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Abstract

Near-term freshwater forecasts, defined as sub-daily to decadal future predictions of a freshwater variable with quantified

uncertainty, are urgently needed to improve water quality management as freshwater ecosystems exhibit greater variability

due to global change. Shifting baselines in freshwater ecosystems due to land use and climate change prevent managers from

relying on historical averages for predicting future conditions, necessitating near-term forecasts to mitigate freshwater risks to

human health and safety (e.g., flash floods, harmful algal blooms). To assess the current state of freshwater forecasting and

identify opportunities for future progress, we synthesized freshwater forecasting papers published in the past five years. We

found that freshwater forecasting is currently dominated by near-term forecasts of water quantity and that near-term water

quality forecasts are fewer in number and in early stages of development (i.e., non-operational), despite their potential as

important preemptive decision support tools. We contend that more freshwater quality forecasts are critically needed, and that

near-term water quality forecasting is poised to make substantial advances based on examples of recent progress in forecasting

methodology, workflows, and end user engagement. For example, current water quality forecasting systems can predict water

temperature, dissolved oxygen, and algal bloom/toxin events five days ahead with reasonable accuracy. Continued progress in

freshwater quality forecasting will be greatly accelerated by adapting tools and approaches from freshwater quantity forecasting

(e.g., machine learning modeling methods). In addition, future development of effective operational freshwater quality forecasts

necessitates substantive engagement of end users throughout the forecast process, funding, and training opportunities. Looking

ahead, near-term forecasting provides a hopeful future for freshwater management in the face of increased variability and risk

due to global change, and we encourage the freshwater scientific community to incorporate forecasting approaches in water

quality research and management.
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Abstract 22 

Near-term freshwater forecasts, defined as sub-daily to decadal future predictions of a freshwater 23 

variable with quantified uncertainty, are urgently needed to improve water quality management 24 

as freshwater ecosystems exhibit greater variability due to global change. Shifting baselines in 25 

freshwater ecosystems due to land use and climate change prevent managers from relying on 26 

historical averages for predicting future conditions, necessitating near-term forecasts to mitigate 27 

freshwater risks to human health and safety (e.g., flash floods, harmful algal blooms). To assess 28 

the current state of freshwater forecasting and identify opportunities for future progress, we 29 

synthesized freshwater forecasting papers published in the past five years. We found that 30 

freshwater forecasting is currently dominated by near-term forecasts of water quantity and that 31 

near-term water quality forecasts are fewer in number and in early stages of development (i.e., 32 

non-operational), despite their potential as important preemptive decision support tools. We 33 

contend that more freshwater quality forecasts are critically needed, and that near-term water 34 

quality forecasting is poised to make substantial advances based on examples of recent progress 35 

in forecasting methodology, workflows, and end user engagement. For example, current water 36 

quality forecasting systems can predict water temperature, dissolved oxygen, and algal 37 

bloom/toxin events five days ahead with reasonable accuracy. Continued progress in freshwater 38 

quality forecasting will be greatly accelerated by adapting tools and approaches from freshwater 39 

quantity forecasting (e.g., machine learning modeling methods). In addition, future development 40 

of effective operational freshwater quality forecasts necessitates substantive engagement of end 41 

users throughout the forecast process, funding, and training opportunities. Looking ahead, near-42 

term forecasting provides a hopeful future for freshwater management in the face of increased 43 
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variability and risk due to global change, and we encourage the freshwater scientific community 44 

to incorporate forecasting approaches in water quality research and management.  45 

 46 

Keywords: Data assimilation, Ecological forecasting, Hydrological forecasting, Hindcast, Near-47 

term iterative forecasting cycle, Uncertainty, Water quality 48 

 49 

Introduction 50 

Near-term ecological forecasts, defined here as future predictions of physical, chemical, 51 

or biological variables at sub-daily to decadal scales and incorporating uncertainty (Fig. 1; 52 

Dietze, 2017), are increasingly being developed to understand and predict the future of 53 

ecosystems (Lewis et al., 2022). Forecasts of future ecosystem conditions enable preemptive 54 

management, enabling decision-makers to prevent or mitigate risk (e.g., Berthet et al., 2016; 55 

Fujisaki-Manome et al., 2022). Among ecosystems, forecasts of freshwater ecosystems (i.e., 56 

lakes, rivers, wetlands) may be particularly valuable, as freshwaters have been more negatively 57 

impacted by human activities and global change than terrestrial or marine ecosystems (Albert et 58 

al., 2021; Moorhouse & Macdonald, 2015), necessitating new approaches for their management.  59 

The acute threats to freshwater ecosystems from global change (Field et al., 2014; Maasri 60 

et al., 2022) highlight the potential of near-term freshwater forecasting for advancing water 61 

management and freshwater resource use, as well as our understanding of freshwater ecosystems 62 

(Bradford et al., 2018, 2020; Coreau et al., 2009). Recent advances in next-generation 63 

technology for environmental monitoring of a broad range of freshwater ecosystem variables via 64 

in situ sensors, satellites, and internet of things (IoT) networks (Hestir et al., 2015; Marcé et al., 65 

2016; Singh & Ahmed, 2021); development of diverse modeling, data assimilation, and 66 
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uncertainty propagation methods in ecological studies (e.g., Chen et al., 2021; Heilman et al., 67 

2022; Varadharajan et al., 2022); and a growing community of practice around ecological 68 

forecasting (Dietze & Lynch, 2019) are synergistically facilitating the increased production of 69 

near-term freshwater forecasts (Fig. 2).  70 

These advances present opportunities for freshwater scientists to integrate new tools and 71 

skills into forecasting efforts. In this review, we analyze the recent progress of freshwater 72 

forecast development, i.e., the variables being forecasted and methods used, the accuracy of 73 

recently developed forecasts, and the application of forecasts for different end users. We identify 74 

future opportunities for advancing freshwater forecast production and use, and outline 75 

recommendations forward for galvanizing the freshwater quality forecasting community. 76 

 77 

Motivation for freshwater forecasting 78 

Recent efforts in near-term freshwater forecasting have been motivated in many cases by 79 

the increased variability of freshwater ecosystems due to global change (Bradford et al., 2018; 80 

Gilarranz et al., 2022; Reggiani et al., 2022). Forecasts are most useful when they provide 81 

actionable information about future conditions that was previously unknown: e.g., there is no 82 

need for setting up a forecasting system generating month-ahead forecasts if next month’s water 83 

quality conditions are consistently identical to today’s water quality conditions. Unfortunately, 84 

the increased ecosystem variability experienced by many freshwaters under global change 85 

precludes the use of historical baselines to inform our expectation of their future conditions 86 

(Bradford et al., 2018; Gilarranz et al., 2022; Millar & Woolfenden, 1999). Much of this 87 

variability is occurring on short time scales (days to seasons) and is manifested across physical, 88 

chemical, and biological freshwater variables. For example, intense drought and floods due to 89 
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climate change are altering water quantity in lakes, rivers, and wetlands (Davenport et al., 2021). 90 

Similarly, dissolved oxygen concentrations, a key control on freshwater quality, are declining in 91 

temperate lakes worldwide as water temperatures warm (Jane et al., 2021) and peak summertime 92 

algal bloom intensity increases (Ho et al., 2019). These examples are a few of the many physical, 93 

chemical, and biological changes that are being experienced by freshwater ecosystems 94 

worldwide in response to global change.  95 

Near-term forecasting provides critically-needed opportunities for proactive, preemptive 96 

management of freshwater ecosystems to conserve and protect ecosystem health and services in 97 

response to increased variability under global change (Bradford et al., 2018, 2020; Reggiani et 98 

al., 2022). For example, if managers had advance warning of a future flood, they could 99 

preemptively re-route traffic from low-lying areas or coordinate evacuations to minimize human 100 

risk (Berthet et al., 2016). Similarly, a forecast of potential water quality impairment due to low 101 

dissolved oxygen levels or an intense algal bloom could allow managers to preemptively plan 102 

reservoir water releases, activate aeration systems (Quinn et al., 2005), or inform recreational 103 

beach closures (Choi et al., 2022). As much of the environmental variability currently exhibited 104 

in freshwater ecosystems is expected to intensify in the future under global change, it is critical 105 

to develop freshwater forecasts now. 106 

 107 

Overview of the near-term, iterative forecasting cycle 108 

Many near-term forecasting systems use the iterative forecasting cycle as their foundation 109 

(Fig. 1; Dietze, 2017), which includes: engagement of end users; coordination of the forecasting 110 

team; model, infrastructure, and workflow development; data collection; uncertainty 111 

quantification; data assimilation (Table 1); forecast generation; forecast assessment; and 112 
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dissemination to end users. Ideally, targeted freshwater forecast end users (e.g., managers, 113 

natural resource decision-makers) are engaged at the beginning of the forecast process to 114 

identify: 1) first, whether a forecast would assist in achieving end user goals; 2) if yes, then 115 

which forecasted variables are needed; and 3) the frequency and method of forecast 116 

dissemination (e.g., Berthet et al., 2016; Fujisaki-Manome et al., 2022; Gerst et al., 2020; Fig. 1 117 

Step A). If end users have determined a freshwater forecast is needed, a forecasting team must be 118 

assembled and coordinated, likely including members with expertise in freshwater science, 119 

freshwater modeling, data collection (e.g., sensors, remote sensing), cyberinfrastructure, water 120 

management, and end user engagement (Carey et al., 2022; Fig. 1 Step B). The team will then 121 

work to develop the models, infrastructure, and workflows needed to produce forecasts (e.g., 122 

calibrate a model for the forecast site, install in situ sensors, identify which software or protocols 123 

will be used for forecast automation; Fig. 1 Step C), and begin obtaining input and validation 124 

data for forecasts (Fig. 1 Step D). Before forecasts are generated, the uncertainty associated with 125 

the forecast should be quantified so that a level of confidence in predictions can be 126 

communicated to end users (Fig. 1 Step E), and the most recent observational data can update the 127 

model (i.e., data assimilation; Table 1) so that the model is as closely aligned with current 128 

conditions as possible (Fig. 1 Step F). Finally, a forecast is generated (Fig. 1 Step G), 129 

disseminated to end users (Fig. 1 Step H), assessed with observations when data become 130 

available (Fig. 1 Step I), and the cycle begins again by seeking end user feedback to help assess 131 

the forecast and forecasting workflow (Fig. 1 Step A).  132 

A key component of the near-term iterative forecasting cycle, which distinguishes 133 

forecasts from model predictions, is incorporating, quantifying, and reporting the uncertainty 134 

associated with estimates of future ecosystem states (Jakeman et al., 2019; Reggiani et al., 2022). 135 
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Uncertainty in near-term freshwater forecasts can arise from a variety of sources (Table 1), 136 

including uncertainty in forecasted model driver variables (e.g., error in the weather forecasts 137 

which serve as model input for a river flow forecast); uncertainty due to the forecast model 138 

structure’s inability to fully represent the complex, real-world processes influencing the target 139 

forecast variable; uncertainty in model parameter estimates, and uncertainty in estimates of 140 

current (initial) conditions used as the starting point for running forecast models (Jakeman et al., 141 

2019). When a forecast is produced, these uncertainties propagate (e.g., error in forecasted model 142 

driver variables leads to error in forecast model output; Table 1), resulting in increased 143 

uncertainty as the forecast progresses farther into the future (Dietze, 2017). Specifying the 144 

uncertainty associated with a model’s prediction of future conditions, summed from the error 145 

sources described above and their interactions, facilitates informed decision-making by forecast 146 

end users. 147 

Once a forecast has been generated and disseminated (Fig. 1 Steps G, H), there are many 148 

ways in which forecast accuracy and uncertainty can be assessed (Fig. 1 Step I; see Table 2 for 149 

examples of metrics developed to compare forecasts to observations and assess forecast 150 

uncertainty). In addition to comparing forecasts to observations, evaluation of forecasts using 151 

simple null or “naive” models (e.g., Perretti et al., 2013; see Table 1) has been identified as a 152 

best practice to test whether the chosen forecast model outperforms forecasts that assume the 153 

world is static (Harris et al., 2018; Lewis et al., 2022; White et al., 2019), i.e., whether the 154 

forecast provides a benefit. For example, a naive model might assume that tomorrow’s 155 

conditions will resemble today’s conditions with added noise (persistence forecast), or that they 156 

will be the same as a running average of that day-of-year’s conditions from the past ten years 157 

(“climatology” or historical mean forecast; Jolliffe & Stephenson, 2012). Finally, a newly 158 
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developed forecasting model can also be compared to the previously best-performing forecasting 159 

model for a specific target variable (e.g., Jin et al., 2019).  160 

While the forecasting cycle (Fig. 1) represents best practices in near-term iterative 161 

forecasting (sensu Lewis et al., 2022), not all forecasting systems implement each step. For 162 

example, near-term freshwater forecasts can be characterized depending on whether the forecast 163 

is produced with data assimilation (Fig. 1 Step F; Table 1). Data assimilation (Table 1) can be 164 

conducted in multiple ways: e.g., by refitting a forecast model with the most recent observations, 165 

directly updating the initial conditions of the model to match recent observations, or using a 166 

statistical technique such as an ensemble Kalman filter or particle filter (Table 1) to adjust model 167 

predictions to be consistent with recent observations given uncertainty in both model predictions 168 

and observations (Cho et al., 2020; Dietze, 2017). Data assimilation has been shown to improve 169 

the accuracy of freshwater predictions (Cho et al., 2020), so has much potential for improving 170 

forecast usability, but is also computationally intensive and requires cyberinfrastructure for 171 

connecting data to models for real-time forecasting.  172 

Another way forecasting systems can be characterized is by their workflows (Fig. 1 Step 173 

C). Forecast workflows can either be manual (i.e., steps in the iterative forecasting cycle are 174 

completed by a human) or automated (i.e., steps are triggered via cyberinfrastructure and occur 175 

without human intervention), depending on the goals of the forecasting project, forecast horizon, 176 

and frequency of data assimilation. For example, data ingest, defined as the process of making 177 

data accessible to the model (Table 1), can be done manually (e.g., a researcher digitizes new 178 

data; White et al., 2019) or it can be automated (e.g., sensor data are wirelessly streamed to a 179 

server and assimilated into the forecast model via cloud computing; Daneshmand et al., 2021). 180 

Other components of forecast workflows, including running models, creating forecast 181 
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visualizations, and disseminating forecasts to end users, can also be automated (e.g., Baracchini 182 

et al., 2020). Automated, iterative workflows are often necessary for generating operational 183 

freshwater forecasts, defined as forecasts that are routinely produced and disseminated to the 184 

public and other end users (Table 1; e.g., Ayzel, 2021; Emerton et al., 2018; Fry et al., 2020; 185 

Nicolle et al., 2020). Manual forecast workflows are sometimes produced in academic settings as 186 

a tool for answering freshwater science research questions (e.g., Zwart et al., 2019), model 187 

testing, or when the temporal frequency of data collection and analysis is low enough or the 188 

forecast horizon is long enough (seasonal to annual forecasts) that automated, iterative 189 

workflows are not needed (e.g., Messager & Olden, 2018). For example, if a forecasting system 190 

is making 1 to 10-year-ahead forecasts of freshwater fish abundance using models run on an 191 

annual time step, there is likely no need for an automated system; in contrast, if a forecasting 192 

system is making hourly forecasts of floods, an automated iterative workflow would likely be 193 

critical.  194 

The near-term iterative forecasting cycle (Fig. 1) can also be applied to predictive 195 

approaches which are critical for supplementing, advancing, and supporting forecasting system 196 

development and operation. In particular, hindcasting and model projections can be highly 197 

informative for developing near-term freshwater forecasts and informing freshwater decision-198 

making (Table 1; Dietze, 2017; Jolliffe & Stephenson, 2012). Hindcasting, defined as developing 199 

forecasts for a time period which has already occurred (Jolliffe & Stephenson, 2012), is often 200 

done to test new forecast models (Kelley, 2022) or apply forecast models in new ecosystems 201 

(Woelmer et al., 2022). In practice, the only necessary difference between forecasting and 202 

hindcasting workflows is that the date for which the prediction is produced is either in the future 203 

(forecast) or the past (hindcast); all other components of the workflow (e.g., data assimilation, 204 



10 

propagation of uncertainty) could be identical. In comparison, model projections run models into 205 

the future using a set of underlying assumptions or scenarios, thereby predicting a future 206 

predicated on specific conditions. For example, Lewandoski & Brenden (2022) developed model 207 

projections of whether continued lampricide application at historical levels would achieve 208 

invasive sea lamprey suppression targets in Lake Superior, USA by 2040. While projections can 209 

provide preemptive decision-making guidance, they cannot be used to make probabilistic 210 

statements about future events (unlike forecasts or hindcasts) since it is unknown which scenario 211 

is most likely to occur (Dietze, 2017). Hindcasting and model projection techniques can also be 212 

combined for assessing possible alternative management actions. For example, Bourgeaux et al. 213 

(2022) produced projections for a past time period to assess whether managed water releases 214 

from a floodplain lake could have achieved a lake escapement target to downstream habitat for 215 

threatened European eels. 216 

 217 

Water quantity vs. water quality forecasting 218 

Near-term forecasting of freshwater quantity (e.g., runoff, discharge, water level) has 219 

been a focus within hydrology for decades (Jain et al., 2018; Troin et al., 2021). Progress in 220 

water quantity forecasting has been motivated by the substantial risk to human health and 221 

property posed by both flooding and drought, which have both become more acute under global 222 

change (Han & Coulibaly, 2017; Jain et al., 2018; Kikon & Deka, 2022). These risks have 223 

prompted the creation of government-supported agencies and public and private centers to 224 

support water quantity forecasting at local, regional, national, and international scales (Troin et 225 

al., 2021) and grassroots communities of practice focused specifically on water quantity 226 

forecasting (e.g., Schaake et al., 2007). These communities facilitate interdisciplinary 227 
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collaboration, knowledge transfer, and subsequently enable application of water quantity 228 

forecasting techniques at new sites.  229 

Development of robust forecast systems for water quantity have been enabled in many 230 

cases by long-term government funding for sensor networks (Gunn et al., 2014) and well-231 

established modeling approaches (Han & Coulibaly, 2017; Kikon & Deka, 2022; Mosavi et al., 232 

2018; Troin et al., 2021). As a result, many water quantity forecasts are now automated and 233 

disseminated to water managers and the public at scales ranging from individual rivers or 234 

reservoirs to national and global scales (e.g., Ayzel, 2021; Baracchini et al., 2020; Emerton et al., 235 

2018; Fry et al., 2020; Nicolle et al., 2020). Robust water quantity forecast systems have in turn 236 

enabled assessment of forecast economic value and utility to managers in various ways, 237 

including identifying which reservoir inflow forecast horizons are most useful to managers 238 

(Turner et al., 2020), estimating profit for farmers following forecast-informed water allocation 239 

