, i.e. in the desert [15]. Ac-
curately simulating the surface emission and the surface reflection with accurate
LST and LSE will make it possible to successfully assimilate the surface and
the water vapor channel radiances in dry conditions, i.e. winter or high terrains
[16]. It is possible to simultaneously analyze the LSE and LST in the assimila-
tion system in addition to the temperature and moisture profiles. However, the
addition of the unknowns (LSE and LST) and the strong correlations between
them add significant difficulties in the inverse problem [13].

LSE is one of the inherent physical properties of surface materials [17]. It is
not only related to the composition of surface soil materials but also related
to surface roughness and soil moisture [18-21]. LSE vary with surface types,
making it difficult to accurately characterize [22-25]. Besides the surface chan-
nel radiance assimilation, LSE is an important input parameter in many other
applications related to the surface. In LST inversion, for a typical LST of 300 K,
an LSE error of 0.01 will lead to an LST inversion error of about 1 K. Accurate
LSE is also important for climate models. For example, a broadband surface
emissivity error of 0.1 will result in errors of up to 7 W·m−2 in the upward
long-wave radiation estimates, which is much larger than the surface radiative
forcing (~2–3 W·m−2) due to an increase in greenhouse gases [15].

Since the launch of the National Aeronautics and Space Administration (NASA)
‘s Earth Observing System (EOS) Terra and Aqua satellites and the European
Meteorological Satellite (EUMETSAT) Meteorological Operational A (MetOp-
A) satellite, more realistic representations of the spectral IR emissivity spectrum
have been developed. For example, the NASA Moderate Resolution Imaging
Spectroradiometer (MODIS) MOD11C3 monthly land surface temperature and
emissivity products [26] on 5km spatial resolution using the day/night algorithm
have been well evaluated. But the MODIS MOD11 products are only available
at selected MODIS spectral bands. To expand the spectral coverage, and more
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importantly, the spectral resolution, a MODIS-based Baseline Fit Emissivity
database (BFEMIS) was developed at the University of Wisconsin-Madison us-
ing laboratory measurements to fill up the spectral gaps [27]. This dataset has
been extensively used in research and operational applications. It has been in-
corporated into the RTTOV radiative transfer model [(Borbas and Ruston 2011;
Saunders et al. 1999). A Global Emissivity Dataset from Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER GED) was also created
at the Jet Propulsion Laboratory (JPL) to provide thermal emission emissivity
measurements at 100-meter resolution [28].

Recently, the ASTER GED V4 was incorporated to augment the spectral cov-
erage of the UW BFEMIS database in critical wavelengths and to stabilize the
time dependence of the operational MODIS MOD11 emissivity product. As a
result, the new dataset called the Combined ASTER MODIS Emissivity over
Land (CAMEL) dataset [29], has been developed under the NASAMaking Earth
System Data Records for Use in Research (MEaSUREs) program. As the first
step toward the assimilation of radiances in TD, the CAMEL LSE is compared
with field measurements at selected locations in the TD desert in this paper.

2. MATERIALS AND METHODS
2.1 LSE observations from field experiments
LSE observations over 10 locations in the TD from field experiments conducted
on 16-18 Oct 2013 [30] are used as the reference to evaluate CAMEL. Using a
portable Fourier transform infrared spectrometer (FTIR) with radiances of a
blackbody in cold and warm conditions as well as a gold diffuse plate calibrated
(Fig. A1 in appendix A), the LSE are measured in the spectrum of 8-14 �m from
10 different sites along a south/north desert road every 50 km [30]. Generally,
more than three sets of EOBS has been obtained by land-surface emissivity spec-
trum measurements, with the inefficient observations kicked out. To get a more
preferable EOBS with higher quality, the fine and dry weather conditions were
selected to conduct the field observation experiments, since the cloudy weather
would increase the observation error and further lower down the measurement
precision. To rectify the emissivity, the 102F spectrometer has to be calibrated
by blackbody for one time every 10-20 minutes. Meanwhile, the cold blackbody
temperature are required to be set 10 ℃ lower than surrounding temperature,
and 10 ℃ higher than the land surface temperature at the same location. Once
the proper blackbody temperature has been initialized, the actual temperature
of the cold and hot blackbody needs to be measured and saved. The precision
of blackbody emissivity could reach up to 0.994-0.998±0.002, and the temper-
ature precision for ±0.1 ℃, and the error caused by blackbody is minor than
0.004 with such a setup. The temperature fluctuation range of interferometer
is within 0.1 ℃, and the error of the blackbody itself is smaller than 0.002 [31].
To lower down the equipment noise signal interference, the scanning spectrum
overlap count is usually set to 10, and the mean of the overlap times are finally
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adopted by the interferometer [30].

In the field measurement process, three steps has been followed to minimize the
observing erros and obtain EOBS with possible higher accuracy. First, mea-
surement of radiaiton of the cold blackbody, the hot blackbody and the diffuse
gold plate. Second, measurement of land-sureface emissivity. Third, reconduc-
tion of the first step. The emissivity of diffuse gold plate (5×5 inch, developed
by Labsphere, a company from the United States ) is 0.04 approximately, and
the factory calibration value should be used in actual operation. To avoid the
disadvantagous affect from the weather-condition variations upon the emissivity
of the instument itself and its further impact on the precision of EOBS in the
field sampling process, all these listed 3 steps should be completed as swift as
possible, and the time limits of a single sampling process are thus refined in 10
minites. The purpose of step 1 and step 3 is to evalute the impact of variation of
surounding factors upon the land-surface emissivity spectrum, and lower down
the error introduced from the meansurement process. The skin temperature
of the diffuse gold plate are directly measured by the thermoelectric coupled
thermometer (Model 51, Fluke, a company of USA), the average value of each
5 observations are use as usual.

A credible measurement method of land surface temperature (LST) are critical
for calibration of emissivity. Althogh the LST could be meausured directly by
the thermoelectric coupled thermometer, the land surface radiation temperature
can not be well reflected. Fortunately, a module has been included in the soft-
ware of th 102F spectrometer, this modle are capable of fitting the land-surface
radiation spectrum from blackbody radiation spectrum by Planck function, and
further calculated out the land-surface radiation temperature, which is thus
called blackbody fitting for short. For the desert ground surface, Korb et al
suggested that, the maximum emissivity of fitting wavelength band in 7.45 to
7.65 �m should be 0.995. The land-surface radiation temeprature obtained by
black fitting method in this wavelengh band are quiet credible, with its calcu-
lated LSE error smaller than 0.008. Therefore, the fitted land-sureface radiation
temperature are also used in the calculation of emissivity specture at all wave-
lengths [31, 32]. The field oberation experiments also proved that, the blackbody
fitting methodology are efficient and facilate in obtaining the land-surface ra-
diation temperature as well as calculation of the infrared LSE with wavelengh
range 8-14 �m in TD.
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𝑒𝑠(𝑙) = [𝐿uwr(𝑙)−𝐿dwr(𝑙)]
[𝐵[𝑙,𝑇𝑠]−𝐿dwr(𝑙)] (1)

where 𝑒𝑠(𝑙) is the surface emissivity of
the sample as a function of
wavelength (l); 𝐿𝑠(𝑙) is the calibrated
radiance of the sample; 𝐿dwr(𝑙) is the
calibrated radiance of the
downwelling radiance; and 𝐵 [𝑙, 𝑇𝑠] is
a Planck function at the sample
temperature. The exact locations and
surface type category of the ten sites
are detailed in Table A1 and Fig. 1.
Most of the sites are in the inner
domain of TD, while sites 1 and 10
are close to or at the oasis.

Fig. 1. Locations of field experiments (Table 1) and the land type description
in and around TD. Different surface label indexes represent different surface
types (Table A1)

TABLE I

ALTITUDE, LOCAL SOLAR TIME, AND LAND CATEGORY OF THE TEN
OBSERVATION SITES

EOBS sites Altitude (m) LST Land category
Site 1 1334 2013/10/16 14:04 sand
Site 2 1252 2013/10/16 10:08 sand
Site 3 1182 2013/10/16 15:44 sand
Site 4 1115 2013/10/16 16:53 sand
Site 5 1088 2013/10/17 09:19 sand
Site 6 1028 2013/10/17 15:36 sand
Site 7 967 2013/10/18 09:45 sand
Site 8 920 2013/10/18 11:05 sand
Site 9 917 2013/10/18 12:59 silt soil
Site 10 912 2013/10/18 16:43 clay
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2.2 CAMEL ESDR database
The version 2 CAMEL Earth System Data Record (ESDR) from October 2013
is used, which is a monthly global LSE database at 5km resolution (Borbas et
al., 2018). It is available at 13 hinge points from 3.6-14.3 �m. Out of the 13
hinge points, only seven are overlapped with the spectral coverage of EOBS.
The wavelengths of these seven hinge points are 8.3 �m, 8.6 �m, 9.1 �m, 10.6 �m,
10.8 �m 11.3 �m, and 12.1 �m, respectively.

3. Comparison between CAMEL and EOBS in
TD
3.1 Noise filtering of EOBS
The LSE observations (EOBS) from the field experiments are shown in Fig. 2,
which are the original observations without any statistical operations including
averaging. The wavelength of EOBS ranges from 7.89 �m to 14.10 �m, with 416
channels [30]. The general pattern is consistent with the laboratory measured
desert sand LSE spectrum; the LSE decreases with the increase of wavelength
around 8 �m, reaching the minimum around 9.3 �m, and then increases until the
maximum wavelength. Such a pattern is obvious for the first 8 sites while much
more subtle for the last two sites, especially for site 10 with clay ground surface.