(Giuliani et al., 2020), and assessing managers’ ability to use streamflow forecasts to achieve a 240 

target reservoir level (Turner et al., 2017).  241 

To date, the creation and public dissemination of freshwater quality forecasts have been 242 

less common than for water quantity. While much effort has been dedicated to prediction of 243 

select water quality variables, e.g., cyanobacterial density (Rousso et al., 2020) or water 244 

temperature (Baracchini et al., 2020; Ouellet-Proulx, St-Hilaire, et al., 2017; Sadler et al., 2022; 245 

Zhu & Piotrowski, 2020), agency- and/or center-based support and routine dissemination of 246 

water quality forecasts lags behind flood and stream/river discharge forecasting.  247 

However, recent developments suggest that freshwater quality forecasting may catch up 248 

to water quantity forecasts in the near future. For example, the development of water quality 249 

monitoring sensor networks and the ability to wirelessly stream water quality data to the cloud 250 
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(Hestir et al., 2015; Marcé et al., 2016) permit updating of forecast models and forecasts in more 251 

remote locations and at higher resolution than was previously possible. Moreover, development 252 

of freshwater quality forecasts to inform natural resource management is now a priority for some 253 

government agencies (e.g., Bradford et al., 2020; NOAA, National Oceanic and Atmospheric 254 

Administration, 2014). Concurrently, interdisciplinary communities of practice, such as the 255 

Ecological Forecasting Initiative (Dietze & Lynch, 2019), are enabling idea generation and 256 

knowledge transfer among forecasters that could be used to advance the accuracy and utility of 257 

freshwater quality forecasts.  258 

In sum, freshwater quality forecasting may be poised to advance rapidly in the near 259 

future, but the extent to which freshwater quality forecast workflows, methods, and accuracy 260 

compare to freshwater quantity forecasting remains unknown. To assess the field of near-term 261 

freshwater forecasting, we conducted a state-of-the-art literature review (sensu Grant & Booth, 262 

2009) to synthesize and quantify recent progress in near-term forecasting of freshwater quality. 263 

We specifically focused on water quality as an emerging field within ecological forecasting to 264 

examine the progress in freshwater quality relative to freshwater quantity to date as well as 265 

identify potential future opportunities and challenges to overcome. Our questions centered 266 

around three focal areas: 267 

I. Forecast variables, scales, models, and accuracy: Which freshwater variables and 268 

temporal scales are most commonly targeted for near-term forecasts, and what modeling 269 

methods are most commonly employed to develop these forecasts? How is the accuracy 270 

of freshwater quality forecasts assessed, and how accurate are forecasts? How is 271 

uncertainty typically incorporated into water quality forecast output? 272 
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II. Forecast infrastructure and workflows: Are automated, iterative workflows commonly 273 

employed in near-term freshwater quality forecasting? How often are forecasts validated 274 

and archived? 275 

III.  Human dimensions of forecasts: What are the stated motivations for creating near-term 276 

freshwater quality forecasts, and who are the most common end users (if any)? How are 277 

end users engaged in forecast development? 278 

Below, we present our findings for each of these focal areas. We then synthesize across the focal 279 

areas with recommendations to advance the accuracy and scope of near-term freshwater quality 280 

forecasts and their utility to resource managers and other end users in an era of global change. 281 

 282 

Materials and Methods 283 

We conducted a state-of-the-art literature review (sensu Grant & Booth, 2009) of 284 

freshwater forecasting to assess the state of the field, recent progress, and ongoing challenges 285 

(see Text S1 and Fig. S1 for detailed methods). First, we conducted a search for peer-reviewed 286 

literature published in the last five years (since 1 January 2017) that included four key concepts 287 

(freshwater, forecasting, freshwater forecast target variables, and a combined resource 288 

management/global change concept) using the Web of ScienceTM Core Collection database (see 289 

Text S1 and Table S1 for detailed methods). All papers were accessed before 17 February 2022.  290 

Second, we conducted a title screen for relevance, followed by an initial screen of papers. 291 

During the initial screen, we assessed whether: 1) the paper presented a prediction into the future 292 

from the perspective of the model (meaning no environmental observations were used as model 293 

input during the future prediction period); 2) the timescale of the prediction was near-term 294 

(minimum forecast horizon ≤ 10 yr; see Table 1 for definition of forecast horizon) or long-term; 295 
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3) the prediction was a forecast, hindcast, or projection and included uncertainty; 4) the target 296 

variable was freshwater quantity or quality. We also assessed the modeling approach for each 297 

paper, which we classified following Table 2. We then filtered our results to near-term forecasts, 298 

hindcasts, or projections with uncertainty of water quality variables. We included hindcasts and 299 

projections in addition to forecasts because: 1) the iterative, near-term forecasting cycle can be 300 

applied to all three predictive approaches; 2) both forecasts and model projections were used for 301 

freshwater management decision-making; and 3) we found that differentiating between forecasts 302 

and hindcasts was often not possible based on the information presented in peer-reviewed papers 303 

or their supplementary materials. 304 

Third, we further analyzed each paper’s near-term freshwater quality forecast, hindcast, 305 

or projection with uncertainty using a standardized matrix (Table S2) that addressed our focal 306 

research questions. Finally, we used the data from both our initial screen and in-depth water 307 

quality forecast analysis to assess the state of freshwater forecasting and identify areas of recent 308 

progress and ongoing challenges (see Text S1: Literature review methods for further details).  309 

All data from the state-of-the-art literature review are available in the Environmental 310 

Data Initiative Repository (Lofton et al., 2022b) and all analysis-related code is published in the 311 

Zenodo repository (Lofton et al., 2022a). 312 

Two important caveats to our review are that operational near-term freshwater quality 313 

forecasts produced by government agencies and private entities may not be routinely published 314 

in peer-reviewed articles, and that not all forecasting-relevant research results in production of 315 

near-term forecasts. For example, the United States (U.S.) National Oceanic and Atmospheric 316 

Administration (NOAA) provides both annual forecasts of cyanobacterial bloom intensity 317 

(Stumpf et al., 2016) as well as near-term bloom position predictions for Lake Erie (U.S. NOAA, 318 
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Center for Operational Oceanographic Products and Services, 2018), but neither of these 319 

products were retrieved by our literature search. Moreover, in select cases information on 320 

operational near-term water quality forecast workflows may not be published for water security 321 

reasons, e.g., risk of cyberattack on water distribution infrastructure (Housh & Ohar, 2018). 322 

Finally, papers may report research that is important for advancing near-term freshwater quality 323 

forecasting but does not actually produce a forecast (e.g., Sadler et al., 2022; Zwart et al., 2019).  324 

 325 

Results 326 

I. Forecast variables, scales, models, and accuracy 327 

Our literature search retrieved 963 papers, of which 507 were identified as describing 328 

future predictions of freshwater variables during our initial screen. While our focus was on water 329 

quality as described above, we analyzed all 507 “freshwater prediction papers” to compare the 330 

fields of freshwater quality vs. quantity (Fig. 3).  331 

 332 

Water quantity dominates current freshwater prediction efforts 333 

Water quantity variables (defined as lake or reservoir inflow, stream or river discharge, 334 

water level, or flood risk) were much more commonly predicted than any other freshwater 335 

variables (83%, n=424 of 507 freshwater prediction papers; Fig. 3). The vast majority (94%) of 336 

these 424 water quantity papers presented predictions at near-term (minimum forecast horizon ≤ 337 

10 yr) timescales (Fig. 3). However, 50% of water quantity prediction papers (n=214 of 424) did 338 

not include uncertainty associated with predictions (Fig. 3).  339 

Machine learning models (n = 191 of 424 papers) and ecosystem simulation models (n = 340 

130) were the most frequent model types identified among papers presenting water quantity 341 
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predictions (Fig. S2; see Table 2 for model type definitions). Machine learning models were the 342 

most common (140 of 231; 61%) model type in papers presenting near-term water quantity 343 

predictions without uncertainty, while simulation models were the most common (88 of 235; 344 

37%) model type for predictions presented with uncertainty (Fig. S2). Simulation models were 345 

also the most popular choice (n = 18 of 27) among long-term (minimum horizon > 10 yr) water 346 

quantity predictions (Fig. S2). While most papers presented only one modeling approach, 13% of 347 

the water quantity prediction papers (n = 57 of 424) employed more than one modeling 348 

approach, with machine learning and empirical models being most commonly used in the same 349 

paper (n = 20 papers).  350 

Water quality predictions target diverse ecosystem variables 351 

The 16% of papers (n=83 of 507 freshwater prediction papers) predicting a water quality 352 

variable targeted a wide diversity of water quality metrics (Fig. 4). Popular target variables 353 

spanned physical water quality metrics (e.g., water temperature, n = 13 papers; 354 

sediment/turbidity, n = 9), chemical metrics (e.g., dissolved oxygen, n = 13; phosphorus or 355 

nitrogen concentrations, n = 10; conductivity/salinity, n = 8), and biological metrics (e.g., fish 356 

abundance or distribution, n = 11; phytoplankton abundance, n = 8; Fig. 4). Among water quality 357 

prediction papers, 64% (53 of 83 papers) did not incorporate uncertainty. 358 

 359 

Most freshwater quality predictions are near-term 360 

The majority (73%; n = 61 of 83) of water quality papers presented predictions at near-361 

term (minimum forecast horizon ≤ 10 yr) timescales (Fig. 3). Papers presenting water quality 362 

predictions at long-term horizons more often included uncertainty compared to those presenting 363 

water quality predictions at near-term horizons (64% vs. 26%, respectively; Fig. 3). Altogether, 364 
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16 out of the 507 papers presented near-term water quality forecasts, hindcasts, or projections 365 

with uncertainty and were analyzed using our standardized matrix (Fig. 3; Table S3).  366 

Among the 16 identified near-term water quality forecasts, hindcasts, or projections with 367 

uncertainty, minimum forecast horizons ranged from sub-daily (4 hr) to decadal (10 yr), with 3 368 

papers presenting a maximum forecast horizon >10 yr (Fig. 5; Table S3). Papers presenting 369 

water quality forecasts, hindcasts, or projections for lotic ecosystems tended to either have daily 370 

(<7 days) or decadal (≥10 yr) maximum horizons, while forecasts in lentic ecosystems had 371 

horizons ranging from daily to monthly (30 – 365 days) scales (Fig. 5). There was no observable 372 

pattern relating the type of water quality target variable (physical, chemical, biological, or 373 

multiple) to maximum forecast horizon (Fig. 5).  374 

 375 

Multiple modeling methods are being used to predict freshwater quality  376 

Machine learning models (n = 34 of 83 papers), ecosystem simulation models (n = 22), 377 

and empirical models (n = 22) were the most frequent model types identified among papers 378 

presenting water quality predictions (Fig. S2; see Table 2 for model type definitions). Similar to 379 

water quantity prediction papers, machine learning models were the most common model type in 380 

papers presenting near-term water quality predictions without uncertainty, while simulation 381 

models were the most common model type for near-term water quality predictions presented 382 

with uncertainty (Fig. S2). Empirical models (defined in Table 2) were most often used for long-383 

term water quality predictions (Fig. S2). Ten percent of water quality prediction papers (n = 8 of 384 

83) employed more than one modeling approach. However, we found that only five of 16 near-385 

term freshwater quality forecasting papers compared two or more models, with only three papers 386 
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comparing the primary forecast model to a null model (defined as a persistence, historical mean, 387 

or first-order autoregressive forecast; Fig. 6).  388 

 389 

Water quality forecast accuracy is usually assessed, but comparison of forecasts is challenging 390 

Due to the wide variety of forecast target variables and assessment metrics presented 391 

among the near-term water quality papers we reviewed, we evaluated forecast accuracy (defined 392 

in Table 1) based on the metrics provided by the authors in each paper. Five of 16 water quality 393 

papers did not present a quantitative assessment of forecast accuracy. Of those that did provide 394 

quantitative assessment, root mean square error (RMSE; Table 2), reliability diagrams (Bröcker 395 

& Smith, 2007; Table 2), and continuous ranked probability score (CRPS; Table 2) were the 396 

most commonly employed assessment metrics (Fig. 6).   397 

Across studies, forecast accuracy varied among target variables and forecast horizons 398 

(Table 3). Three studies forecasting reservoir and river water temperature reported CRPS < 1.1º 399 

C (see Table 2 for definition and interpretation of CRPS) for forecast horizons from one to 16 400 

days into the future (Table 3; Ouellet-Proulx, Chimi Chiadjeu, et al., 2017; Ouellet-Proulx, St-401 

Hilaire, et al., 2017; Thomas, Figueiredo, et al., 2020). An additional study reported greater 402 

accuracy in seasonal (one- to four-month-ahead) forecasts of bottom water temperatures 403 

compared to surface waters across four lakes and reservoirs in Spain, Norway, Germany, and 404 

Australia (Table 3; Mercado-Bettín et al., 2021), which the authors attributed to greater thermal 405 

inertia in the bottom waters of lakes. Two studies provided forecasts of nitrogen (N) and 406 

phosphorus (P) concentrations (NH4-N, NH3-N, total N, total P), with a reported bias (Table 2) 407 

ranging from 0.001 to 0.028 mg L-1 for 0 – 5 days ahead (Peng et al., 2020) and a reported 408 

RMSE of 0.0487 mg L-1 for one-day-ahead forecasts of NH3-N concentrations (Table 3; Jin et 409 
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al., 2019). Forecasts of lake dissolved oxygen concentrations (bias = 0.008 – 0.022 mg L-1 for 0 – 410 

5 day lead times; Peng et al., 2020), lake methane ebullition emissions (RMSE = 0.48 – 0.53 411 

ln(mg CH4 m-2 d-1) for one- and two-week lead times; McClure et al., 2021), river turbidity 412 

(RMSE = 0.0024 NTU for one-day-ahead forecasts; Jin et al., 2019), and river conductivity 413 

(RMSE = 0.0068 μS cm-1 for one-day-ahead forecasts; Jin et al., 2019) were reported by one 414 

study each (Table 3). 415 

While three studies presented near-term forecasts of phytoplankton-related variables in 416 

lakes, differences in their methodology precluded comparison. Two studies assessed their 417 

forecasts by converting the forecast to binary predictions (occurrence/non-occurrence of a bloom 418 

event; Mu et al., 2021) and exceedance/non-exceedance of a cyanobacterial toxin concentration 419 

threshold Liu et al., 2020), both of which reported better-than-chance skill at forecast horizons 420 

up to 5 – 7 days ahead (Table 3). One additional study provided probabilistic forecasts of 421 

chlorophyll-a concentrations in two English lakes, with a reported RMSE of ~2.75 – 5.25 mg m-3 422 

for 1–10 days ahead over three years at one lake, and an RMSE of ~8.25 – 17 mg m-3 for 1 – 10 423 

days into the future over two years at the second lake (Table 3; Page et al., 2018). 424 

 425 

Less than half of water quality predictions incorporate uncertainty 426 

Notably, only 36% of papers (30 of 83) that presented predictions of freshwater quality 427 

variables into the future incorporated uncertainty (Fig. 3). Within near-term water quality 428 

forecasts, hindcasts, and projections with uncertainty (n = 16), multiple methods of uncertainty 429 

specification were employed. For example, some papers included the concept of uncertainty but 430 

did not quantify it (e.g., used different land use change scenarios as model drivers; Chen et al., 431 

2020; these papers were categorized in the “present” category for uncertainty inclusion methods 432 
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following Table 2) whereas others quantified and propagated uncertainty while also iteratively 433 

assimilating new observations to constrain initial conditions (e.g., Baracchini et al., 2020; Liu et 434 

al., 2020; these papers were categorized in the “assimilates” category for uncertainty inclusion 435 

methods following Table 2; Fig. 6). Of the sixteen near-term freshwater quality prediction papers 436 

that reported uncertainty, four were projections and 12 were forecasts or hindcasts. A majority (n 437 

= 7 of 12) of near-term freshwater quality forecasts and hindcasts both propagated uncertainty 438 

and assimilated new observations (Fig. 6). All papers presenting projections were categorized as 439 

having uncertainty “present” or “data-driven” (i.e., not propagating uncertainty or assimilating 440 

new observations; see Table 2 for definitions of uncertainty categories). 441 

 442 

II. Forecast infrastructure and workflows 443 

Overall, while most of the near-term freshwater quality forecasts we analyzed were 444 

generated using the iterative forecasting cycle framework (n = 11 of 16; Fig. 1, Table S3), only 445 

three papers representing two forecasting systems reported producing forecasts via automated 446 

workflows (Baracchini et al., 2020; Carey et al., 2022; Thomas, Figueiredo, et al., 2020). In both 447 

cases, the authors described automated forecast workflows that included the steps of: 1) retrieval 448 

of new observational data and meteorological forecasts to force a freshwater ecosystem 449 

forecasting model; 2) assimilation of observational data to inform model initial conditions and 450 

parameters; 3) model runs; and 4) delivery of the automated forecast to end users via a web 451 

interface or other web-based communication (Baracchini et al., 2020; Carey et al., 2022; 452 

Thomas, Figueiredo, et al., 2020).  453 

Archiving forecasts was also not a commonly-reported practice among forecast papers. 454 

Three papers reported archiving of forecasts, either by publishing data and forecasts retroactively 455 
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to a data repository upon publication of the associated paper (McClure et al., 2021) or providing 456 

them in real time via an open online platform or repository (Baracchini et al., 2020; Carey et al., 457 

2022). In two cases, authors reported that the forecast-related code was also published with a 458 

digital object identifier (DOI; Carey et al., 2022; McClure et al., 2021). We note that information 459 

on infrastructure and workflows may be difficult to extract from academic research papers as the 460 

focus is often on forecast results and performance rather than methodology. In addition, as noted 461 

above, operational forecast workflows developed by government agencies or private entities may 462 

not be published in academic journals, or the availability of these workflows may be limited by 463 

ethical considerations or security concerns (Hobday et al., 2019; Housh & Ohar, 2018). 464 

 465 

III. Human dimensions of forecasts 466 

Water quality forecasts are motivated by ecosystem services and increased variability 467 

 The development of many of the near-term freshwater quality forecasts we analyzed was 468 

motivated by the need for freshwater ecosystem services in the face of increased ecosystem 469 

variability due to global change (Fig. 2). Researchers identified increased variability in 470 

management-relevant ecosystem variables such as water temperature (Carey et al., 2022; 471 

Thomas, Figueiredo, et al., 2020), distribution of freshwater fishes (Fraker et al., 2020), invasive 472 

species (Messager & Olden, 2018), and algal biomass (Liu et al., 2020; Mu et al., 2021; Page et 473 

al., 2018) as motivation for forecast development. In all cases, the stated motivation for 474 

anticipating increased variability was coupled with a desire to preemptively inform freshwater 475 

management and decision-making. Indeed, improving freshwater resource management was 476 

stated as motivation for forecast development in every freshwater quality forecast paper we 477 

analyzed (see Table S3 for complete list), save one (McClure et al., 2021). In addition to 478 
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providing early warnings to resource managers and the public under global change, researchers 479 

mentioned improving forecasting methodology (Bhattacharyya & Sanyal, 2019; Peng et al., 480 