Fig. 2. The land surface emissivity measurements from the field experiments
at 10 observation sites in TD

However, the measured LSE appears to be quite noisy, especially in the longwave
region, where LSE is expected to be spectrally smoother. The maximum value
of EOBS is even larger than 1.0 for some sites. Such phenomenon is likely caused
by excessive noise in the observing process. To filter out the noise in EOBS, the
Principal Components Analysis (PCA) noise filtering method is used [33].
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Fig. 3. 42 selected laboratory measured sandy samples from 123 ELAB hyper-
spectral emissivity spectra. The two red lines show two typical sandy samples

The noise filtering is performed in four steps. In the first step, the 42 sandy
hyperspectral emissivity spectra at 416 wavelengths in the infrared region from
7.8942 �m to 14.0964 �m. are selected from the 123 laboratory emissivity spectra
(wavenumber resolution between 2-4 cm-1) used in the UW BFEMIS database
(Table B2). The selection method of the 123-laboratory set is described in
Section 1 of Seemann et al, 2008. They show a similar spectral pattern with
EOBS, which first lowers down, reaching their minimum between 8 �m and 9 �m,
and then increases until 11 �m. After 11 �m, the spectral variations are subtle
(Fig. 3). In the second step, the 42 laboratory-measured emissivity spectra are
used to generate Eigenvectors. The Eigenvectors are ranked by their importance,
i.e. the most important Eigenvector or the one explaining the most variances
is the first Eigenvector. The least important ones are last Eigenvectors. And
they usually explain the noise information. Fig. 4 shows the first 4 Eigenvectors
can explain 99.1% of the variances. And the first 8 can explain 99.8%. In the
second step, the Eigenvectors are used to decompose the EOBS spectra. Each
EOBS spectrum can be decomposed to get the coefficient for each Eigenvector
or the Eigenvalue. In the last step to perform noise filtering, one needs to use
a certain number of PCs to re-construct the EOBS. Since last Eigenvectors for
noise information are not used, the reconstructed EOBS is noise filtered.
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Fig. 4. Percentage cumulative variance (PCV) of the 123 selected laboratory
measurement sets as a function of the number of principal components (NPC).
The legend contains the corresponding PCV values.

Fig. 5. Bias (after minus before) of the hyperspectral LSE observation at the
ten sites in TD before and after filtering with first 4 PCs (a) and 6 PCs (b) as
well as 8 PCs (c)

Fig. 5 shows the residual of the 10 EOBS spectra (the original minus the recon-
structed spectra) using different number of PCs. When the proper number of
Eigenvectors is used, the residual should be dominated by noise, thus appearing
random. Too few Eigenvectors result in loss of signal and too many result in
less noise filtered. As shown in Fig. 5a, when the first 4 PCs are used to filter
the EOBS, the maximum residual of the 10 EOBS spectra reaches up to 0.0834
at 7.9372 �m over site 9. The residual becomes 0.0756 at 7.9392 �m over site 9
with the first 6 PCs, and 0.0614 at 7.9392 �m over site 4 with the first 8 PCs.
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All those maximum residuals with different PC numbers occurred at wavelength
between 7.93 �m and 7.94 �m, with 2 of the 3 maximum values appear over site 9
with clay ground surface soil category. In addition, majority of all the maximum
residuals for the ten sites appear at wavelength smaller than 9 �m, and the rest
maximum values appear at wavelength larger than 13 �m, such a distribution
feature has also been present in Fig. 5.

As shown in Table �, the correlation coefficient between the original EOBS and
the mean of the two sandy samples of ELAB is smaller than that after the
filtering with the first 6 PCs of ELAB. The mean correlation coefficient of the
10 sites is increased from 0.910 to 0.951, 0.957, and 0.948 with the number of
principle components of ELABS equal to 4, 6 and 8, respectively, indicating
that the filtering of the EOBS makes the LSE spectra closer to sandy spectra,
and the maximum number of PCs allowed is thus finally determined to be 6.
This is consistent with Borbas et al. (2018) where the first 6 PCs are also used
to derive high spectral resolution emissivity.

TABLE �

COEFFICIENCY BETWEEN ELAB OF 42 SELECTED LABORATORY
MEASURED SANDY SAMPLES AND EOBS BEFORE (ORIGINAL) AND
AFTER (FILTERED) NOISE FILTERING WITH FIRST 6 PCS OF ELAB
USED

Sites Original Filtered
PC4 PC6 PC8

Site1 0.947 0.96 0.968 0.96
Site2 0.926 0.94 0.947 0.938
Site3 0.924 0.945 0.952 0.943
Site4 0.926 0.951 0.952 0.95
Site5 0.929 0.945 0.949 0.943
Site6 0.927 0.948 0.953 0.946
Site7 0.892 0.906 0.912 0.902
Site8 0.942 0.964 0.97 0.963
Site9 0.836 0.959 0.969 0.94
Site10 0.846 0.996 0.998 0.992
Mean value 0.91 0.951 0.957 0.948

After the noise filtering, the unrealistic spectral variations in the original EOBS
from the ten sites in TD are not obvious any more, and the unrealistic noise
with wavelength shorter than 8 �m and larger than 14 �m has been successfully
filtered out. For example, the original maximum EOBS value of 1.0279 at site 6
has been adjusted to 0.9676 after the filtering process. The filtered LSE appears
to have more realistic spectra (Fig. 6) when compared with the spectra of the
two sandy samples from ELAB (solid red lines in Fig. 3).
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Fig. 6. The 10 new noise filtered spectra of EOBS with first 6 PCs of ELAB
used

3.2 CAMEL in TD
The CAMEL imagery at 8.3 �m, 8.6 �m, and 9.1 �m are shown in Fig. 7. For
these three wavelengths, TD has LSE much smaller than surrounding areas.
The minimum values are 0.80 to 0.82. The LSE spatial variations in the TD
match with the surface types well, as shown in Fig. 1. For example, the regions
that the Hetian River runs through, from (37°N, 80°E) to (40°N, 80.5°E), have
LSE larger than other areas on all three imagery. To the east of the Hetian
River, a second river, the Keriya River, from (37°N, 81.5°E) to (38.5°N, 82°E),
is also visible on the 8.6 �m imagery. The river ends at the oasis Daliyabuyi
where LSE is also larger than the surrounding desert. Along the east half of the
south boundary of the TD, a belt with LSE significantly larger than desert sands
runs from (37°N, 82.5°E) to (39°N, 87.5°E). This belt is also seen in Fig. 1. In
addition, many other surface features are recognizable on the CAMEL imagery,
such as water reservoirs and snow-covered mountain tops. These results indicate
that the CAMEL LSE database is able to capture the spatial variations in the
region and correctly identify regions with large LSE from low.
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Fig. 7. The CAMEL LSE at 8.3 �m (a), 8.6 �m (b) and 9.1 �m (c) in TD for
Oct 2013

It should also be noted that the CAMEL appears to have some artifacts for 8.3
�m with strips from north northeast by norh (NNE) to south southwest (SSW)
(Fig. 7(a)). Such artifacts are likely due to the lack of temporal resolution
from ASTER. Li et al. (2012) showed a wave-like diurnal variation of LSE
in the quartz reststrahlen band. Such temporal variations in LSE are due to
soil moisture diurnal variations. The ASTER has a narrow swath of 160 km
and a low revisit rate of 16 days. The lack of revisit rate makes it difficult
to smooth out the temporal difference and leads to artifacts like those shown
in Fig. 7�a�in the monthly CAMEL product. The lack of temporal variation
in the monthly CAMEL may pose some difficulties in its applications. This is
likely more important around local noon time due to strong evaporation from
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the top-level soil with high LST.

Fig. 8. The CAMEL LSE at the seven hinge points for the ten sites in TD
from 16 to 18 Oct 2013

From site 1 near the south edge of the Taklimakan Desert to site 10 at the north
edge, Fig. 8 shows that the EOBS with wavelengths 8.3 �m, 8.6 �m and 9.1 �m
is higher over the oasis around TD than its hinterland. Starting from site 1, the
CAMEL LSE first slowly decreases; reaching the minimum around site 7 at the
hinterland of the Taklimakan Desert, then increases and finally reaches their
maximum at site 10. This U shape is physically consistent with the geography
of the region. At both the south and north ends of the ten sites, there are many
oases where the soil is not sandy or not as sandy. So the LSE at both ends is
larger than the sites in the inner desert. The CAMEL from the northern end is
larger than the south end because site 10 is much closer to the oasis than site 1.
Besides, site 10 has a clay ground surface while site 1 has a sandy surface. For
the three long wavelength bands at 10.8 �m, 11.3 �m and 12.1 �m, the CAMEL
remains almost the same at all ten observing sites.

Since the EOBS covers 390 wavelengths, the 13-hinge point CAMEL ESDR
database is expanded to 417 spectral channels (Fig. 9) using the software tool
provided by the CAMEL team with a Principal Component (PC) regression
approach (Borbas et al. 2018). While the 13 hinge points provide critical
spectral information for the LSE, the high spectral resolution (HSR) CAMEL
does provide more detailed spectral variations. At all ten sites, the HSR CAMEL
clearly shows a spike around 8.6 �m within the quartz reststrahlen band. Also,
the dip starting around 12.3 �m is also visible for all ten sites. The 13-hinge
points, on the other hand, do not show such spectral signals. Therefore, the
CAMEL HSR will also be used for inter-comparison with the measured LSE
(EOBS).
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Fig. 9. CAMEL LSE expanded to high spectral resolution spectra from the
CAMEL 13-hinge point emissivity value
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3.3 Comparison between CAMEL and EOBS at hinge
points in the quartz reststrahlen band

Fig. 10. CAMEL LSE (dashed line) and field measured LSE (EOBS, solid
line) at (a) 8.3 �m, (b) 8.6 �m, (c) 9.1 �m. The bars show the bias of CAMEL
compared to EOBS (CAMEL minus EOBS
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Fig. 10 shows the spatial variations of the CAMEL and the corresponding EOBS
in the quartz reststrahlen band from sites 1 to 10. As pointed out before, the
CAMEL shows a U-shaped spatial variation. CAMEL emissivity from site 1 is
substantially larger than that from site 2. Both sites have LSE substantially
larger than inner desert sites. However, the U shape from the EOBS is not as
profound as from the CAMEL. EOBS at site 1 is only slightly larger than site
2. And neither is significantly larger than that from inner desert. For 8.3 �m,
CAMEL is greater than the corresponding EOBS for all sites except for site 7,
as is showed in Fig 10(a). The largest discrepancy of 0.054 appeared at site 1.
For LSE at 8.6 �m, CAMEL is larger at sites 1, 2, and 10 and smaller at sites
7, 8, and 9. Other sites are similar. The maximum positive bias of 0.03 is at
site 1, while maximum negative bias of -0.03 is at site 7. For 9.1 �m, CAMEL is
greater than EOBS for the first six sites while comparable for the last four sites.
The Maximum positive bias of 0.06 again appeared at site 1. In addition, the
averaged differences of CAMEL from EOBS (CAMEL minus EOBS) are around
0.017, 0.001, and 0.025 respectively for 8.3 �m, 8.6 �m, and 9.1 �m. So overall,
CAMEL emissivity is larger than the EOBS. The largest differences of LSE at
all these three wavelengths appeared at site 1.