2020) and understanding of ecological processes (McClure et al., 2021) as additional factors 481 

motivating forecast development. 482 

 483 

End user engagement not often reported in water quality forecast papers 484 

 Despite that nearly all freshwater quality forecast papers stated improved water resource 485 

management as motivation for forecast development, only six of 16 papers, representing four 486 

distinct forecast systems, named any forecast end users (Baracchini et al., 2020; Carey et al., 487 

2022; Liu et al., 2020; Ouellet-Proulx, Chimi Chiadjeu, et al., 2017; Ouellet-Proulx, St-Hilaire, 488 

et al., 2017; Thomas, Figueiredo, et al., 2020). These four forecast systems generated predictions 489 

for a small, temperate drinking water reservoir (Falling Creek Reservoir, U.S.; Carey et al., 2022; 490 

Thomas, Figueiredo, et al., 2020), a large north temperate lake (Lake Geneva, Switzerland; 491 

Baracchini et al., 2020), two north temperate rivers (Miramichi and Nechako Rivers, Canada; 492 

Ouellet-Proulx, Chimi Chiadjeu, et al., 2017; Ouellet-Proulx, St-Hilaire, et al., 2017), and a 493 

Laurentian Great Lake (Lake Erie, U.S.; Liu et al., 2020). Incorporation of end users ranged from 494 

briefly mentioning that end users were associated with a particular forecast site or variable (Liu 495 

et al., 2020; Ouellet-Proulx, Chimi Chiadjeu, et al., 2017; Thomas, Figueiredo, et al., 2020) to 496 

detailing multiple mechanisms for engaging end users in forecast development (Carey et al., 497 

2022). Carey et al. (2022) described co-developing a water quality forecast with drinking water 498 

reservoir managers in southwest Virginia, U.S. by: 1) working with managers to identify useful 499 

target variables for forecasting; 2) observing water treatment plant operations to better 500 

understand managers’ daily activities; and 3) requesting feedback on forecast visualizations to 501 
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improve their use for decision-making. Ouellet-Proulx, St-Hilaire et al. (2017) also provide a 502 

specific management motivation for their target variable of water temperature: helping lake 503 

managers in British Columbia, Canada plan summer water releases to reduce thermal stress for 504 

downstream freshwater fish.  505 

While most papers focused on resource managers as potential end users or did not specify 506 

end user identity, one paper did report on how forecasts were used by multiple user groups. 507 

Baracchini et al. (2020) documented the use of their hydrodynamics and water temperature 508 

forecast system by various members of the community surrounding Lake Geneva, Switzerland 509 

using data collected from their forecast dissemination website. The authors were able to verify 510 

forecast use and acceptance by the community (evidenced by ~1000 visitors to their website per 511 

day in summer 2019) and to differentiate three types of end users: scientists, lake professionals, 512 

and the public. While end user engagement was infrequently reported in near-term water quality 513 

forecast papers, it is possible that forecast teams were engaging end users but not reporting it, 514 

especially if the focus of the paper was to document other aspects of the forecast system, such as 515 

model development or forecast accuracy. 516 

 517 

Discussion & Synthesis: Opportunities to advance near-term freshwater quality forecasting 518 

Our findings indicate that the majority of near-term water quality forecasts published as 519 

peer-reviewed articles in the past five years are in an early stage of development, serving as 520 

“proofs-of-concept” rather than as operational forecasts. These results set the stage for additional 521 

work to be done before water quality forecasting catches up with water quantity forecasting. 522 

Nonetheless, the papers we analyzed demonstrate key areas of recent progress that will be 523 

critical to future development of operational near-term freshwater quality forecasts, including: 524 
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quantitative, probabilistic forecasts of both abiotic and biotic variables (e.g., Jin et al., 2019; Liu 525 

et al., 2020; Page et al., 2018; Peng et al., 2020), forecasts at management-relevant time horizons 526 

(e.g., Mercado-Bettín et al., 2021), use of probabilistic forecast assessment metrics (e.g., Ouellet-527 

Proulx, Chimi Chiadjeu, et al., 2017; Ouellet-Proulx, St-Hilaire, et al., 2017), comparison of 528 

forecasts to null models (e.g., McClure et al., 2021; Page et al., 2018; Thomas, Figueiredo, et al., 529 

2020), uncertainty propagation and partitioning (e.g., McClure et al., 2021; Thomas, Figueiredo, 530 

et al., 2020), iterative, automated workflows (e.g., Baracchini et al., 2020; Thomas, Figueiredo, 531 

et al., 2020), co-development of forecasts with end users (e.g., Carey et al., 2022), and 532 

assessment of forecast use by a range of end users (e.g., Baracchini et al., 2020). Further 533 

advances in near-term freshwater quality forecasting will require continued development of 534 

forecasting tools and skills as well as more substantive end user engagement (Fig. 2).   535 

 Here, we synthesize the results from the review to provide a list of seven 536 

recommendations comprising an agenda for developing the next generation of near-term 537 

freshwater quality forecasts, with an emphasis on building automated, operational forecast 538 

systems (Fig. 2). 539 

 540 

1. A definition of forecast that includes uncertainty 541 

All forecasts are inherently uncertain as perfect knowledge of future events is impossible, 542 

and therefore a forecast should, by definition, specify uncertainty (Fig. 2: quantified uncertainty; 543 

uncertainty specification, propagation, and analysis). Underestimation of forecast uncertainty or 544 

omission of uncertainty from predictions can lead to overconfidence in forecast accuracy, 545 

potentially affecting management decisions based on forecast output (Berthet et al., 2016). One 546 

compelling example of the risks associated with omission of uncertainty from predictions is the 547 
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1997 Red River flooding event in Grand Forks, ND, U.S. and East Grand Forks, MN, U.S., when 548 

the U.S. National Weather Service’s prediction of a 49 ft flood crest (with no quantitative 549 

uncertainty estimate associated with the flood crest height prediction) was incorrectly interpreted 550 

by decision-makers, leading to inundation and tremendous flood damage when dikes to protect 551 

the cities failed (Pielke, 1999).  552 

In addition to improving decision-making outcomes, uncertainty quantification and 553 

partitioning (Table 1) can inform the most effective ways to improve forecast accuracy (e.g., 554 

Lofton, Brentrup, et al., 2022). For example, if uncertainty partitioning identifies that forecast 555 

model driver data is the biggest source of forecast uncertainty, then reducing uncertainty in 556 

driver data would be a logical next step for improving that forecast system (following Thomas, 557 

Figueiredo, et al., 2020). Importantly, reducing uncertainty in a forecast does not necessarily 558 

improve forecast accuracy if the forecast is biased (e.g., tends to over- or underestimate), and 559 

metrics that assess forecasts based on the degree of forecast uncertainty (e.g., sharpness; Table 2) 560 

are often predicated on the assumption that the forecast is sufficiently accurate (Gneiting, 561 

Balabdaoui, et al., 2005). Furthermore, even forecasts for which uncertainty is robustly 562 

characterized may not capture all possible future outcomes if an outcome occurs due to processes 563 

not included in the forecast model or has no historical analogue (Boettiger, 2022; NRC, 2010; 564 

Thompson & Smith, 2019). For example, a lake water quality model will likely fail to accurately 565 

predict future water quality if a new species that is not represented in the model invades the lake 566 

and alters water quality (e.g., an unexpected invasion of the spiny water flea, Bythotrephes 567 

longimanus; Walsh et al., 2016).  568 

Despite the importance of incorporating uncertainty into future predictions, our review 569 

revealed that only 36% of papers predicting freshwater quality variables into the future specify 570 
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uncertainty. Our findings highlight an opportunity for more robust specification and partitioning 571 

of uncertainty in freshwater forecasting efforts. Importantly, some freshwater forecasters are 572 

already successfully employing sophisticated uncertainty specification techniques, evidenced by 573 

the 7 of 12 near-term water quality forecasts and hindcasts which both propagate uncertainty and 574 

assimilate new observations to inform model initial conditions (Fig. 6).  575 

Importantly, while we included all methods of representing uncertainty in predictions in 576 

our review, some methods of specifying uncertainty are likely to be more useful to freshwater 577 

forecast end users than others. For example, if a manager is presented with a projection that 578 

includes uncertainty by running a model with multiple scenarios (e.g., different levels of capture 579 

effort for an invasive crayfish, such as 50, 100, or 200 person-hours per week dedicated to 580 

crayfish capture within a stream network over the next five years) but a range of uncertainty 581 

within each scenario is not specified, that projection effectively becomes a deterministic 582 

prediction with no uncertainty once a management decision is made (e.g., a capture effort of 100 583 

person-hours per week, represented by one possible scenario, is selected). If uncertainty were 584 

quantified within each scenario, a manager could evaluate the probability of achieving a desired 585 

outcome given a particular management action (e.g., a capture effort of 100 person-hours per 586 

week has a 90% probability of reducing crayfish abundance to < 1 crayfish m-2 in five years). 587 

Considering how a forecast or projection will be used for decision-making should guide methods 588 

for quantifying uncertainty in freshwater quality predictions. 589 

 590 

2. Integration of end users into the forecast process 591 

 Freshwater quality forecasts are developed by people, for people, and to date have been 592 

primarily intended for use by freshwater managers. It follows that formation of forecaster-593 
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manager partnerships should be integral to forecast development, and that managers and other 594 

end users should be engaged throughout the forecast process (Fig. 2: end user engagement). For 595 

example, during the early stages of forecast system development, end users can identify which 596 

target forecast variables are most useful (e.g., asking ship captains whether forecasts of lake ice 597 

concentration or ice thickness are more useful; Fujisaki-Manome et al., 2022), and over which 598 

time horizons forecasts should be provided (DeFlorio et al., 2021; Turner et al., 2020). During 599 

model development, expert elicitation, a formal process of extracting expert knowledge while 600 

mitigating bias (Hemming et al., 2018), can be employed to inform model structure (e.g., 601 

Bertone et al., 2016). End users should also be consulted regarding forecast dissemination 602 

methods to ensure correct interpretation of forecast output and maximize forecast utility (Berthet 603 

et al., 2016; Gerst et al., 2020; Theocharis & Smith, 2019). For example, interviews and focus 604 

groups with end users of NOAA’s Climate Prediction Center climate outlook visualizations 605 

guided updates of NOAA’s air temperature and precipitation color maps for improved forecast 606 

interpretability (Gerst et al., 2020). Finally, feedback from managers and end users should be 607 

sought after forecast dissemination to determine if the forecast product is being successfully 608 

implemented for decision-making support (e.g., Jackson-Blake et al., 2022). 609 

Of the 16 near-term freshwater quality forecasting papers analyzed, two emphasized end 610 

user engagement, specifically co-development of forecasts with resource managers (Carey et al., 611 

2022) and assessment of forecast acceptance and use (Baracchini et al., 2020). These examples 612 

illustrate the potential for co-development of additional operational freshwater quality forecasts 613 

suitable for management decision-making in the near future. 614 

 615 
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3. More forecasts using diverse modeling approaches over multiple horizons 616 

 Advances in freshwater quality forecasting require the existence of initial forecast 617 

systems upon which to improve, serving as precursors for operational near-term water quality 618 

forecast systems (Fig. 2: operational, near-term water quality forecasts). The dominance of water 619 

quantity predictions (83% of freshwater prediction papers) over water quality predictions in our 620 

literature review underscores the critical need for developing additional near-term freshwater 621 

quality forecasts, ideally using diverse modeling approaches over multiple forecast horizons. The 622 

wide diversity of water quality forecast target variables in our review (Fig. 4) highlights that for 623 

any individual target variable, relatively few forecasts are being produced, limiting 624 

intercomparison of forecasting approaches.  625 

Forecasts of a single target variable using multiple modeling techniques at many sites 626 

(e.g., Sadler et al., 2022) are needed to produce actionable forecasts and provide insight on 627 

freshwater ecosystem function. Employing a wide diversity of modeling approaches is necessary 628 

to avoid the “forecast trap” (sensu Boettiger, 2022), wherein the most accurate available forecast 629 

does not lead to an optimal management outcome. The trap arises when the range of possible 630 

outcomes predicted by an ensemble of models is too narrow, providing managers with 631 

insufficient guidance about how their decisions might manifest in the real world (Boettiger, 632 

2022; Thompson & Smith, 2019). Moreover, forecast end users typically integrate multiple 633 

forms of information when making decisions (e.g., Fujisaki-Manome et al., 2022). As a result, 634 

development of a diversity of both quantitative (e.g., tomorrow’s dissolved oxygen will be 1.8 ± 635 

0.5 mg L-1) and categorical (e.g., the risk of observing hypoxia tomorrow will be high) forecasts 636 

that incorporate model output and human expertise (Tetlock & Gardner, 2016) will likely be 637 

needed to support a variety of forecast end users in achieving optimal management outcomes. 638 
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Importantly, forecasters should also consider both simple and complex model structures, as 639 

simple models may prove the most effective for forecasting certain variables, such as vertebrate 640 

population size forecasts (Ward et al., 2014), whereas complex process-based models may be 641 

better at forecasting conditions that fall outside of the envelope of historical conditions (Adler et 642 

al., 2020). Finally, comparison of more complex models against simple models (i.e., null or 643 

naive models) is necessary to quantify the benefit of added model complexity (e.g., Perretti et al., 644 

2013). 645 

In addition to employing diverse modeling approaches, production of forecasts at 646 

multiple time horizons is needed to ensure maximum forecast utility for end users. Different end 647 

user decisions are made at different time scales; for example, a ship captain may be most 648 

interested in lake ice conditions over the next several hours to days when deciding whether to 649 

embark (Fujisaki-Manome et al., 2022), while a reservoir manager may look multiple months 650 

ahead when planning water releases downstream (Jackson-Blake et al., 2022; Turner et al., 651 

2020). We observed a relative dearth of near-term freshwater quality forecasts at multi-652 

month/seasonal timescales (but see Mercado-Bettín et al., 2021; Fig. 5), highlighting an 653 

opportunity for development of additional forecasts at this horizon. Furthermore, assessment of 654 

forecasts across multiple horizons may lead to insights regarding the intrinsic predictability of 655 

freshwater ecosystems (sensu Pennekamp et al., 2019), in turn informing which modeling 656 

approaches are likely to be most successful for freshwater forecasting (Pennekamp et al., 2019; 657 

Petchey et al., 2015). 658 

 Development of forecasts of a single target variable at many sites with different 659 

environmental conditions can also provide insight on the intrinsic predictability of water quality 660 

and the utility of forecasting for water quality management across ecosystems. Initiatives such as 661 
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the National Ecological Observatory Network (NEON) Ecological Forecasting Challenge 662 

(Thomas, Boettiger, et al., 2021), which solicits participants to submit forecasts for multiple sites 663 

using standardized data collected by NEON and assesses them for accuracy, are a starting point 664 

to compare predictability across ecosystems and model types (e.g., Thomas et al., 2022). 665 

However, the freshwater component of the NEON Challenge is limited to seven lakes and 27 666 

streams occurring within the U.S., and therefore lacks a suitably wide range of environmental 667 

conditions to be globally relevant. Moreover, forecasts are evaluated for accuracy only, not for 668 

optimal management outcomes. Additional efforts to develop multi-site forecasts are needed to 669 

assess freshwater ecosystem predictability under global change as well as ensure maximum 670 

forecast utility for water quality management. 671 

 672 

4. Shared standards for workflows, file formats, metadata, archiving, and benchmarking 673 

 Building better models is not sufficient to improve near-term freshwater quality forecast 674 

accuracy. Development of automated, portable, and reproducible workflows (e.g., Huang et al., 675 

2019; White et al., 2019), standardized metadata and file formats (e.g., Dietze et al., 2021), 676 

repositories for archiving forecasts (e.g., Reich et al., 2021), and consensus on methods for 677 

benchmarking forecast accuracy (Dietze et al., 2018; Smith et al., 2015) are also needed (Fig. 2: 678 

automated, iterative workflows, archiving and metadata, forecast assessment).  679 

Portable, reproducible workflows are characterized by the ability to replicate results 680 

whenever and wherever the workflow is run (e.g., avoiding the problem of obtaining a different 681 

result if a user’s software has been updated or across different operating systems) and the ability 682 

to be easily accessed by users (Vaillancourt et al., 2020). Example of tools that facilitate 683 

development of portable, reproducible forecast workflows include software containers, which 684 
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can package, for example, forecasting code with all the necessary dependencies and computing 685 

environment specifications into self-contained units for reproducible analyses (Cito et al., 2017) 686 

and cloud computing, which allows users to access, for example, forecast output from any device 687 

at a location and time of their choice, rather than requiring each user to have specialized 688 

infrastructure for running a forecast on a local computer (Sunyaev, 2020). The diverse landscape 689 

of constantly-evolving computing technologies available for use in water quality forecast 690 

workflows highlights the importance of 1) engaging interdisciplinary expertise in forecast 691 

development teams, including computer science (Carey et al., 2019, 2022) and 2) developing 692 

accessible, community-based cyberinfrastructure tools and software (Boettiger et al., 2015; Fer et 693 

al., 2021).  694 

Standardized file formats for observational data, forecast output, and metadata (e.g., 695 

Dietze et al., 2021) facilitate automated assimilation of data into forecast models (e.g., Huang et 696 

al., 2019; White et al., 2019), regular dissemination of forecasts to end users (e.g., Baracchini et 697 

al., 2020; Daneshmand et al., 2021), and quantitative forecast inter-comparison. Shared 698 

community standards are critical for initiatives such as the NEON Ecological Forecasting 699 

Challenge to compare and score forecasts across sites of different variables submitted by 700 

participants (Thomas, Boettiger, et al., 2021). Additional efforts to produce intercomparable 701 

forecasts using shared standards are needed to advance freshwater quality forecasting. Adoption 702 

of standardized data formats and metadata by freshwater research networks such as the Global 703 