3.4 Comparison between HSR CAMEL and EOBS
Comparisons between EOBS and the corresponding HSR CAMEL (Fig. 11)
offer an opportunity to examine the spectral differences in detail. The spectral
variation of EOBS is similar to that of HSR CAMEL at all the ten observa-
tion sites. The quartz reststrahlen band is well recognized in both EOBS and
CAMEL. The LSE in this quartz reststrahlen band is significantly smaller than
those with wavelengths greater than 9.1 �m. There are two spectral spikes in
EOBS in the quartz reststrahlen band, one around 8.6 �m and the other around
9.1 �m. Both spikes are visible at most sites for EOBS, with the second spike
not as profound. There are only one spike in CAMEL with its minimum at
wavelength around 9 �m approximately, which is somewhat different from that
of EOBS. The LSE decreases around 12.3 �m, and then increases around 12.8
�m. This dip is well characterized by both. It is important to point out that
these spectral spikes and dips are not artificially produced by the PCA noise
filtering. They are also recognizable from the unfiltered data in Fig. 2. At
site 8, the EOBS fits very well with HSR CAMEL, with their HSR curves al-
most overlapped with each other. This is consistent with the three hinge point
comparison at this site shown in Fig. 10. The land-use category at this site
is recognized as sheer sand and consistent with the actual situation observed
during the field experiments.

Two possible reasons may contribute to the discrepancies between the CAMEL
and EOBS. First, the CAMEL is an area measurement, while EOBS is a point
measurement. CAMEL measurements are more affected by the oases nearby.
The high LSE from the nearby oasis increases the CAMEL LSE significantly at
site 1 and substantially at site 2. The EOBS at sites 1 and 2 were measured from
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the sand samples. So the large discrepancies at sites 1 and 2 are probably an
indication that the two measurements are looking at different surface materials
in the region. Secondly, the CAMEL is a monthly LSE database based on
MODIS and ASTER on Terra, whose equator passing time is around 9:30 am
and 9:30 pm approximately. So the CAMEL is the day/night average over one
month. Li et al. (2012) showed that nighttime LSE is likely larger due to
increased soil moisture from absorption [9]. The EOBS, on the other hand, is
from daytime only, thus more likely smaller than the CAMEL.
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Fig. 11. The HSR CAMEL (dashed blue line) and EOBS (solid blue line)
for the ten sites, as well as the bias (CAMLE minus EOBS, shaded column)
between them. The EOBS has been filtered by using PCA. The CAMEL HSR
is calculated from the emissivity values at 13-hinge points.
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Comparisons between EOBS and the corresponding HSR CAMEL (Fig. 11)
offer an opportunity to examine the spectral differences in detail. The spectral
variation of EOBS is similar to that of HSR CAMEL at all the ten observa-
tion sites. The quartz reststrahlen band is well recognized in both EOBS and
CAMEL. The LSE in this quartz reststrahlen band is significantly smaller than
those with wavelengths greater than 9.1 �m. There are two spectral spikes in
EOBS in the quartz reststrahlen band, one around 8.6 �m and the other around
9.1 �m. Both spikes are visible at most sites for EOBS, with the second spike
not as profound. There are only one spike in CAMEL with its minimum at
wavelength around 9 �m approximately, which is somewhat different from that
of EOBS. The LSE decreases around 12.3 �m, and then increases around 12.8
�m. This dip is well characterized by both. It is important to point out that
these spectral spikes and dips are not artificially produced by the PCA noise
filtering. They are also recognizable from the unfiltered data in Fig. 2. At
site 8, the EOBS fits very well with HSR CAMEL, with their HSR curves al-
most overlapped with each other. This is consistent with the three hinge point
comparison at this site shown in Fig. 10. The land-use category at this site
is recognized as sheer sand and consistent with the actual situation observed
during the field experiments.

Two possible reasons may contribute to the discrepancies between the CAMEL
and EOBS. First, the CAMEL is an area measurement, while EOBS is a point
measurement. CAMEL measurements are more affected by the oases nearby.
The high LSE from the nearby oasis increases the CAMEL LSE significantly at
site 1 and substantially at site 2. The EOBS at sites 1 and 2 were measured from
the sand samples. So the large discrepancies at sites 1 and 2 are probably an
indication that the two measurements are looking at different surface materials
in the region. Secondly, the CAMEL is a monthly LSE database based on
MODIS and ASTER on Terra, whose equator passing time is around 9:30 am
and 9:30 pm approximately. So the CAMEL is the day/night average over one
month. Li et al. (2012) showed that nighttime LSE is likely larger due to
increased soil moisture from absorption. The EOBS, on the other hand, is from
daytime only, thus more likely smaller than the CAMEL.

Sites 2 – 8 are from the inner desert. There are smaller variations of emissivity
between sites. The LSE diurnal variations due to soil moisture diurnal variations
may cause EOBS smaller than CAMEL. Due to the lack of soil moisture observa-
tion during Oct 2013, 2-m relative humidity and surface skin temperature (Fig.
12) from site 5 are examined. Without the dominant factors affecting soil mois-
ture from precipitation, irrigation, and groundwater, air humidity becomes the
main factor affecting soil humidity through evaporation and adsorption. Small
relative humidity and hot surface skin temperature both favor the evaporation
and inhibit the moisture adsorption from the air to sand particles. Fig. 12
shows that the diurnal variation (maximum minus minimum) of 2-m relative
humidity at site 5 can reach up to 57.0%. At the time EOBS were taken, the
2-m relative humidity was around 14.0%, which is much drier than the average
value of 31.4%. Similarly, the surface skin temperature has a diurnal variation
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as large as 43.0 K. At the time EOBS were taken, the surface skin temperature
was 25.8 K. Although this is not the hottest temperature of the day, it is much
warmer than the monthly average of 14.2 K. It is therefore expected that the
soil moisture at the time EOBS were taken be smaller than the monthly average
from the CAMEL. And that is likely the main reason why the EOBS at sites
3-8 are mostly lower than the monthly averaged CAMEL.

Fig. 12. (a) The 2-m relative humidity (RH) and (b) the ground surface skin
temperature (GST) over site 5. The black curve stands for the hourly variation
of 2-m RH and GST, blue dotted line for their mean, while the red circles denote
the EOBS measurement time (local solar time) at site 5
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Fig. 13. The one-step spatial gradient (Unit: 1/5000m) of HSR CAMEL LSE
over TD at 9.1 �m

There are obvious differences between the EOBS and CAMEL. Emissivity in
the quartz reststrahlen band has differences larger than 0.02. It has the largest
differences at 9.1 �m. The longer wavelengths between 11 �m and 14 �m have
differences smaller than 0.02. As pointed out in the previous section, the dif-
ferences can be caused by two possible reasons. To further illustrate that the
CAMEL measurements at sites near southern and northern boundaries of the
TD are strongly affected by nearby oases, Fig. 13 shows the spatial gradient of
CAMEL emissivity at 9.1 �m. Sites 1, 9, and 10 are located in or near areas
with obvious spatial gradients. Both sites 1 and 10 have large spatial gradi-
ents. According to Liu et al. (2013), sites 1 has occasional vegetation cover of
phragmite jeholensis and populus euphratica and sites 9 and 10 has occasional
ramarix ramosissima and populus euphratica [30]. Thus the soil samples from
these sites are not a good representative of the area. It may lead to smaller
EOBS values than CAMEL.

4. DISCUSSION
Existing LSE databases are mostly monthly based and are from polar-orbiting
satellites. The lack of temporal variations makes it difficult to use those LSE
databases for satellite IR surface channel radiance assimilation over deserts.
Geostationary imagers, such as the Advanced Geosynchronous Radiation Im-
ager (AGRI), the Advanced Basline Imager (ABI), and the Spinning Enhanced
Visible and InfRared Imager (SEVIRI), all have three longwave bands, one of
which is in the quartz reststrahlen band. The high temporal resolution mea-
surements from those imagers will provide useful information on the temporal
variations of LSE in high spatial resolution. Geostationary hyperspectral IR
sounders, such as the first GIIRS (spell out) on in-orbit Fengyun-4 satellites, the
InfraRed Sounder (IRS) on to-be-launched Meteosat Third Generation (MTG),
and the Geostationary and Extended Observations (GeoXO) Sounder (GXS) on
the planned GeoXO, will have high spectral resolutions. Sounder measurements
will complement the imager measurements with needed spectral information of
LSE. Together, these geostationary sensors can be used to increase the temporal
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variations of the existing polar-orbiting satellite-based LSE database.

Existing monthly LSE database also does not account for angular variations,
which have been discovered and demonstrated before [34, 35]. While no efforts
have been made in this study to address this limitation, extensive LSE field
measurements can be made to comprehensively understand how LSE changes
with viewing angles over different desert surface types and in different weather
conditions. Quantitatively understanding the angular and temporal variations
of desert LSE can be used to develop an IR LSE model. An LSE database with
adequate temporal and angular variations will make it possible to assimilate
surface channel radiances, which contains important information for boundary
layer. Note that there does not exist IR LSE models yet while IR emissivity
models over ocean have been developed [36].

5. CONCLUSIONS
Ten sets of hyperspectral infrared (IR) land surface emissivity (LSE) spectra
were obtained from field experiments on 16-18 Oct 2013. These were measured
from 10 sites along a south/north desert road in TD. The original EOBS showed
strong spectral noises, which were filtered out with a principal component anal-
ysis. The filtered field measured LSE is compared with CAMEL dataset from
October 2013.