Lake Ecological Observatory Network (GLEON; Weathers et al., 2013) could facilitate 704 

freshwater quality forecasting by providing databases with which multiple forecasting 705 

approaches could be tested at the global scale. While some initiatives have begun this work (e.g., 706 
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Jennings et al., 2017), the lack of wide-scale adoption of community standards hinders progress 707 

in freshwater quality forecasting. 708 

Once file formats have been developed, archiving forecasts in real time promotes 709 

integrity in forecast benchmarking. For example, forecasts that are published in peer-reviewed 710 

manuscripts may be altered and re-run during the peer review process in response to reviewer 711 

feedback; if so, subsequent analysis of these forecasts for accuracy would not reflect the 712 

accuracy of the original forecasts that were available to end users in real time. However, the 713 

iterative nature of real-time forecast products raises several pertinent archiving challenges, 714 

including development of repositories that permit automated, iterative updating of forecast 715 

output as additional forecasts are produced, and whether and how to assign digital object 716 

identifiers (DOIs) to data products that will change or be updated every time a new forecast is 717 

issued. This is a problem that is not specific to freshwater forecasting, and recent efforts to 718 

develop a discipline-agnostic archive specifically designed for predictive products, with 719 

standardized data and metadata formats, scoring, and visualizations (Reich et al., 2021), illustrate 720 

that early integration of archiving into freshwater quality forecasting efforts could have long-721 

term benefits for promoting forecast intercomparison.  722 

In addition to formalizing community standards for data, forecast outputs, and archiving, 723 

freshwater forecasters need to build consensus on how to assess forecast accuracy (Pappenberger 724 

et al., 2015). The properties of candidate benchmark assessment metrics should be carefully 725 

considered to ensure that the desired attributes of freshwater quality forecasts (e.g., high 726 

accuracy) are adequately rewarded and undesirable attributes (e.g., large uncertainty spread) are 727 

penalized. For example, sharpness penalizes forecasts with a large uncertainty spread but does 728 

not assess the distance of a forecast prediction from the observation (Gneiting, Balabdaoui, et al., 729 
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2005; Table 2), while the ignorance score heavily penalizes forecasts that fall far from 730 

observations (Roulston & Smith, 2002).  731 

Fortunately, freshwater quality forecasters are starting to adopt methods of forecast 732 

assessment that facilitate benchmarking and intercomparison of probabilistic forecasts. For 733 

example, adoption of a probabilistic forecast assessment metric (CRPS) by multiple water 734 

temperature forecasters enabled us to compare forecast accuracy for two forecasting systems in a 735 

reservoir and two rivers, respectively (Ouellet-Proulx, Chimi Chiadjeu, et al., 2017; Ouellet-736 

Proulx, St-Hilaire, et al., 2017; Thomas, Figueiredo, et al., 2020). Based on the accuracy of these 737 

two forecasts, future forecasts of surface water temperature up to 16-days ahead could be 738 

benchmarked against a CRPS of ~1º C, the maximum CRPS observed in these studies. Other 739 

forecasters compared their forecasts to commonly-used null models (e.g., persistence models in 740 

both McClure et al., 2021 and Page et al., 2018), another robust method for benchmarking 741 

forecast accuracy (Harris et al., 2018). But overall, the wide variety of assessment metrics 742 

currently used to quantify water quality forecast accuracy (Fig. 6) makes inter-comparison of 743 

forecasts difficult. Efforts to reach consensus on appropriate methods for benchmarking other 744 

important water quality variables (e.g., dissolved oxygen, chlorophyll-a) are needed to measure 745 

improvements in near-term freshwater quality forecast accuracy over time. 746 

 747 

5. Integration of insights from other forecasting disciplines 748 

Near-term freshwater quality forecasting will benefit by integrating and adapting tools 749 

and skills from more mature forecasting disciplines, particularly weather, marine, and water 750 

quantity forecasting (Fig. 2: tools and skills). Arguably the largest and most mature Earth system 751 

forecasting discipline, weather and climate forecasting offers methodological inspiration and 752 



34 

guidance to water quality forecasters on a number of fronts, including data assimilation 753 

(reviewed in Lahoz & Schneider, 2014), uncertainty quantification (e.g., Yip et al., 2011), and 754 

forecast assessment (e.g., Gneiting, Raftery, et al., 2005; Hersbach, 2000). For example, the 755 

CRPS probabilistic forecast metric, which was used in four of 16 near-term water quality 756 

forecasts identified in our review, has been used in weather forecasting for decades (Gneiting, 757 

Raftery, et al., 2005; Hersbach, 2000). In addition, examining the benefits and disadvantages of 758 

the numerous methods for public dissemination of weather forecasts, ranging from mobile phone 759 

applications (Zabini, 2016) to televised verbal interpretation by local, human forecasters 760 

(Compton, 2018), may be helpful for water quality forecasting teams to consider as they work to 761 

provide forecast output that meets end user needs. For example, mobile phone applications may 762 

provide the benefit of hyper-localized forecast information but lack the capacity for the user to 763 

put this information into a regional context (Zabini, 2016). Finally, the history of weather 764 

forecasting demonstrates that improvement in forecast skill over time is possible even if initial 765 

attempts are quite poor (Bauer et al., 2015; Blum, 2019), providing motivation to aspiring 766 

freshwater quality forecasters to begin forecasting now, even in the face of incomplete 767 

knowledge (Dietze et al., 2018).  768 

Freshwater quality forecasters can also apply lessons learned from marine and water 769 

quantity forecasters regarding, e.g., model development (Varadharajan et al., 2022), forecast 770 

dissemination (Choi et al., 2022), and the ethical implications of providing operational forecasts 771 

(Hobday et al., 2019; Record & Pershing, 2021). Moreover, insights from marine and freshwater 772 

quantity forecasting may be particularly relevant to freshwater quality forecasting as all three 773 

disciplines involve aquatic ecosystems. For example, researchers are now applying machine 774 

learning methods long popular in freshwater quantity forecasting to water quality forecasting 775 



35 

(reviewed by Poh Wai et al., 2022), and several challenges informed by use of machine learning 776 

models in water quantity have been identified, including the need for knowledge-guided machine 777 

learning, incorporation of uncertainty, transfer learning (i.e., models trained at data-rich sites are 778 

then applied at data-poor sites), and improved interpretability of model output (Khudhair et al., 779 

2022; Poh Wai et al., 2022; Varadharajan et al., 2022). As another example, many of the lessons 780 

learned in development and dissemination of predictive water quality guidance at marine beaches 781 

may readily transfer to freshwater beaches, such as the utility of three-dimensional models for 782 

capturing diurnal fluctuations in water quality (Choi et al., 2022), methods for coordinating data 783 

collection among multiple agencies to assess urban water quality (Aznar et al., 2022), or the 784 

difficulty of developing adequate water quality predictive tools (e.g., E. coli predictions) for 785 

beaches subject to frequent visits by large flocks of birds (U.S. EPA, 2016). Finally, ethical 786 

considerations relevant for operational marine forecasts, such as the risk of driving lobster prices 787 

up or down based on lobster landing forecasts (Hobday et al., 2019), may have freshwater 788 

analogues, such as economic risks associated with providing freshwater fishery forecasts. 789 

Forecasting techniques and ideas gleaned from other disciplines will likely require 790 

adaptation to account for unique attributes of water quality data and freshwater ecosystem 791 

processes before being applied in a freshwater quality forecasting context. However, recent 792 

innovations in freshwater quality forecasting methodology, including embedding freshwater-793 

relevant physical processes into machine learning model architectures (Daw et al., 2020; Read et 794 

al., 2019) and data assimilation of multiple freshwater quality data streams with different 795 

attributes (Abdul Wahid & Arunbabu, 2022; Chen et al., 2021; Cho et al., 2020; Cobo et al., 796 

2022), illustrate the benefits of adapting practices from other disciplines for water quality 797 

forecasting. 798 
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6. Financial support for near-term water quality forecasting 799 

 Most of the near-term freshwater quality forecasts that we analyzed are still in early 800 

stages of development, necessitating funding to support collection of data, development of 801 

automated, iterative workflows, advancement of modeling and uncertainty analysis methods, 802 

robust forecast archiving, and assessment of forecast accuracy and utility to managers (Fig. 2: 803 

funding support). Some freshwater quality forecasting efforts could leverage existing data 804 

collection programs run by agencies and sensor networks (e.g., NEON, U.S. Geological Survey); 805 

however, to date, there has been much more standardized sensor infrastructure investment in 806 

water quantity monitoring than quality monitoring.  807 

Unprecedented efforts in freshwater prediction are underway, necessitating broad 808 

investments that span federal and state agencies as well as academic research portfolios. For 809 

example, the European Center for Medium-Range Weather Forecasts (ECMWF), along with the 810 

European Space Agency and the European Organization for the Exploitation of Meteorological 811 

Satellites, have launched Destination Earth, a project to create an interactive “digital twin” of 812 

Earth that will incorporate hydrology in addition to climate and land systems and can be used as 813 

a predictive tool (Nativi et al., 2021). In addition, Earth system predictability has been identified 814 

as a U.S. federal funding priority (Vought & Droegemeier, 2020). To date, water forecasting 815 

divisions or programs have been developed by several U.S. agencies, including the National 816 

Aeronautics and Space Administration (NASA; Arsenault et al., 2020) and National Oceanic and 817 

Atmospheric Administration (NOAA; U.S. NOAA, 2022). In addition, a new epidemiological 818 

forecasting center has just launched at the Centers for Disease Control (CDC; U.S. CDC, 2022). 819 

For each of these initiatives, freshwater quality forecasting can and should be explicitly 820 

identified as a priority to support essential agency mandates, whether in the context of supporting 821 
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the Blue Economy (e.g., Petrea et al., 2021) or preventing waterborne disease outbreaks (e.g., 822 

Nusrat et al., 2022). Funding opportunities that explicitly encourage the cross-disciplinary 823 

collaboration required to build automated, operational forecasting systems with end user 824 

engagement will be most helpful in facilitating development of robust water quality forecast 825 

systems.  826 

 Importantly, indefinitely maintaining an operational forecast system is outside the scope 827 

of most academic research programs, as it requires infrastructure maintenance and investment in 828 

personnel extending beyond the timespan of most academic research grants (Carey et al., 2022; 829 

Hobday et al., 2019). As a result, additional funding will be required to facilitate transition of 830 

operational forecast systems from academic teams to industry and government agencies.  831 

 832 

7. Further development of educational resources and communities of practice 833 

Ultimately, generating accurate freshwater quality forecasts requires extensive training of 834 

the forecasting team. Obtaining training in a multi-disciplinary, emerging field like ecological 835 

forecasting can be challenging (Woelmer et al., 2021), motivating the need for broad sharing of 836 

educational materials (Moore et al., 2022; Willson, 2022) and open-source tools and software 837 

(e.g., Boettiger et al., 2015; Daneshmand et al., 2021; Hipsey et al., 2019; Moore et al., 2021) 838 

within active communities of practice (Fig. 2: educational resources; communities of practice). 839 

Communities of practice may occur within government agencies, originate from a specific 840 

project such as the Hydrological Ensemble Prediction Experiment (HEPEX; Schaake et al., 841 

2007), take the form of grassroots networks such as the Ecological Forecasting Initiative (EFI; 842 

Dietze & Lynch, 2019), exist as formal professional societies, or be housed at academic 843 

institutions.  844 
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To help train new forecasters, forecasting communities of practice should help create and 845 

facilitate sharing of resources, such as teaching modules focused on fundamental forecasting 846 

concepts (Moore et al., 2022), curated lists of freely available forecasting educational resources 847 

(Willson, 2022), and community-based development of software (Boettiger et al., 2015). In 848 

addition, education in freshwater quality forecasting would be enhanced by introducing 849 

forecasting (and uncertainty) at earlier educational stages (e.g., in K-12 education; Rosenberg et 850 

al., 2022) and development of formal curricula in freshwater forecasting specifically (Moore et 851 

al. 2022). 852 

 853 

Conclusions 854 

 Near-term freshwater quality forecasts are urgently needed as freshwater ecosystems are 855 

experiencing increasing variability on near-term timescales due to global change, causing 856 

substantial risk to human health and safety. Water quality forecasting is primed to make 857 

considerable advances over the next decade, as evidenced by a wide diversity of potential 858 

applications, end users of accurate water quality forecasts, and recent progress in forecasting 859 

methodology. Continued progress necessitates development of more forecasts: to robustly 860 

measure gains in forecast accuracy, we must be able to compare forecasts of the same variables 861 

across a wide diversity of sites, modeling approaches, and forecast horizons. Such a multi-862 

faceted forecasting effort will require concomitant development of community standards 863 

regarding forecast metadata, file formats, archiving, and benchmarking to permit forecast 864 

intercomparison. Second, as we develop freshwater quality forecasts, we should avail ourselves 865 

of lessons learned in other forecasting disciplines, whether it be innovating methods of 866 

incorporating uncertainty into machine learning models adapted from water quantity forecasting 867 
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or taking inspiration from the continuous improvement in weather forecast accuracy made over 868 

decades. Finally, we must remember that operational freshwater quality forecasts are developed 869 

by people, for people, and thus require both comprehensive training opportunities for forecasters 870 

and meaningful end user interaction throughout the forecast process. Given the promise of 871 

freshwater forecasting for improving management in the face of increased variability and risk 872 

due to global change, we urge freshwater scientists to engage with end users, assemble 873 

interdisciplinary teams, and get started on building operational near-term water quality forecasts. 874 

 875 

Acknowledgments 876 

The authors would like to thank NSF funding (DEB-1926050, DBI-1933016, DEB-1926388, 877 

DEB-1753639); artists at the Noun Project for icons embedded in Figures 1 and 2; and Tadhg 878 

Moore, the FLARE research team, and members of the EFI RCN and Carey and Thomas Labs at 879 

Virginia Tech for helpful discussions and feedback. 880 

 881 

References 882 

Abdul Wahid, A., & Arunbabu, E. (2022). Forecasting water quality using seasonal ARIMA 883 

model by integrating in-situ measurements and remote sensing techniques in Krishnagiri 884 

reservoir, India. Water Practice & Technology, 17(5), 1230–1252.   885 

Adler, P. B., White, E. P., & Cortez, M. H. (2020) Matching the forecast horizon with the 886 

relevant spatial and temporal processes and data sources. Ecography, 43, 1729-1739.  887 

Albert, J. S., Destouni, G., Duke-Sylvester, S. M., Magurran, A. E., Oberdorff, T., Reis, R. E., 888 

Winemiller, K. O., & Ripple, W. J. (2021). Scientists’ warning to humanity on the 889 

freshwater biodiversity crisis. Ambio, 50(1), 85–94. 890 



40 

Arsenault, K. R., Shukla, S., Hazra, A., Getirana, A., McNally, A., Kumar, S. V., Koster, R. D., 891 

Peters-Lidard, C. D., Zaitchik, B. F., Badr, H., Jung, H. C., Narapusetty, B., Navari, M., 892 

Wang, S., Mocko, D. M., Funk, C., Harrison, L., Husak, G. J., Adoum, A. et al. (2020). The 893 

NASA hydrological forecast system for food and water security applications. Bulletin of the 894 

American Meteorological Society, 101(7), E1007–E1025. DOI: 10.1175/BAMS-D-18-895 

0264.1 896 

Ayzel, G. (2021). OpenForecast v2: Development and benchmarking of the first national-scale 897 

operational runoff forecasting system in Russia. Hydrology 8(1), 3.  898 

Aznar, B., Grima, J., Torret, X., Medina, V., Varela, J., Chesa, M. J., Llopart-Mascaró, A., 899 

Garcia, J. A., Erill, D., Batlle, M., Juan, T., Bosch, C., & Corchero, A. (2022). Applying 900 

real-time advanced urban management to ensure bathing water quality in Barcelona. 901 

Proceedings of the 39th IAHR World Congress. International Association for Hydro-902 

Environment Engineering and Research, Granada, Spain.   903 

Baracchini, T., Wüest, A., & Bouffard, D. (2020). Meteolakes: An operational online three-904 

dimensional forecasting platform for lake hydrodynamics. Water Research, 172, 115529. 905 

Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather 906 

prediction. Nature, 525(7567), 47–55.  907 

Berthet, L., Piotte, O., Gaume, É., Marty, R., & Ardilouze, C. (2016). Operational forecast 908 

uncertainty assessment for better information to stakeholders and crisis managers. E3S Web 909 

of Conferences, 7, 18005. DOI: 10.1051/e3sconf/20160718005 910 

Bertone, E., Sahin, O., Richards, R., & Roiko, A. (2016). Extreme events, water quality and 911 

health: A participatory Bayesian risk assessment tool for managers of reservoirs. Journal of 912 

Cleaner Production, 135, 657–667.  913 



41 

Bhattacharyya, S., & Sanyal, J. (2019). Impact of different types of meteorological data inputs on 914 

predicted hydrological and erosive responses to projected land use changes. Journal of Earth 915 

System Science, 128(3), 60.  916 

Blum, A. (2019). The weather machine: A journey inside the forecast. HarperCollins. New York. 917 

Boettiger, C. (2022). The forecast trap. Ecology Letters, 25(7), 1655–1664.  918 

Boettiger, C., Chamberlain, S., Hart, E., & Ram, K. (2015). Building software, building 919 

community: lessons from the rOpenSci Project. Journal of Open Research Software, 3, e8.  920 

Bourgeaux, J., Teichert, N., Gillier, J.-M., Danet, V., Feunteun, E., Acou, A., Charrier, F., 921 

Mazel, V., Carpentier, A., & Trancart, T. (2022). Modelling past migrations to determine 922 

efficient management rules favouring silver eel escapement from a large regulated 923 

Floodplain Lake. Journal for Nature Conservation, 67, 126192.  924 

Bradford, J. B., Betancourt, J. L., Butterfield, B. J., Munson, S. M., & Wood, T. E. (2018). 925 

Anticipatory natural resource science and management for a changing future. Frontiers in 926 

Ecology and the Environment, 16(5), 295–303.   927 

Bradford, J. B., Weltzin, J., Mccormick, M. L., Baron, J., Bowen, Z., Bristol, S., Carlisle, D., 928 

Crimmins, T., Cross, P., DeVivo, J., & Others. (2020). Ecological forecasting—21st century 929 

science for 21st century management. U.S. Geological Survey. Open-File Report 2020-930 

1073. DOI: 10.3133/ofr20201073  931 

Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine 932 

learning algorithms. Pattern Recognition, 30(7), 1145–1159.  933 

Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly 934 

Weather Review, 78(1), 1–3.   935 

Bröcker, J., & Smith, L. A. (2007). Increasing the reliability of reliability diagrams. Weather and 936 



42 

Forecasting, 22(3), 651–661.   937 

Carey, C. C., Ward, N. K., Farrell, K. J., Lofton, M. E., Krinos, A. I., McClure, R. P., Subratie, 938 

K. C., Figueiredo, R. J., Doubek, J. P., Hanson, P. C., Papadopoulos, P., & Arzberger, P. 939 

(2019). Enhancing collaboration between ecologists and computer scientists: lessons 940 

learned and recommendations forward. Ecosphere, 10(5), e02753.  941 

Carey, C. C., Woelmer, W. M., Lofton, M. E., Figueiredo, R. J., Bookout, B. J., Corrigan, R. S., 942 

Daneshmand, V., Hounshell, A. G., Howard, D. W., Lewis, A. S. L., McClure, R. P., 943 

Wander, H. L., Ward, N. K., & Thomas, R. Q. (2022). Advancing lake and reservoir water 944 

quality management with near-term, iterative ecological forecasting. Inland Waters, 12(1): 945 