The CAMEL appears to capture the LSE spatial variations well over the TD.
From site 1 at the south edge of the TD to site 10 at the north edge, CAMEL in
the quartz reststrahlen band shows a U-shaped spatial variation, decreasing first,
reaching their minimum at site 7, then increasing, and reaching their maximum
at site 10. Sites near the desert edges have larger LSE due to the impact of
nearby oases. Many of the surface features, such as water reservoirs, rivers,
oases, and snow-covered mountain tops, are well characterized in the CAMEL
LSE imagery. The CAMEL at 8.3 �m shows zonal strips from northeast to
southwest. Such artifacts are likely caused by the lack of temporal resolution
from the ASTER LSE database.

The variation pattern from desert to oasis observed from the EOBS is not as
profound as from CAMEL. Especially the spatial variation from site 1 to 3, the
LSE decrease is not obvious from the EOBS. Comparing EOBS with the hyper-
spectral CAMEL shows differences larger than 0.02 for the quartz reststrahlen
band and smaller than 0.02 for wavelengths from 10 – 14 �m. Two reasons may
contribute to these differences. First, the CAMEL is an area measurement,
while the EOBS is a point measurement. So CAMEL will have larger values
where oases nearby, such as sites 1, 9, and 10. In addition, the CAMEL is a
monthly averaged database, where day/night measurements from MODIS are
both used. The EOBS, on the other hand, is measured in the daytime. The
high surface skin temperature and low relative humidity in the daytime favor
evaporation and inhibit the moisture adsorption from air to sand particles. This
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may lead to lower measured EOBS than the CAMEL. This is consistent with
previous studies where LSE diurnal variations were reported as a result of soil
moisture diurnal variations.

These results indicate that the LSE in TD has strong spatial variations, espe-
cially near the desert edge. In the inner desert, the LSE spatial variations are
not as strong. However, both desert edge and inner desert may be subject to
LSE diurnal variations when soil moisture varies diurnally. For example, strong
solar heating during the day may significantly increase the surface skin temper-
ature and decrease 2-m relative humidity in the daytime. The soil moisture loss,
as a result, leads to reduced LSE.

APPENDIX

Fig. A1. The measurement equipment FTIR used in the field observation
experiments.

TABLE A�. SURFACE LABEL INDICES AND THEIR CORRESPONDING
LAND TYPE DESCRIPTION

Label land cover description
0 No Data
10 Cropland, rainfed
20 Cropland, irrigated or post-flooding
30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)
40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland(<50%)
50 Tree cover, broad-leaved, evergreen, closed to open (>15%)
60 Tree cover, broad-leaved, deciduous, closed to open (>15%)
70 Tree cover, needle-leaved, evergreen, closed to open (>15%)
80 Tree cover, needle-leaved, deciduous, closed to open (>15%)
90 Tree cover, mixed leaf type (broad-leaved and needle-leaved)
100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)
110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)
120 Shrubland
130 Grassland
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Label land cover description
140 Lichens and mosses
150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)
160 Tree cover, flooded, fresh or brackish water
170 Tree cover, flooded, saline water
180 Shrub or herbaceous cover, flooded, fresh/saline/brackish water
190 Urban areas
200 Bare areas
201 Consoildated bare areas
202 Unconsoildated bare areas
210 Water bodies
220 Permanent snow and ice