107-120. 946 

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error 947 

(MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model 948 

Development, 7(3), 1247–1250.   949 

Chen, C., Chen, Q., Li, G., He, M., Dong, J., Yan, H., Wang, Z., & Duan, Z. (2021). A novel 950 

multi-source data fusion method based on Bayesian inference for accurate estimation of 951 

chlorophyll-a concentration over eutrophic lakes. Environmental Modelling & Software, 952 

141, 105057.  953 

Chen, Y., Feng, Y., Zhang, F., Yang, F., & Wang, L. (2020). Assessing and predicting the water 954 

resources vulnerability under various climate-change scenarios: A case study of Huang-955 

Huai-Hai River Basin, China. Entropy, 22, 3.    956 

Choi, K. W., Chan, S. N., & Lee, J. H. W. (2022). The WATERMAN system for daily beach 957 

water quality forecasting: a ten-year retrospective. Environmental Fluid Mechanics. DOI: 958 

10.1007/s10652-022-09839-4 959 



43 

Cho, K. H., Pachepsky, Y., Ligaray, M., Kwon, Y., & Kim, K. H. (2020). Data assimilation in 960 

surface water quality modeling: A review. Water Research, 186, 116307.   961 

Cito, J., Schermann, G., Wittern, J. E., Leitner, P., Zumberi, S., & Gall, H. C. (2017). An 962 

empirical analysis of the Docker container ecosystem on GitHub. 2017 IEEE/ACM 14th 963 

International Conference on Mining Software Repositories (MSR), 323–333. DOI: 964 

10.1109/MSR.2017.67 965 

Cobo, F., Vieira-Lanero, R., Barca, S., Cobo, M. del C., Quesada, A., Nasr, A., Bedri, Z., 966 

Álvarez-Cid, M. X., Saberioon, M., Brom, J., & Espiña, B. (2022). The AIHABs Project: 967 

Towards an artificial intelligence-powered forecast for harmful algal blooms. Biology and 968 

Life Sciences Forum, 14(1), 13.  969 

Compton, J. (2018). When weather forecasters are wrong: Image repair and public rhetoric after 970 

severe weather. Science Communication, 40(6), 778–788.  971 

Coreau, A., Pinay, G., Thompson, J. D., Cheptou, P.-O., & Mermet, L. (2009). The rise of 972 

research on futures in ecology: rebalancing scenarios and predictions. Ecology Letters, 973 

12(12), 1277–1286.  974 

Daneshmand, V., Breef-Pilz, A., Carey, C. C., Jin, Y., Ku, Y.-J., Subratie, K. C., Quinn Thomas, 975 

R., & Figueiredo, R. J. (2021). Edge-to-cloud virtualized cyberinfrastructure for near real-976 

time water quality forecasting in lakes and reservoirs. 2021 IEEE 17th International 977 

Conference on eScience (eScience). DOI: 10.1109/escience51609.2021.00024 978 

Davenport, F. V., Burke, M., & Diffenbaugh, N. S. (2021). Contribution of historical 979 

precipitation change to US flood damages. Proceedings of the National Academy of 980 

Sciences of the United States of America, 118(4), e2017524118.   981 

Daw, A., Thomas, R. Q., Carey, C. C., Read, J. S., Appling, A. P., & Karpatne, A. (2020). 982 



44 

Physics-Guided Architecture (PGA) of neural networks for quantifying uncertainty in lake 983 

temperature modeling. Proceedings of the 2020 SIAM International Conference on Data 984 

Mining (SDM) (pp. 532–540). Society for Industrial and Applied Mathematics. DOI: 985 

/10.1137/1.9781611976236.60 986 

DeFlorio, M., Ralph, F., Waliser, D., Jones, J., & Anderson, M. (2021). Better subseasonal-to-987 

seasonal forecasts for water management. Eos, 102. DOI: 10.1029/2021eo159749 988 

Dietze, M. (2017). Ecological Forecasting. Princeton University Press. Princeton.  989 

Dietze, M., Fox, A., Beck-Johnson, L. M., Betancourt, J. L., Hooten, M. B., Jarnevich, C. S., 990 

Keitt, T. H., Kenney, M. A., Laney, C. M., Larsen, L. G., Loescher, H. W., Lunch, C. K., 991 

Pijanowski, B. C., Randerson, J. T., Read, E. K., Tredennick, A. T., Vargas, R., Weathers, 992 

K. C., & White, E. P. (2018). Iterative near-term ecological forecasting: Needs, 993 

opportunities, and challenges. Proceedings of the National Academy of Sciences of the 994 

United States of America, 115(7), 1424–1432.  995 

Dietze, M., & Lynch, H. (2019). Forecasting a bright future for ecology. Frontiers in Ecology 996 

and the Environment, 17(1), 3–3.  997 

Dietze, M., Thomas, R. Q., Peters, J., & Boettiger, C. (2021). A community convention for 998 

ecological forecasting: Output files and metadata. EcoEvoRxiv. DOI: 10.32942/osf.io/9dgtq  999 

Emerton, R., Zsoter, E., Arnal, L., Cloke, H. L., Muraro, D., Prudhomme, C., Stephens, E. M., 1000 

Salamon, P., & Pappenberger, F. (2018). Developing a global operational seasonal hydro-1001 

meteorological forecasting system: GloFAS-Seasonal v1.0. Geoscientific Model 1002 

Development, 11(8), 3327-3346.   1003 

Fer, I., Gardella, A. K., Shiklomanov, A. N., Campbell, E. E., Cowdery, E. M., De Kauwe, M. 1004 

G., Desai, A., Duveneck, M. J., Fisher, J. B., Haynes, K. D., Hoffman, F. M., Johnston, M. 1005 



45 

R., Kooper, R., LeBauer, D. S., Mantooth, J., Parton, W. J., Poulter, B., Quaife, T., et al. 1006 

(2021). Beyond ecosystem modeling: A roadmap to community cyberinfrastructure for 1007 

ecological data-model integration. Global Change Biology, 27(1), 13–26.  1008 

Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., 1009 

Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Gimma, B., Kissel, E. S., Levy, A. 1010 

N., MacCracken, S., Mastrandrea, P. R., & White, L. L. (2014). Freshwater resources. In C. 1011 

B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. 1012 

Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Gimma, E. S. Kissel, A. N. Levy, S. 1013 

MacCracken, P. R. Mastrandrea, & L. L. White (Eds.), Climate Change 2014: Impacts, 1014 

Adaptation and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of 1015 

Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on 1016 

Climate Change (pp. 229–269). Cambridge University Press.   1017 

Fraker, M. E., Keitzer, S. C., Sinclair, J. S., Aloysius, N. R., Dippold, D. A., Yen, H., Arnold, J. 1018 

G., Daggupati, P., Johnson, M.-V. V., Martin, J. F., Robertson, D. M., Sowa, S. P., White, 1019 

M. J., & Ludsin, S. A. (2020). Projecting the effects of agricultural conservation practices 1020 

on stream fish communities in a changing climate. The Science of the Total Environment, 1021 

747, 141112.  1022 

Fry, L. M., Apps, D., & Gronewold, A. D. (2020). Operational seasonal water supply and water 1023 

level forecasting for the Laurentian great lakes. Journal of Water Resources Planning and 1024 

Management, 146(9), 04020072.  1025 

Fujisaki-Manome, A., G., G. D., Channell, K., Graves, V., Jagannathan, K. A., Anderson, E. J., 1026 

& Lemos, M. C. (2022). Scaling-up stakeholder engagement efforts to inform better 1027 

communication & uptake of NOAA Great Lakes ice forecast information. University of 1028 



46 

Michigan report. DOI: 10.7302/4389 1029 

Gerst, M. D., Kenney, M. A., Baer, A. E., Speciale, A., Felix Wolfinger, J., Gottschalck, J., 1030 

Handel, S., Rosencrans, M., & Dewitt, D. (2020). Using visualization science to improve 1031 

expert and public understanding of probabilistic temperature and precipitation outlooks. 1032 

Weather, Climate, and Society, 12(1), 117-133.  1033 

Gilarranz, L. J., Narwani, A., Odermatt, D., Siber, R., & Dakos, V. (2022). Regime shifts, trends, 1034 

and variability of lake productivity at a global scale. Proceedings of the National Academy 1035 

of Sciences, 119(35), e2116413119.  1036 

Giuliani, M., Crochemore, L., Pechlivanidis, I., & Castelletti, A. (2020). From skill to value: 1037 

isolating the influence of end user behavior on seasonal forecast assessment. Hydrology and 1038 

Earth System Sciences, 24(12), 5891–5902.  1039 

Gneiting, T., Balabdaoui, F., & Raftery, A. E. (2007). Probabilistic forecasts, calibration and 1040 

sharpness. Journal of the Royal Statistical Society B, 69, 243-268.  1041 

Gneiting, T., & Raftery, A. E. (2005). Strictly proper scoring rules, prediction, and estimation. 1042 

Journal of the American Statistical Association, 102(477), 359–378.  1043 

Gneiting, T., Raftery, A. E., Westveld, A. H., & Goldman, T. (2005). Calibrated probabilistic 1044 

forecasting using ensemble model output statistics and minimum CRPS estimation. 1045 

Monthly Weather Review, 133(5), 1098–1118.   1046 

Grant, M. J., & Booth, A. (2009). A typology of reviews: an analysis of 14 review types and 1047 

associated methodologies. Health Information and Libraries Journal, 26(2), 91–108.   1048 

Gunn, M. A., Matherne, A. M., Mason, Jr., & R., R. (2014). The USGS at Embudo, New 1049 

Mexico: 125 years of systematic streamgaging in the United States (No. 2014-3034; Fact 1050 

Sheet). U.S. Geological Survey. DOI: 10.3133/fs20143034 1051 



47 

Han, S., & Coulibaly, P. (2017). Bayesian flood forecasting methods: A review. Journal of 1052 

Hydrology, 551, 340–351.   1053 

Harris, D. J., Taylor, S. D., & White, E. P. (2018). Forecasting biodiversity in breeding birds 1054 

using best practices. PeerJ, 6, e4278.  1055 

Heilman, K. A., Dietze, M. C., Arizpe, A. A., Aragon, J., Gray, A., Shaw, J. D., Finley, A. O., 1056 

Klesse, S., DeRose, R. J., & Evans, M. E. K. (2022). Ecological forecasting of tree growth: 1057 

Regional fusion of tree-ring and forest inventory data to quantify drivers and characterize 1058 

uncertainty. Global Change Biology, 28(7), 2442–2460.   1059 

Hemming, V., Burgman, M. A., Hanea, A. M., McBride, M. F., & Wintle, B. C. (2018). A 1060 

practical guide to structured expert elicitation using the IDEA protocol. Methods in Ecology 1061 

and Evolution, 9(1), 169–180.  1062 

Hersbach, H. (2000). Decomposition of the continuous ranked probability score for ensemble 1063 

prediction systems. Weather and Forecasting, 15(5), 559–570.  1064 

Hestir, E. L., Brando, V. E., Bresciani, M., Giardino, C., Matta, E., Villa, P., & Dekker, A. G. 1065 

(2015). Measuring freshwater aquatic ecosystems: The need for a hyperspectral global 1066 

mapping satellite mission. Remote Sensing of Environment, 167, 181–195.  1067 

Hipsey, M. R., Bruce, L. C., Boon, C., Busch, B., Carey, C. C., Hamilton, D. P., Hanson, P. C., 1068 

Read, J. S., de Sousa, E., Weber, M., & Winslow, L. A. (2019). A General Lake Model 1069 

(GLM 3.0) for linking with high-frequency sensor data from the Global Lake Ecological 1070 

Observatory Network (GLEON). Geoscientific Model Development, 12(1), 473–523.  1071 

Hobday, A. J., Hartog, J. R., Manderson, J. P., Mills, K. E., Oliver, M. J., Pershing, A. J., & 1072 

Siedlecki, S. (2019). Ethical considerations and unanticipated consequences associated with 1073 

ecological forecasting for marine resources. ICES Journal of Marine Science: Journal Du 1074 



48 

Conseil, 76(5), 1244–1256.   1075 

Ho, J. C., Michalak, A. M., & Pahlevan, N. (2019). Widespread global increase in intense lake 1076 

phytoplankton blooms since the 1980s. Nature, 574(7780), 667–670.   1077 

Housh, M., & Ohar, Z. (2018). Model-based approach for cyber-physical attack detection in 1078 

water distribution systems. Water Research, 139, 132–143.  1079 

Huang, Y., Stacy, M., Jiang, J., Sundi, N., Ma, S., Saruta, V., Jung, C. G., Shi, Z., Xia, J., 1080 

Hanson, P. J., Ricciuto, D., & Luo, Y. (2019). Realized ecological forecast through an 1081 

interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models. 1082 

Geoscientific Model Development, 12(3), 1119–1137.  1083 

Jackson-Blake, L. A., Clayer, F., de Eyto, E., French, A. S., Frías, M. D., Mercado-Bettín, D., 1084 

Moore, T., Puértolas, L., Poole, R., Rinke, K., Shikhani, M., van der Linden, L., & Marcé, 1085 

R. (2022). Opportunities for seasonal forecasting to support water management outside the 1086 

tropics. Hydrology and Earth System Sciences, 26(5), 1389–1406.  1087 

Jain, S. K., Mani, P., Jain, S. K., Prakash, P., Singh, V. P., Tullos, D., Kumar, S., Agarwal, S. P., 1088 

& Dimri, A. P. (2018). A brief review of flood forecasting techniques and their applications. 1089 

International Journal of River Basin Management, 16(3), 329–344.  1090 

Jakeman, A., Croke, B., & Fu, B. (2019). Uncertainty in environmental water quality modelling: 1091 

where do we stand? New Trends in Urban Drainage Modelling, 557–565. DOI: 1092 

10.1007/978-3-319-99867-1_96 1093 

Jane, S. F., Hansen, G. J. A., Kraemer, B. M., Leavitt, P. R., Mincer, J. L., North, R. L., Pilla, R. 1094 

M., Stetler, J. T., Williamson, C. E., Woolway, R. I., Arvola, L., Chandra, S., DeGasperi, C. 1095 

L., Diemer, L., Dunalska, J., Erina, O., Flaim, G., Grossart, H.-P., Hambright, K. D., et al. 1096 

(2021). Widespread deoxygenation of temperate lakes. Nature, 594(7861), 66–70.   1097 



49 

Jennings, E., de Eyto, E., Laas, A., Pierson, D., Mircheva, G., Naumoski, A., Clarke, A., Healy, 1098 

M., Šumberová, K., & Langenhaun, D. (2017). The NETLAKE metadatabase: A tool to 1099 

support automatic monitoring on lakes in Europe and beyond. Limnology and 1100 

Oceanography Bulletin, 26(4), 95–100. DOI:10.1002/lob.10210 1101 

Jin, T., Cai, S., Jiang, D., & Liu, J. (2019). A data-driven model for real-time water quality 1102 

prediction and early warning by an integration method. Environmental Science and 1103 

Pollution Research International, 26(29), 30374–30385.  1104 

Jolliffe, I. T., & Stephenson, D. B. (2012). Forecast Verification: A Practitioner’s Guide in 1105 

Atmospheric Science. John Wiley & Sons.   1106 

Kelley, J. G. W. (2022). Upgrade of NOS Lake Superior Operational Forecast System to 1107 

FVCOM: model development and hindcast skill assessment. United States. Office of Coast 1108 

Survey. Coast Survey Development Laboratory (U.S.). DOI: 10.25923/NBF7-R211 1109 

Khudhair, Z. S., Zubaidi, S. L., Ortega-Martorell, S., Al-Ansari, N., Ethaib, S., & Hashim, K. 1110 

(2022). A review of hybrid soft computing and data pre-processing techniques to forecast 1111 

freshwater quality’s parameters: Current trends and future directions. Environments, 9(7), 1112 

85.  1113 

Kikon, A., & Deka, P. C. (2022). Artificial intelligence application in drought assessment, 1114 

monitoring and forecasting: a review. Stochastic Environmental Research and Risk 1115 

Assessment: Research Journal, 36(5), 1197–1214.   1116 

Lahoz, W. A., & Schneider, P. (2014). Data assimilation: making sense of Earth Observation. 1117 

Frontiers of Environmental Science & Engineering in China, 2. DOI: 1118 

10.3389/fenvs.2014.00016 1119 

Lewandoski, S. A., & Brenden, T. O. (2022). Forecasting suppression of invasive sea lamprey in 1120 



50 

Lake Superior.  Journal of Applied Ecology, 59(8), 2023–2035.  1121 

Lewis, A. S. L., Woelmer, W. M., Wander, H. L., Howard, D. W., Smith, J. W., McClure, R. P., 1122 

Lofton, M. E., Hammond, N. W., Corrigan, R. S., Thomas, R. Q., & Carey, C. C. (2022). 1123 

Increased adoption of best practices in ecological forecasting enables comparisons of 1124 

forecastability. Ecological Applications, 32(2), e2500. DOI: 10.1002/eap.2500 1125 

Liu, Q., Rowe, M. D., Anderson, E. J., Stow, C. A., Stumpf, R. P., & Johengen, T. H. (2020). 1126 

Probabilistic forecast of microcystin toxin using satellite remote sensing, in situ 1127 

observations and numerical modeling. Environmental Modelling & Software, 128, 104705.  1128 

Lofton, M. E., Brentrup, J. A., Beck, W. S., Zwart, J. A., Bhattacharya, R., Brighenti, L. S., 1129 

Burnet, S. H., McCullough, I. M., Steele, B. G., Carey, C. C., Cottingham, K. L., Dietze, M. 1130 

C., Ewing, H. A., Weathers, K. C., & LaDeau, S. L. (2022). Using near-term forecasts and 1131 

uncertainty partitioning to inform prediction of oligotrophic lake cyanobacterial density. 1132 

Ecological Applications, 32(5), e2590. DOI: 10.1002/eap.2590 1133 

Lofton, M. E., Howard, D. W., Thomas, R. Q., & Carey, C. C. (2022a). Code repository: 1134 

Progress and opportunities in advancing near-term forecasting of freshwater quality (v1.1). 1135 

Zenodo. DOI: 10.5281/zenodo.7083846 1136 

Lofton, M. E., Howard, D. W., Thomas, R. Q., & Carey, C. C. (2022b). State-of-the-art review 1137 

of near-term freshwater forecasting literature published between 2017 and 2022 ver 1 [Data 1138 

set]. Environmental Data Initiative. https://portal-1139 

s.edirepository.org/nis/mapbrowse?packageid=edi.960.1 1140 

Maasri, A., Jähnig, S. C., Adamescu, M. C., Adrian, R., Baigun, C., Baird, D. J., Batista-1141 

Morales, A., Bonada, N., Brown, L. E., Cai, Q., Campos-Silva, J. V., Clausnitzer, V., 1142 

Contreras-MacBeath, T., Cooke, S. J., Datry, T., Delacámara, G., De Meester, L., Dijkstra, 1143 



51 

K.-D. B., Do, V. T., et al. (2022). A global agenda for advancing freshwater biodiversity 1144 

research. Ecology Letters, 25(2), 255–263.  1145 

Marcé, R., George, G., Buscarinu, P., Deidda, M., Dunalska, J., de Eyto, E., Flaim, G., Grossart, 1146 

H.-P., Istvanovics, V., Lenhardt, M., Moreno-Ostos, E., Obrador, B., Ostrovsky, I., Pierson, 1147 

D. C., Potužák, J., Poikane, S., Rinke, K., Rodríguez-Mozaz, S., Staehr, P. A., et al. (2016). 1148 

Automatic high frequency monitoring for improved lake and reservoir management. 1149 

Environmental Science & Technology, 50(20), 10780–10794.  1150 

Matheson, J. E., & Winkler, R. L. (1976). Scoring rules for continuous probability distributions. 1151 

Management Science, 22(10), 1087–1096.  1152 

McClure, R. P., Thomas, R. Q., Lofton, M. E., Woelmer, W. M., & Carey, C. C. (2021). Iterative 1153 

forecasting improves near-term predictions of methane ebullition rates. Frontiers of 1154 

Environmental Science & Engineering, 9. DOI: 10.3389/fenvs.2021.756603 1155 

Mercado-Bettín, D., Clayer, F., Shikhani, M., Moore, T. N., Frías, M. D., Jackson-Blake, L., 1156 

Sample, J., Iturbide, M., Herrera, S., French, A. S., Norling, M. D., Rinke, K., & Marcé, R. 1157 

(2021). Forecasting water temperature in lakes and reservoirs using seasonal climate 1158 

prediction. Water Research, 201, 117286.  1159 

Messager, M. L., & Olden, J. D. (2018). Individual-based models forecast the spread and inform 1160 

the management of an emerging riverine invader. Diversity & Distributions, 24(12), 1816–1161 

1829.  1162 

Millar, C. I., & Woolfenden, W. B. (1999). The role of climate change in interpreting historical 1163 

variability. Ecological Applications, 9(4), 1207–1216.  1164 

Moore, T. N., Mesman, J. P., Ladwig, R., Feldbauer, J., Olsson, F., Pilla, R. M., Shatwell, T., 1165 

Venkiteswaran, J. J., Delany, A. D., Dugan, H., Rose, K. C., & Read, J. S. (2021). 1166 



52 

LakeEnsemblR: An R package that facilitates ensemble modelling of lakes. Environmental 1167 

Modelling & Software, 143, 105101.  1168 

Moore, T. N., Thomas, R. Q., Woelmer, W. M., & Carey, C. C. (2022). Integrating ecological 1169 

forecasting into undergraduate ecology curricula with an R Shiny application-based 1170 

teaching module. Forecasting, 4(3), 604–633.   1171 

Moorhouse, T. P., & Macdonald, D. W. (2015). Are invasives worse in freshwater than terrestrial 1172 

ecosystems? WIREs. Water, 2(1), 1–8.  1173 

Mosavi, A., Ozturk, P., & Chau, K.-W. (2018). Flood prediction using machine learning models: 1174 

literature Review. WATER, 10(11), 1536.   1175 

Mu, M., Li, Y., Bi, S., Lyu, H., Xu, J., Lei, S., Miao, S., Zeng, S., Zheng, Z., & Du, C. (2021). 1176 

Prediction of algal bloom occurrence based on the naive Bayesian model considering 1177 

satellite image pixel differences. Ecological Indicators, 124, 107416.  1178 

Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. 1179 

Biometrika, 78(3), 691–692.  1180 

NRC. (2010) National Research Council, Division on Engineering and Physical Sciences, & 1181 

Committee on Forecasting Future Disruptive Technologies. Persistent forecasting of 1182 

disruptive technologies. National Academies Press. Washington, D.C. 1183 

Nativi, S., Mazzetti, P., & Craglia, M. (2021). Digital ecosystems for developing Digital Twins 1184 

of the Earth: The Destination Earth case. Remote Sensing, 13(11), 2119.   1185 

Nicolle, Besson, & Delaigue. (2020). PREMHYCE: An operational tool for low-flow 1186 

forecasting. Proceedings of the IAHS, 383, 381-389. DOI: 10.5194/piahs-383-381-2020 1187 

NOAA, National Oceanic and Atmospheric Administration. (2014). A strategic vision for 1188 

NOAA’s ecological forecasting roadmap 2015-2019. 1189 



53 

https://aambpublicoceanservice.blob.core.windows.net/oceanserviceprod/ecoforecasting/no1190 

aa-ecoforecasting-roadmap.pdf 1191 

Nusrat, F., Haque, M., Rollend, D., Christie, G., & Akanda, A. S. (2022). A high-resolution 1192 

Earth observations and machine learning-based approach to forecast waterborne disease risk 1193 

in post-disaster settings. Climate, 10(4), 48.   1194 

Ouellet-Proulx, S., Chimi Chiadjeu, O., Boucher, M.-A., & St-Hilaire, A. (2017). Assimilation of 1195 

water temperature and discharge data for ensemble water temperature forecasting. Journal 1196 

of Hydrology, 554, 342–359.  1197 

Ouellet-Proulx, S., St-Hilaire, A., & Boucher, M.-A. (2017). Water temperature ensemble 1198 

forecasts: Implementation using the CEQUEAU Model on two contrasted river systems.  1199 

Water, 9(7), 457.  1200 

Page, T., Smith, P. J., Beven, K. J., Jones, I. D., Elliott, J. A., Maberly, S. C., Mackay, E. B., De 1201 

Ville, M., & Feuchtmayr, H. (2018). Adaptive forecasting of phytoplankton communities. 1202 

Water Research, 134, 74–85.   1203 

Pappenberger, F., Ramos, M. H., Cloke, H. L., Wetterhall, F., Alfieri, L., Bogner, K., Mueller, 1204 

A., & Salamon, P. (2015). How do I know if my forecasts are better? Using benchmarks in 1205 

hydrological ensemble prediction. Journal of Hydrology, 522, 697–713.  1206 

Peng, Z., Hu, Y., Liu, G., Hu, W., Zhang, H., & Gao, R. (2020). Calibration and quantifying 1207 

uncertainty of daily water quality forecasts for large lakes with a Bayesian joint probability 1208 

modelling approach. Water Research, 185, 116162.  1209 

Pennekamp, F., Iles, A. C., Garland, J., Brennan, G., Brose, U., Gaedke, U., Jacob, U., Kratina, 1210 

P., Matthews, B., Munch, S., Novak, M., Palamara, G. M., Rall, B. C., Rosenbaum, B., 1211 

Tabi, A., Ward, C., Williams, R., Ye, H., & Petchey, O. L. (2019). The intrinsic 1212 



54 

predictability of ecological time series and its potential to guide forecasting. Ecological 1213 

Monographs, 89(2), e01359.  1214 

Perretti, C. T., Munch, S. B., & Sugihara, G. (2013). Model-free forecasting outperforms the 1215 

correct mechanistic model for simulated and experimental data. Proceedings of the National 1216 

Academy of Sciences of the United States of America, 110(13), 5253–5257.  1217 

Petchey, O. L., Pontarp, M., Massie, T. M., Kéfi, S., Ozgul, A., Weilenmann, M., Palamara, G. 1218 

M., Altermatt, F., Matthews, B., Levine, J. M., Childs, D. Z., McGill, B. J., Schaepman, M. 1219 

E., Schmid, B., Spaak, P., Beckerman, A. P., Pennekamp, F., & Pearse, I. S. (2015). The 1220 

ecological forecast horizon, and examples of its uses and determinants. Ecology Letters, 1221 

18(7), 597–611.   1222 

Petrea, S. M., Zamfir, C., Simionov, I. A., Mogodan, A., Nuţă, F. M., Rahoveanu, A. T., Nancu, 1223 

D., Cristea, D. S., & Buhociu, F. M. (2021). A forecasting and prediction methodology for 1224 

improving the blue economy resilience to climate change in the Romanian Lower Danube 1225 

Euroregion. Sustainability: Science Practice and Policy, 13(21), 11563.   1226 

Pielke, R. A. (1999). Who decides? Forecasts and responsibilities in the 1997 Red River Flood. 1227 

Applied Behavioral Science Review, 7(2), 83–101.   1228 

Poh Wai, K., Yan Chia, M., Hoon Koo, C., Feng Huang, Y., & Chan Chong, W. (2022). 1229 

Applications of deep learning in water quality management: A state-of-the-art review. 1230 

Journal of Hydrology, 128332.  1231 

Quinn, N. W. T., Jacobs, K., Chen, C. W., & Stringfellow, W. T. (2005). Elements of a decision 1232 

support system for real-time management of dissolved oxygen in the San Joaquin River 1233 

Deep Water Ship Channel. Environmental Modelling & Software, 20(12), 1495–1504.  1234 

Read, J. S., Jia, X., Willard, J., Appling, A. P., Zwart, J. A., Oliver, S. K., Karpatne, A., Hansen, 1235 



55 

G. J. A., Hanson, P. C., Watkins, W., Steinbach, M., & Kumar, V. (2019). Process‐guided 1236 

deep learning predictions of lake water temperature. Water Resources Research, 55(11), 1237 

9173–9190.  1238 

Record, N. R., & Pershing, A. J. (2021). Facing the forecaster’s dilemma: Reflexivity in ocean 1239 

system forecasting. Journal of Geophysical Research, C: Oceans, 2(4), 738–751.  1240 

Reggiani, P., Talbi, A., & Todini, E. (2022). Towards informed water resources planning and 1241 

management. Hydrology, 9(8), 136.  1242 

Reich, N. G., Cornell, M., Ray, E. L., House, K., & Le, K. (2021). The Zoltar forecast archive, a 1243 

tool to standardize and store interdisciplinary prediction research. Scientific Data, 8(1), 59. 1244 

DOI: 10.1038/s41597-021-00839-5 1245 

Rosenberg, J. M., Kubsch, M., Wagenmakers, E.-J., & Dogucu, M. (2022). Making sense of 1246 

uncertainty in the science classroom. Science & Education. DOI: 10.1007/s11191-022-1247 

00341-3 1248 

Roulston, M. S., & Smith, L. A. (2002). Evaluating probabilistic forecasts using information 1249 

theory. Monthly Weather Review, 130(6), 1653–1660.  1250 

Rousso, B. Z., Bertone, E., Stewart, R., & Hamilton, D. P. (2020). A systematic literature review 1251 

of forecasting and predictive models for cyanobacteria blooms in freshwater lakes. Water 1252 

Research, 182, 115959.  1253 

Sadler, J. M., Appling, A. P., Read, J. S., Oliver, S. K., Jia, X., Zwart, J. A., & Kumar, V. (2022). 1254 

Multi‐task deep learning of daily streamflow and water temperature. Water Resources 1255 

Research, 58(4). DOI: 10.1029/2021wr030138 1256 

Schaake, J. C., Hamill, T. M., Buizza, R., & Clark, M. (2007). HEPEX: The Hydrological 1257 

Ensemble Prediction Experiment. Bulletin of the American Meteorological Society, 88(10), 1258 



56 

1541–1548.  1259 

Singh, M., & Ahmed, S. (2021). IoT based smart water management systems: A systematic 1260 

review. Materials Today: Proceedings, 46, 5211–5218.  1261 

Smith, L. A., Suckling, E. B., Thompson, E. L., Maynard, T., & Du, H. (2015). Towards 1262 

improving the framework for probabilistic forecast evaluation. Climatic Change, 132(1), 1263 

31-45.   1264 

Stumpf, R. P., Johnson, L. T., Wynne, T. T., & Baker, D. B. (2016). Forecasting annual 1265 

cyanobacterial bloom biomass to inform management decisions in Lake Erie. Journal of 1266 

Great Lakes Research, 42(6), 1174–1183.  1267 

Sunyaev, A. (2020). Cloud computing. In A. Sunyaev (Ed.), Internet Computing: Principles of 1268 

Distributed Systems and Emerging Internet-Based Technologies (pp. 195–236). Springer 1269 

International Publishing.  1270 

Swets, J. A. (1973). The relative operating characteristic in psychology: A technique for isolating 1271 

effects of response bias finds wide use in the study of perception and cognition. Science, 1272 

182(4116), 990–1000.  1273 

Tetlock, P. E., & Gardner, D. (2016). Superforecasting: The Art and Science of Prediction. 1274 

Random House Books. 1275 

Theocharis, Z., Smith, L. A, & Harvey, N. (2019). The influence of graphical format on 1276 

judgmental forecasting accuracy: Lines versus points. Futures & Foresight Science, 1(1), 1277 

e7.   1278 

Thomas, R. Q., Boettiger, C., Carey, C., Dietze, M., Fox, A., Kenney, M. A., Laney, C. M., 1279 

McLachlan, J. S., Peters, J., Weltzin, J. F., Woelmer, W. M., Foster, J. R., Guinnip, J. P., 1280 

Spiers, A., Ryan, S., Wheeler, K. I., Young, A. R., Johnson, L. R. et al. (2021). Ecological 1281 



57 

Forecasting Initiative: NEON Ecological Forecasting Challenge documentation V1.0. 1282 

Zenodo repository. DOI: 10.5281/zenodo.4780155 1283 

Thomas, R. Q., Figueiredo, R. J., Daneshmand, V., Bookout, B. J., Puckett, L. K., & Carey, C. 1284 

C. (2020). A near‐term iterative forecasting system successfully predicts reservoir 1285 

hydrodynamics and partitions uncertainty in real time. Water Resources Research. 56, 1286 

e2019WR026138.  1287 

Thomas, R. Q., McClure, R., Moore, T., Woelmer, W., Boettiger, C., Figueiredo, R., Hensley, 1288 

R., & Carey, C. (2022). Near-term forecasts of NEON lakes reveal gradients of 1289 

environmental predictability across the U.S. Frontiers in Ecology and the Environment. 1290 

DOI: 10.1002/essoar.10510642.1 1291 

Thompson, E. L., & Smith, L. A. (2019). Escape from model-land. Economics, 13. DOI: 1292 

10.5018/economics-ejournal.ja.2019-40 1293 

Troin, M., Arsenault, R., Wood, A. W., Brissette, F., & Martel, J.-L. (2021). Generating 1294 

ensemble streamflow forecasts: A review of methods and approaches over the past 40 years. 1295 

Water Resources Research, 57(7), e2020WR028392. 1296 

Turner, S. W. D., Bennett, J. C., Robertson, D. E., & Galelli, S. (2017). Complex relationship 1297 

between seasonal streamflow forecast skill and value in reservoir operations. Hydrology and 1298 

Earth System Sciences, 21(9), 4841–4859.  1299 

Turner, S. W. D., Xu, W., & Voisin, N. (2020). Inferred inflow forecast horizons guiding 1300 

reservoir release decisions across the United States. Hydrology and Earth System Sciences, 1301 

24(3), 1275–1291.  1302 

U.S. CDC. (2022 April 19). CDC launches new Center for Forecasting and Outbreak Analytics: 1303 

new center will enhance capability for timely, effective decision-making to improve 1304 



58 

outbreak response using data, models, and analytics: press release for immediate release 1305 

Tuesday, April 19, 2022. https://stacks.cdc.gov/view/cdc/116460 1306 

U.S. EPA. (2016). Six Key Steps for Developing and Using Predictive Tools at Your Beach (No. 1307 

820-R-16-001). U.S. Environmental Protection Agency Office of Water. 1308 

https://www.epa.gov/sites/default/files/2016-03/documents/six-key-steps-guidance-1309 

report.pdf 1310 

U.S. NOAA. (2022). Building a Climate-Ready Nation: NOAA FY22-26 Strategic Plan. US 1311 

National Oceanic and Atmospheric Administration. 1312 

https://www.noaa.gov/sites/default/files/2022-06/NOAA_FY2226_Strategic_Plan.pdf 1313 

U.S. NOAA, Center for Operational Oceanographic Products and Services. (2018). Forecast 1314 

products and associated satellite imagery from Lake Erie created by the NOAA Harmful 1315 

Algal Bloom Operational Forecast System (HAB-OFS) from 2017-06-25 to 2020-10-20 1316 

[Data set]. National Centers for Environmental Information. 1317 

https://www.ncei.noaa.gov/archive/accession/NOS-HABOFS-LakeErie 1318 

Vaillancourt, P., Wineholt, B., Barker, B., Deliyannis, P., Zheng, J., Suresh, A., Brazier, A., 1319 

Knepper, R., & Wolski, R. (2020). Reproducible and portable workflows for scientific 1320 

computing and HPC in the Cloud. Practice and Experience in Advanced Research 1321 

Computing. 311-318. DOI: 10.1145/3311790.3396659 1322 

Varadharajan, C., Appling, A. P., Arora, B., Christianson, D. S., Hendrix, V. C., Kumar, V., 1323 

Lima, A. R., Müller, J., Oliver, S., Ombadi, M., Perciano, T., Sadler, J. M., Weierbach, H., 1324 

Willard, J. D., Xu, Z., & Zwart, J. (2022). Can machine learning accelerate process 1325 

understanding and decision‐relevant predictions of river water quality? Hydrological 1326 

Processes, 36(4). DOI: 10.1002/hyp.14565 1327 



59 

Vought, R. T., & Droegemeier, K. K. (2020). M-20-29: Fiscal Year (FY) 2022 Administration 1328 

Research and Development Budget Priorities and Cross-cutting Actions. 1329 

https://www.whitehouse.gov/wp-content/uploads/2020/08/M-20-29.pdf 1330 

Walsh, J. R., Carpenter, S. R., & Vander Zanden, M. J. (2016). Invasive species triggers a 1331 

massive loss of ecosystem services through a trophic cascade. Proceedings of the National 1332 

Academy of Sciences of the United States of America, 113(15), 4081–4085.  1333 

Ward, E. J., Holmes, E. E., Thorson, J. T., & Collen, B. (2014). Complexity is costly: a meta-1334 

analysis of parametric and non-parametric methods for short-term population forecasting. 1335 

Oikos , 123(6), 652–661.  1336 

Weathers, K., Hanson, P. C., Arzberger, P., & Brentrup, J. (2013). The Global Lake Ecological 1337 

Observatory Network (GLEON): the evolution of grassroots network science. Limnology 1338 

and Oceanography Bulletin, 22(3), 71-73. DOI: 10.1002/lob.201322371 1339 

White, E. P., Yenni, G. M., Taylor, S. D., Christensen, E. M., Bledsoe, E. K., Simonis, J. L., & 1340 