TABLE A� LABORATORY MEASURED SOIL MATERIAL LIST

Index Material list
1 leaf of twig
2 Sliced santa barbara sand stone
3 Flat rwer washed stone
4 Soil(Oklahoma),1st meas. on 11/07/96 (wet sample)
5 Soil(Oklahoma),2nd meas. on 11/27/96 (dry)
6 Soil(Oklahoma),3rd meas. on 12/04/96 (more dry)
7 Soil(Oklahoma),4th meas. on 01/27/97 (very dry)
8 Sample of surface in Death Valley
9 Sample of surface in Death Valley
10 Sample of surface in Death Valley
11 Sample of surface in Death Valley
12 Sample of surface in Death Valley
13 Sample of surface in Death Valley
14 Soil 88p2535S from Nebraska Soil Lab
15 Soil Sample of Haliia from Nebraska Soil Lab
16 Soil 88p2535S from Nebraska Soil Lab
17 Soil 88p3715S from Nebraska Soil Lab
18 Soil 88p4643S from Nebraska Soil Lab
19 Soil 90p3101S from Nebraska Soil Lab
20 Soil 90P3921S from Nebraska Soil Lab
21 Soil 90P4172S from Nebraska Soil Lab
22 Soil 90P4255S from Nebraska Soil Lab
23 Soil 90P_476S from Nebraska Soil Lab
24 Leaf of Algerian Ivy (Hedera Canariensis Algerian Ivy)
25 Leaf of Arailia japonica
26 Leaf of Bird of Paradise (Strelitzea/Nicolai)
27 Leaf of Bronze Loquat (eriobotrya)
28 Leaf of Brazilian Peppertree (schinus terebinthifdias)
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Index Material list
29 Clay Brick (Common)
30 Soil Sample 1 from Concord, MA
31 Soil Sample 2 from Concord, MA
32 Soil Sample 3 from Concord, MA
33 Leaf of Cypress
34 Soil Sample 1 from Death Valley, CA
35 Soil Sample 2 from Death Valley, CA
36 Soil Sample 3 from Death Valley, CA
37 Soil Sample 4 from Death Valley, CA
38 Soil Sample 5 from Death Valley, CA
39 Soil Sample 6 from Death Valley, CA
40 Soil Sample 7 from Death Valley, CA
41 Soil Sample 8 from Death Valley, CA
42 Soil Sample 9 from Death Valley, CA
43 Soil Sample 10 from Death Valley, CA
44 Douglas Fir
45 Emissivity of Dry Grass (Averaged over 9 Sets)
46 Emissivity of Dry Grass (Averaged over 9 Sets)
47 Emissivity of Dry Grass (Averaged over 9 Sets)
48 Sample of surface in Death Valley
49 Sample of surface in Death Valley
50 Sample of surface in Death Valley
51 Sample of surface in Death Valley
52 Sample of surface in Death Valley
53 Fresh leaf of Eucalyptus tree
54 Leaf of Eucalyptus tree
55 Leaf of Evergreen Pear (pyrus Kawakami evergreen pear)
56 Flat River Washed Stone
57 Sand Sample 1 - Goleta Beach (Goleta, CA)
58 Sand Sample 2 - Goleta Beach (Goleta, CA)
59 Leaf of Green Spruce from Canada
60 Sample 1 - Emissivity of Smooth Ice (Mammoth Lakes)
61 Sample 2 - Emissivity of Smooth Ice (Mammoth Lakes)
62 Sample 3 - Emissivity of Smooth Ice (Mammoth Lakes)
63 Leaf of India Hawthorne (Raphiolepis India)
64 Sample 1 of Surface in Koehn, CA
65 Sample 2 of Surface in Koehn, CA
66 Sample 4 of Surface in Koehn, CA
67 Sample 5 of Surface in Koehn, CA
68 Sample 6 of Surface in Koehn, CA
69 Leaf of Laurel Tree (ficus microcarpa nitida)
70 Laurel leaf
71 Leaf of Laurel (Fresh)
72 Leaf Magnolia (1st day)
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Index Material list
73 Leaf of Maple (Red Star)
74 Leaf of Myoporum (myoporum laetum)
75 Leaf of Naked Coral Tree (Erythrina coraloides)
76 Leaf of Oak (Face)
77 oil Sample 1 from Oklahoma
78 Soil Sample 2 from Oklahoma
79 Soil Sample 3 from Oklahoma
80 Soil Sample 4 from Oklahoma
81 Soil Sample 5 from Oklahoma
82 Soil Sample 6 from Oklahoma
83 Soil Sample 7 from Oklahoma
84 Soil Sample 8 from Oklahoma
85 Soil Sample 9 from Oklahoma
86 Soil Sample 10 from Oklahoma
87 Soil Sample 11 from Oklahoma
88 Soil Sample 12 from Oklahoma
89 Soil Sample 13 from Oklahoma
90 Soil Sample 14444 from Oklahoma
91 Leaf of Pine (New)
92 Leaf of Pine (Old)
93 Sample 1 of Surface from Railroad Valley - Playa
94 Sample 2 of Surface from Railroad Valley - Playa
95 Sample 3 of Surface from Railroad Valley - Playa
96 Sample 4 of Surface from Railroad Valley - Playa
97 Sample 5 of Surface from Railroad Valley - Playa
98 Sample 6 of Surface from Railroad Valley - Playa
99 Sample 7 of Surface from Railroad Valley - Playa
100 Sample 8 of Surface from Railroad Valley - Playa
101 Sample 9 of Surface from Railroad Valley - Playa
102 Sample 10 of Surface from Railroad Valley - Playa
103 Powder Sample 1 from Railroad Valley
104 Powder Sample 2 from Railroad Valley
105 Seawater - Emissivity Averaged Over 18 Sets (Goleta)
106 Seawater - Emissivity Averaged Over 18 sets (Goleta)
107 Seawater - Emissivity Averaged Over 10 sets
108 Leaf of Shiny Xylosma (xylosma corgostum)
109 Sliced Santa Barbara Sandstone
110 Emissivity of Salty Soil (Averaged over 9 Sets)
111 Soil Sample 1 (Page, Arizona)
112 Soil Sample 2 (Page, Arizona)
113 Soil Sample 3 (Page, Arizona)
114 Soil Sample 4 (Page, Arizona)
115 Soil Sample 5 - Non Productive Vegetation (Page, Arizona)
116 Soil Sample 6 (Page, Arizona)
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Index Material list
117 Soil Sample 7 - Hard Pan, Fractured Somewhat (Page, Arizona)
118 Soil Sample 8 - Hard Pan, Ground (Page, Arizona)
119 Soil Sample 9 - Hard Pan, Ground (Page, Arizona)
120 Sample 1 - Emissivity of Ice Snow - Average of 3 Sets (Mammoth Lakes)
121 Sample 2 - Emissivity of Ice Snow (Mammoth Lakes)
122 Leaf of Sweet Gum (liquidamber styreciflua)
123 Leaf of Tasmanian Bluegum Eucalyptus (Eucalyptus Globulus)

* The shaded rows indicate the selected 42 desert-related sample
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