Ernest, S. K. M. (2019). Developing an automated iterative near‐term forecasting system for 1341 

an ecological study. Methods in Ecology and Evolution, 10(3), 332–344.  1342 

Willson, A. (2022). Open-access, online resources for ecological forecasting [Data set]. Figshare 1343 

repository. DOI: 10.6084/m9.figshare.19765834.v1 1344 

Woelmer, W. M., Bradley, L. M., Haber, L. T., Klinges, D. H., Lewis, A. S. L., Mohr, E. J., 1345 

Torrens, C. L., Wheeler, K. I., & Willson, A. M. (2021). Ten simple rules for training 1346 

yourself in an emerging field. PLoS Computational Biology, 17(10), e1009440.  1347 

Woelmer, W. M., Thomas, R. Q., Lofton, M. E., McClure, R. P., Wander, H. L., & Carey, C. C. 1348 

(2022). Near-term phytoplankton forecasts reveal the effects of model time step and 1349 

forecast horizon on predictability. Ecological Applications, e2642. DOI: 10.1002/eap.2642 1350 



60 

Yip, S., Ferro, C. A. T., Stephenson, D. B., & Hawkins, E. (2011). A simple, coherent 1351 

framework for partitioning uncertainty in climate predictions. Journal of Climate, 24(17), 1352 

4634–4643.  1353 

Zabini, F. (2016). Mobile weather apps or the illusion of certainty. Meteorological Applications, 1354 

23(4), 663–670.  1355 

Zhu, S., & Piotrowski, A. P. (2020). River/stream water temperature forecasting using artificial 1356 

intelligence models: a systematic review. Acta Geophysica, 68(5), 1433–1442.  1357 

Zwart, J. A., Hararuk, O., Prairie, Y. T., Jones, S. E., & Solomon, C. T. (2019). Improving 1358 

estimates and forecasts of lake carbon dynamics using data assimilation. Limnology and 1359 

Oceanography: Methods, 17(2), 97–111.   1360 



61 

Tables 1361 

Table 1: Definitions and examples of terms related to freshwater forecasting. Definitions are 1362 

adapted from multiple sources (Carey et al., 2022; Dietze, 2017a; Lewis et al., 2022; Lofton et 1363 

al., 2022; McClure et al., 2021; Thomas & Figueiredo, 2020), with additional references for 1364 

select terms provided in the table. 1365 

Term Definition Freshwater quality example 

Automated workflow A forecasting system that 
produces new forecasts on a 
set schedule or in response to 
another automated action and 
does not require a person to 
manually initiate forecast 
generation 

A lake water temperature 
forecast that is triggered to be 
issued every six hours as new 
meteorological forecasts are 
available from US NOAA 

Data assimilation Updating either initial 
conditions, model states, 
and/or model parameters 
through statistical comparison 
of model predictions to new 
observations not previously 
ingested by the model 

Using a Kalman filter to 
update initial conditions in a 
weekly forecast of algal 
biomass concentrations  

Data ingest The process of making data 
accessible to a model (e.g., 
for data assimilation) 

Chlorophyll-a sensor data are 
wirelessly streamed to a 
server and assimilated into the 
forecast model on a daily time 
step 

Ensemble Repeated model runs using 
different values of 
parameters, initial conditions, 
driver data, and/or random 
processes 

Running a model to predict 
tomorrow’s zooplankton 
biomass 100 times using 
different draws from a 
distribution of possible 
zooplankton growth rate 
parameter values, possible 
current zooplankton biomass 
values, and possible 
forecasted water temperatures 

Forecast Predictions of the future state 
of a physical, chemical, or 

There is a 45% chance that 
dissolved iron concentrations 
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biological freshwater variable 
that incorporates uncertainty 

will exceed drinking water 
criteria next week   

Forecast horizon How far into the future a 
forecast is issued 

A forecast of stream 
discharge one week into the 
future (a one-week horizon) 
vs. one day into the future (a 
one-day horizon)  

Forecast skill The ability of a forecast to 
accurately predict real world 
conditions  

A forecast that predicts water 
temperature one week into the 
future with an RMSE of 1.4° 
C 

Hindcast A prediction of a time period 
which has already happened 
with specified uncertainty but 
using data which was 
withheld from the model 
during calibration and 
validation. Importantly, 
hindcasts use hindcasted, not 
observational, driver data to 
obtain predictions (see Jolliffe 
& Stephenson, 2012 for 
further information) 

Daily forecasts of dissolved 
oxygen in 2018 using a model 
calibrated with data from 
2015 – 2017 and archived 
meteorological forecasts from 
2018  

Iterative forecast The process of repeatedly 
validating forecasts, updating 
model initial conditions and 
parameters, and issuing new 
forecasts as new data become 
available  

A monthly forecast of fish 
biodiversity that is validated, 
updated, and re-issued as fish 
surveys are conducted 
between forecasts  

Kalman filter (also extended 
or ensemble Kalman filters) 

A method for statistically 
comparing model predictions 
and new observations to 
update the initial conditions 
and parameters of a model 
while accounting for 
uncertainty in both model 
predictions and observations 
(see Evensen, 2003 for further 
information) 

Using today’s observation of 
surface water turbidity to 
correct yesterday’s model 
prediction of today’s 
conditions, while accounting 
for both uncertainty in model 
predictions and uncertainty in 
turbidity sensor observations 

Operational forecast A forecast that is actively 
being updated and 

A one day-ahead water 
temperature forecast that is 
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disseminated to end users published online to inform 
community members and 
fishers 

Projection A forecast based on a specific 
scenario that could or could 
not include specified 
uncertainty 

A forecast of phytoplankton 
concentration next week 
assuming that algaecide will 
be applied by reservoir 
managers tomorrow  

Uncertainty partitioning 
(variance decomposition) 

Quantification of the 
uncertainty contribution from 
different sources (e.g., 
uncertainty in initial 
conditions vs. uncertainty in 
forecasts of model drivers); 
usually these contributions 
and their interactions are 
summed to estimate “total” 
forecast uncertainty (see 
Lofton, Brentrup, et al., 2022 
for a freshwater example)  

Quantifying the contributions 
of meteorological forecast 
uncertainty used to drive a 
model vs. uncertainty in 
model parameters to forecasts 
of lake cyanobacterial density 

Uncertainty propagation Quantitatively accounting for 
increased forecast uncertainty 
as the forecast progresses 
further into the future  

The 95% predictive interval 
for tomorrow’s forecasted 
water temperature is 15.1 to 
15.8° C, while the 95% 
predictive interval for water 
temperature in 10 days is 11.8 
to 20.9° C 

1366 



64 

Table 2: Definitions and examples of terms used during state-of-art review analysis. Definitions 1367 

of prediction and forecasting modeling approaches are adapted from Lewis et al. (2022). 1368 

Definitions of methods for incorporating uncertainty into forecasts are adapted from Dietze et al. 1369 

(2021). References for definitions of forecast assessment metrics are provided in the table. 1370 

Prediction and forecasting modeling approaches 

Term Definition Example 

Ecosystem simulation model Explicitly attempts to 
simulate ecological processes 
for a physically-based 
ecosystem and is too complex 
to solve analytically 

A coupled three-dimensional 
hydrodynamic-water quality 
model for a lake 

Empirical model Uses correlations or statistical 
relationships among variables 
to make predictions but does 
not explicitly account for time 
series attributes of the data 

Multiple regression 

Machine learning model Uses time series data of 
predictors and a target 
variable (predictand) to train 
an algorithm that predicts the 
value of the target variable 
one or more time steps into 
the future 

Artificial neural network 
model 

Process-based model Explicitly attempts to 
simulate ecological processes 
but is not physically-based 
and/or is simple enough to be 
solved analytically 

Age-structured population 
model 

Time series model Uses correlations or statistical 
relationships among variables 
to make predictions and 
explicitly accounts for time 
series attributes of the data 
such as autocorrelation and 
trends 

Autoregressive integrated 
moving average (ARIMA) 
model 
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Methods of incorporating uncertainty into forecasts 

Term Definition Example 

Assimilates The forecast system 
iteratively updates uncertainty 
in initial conditions and 
model parameters by 
comparing model predictions 
to new data as it becomes 
available 

Using an ensemble Kalman 
filter to update the uncertainty 
around a phytoplankton 
growth rate parameter using 
the most recent observation of 
lake chlorophyll-a 

Data-driven  The forecast system contains 
the concept of uncertainty and 
the degree of uncertainty is 
informed by data 

Confidence interval around a 
fitted multiple regression line 
that uses nutrient 
concentrations and water 
temperature to predict 
chlorophyll-a concentrations 

Presents The forecast system contains 
the concept of uncertainty but 
values are not derived from 
data 

Using different representative 
concentration pathway (RCP) 
scenarios as model drivers to 
predict distribution of an 
aquatic invasive species in 10 
years 

Propagates The forecast system translates 
uncertainty in inputs into 
uncertainty in forecasts, and 
quantifies how this 
uncertainty increases into the 
future 

Running a model multiple 
times with different draws 
from distributions of 
parameters, driver data, and 
initial conditions (i.e., an 
ensemble) to predict 
dissolved oxygen from 1 – 10 
days into the future 

Forecast assessment metrics used in analyzed papers  

Term Description Reference 

Area under receiver operating 
characteristic curve (AUC) 

For binary classification 
predictions, the area under the 
receiver operating 
characteristic curve (ROC 
curve; see definition below) 
falls between 0 – 1; a value of 
0.5 indicates a prediction no 

(Bradley, 1997) 
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better than chance, while 
values above and below 0.5 
indicates predictions better 
than chance and worse than 
chance, respectively 

Bias For continuous deterministic 
or probabilistic predictions, 
difference between mean of 
predictions and mean of 
observations; a smaller bias is 
desirable and bias is 
expressed in the units of the 
target variable 

(Jolliffe & Stephenson, 2012) 

Brier score Assesses the ability of a 
model to predict an event by 
comparing the predicted 
probability of the event to the 
binary outcome; ranges from 
0 – 1 where 0 is a perfect 
forecast and 1 is the worst 
possible forecast   

(Brier, 1950) 

Continuous ranked 
probability score (CRPS) 

For continuous probabilistic 
predictions, the ensemble 
analogue of mean absolute 
error (MAE; see below); a 
smaller CRPS is desirable and 
CRPS is expressed in the 
units of the target variable 

(Gneiting & Raftery, 2007; 
Matheson & Winkler, 1976) 

Mean absolute error (MAE) The average difference 
between paired continuous 
observations and predictions; 
a smaller MAE is desirable 
and MAE is expressed in the 
units of the target variable 

(Chai & Draxler, 2014) 

Coefficient of determination 
(R2) 

The proportion of variation in 
data explained by a model; 
ranges from 0 – 1 and a 
higher value of R2 is desirable 

(Nagelkerke, 1991) 

Reliability diagram For continuous probabilistic 
predictions, a plot of observed 
relative frequencies vs. 

(Bröcker & Smith, 2007) 
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forecasted probabilities, 
where forecasts that follow 
the 1:1 line are perfect 
forecasts; alternatively, 
reliability can be assessed for 
a given predictive interval by 
calculating the percentage of 
observations that fall within 
the specified predictive 
interval (e.g., do 90% of 
observations fall in the 90% 
predictive interval?) 

Root mean square error 
(RMSE) 

For continuous predictions, 
the quadratic mean of 
differences between predicted 
and observed values; a 
smaller RMSE is desirable, 
and RMSE is expressed in the 
units of the target variable 

(Chai & Draxler, 2014) 

Receiver operating 
characteristic curve (ROC) 

For binary classification 
predictions, plots the rate of 
true positives vs. the rate of 
false positives; an ROC curve 
that follows the 1:1 diagonal 
line indicates a prediction no 
better than chance, while 
above and below the 1:1 line 
indicates better than chance 
and worse than chance, 
respectively 

(Swets, 1973) 

Sharpness The concentration of a 
predictive distribution, where 
the sharper the distribution, 
the less spread occurs among 
ensemble members; smaller 
sharpness is usually 
considered desirable 
providing the predictive 
accuracy of the forecast is 
sufficient (i.e., a sharp, 
inaccurate forecast is not a 
good forecast) 

(Gneiting, Balabdaoui, et al., 
2005) 

1371 
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Table 3: Accuracy of near-term water quality forecasts as reported in reviewed papers. Accuracy is given as a range spanning the full 1372 

forecast horizon unless otherwise specified (e.g., a continuous ranked probability score (CRPS) of 0.77 – 1.08 º C for a 1 – 5 day water 1373 

temperature forecast represents the full range of CRPS reported across the 1, 2, 3, 4, and 5-day forecast horizons). In cases when 1374 

multiple forecast models were used, accuracy is reported for the focal or best-performing forecast model(s) as identified by the authors 1375 

(i.e., accuracy of null or baseline models is not reported). In cases when multiple forecast methodologies for a single model were 1376 

trialed (e.g., multiple forecasts generated with a single model but with different ensemble sizes), accuracy is reported across all 1377 

methodologies. ≅ is used in cases where values are approximated from figures rather than reported in text or tables. Forecast 1378 

assessment methods which cannot readily be summarized in table format (e.g., reliability plots, tercile plots) were omitted. CRPS = 1379 

continuous ranked probability score; RMSE = root mean square error; MAE = mean absolute error; MRE = mean relative error; R2 = 1380 

coefficient of determination; CI reliability = percent of observations that fall into the 95% confidence interval; RMSEP = root mean 1381 

square error in probability; AUC = area under the receiver operating characteristic curve; ROCSS = receiver operating characteristic 1382 

skill score; RPSS = ranked probability skill score; NSE = Nash-Sutcliffe efficiency.  1383 
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Forecast 
variable 

type 
Water quality 

variable Paper Year Ecosystem Forecast 
horizon 

Length of forecast 
assessment period Forecast accuracy 

physical water temperature 
(surface) 

Ouellet-Proulx, St-
Hilaire, et al. 

2017 river 1 – 5 
days 

5 summers (15 June to 
15 Sept 2009 – 2014) 

CRPS = 0.77 – 1.08 ºC across two rivers 
Brier score for early warning (18 ºC) ≅ 0.12 – 0.18 
Brier score for threshold exceedance (20 ºC) ≅ 0.01 – 0.05 

physical water temperature 
(surface) 

Ouellet-Proulx, 
Chimi Chiadjeu, et al. 

2017 river 1 – 5 
days 

5 summers (15 June to 
15 Sept 2009 – 2014) 

CRPS = 0.24 – 0.8 ºC across two rivers 
Brier score = 0.01 – 0.22 across three temperature thresholds (16  
ºC, 18 ºC, 20 ºC) 

physical water temperature 
(multiple depths) 

Thomas et al. 2020 reservoir 1 – 16 
days 

475 days (28 Aug 
2018 – 15 Dec 2019 

CRPS = 0.23 – 0.80 ºC averaged across all depths 
Bias 0.03 – 0.05 ºC averaged across all depths 
RMSE = 0.44  – 1.4 ºC averaged across all depths 
CRPS skill score (improvement relative to a baseline or null 
model, where 0 indicates no improvement, 1 indicates a perfect 
forecast, and values below 0 indicate worse performance than the 
null) = -0.07 – 0.39 averaged across all depths 
CI reliability = 79 – 85% averaged across all depths 

physical water temperature 
(lake outlet) 

Baracchini et al. 2020 lake 3 hr – 4.5 
days 

2 days (28 June – 30 
June 2017) 

RMSE = 0.8 ºC during upwelling event 

physical water temperature 
(multiple depths) 

Mercado-Bettin et al. 2021 lake & 
reservoir 

1 – 4 
months 

23 years (Nov 1993 – 
Nov 2016) 

ROCSS significant (representing forecast ability to predict above 
normal, normal, or below normal temperatures) for below normal 
winter surface water temperatures in 1 of 4 study lakes; for above 
normal spring surface temperatures in 1 lake; for below normal 
spring surface temperatures in 1 lake; for above and below 
normal summer surface temperatures in 1 lake; for above or 
below normal winter bottom temperatures in 2 lakes; for above or 
below normal spring bottom temperatures in 3 lakes; for above or 
below normal summer bottom temperatures in 3 lakes; for above 
or below normal autumn bottom temperatures in 1 lake 
RPSS significant (representing forecast improvement over 
climatology null model) for surface waters in winter for 1 of 4 
study lakes; in spring for 3 of 4; in summer for none; RPSS not 
significant for bottom waters in winter; RPSS significant for 
bottom waters in spring and summer for 1 of 4 lakes 
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Forecast 
variable 

type 

Water quality 
variable Paper Year Ecosystem Forecast 

horizon 
Length of forecast 
assessment period Forecast accuracy 

physical turbidity Jin et al. 2019 river 4 hr 3 months (28 Jul 2014 
– 26 Oct 2014) 

RMSE = 0.0024 NTU 
MAE = 0.0421 NTU 
MRE = 0.2222 NTU 
R2 = 0.9698 NTU 

chemical 
 

ammonia-nitrogen Jin et al. 2019 river 4 hr 3 months (28 Jul 2014 
– 26 Oct 2014) 

RMSE = 0.0487 mg L-1 

MAE = 0.1045 mg L-1 
MRE = 0.1991 mg L-1 
R2 = 0.9085 mg L-1 

chemical electroconductivity Jin et al. 2019 river 4 hr 3 months (28 Jul 2014 
– 26 Oct 2014) 

RMSE = 0.0068 μS cm-1 

MAE = 0.0635 μS cm-1 
MRE = 0.3583 μS cm-1 
R2 = 0.9424 μS cm-1 

chemical dissolved oxygen Peng et al. 2020 lake 0 – 5 
days 

2 years (2017 – 2018) bias = 0.008 – 0.022 mg L-1 

RMSEP skill score (percent improvement over baseline model) ≅ 
14 – 37% 
CRPS skill score (percent improvement over baseline model) ≅ 
24 – 44% 

chemical ammonium-
nitrogen 

Peng et al. 2020 lake 0 – 5 
days 

2 years (2017 – 2018) bias = 0.001 – 0.028 mg L-1 

RMSEP skill score ≅ -3 – 18% 
CRPS skill score ≅ 3 – 32% 

chemical total phosphorus Peng et al. 2020 lake 0 – 5 
days 

2 years (2017 – 2018) bias = 0.001 – 0.003 mg L-1 

RMSEP skill score ≅ 48 – 78% 
CRPS skill score ≅ 51 – 76% 

chemical total nitrogen Peng et al. 2020 lake 0 – 5 
days 

2 years (2017 – 2018) bias = 0.008 – 0.016 mg L-1 

RMSEP skill score ≅ 6 – 42% 
CRPS skill score ≅ 8 – 40% 

chemical methane ebullition 
rate 

McClure et al. 2021 reservoir 1 – 2 
weeks 

5 months (17 June – 7 
Nov 2019) 

RMSE = 0.48 – 0.53 ln(mg CH4 m-2 d-1) 
NSE = 0.76 – 0.80 ln(mg CH4 m-2 d-1) 
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Forecast 
variable 

type 

Water quality 
variable Paper Year Ecosystem Forecast 

horizon 
Length of forecast 
assessment period Forecast accuracy 

biological chlorophyll-a 
(integrated over top 
5 – 7 m of water 
column) 

Page et al. 2018 lake 1 – 10 
days 

2 – 3 years (2008 – 
2010 for one study 
lake and 2008 – 2009 
for the other) 

RMSE ≅ 2.75 – 18.5 mg m-3 across two lakes 

biological probability of 
microcystin health 
advisory level 
exceedance 

Liu et al. 2020 lake 1 – 5 
days 

1 summer (Jul – Oct 
2017) 

bias (binary)  =  0.84 – 1.14 for health advisory levels ranging 
from 0.3 – 20 μg L-1 
Pierce skill score = 0.19 – 0.41 for health advisory levels ranging 
from 0.3 – 20 μg L-1 

AUC = 0.87 for a health advisory level of 6 μg L-1 

biological algal bloom 
occurrence 

Mu et al. 2021 lake 1 – 7 
days 

assessed hindcasts 
generated using 10% 
of available satellite 
imagery dataset 
spanning 2002 – 2018 
(where total n = 872 
images) 

84.3 – 97.7% of modeled pixels with CCI% = 0.5 – 1 for bloom 
occurrence 

1384 
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Figures  1385 

Figure 1: The near-term, iterative forecast cycle as implemented in a real-world setting for an 1386 

operational forecasting system used by managers, decision-makers, or other end users (modified 1387 

from Dietze 2017). Freshwater forecast end users (e.g., managers, natural resource decision-1388 

makers) are engaged at the beginning of the forecast process (Fig. 1 Step A) and a forecasting 1389 

team is assembled and coordinated (Fig. 1 Step B). The team will then work to develop the 1390 

models, infrastructure, and workflows needed to produce forecasts (Fig. 1 Step C), and begin 1391 

obtaining input and validation data for forecasts (Fig. 1 Step D). Before forecasts are generated, 1392 

the uncertainty associated with the forecast should be quantified (Fig. 1 Step E), and the most 1393 

recent observational data can be used to update the model (Fig. 1 Step F). Finally, a forecast is 1394 

generated (Fig. 1 Step G), disseminated to end users (Fig. 1 Step H), assessed (Fig. 1 Step I), and 1395 

the cycle begins again by seeking end user feedback to help improve the forecast and forecasting 1396 

workflow (Fig. 1 Step A). 1397 

1398 
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Figure 2: Conceptual framework of our recommendations for advancing the field of freshwater 1399 

quality forecasting and operational near-term freshwater quality forecasts. Effective forecasts lie 1400 

at the intersection of freshwater science, end user needs, and relevant tools and skills, all of 1401 

which require funding support. Agenda items recommended to advance the field of near-term 1402 

freshwater quality forecasting are in bold, with the italicized number corresponding to sections 1403 

under “Opportunities to advance near-term freshwater quality forecasting” in the text. 1404 

1405 
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Figure 3: Results of initial screen for state-of-art review. Water quantity is defined as lake or reservoir inflow, stream or river 1406 

discharge, water level, or flood risk. Near-term is defined as having a minimum forecast horizon ≤ 10 years. Future predictions must 1407 

have specified uncertainty to be considered a forecast; here, forecast includes forecasts, hindcasts, and projections (see Table 1 for 1408 

definitions). See Table 2 for definitions of model types, and Fig. S2 for data on model types per category. 1409 

1410 
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Figure 4: Frequency of water quality variables predicted in papers presenting freshwater future 1411 

predictions. DO = dissolved oxygen; index = water quality index calculated from multiple 1412 

freshwater variables; BOD/COD = biochemical oxygen demand/chemical oxygen demand; 1413 

toxins/T&O compounds = toxins/taste and odor compounds 1414 

 1415 

 1416 

  1417 
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Figure 5: Near-term water quality forecast ecosystem type, target variable type, and maximum 1418 

forecast horizon. Lentic = standing water (e.g., lake, reservoir); lotic = flowing water (e.g., 1419 

stream, river). See Table S3 for data underlying this figure.  1420 

 1421 

 1422 
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Figure 6: Frequency of a) model calibration, validation, and forecast assessment metrics, b) 1423 

uncertainty specification methods, and c) workflow attributes for near-term water quality 1424 

forecasts. See Table 1 for definitions of workflow attributes in (c), Table 2 for definitions of 1425 

forecast assessment metrics in (a) and uncertainty specification methods (b); and Table S3 for 1426 

data underlying this figure. AUC = area under receiver operating characteristic curve; Brier = 1427 

Brier score; CRPS = continuous ranked probability score; MAE = mean average error; R2 = 1428 

coefficient of determination; reliability = reliability diagrams; RMSE = root mean square error; 1429 

ROC = receiver operating characteristic curve. 1430 

 1431 
 1432 
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Text S1: Literature review methods 

Overview 

We conducted a state-of-the-art literature review (Grant & Booth 2009) of freshwater 

forecasting over the past five years to assess the state of the field, recent progress, and ongoing 

challenges (Fig. S1). First, we conducted a search using the Web of ScienceTM Core Collection 

database. Second, we conducted a title screen, followed by an initial full-text screen, during 

which we assessed whether the paper presented a near-term freshwater quality forecast. Third, 

we then completed an in-depth analysis of each paper that passed the initial screen using a 

standardized matrix. Finally, we analyzed the tabular data from our matrix-based paper analysis 

to assess the state of near-term freshwater quality forecasting and identify areas of recent 

progress and ongoing challenges. Each step of the literature review process is documented in 

detail below.  

 

Initial Web of Science search 

We built our search around four concepts: forecasting, freshwater, possible freshwater 

forecast target variables (e.g., streamflow, harmful algal blooms), and a combined global 

change/resource management concept (Table S1). The final search string required the title to 

contain a word relating to the forecasting concept and for either the title or the abstract to contain 

a word or phrase relating to each of the four concepts. After several trial searches, we 

subsequently removed “predict*” and “project*” from the forecasting concept for the abstract 

search only, as we found this resulted in retrieval of a large proportion of modeling studies that 

did not address forecasting. Our search period extended from 1 January 2017 to 17 February 
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2022, representing the past five years of peer-reviewed research, which is a typical approach for 

state-of-art reviews (Grant & Booth 2009). Together, these requirements resulted in the 

following final search string, with the final search conducted on 17 February 2022 yielding 963 

results (Fig. S1): 

 

Title must include: 

(forecast* OR hindcast* OR predict* OR project*) 

 

Title or abstract must include: 

(freshwater OR hydrology OR hydrodynamics OR aquatic OR stream* OR river OR lake OR 

reservoir OR groundwater) AND (forecast* OR hindcast*) AND (fish OR algae OR 

phytoplankton OR zooplankton OR plankton OR nitrate OR ammoni* OR nitrogen OR 

phosphate OR phosphorus OR “dissolved gas” OR “dissolved gasses” OR “dissolved gases” OR 

“carbon dioxide” OR methane OR nutrient* OR temperature OR communit* OR biodiversity 

OR flow OR streamflow OR “water quality” OR flood OR hydrology OR hydrodynamics OR 

“algal bloom” OR “dead zone” OR “dissolved oxygen” OR salmon OR “benthic 

macroinvertebrate” OR “benthic macroinvertebrates” OR toxin OR cyanobacteria* OR chem* 

OR biogeochem* OR flux*) AND ((“global change” OR “climate change” OR climate OR 

“global warming” OR “global cooling” OR “carbon cycle” OR “carbon cycling” OR 

“greenhouse gas” OR “greenhouse gasses” OR “greenhouse gases” OR hypoxia OR 

brownification OR “invasive species” OR “land use” OR “nutrient pollution” OR microplastics 

OR biodiversity OR “emerging diseases” OR antibiotics OR salinization OR eutrophication OR 

anthrop*) OR (“resource manager” OR “resource management” OR “freshwater resource” OR 
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“freshwater resources” OR “ecosystem service” OR “ecosystem services” OR “water treatment” 

OR “drinking water” OR “water supply” OR “lake manager” OR “lake management” OR “river 

management” OR “river manager” OR “water manager” OR “water management” OR “end 

user” OR “end-user” OR “decision-making” OR “decision support” OR conservation OR “water 

policy” OR policymaker* OR “water professional” OR “water professionals” OR “water 

resource” OR “water resources” OR stakeholder* OR research*)) 

 

Title and full-text screen 

 Second, we screened paper titles and text for relevance and basic information regarding 

forecasts. The title screen was conducted solely by M.E.L. and resulted in elimination of 250 

papers, leaving 713 papers for the initial full-text screen (Fig. S1). Examples of papers 

eliminated during the title screen include papers forecasting vehicular traffic flow and papers 

forecasting atmospheric rivers, which are a meteorological phenomenon. The initial full-text 

screen was primarily conducted by M.E.L., with 231 (32%) abstracts double-screened by 

D.W.H., C.C.C., and R.Q.T. to ensure agreement amongst co-authors regarding interpretation of 

the screen criteria. The initial screen was conducted using a standardized questionnaire 

comprising the following questions: 

1. Is the study ecosystem an inland waterbody (salty lakes, lagoons, swamps, wetlands are 

permissible, coastal oceans and estuaries are not permissible)? For studies forecasting 

runoff or drought/flood risk, there must be some representation of an inland waterbody in 

the modeling approach. 

2. Are the only focal variables some combination of streamflow, inflow, or stream or river 

discharge, water level or flood risk (i.e., water quantity)? 
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3. Is the study presenting a forecast, nowcast, or hindcast (defined as a prediction of future 

conditions from the perspective of the model)? 

4. If the study is a forecast, nowcast, or hindcast, is uncertainty specified? 

5. If the study is a forecast, nowcast, or hindcast, what modeling approach is used? 

6. If the study is a forecast, nowcast, or hindcast, is the forecast/hindcast/nowcast near-term, 

defined as having a minimum forecast horizon ≤ 10 yr? 

 

In-depth analysis of each paper 

 Following the initial screen, we conducted an in-depth analysis of all identified near-term 

freshwater quality forecasting papers (n = 16; Fig. S1) using a standardized matrix (Table S2). 

Each paper was independently double-screened by M.E.L. and D.W.H., and any discrepancies 

were resolved through discussion.  

 

Data analysis 

Finally, we analyzed our tabular data from both the initial screen of freshwater forecasts 

and in-depth analysis of near-term freshwater quality forecasts to assess the state of the field of 

freshwater forecasting as well recent progress and ongoing opportunities following our focal 

research questions (see main text). All tabular data are available in the Environmental Data 

Initiative repository (Lofton et al., 2022b) and the analysis code is available in the Zenodo 

repository (Lofton et al., 2022a).
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Table S1: Terms included in final search string on Web of ScienceTM Core Collection database 

associated with each of the four core concepts of our search: forecasting, freshwater, possible 

freshwater forecast target variables (e.g., streamflow, harmful algal blooms), and a combined 

global change/resource management concept. Asterisks (*) were included after many terms to 

result in the most inclusive search possible, and search terms with multiple words were quoted to 

ensure that only results with the entire quoted phrase were returned. 

Core 
concepts for 
search 

Forecasting Freshwater Freshwater 
variables 

Global change & 
resource management 

Search 
terms 

forecast* 
hindcast* 
predict* 
project*  

aquatic 
freshwater 
groundwater 
hydrodynamics 
hydrology 
lake 
river 
reservoir 
stream* 
 
 

algae 
“algal bloom” 
ammoni* 
biodiversity 
biogeochem*  
“benthic 
macroinvertebrate” 
“benthic 
macroinvertebrates” 
“carbon dioxide” 
chem* 
communit* 
cyanobacteria* 
“dead zone” 
“dissolved gas” 
“dissolved gases” 
“dissolved gasses” 
“dissolved oxygen” 
fish 
flood 
flow 
flux* 
hydrodynamics 
hydrology 
methane  
nitrate 
nitrogen 
nutrient* 
phytoplankton 
phosphate 

anthrop* 
antibiotics  
biodiversity  
brownification 
“carbon cycle”   
“carbon cycling” 
climate    
“climate change”  
conservation  
“drinking water” 
“decision-making” 
“decision support”  
“ecosystem service”  
“ecosystem services” 
“emerging diseases”    
“end-user” 
“end user”  
 eutrophication  
“freshwater resource”  
“freshwater resources” 
“global change”   
“global cooling”  
“global warming”  
“greenhouse gas” 
“greenhouse gases” 
“greenhouse gasses”  
hypoxia   
“invasive species”  
“land use” 
“lake management”  
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phosphorus 
plankton 
salmon  
streamflow 
temperature 
toxin 
“water quality” 
zooplankton 
 

“lake manager”  
microplastics   
“nutrient pollution”   
policymaker* 
research* 
“resource management”  
“resource manager” 
“river management”  
“river manager”  
salinization   
stakeholder*  
“water management”  
“water manager”  
“water policy”  
“water professional”  
“water professionals”   
“water resource”   
“water resources”  
“water supply”  
“water treatment”  
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Table S2: Questions included in standardized matrix analysis of near-term freshwater quality 

forecasting papers. 

Forecast variables, scales, models, and skill 
What is the forecast ecosystem? Use the term the authors use in the paper. 
Is the forecast targeting a physical, chemical, or biological variable, or some 
combination of the three? 
List the target forecast variable(s), separated by commas (e.g., DOC 
concentration, streamflow). 
What is the minimum forecast horizon in days? 
What is the maximum forecast horizon in days? 
List the forecast skill metric(s) used, separated by commas (e.g., R2, RMSE); 
leave blank if forecast not assessed. 
Does the paper include a multi-model (2 or more models) comparison? 
Does the paper include a simple null model, defined as either a persistence 
model, the historical mean (climatology), or a first-order autoregressive model? 
How is uncertainty incorporated? See Table 2 for methods of incorporating 
uncertainty into forecasts. 

Forecast infrastructure and workflows 
Is the forecast iterative, defined as regularly updated and re-issued when new 
data become available? 
Is the forecast described by the authors as automated, meaning it can be reissued 
without manual intervention by a human? 
Is the forecast archived? Select yes if the archiving is noted in the text, otherwise 
select no/don't know. 

Human dimensions of forecasts 
What is the stated motivation for forecast development? Be brief; copy-pasting in 
quotations is fine but indicate this using quotation marks (" "); leave blank if not 
stated. 

Who is the stated end user? Spell out acronyms; leave blank if there isn't one. 
How were end users/stakeholders engaged in development? Be brief; leave blank 
if not applicable. 
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Table S3: The n=16 near-term freshwater quality forecasting papers that met our criteria for the in-depth analysis, with a subset of 

their matrix results. Papers are ordered by publication date; see Lofton et al. (2022b) for complete tabular results. The uncertainty 

methods are defined in Table 2 in the main text. 

 Authors Year Journal Ecosystem 
type Forecast variables 
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M
ax

. h
or

iz
on

 
(d

ay
s)

 

U
nc

er
ta

in
ty

 
m

et
ho

d 

It
er

at
iv

e 

A
ut

om
at

ed
 

A
rc

hi
ve

d 

C
om

pa
re

d 
m

od
el

s 

U
se

d 
nu

ll 
m

od
el

 

En
d 

us
er

 sp
ec

ifi
ed

 

Ouellet-Proulx et al. 2017 WATER Lotic 

water temperature, 

discharge 1 5 propagates x     x 

Ouellet-Proulx et al. 2017 JOURNAL OF HYDROLOGY Lotic 

water temperature, 

discharge 1 5 assimilates x     x 

Messager & Olden 2018 

DIVERSITY AND 
DISTRIBUTIONS Lotic 

Faxonius rusticus (rusty 

crayfish) occurrence 365 3285 data_driven       

Page et al. 2018 WATER RESEARCH Lentic 

phytoplankton 

community structure 1 10 assimilates x   x x  

Bhattacharya & Sanyal 2019 

JOURNAL OF EARTH 
SYSTEM SCIENCE Lotic 

discharge, sediment 

yield 3650 3650 data_driven       

Jin et al. 2019 

ENVIRONMENTAL SCIENCE 
AND POLLUTION 
RESEARCH Lotic 

ammonia-nitrogen, 

turbidity, electro-

conductibility 0.17 0.17 data_driven x   x   

Fraker et al. 2020 

SCIENCE OF THE TOTAL 
ENVIRONMENT Lotic fish habitat, fish traits 3650 20075 present       

Thomas et al. 2020 

WATER RESOURCES 
RESEARCH Lentic water temperature 1 16 assimilates x x  x x x 



Supplement to Lofton et al., Page 10 
 

 Authors Year Journal Ecosystem 
type 

Forecast variables 

M
in

. h
or

iz
on

 (d
ay

s)
 

M
ax

. h
or

iz
on

 
(d

ay
s)

 

U
nc

er
ta

in
ty

 
m

et
ho

d 

It
er

at
iv

e 

A
ut

om
at

ed
 

A
rc

hi
ve

d 

C
om

pa
re

d 
m

od
el

s 

U
se

d 
nu

ll 
m

od
el

 

En
d 

us
er

 sp
ec

ifi
ed

 

Peng et al. 2020 WATER RESEARCH Lentic 

dissolved oxygen, 

ammonium-nitrogen, 

total phosphorus, total 

nitrogen 0 5 propagates x   x   

Chen et al. 2020 ENTROPY Lotic 

water resources 

vulnerability index 1825 5475 present       

Liu et al. 2020 

ENVIRONMENTAL 
MODELLING & SOFTWARE Lentic 

probability of 

microcystin threshold 

exceedance 1 5 assimilates x     x 

Baracchini et al. 2020 WATER RESEARCH Lentic 

water velocity, water 

temperature 0.125 4.5 assimilates x x x   x 

Mercado-Bettin et al. 2021 WATER RESEARCH Lentic 

discharge, water 

temperature 30 120 propagates x      

Mu et al. 2021 ECOLOGICAL INDICATORS Lentic algal bloom occurrence 1 7 data_driven       

McClure et al. 2021 

FRONTIERS IN 
ENVIRONMENTAL SCIENCE Lentic methane ebullition rate 7 14 assimilates x  x x x  

Carey et al. 2022 INLAND WATERS Lentic 

dissolved oxygen, water 

temperature 1 16 assimilates x x x   x 
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Figure S1: Freshwater forecasting review workflow. All tabular data are available in the Environmental Data Initiative repository 

(Lofton et al., 2022b), and all analysis code is available in the Zenodo repository (Lofton et al., 2022a). 
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Figure S2: Results of initial screen for state-of-art review. Water quantity is defined as lake or reservoir inflow, stream or river 

discharge, water level, or flood risk. Near-term is defined as having a minimum forecast horizon ≤ 10 years. Future predictions must 

specify uncertainty to be considered a forecast; here, forecast includes forecasts, hindcasts, and projections. EMP = empirical model; 

ML = machine learning model; PROC = process-based model; SIM = simulation model; TS = timeseries model; other = other model 

type.  
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