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Abstract

The evolution of the climate and hydrochemistry of Mars is still a mystery but it must have been at least occasionally warm

and wet to have formed the ancient fluvial and lacustrine landforms observed today. Terrestrial examples and geochemical

modeling under proposed early Mars conditions show that zeolite minerals are likely to have formed under alkaline (pH >

8) conditions with low water/rock ratio and surface temperatures below 150 °C. The identification and spatial association of

zeolites on the surface of Mars could thus be used to reconstruct the paleoclimate, paleohydrochemistry, and geological evolution

of some locations on Mars. Previous studies identified the zeolite analcime and discuss the difficulties of identifying other zeolite

species on the surface of Mars using orbital spectroscopy. We used published global mineralogical, geological, geomorphological,

hydrological, physical, and elemental abundance maps and the locations of hydrous minerals detected and mapped using orbital

data to create a map that delineates favorable areas to look for zeolites on Mars. We used the data-driven fuzzy-based weights-

of-evidence method to identify and map favorable areas for zeolites on the surface of Mars up to ± 40° latitudes towards the

poles. The final map shows that the eastern and western Arabia deposits, some sites in the Medusae Fossae formation, and some

areas within and near Valles Marineris, Mawrth Vallis, highlands north of Hellas, and the Terra Cimmeria and Terra Sirenum

regions would be favorable areas to look for zeolites using targeted orbital spectral analysis or future in situ observations.
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Key Points:

• This study creates a map to delineate the favorable areas to look for
zeolites on the surface of Mars.

• We used the data-driven fuzzy-based weights-of-evidence method to iden-
tify and map favorable areas for zeolites using published global maps on
Mars.

• The final map shows the prospective areas for zeolites which could be used
to for more detailed orbital data analysis or future in situ observations.

Abstract

The evolution of the climate and hydrochemistry of Mars is still a mystery but
it must have been at least occasionally warm and wet to have formed the an-
cient fluvial and lacustrine landforms observed today. Terrestrial examples and
geochemical modeling under proposed early Mars conditions show that zeolite
minerals are likely to have formed under alkaline (pH > 8) conditions with
low water/rock ratio and surface temperatures below 150 °C. The identification
and spatial association of zeolites on the surface of Mars could thus be used to
reconstruct the paleoclimate, paleohydrochemistry, and geological evolution of
some locations on Mars. Previous studies identified the zeolite analcime and
discuss the difficulties of identifying other zeolite species on the surface of Mars
using orbital spectroscopy. We used published global mineralogical, geological,
geomorphological, hydrological, physical, and elemental abundance maps and
the locations of hydrous minerals detected and mapped using orbital data to
create a map that delineates favorable areas to look for zeolites on Mars. We
used the data-driven fuzzy-based weights-of-evidence method to identify and
map favorable areas for zeolites on the surface of Mars up to ± 40° latitudes
towards the poles. The final map shows that the eastern and western Arabia
deposits, some sites in the Medusae Fossae formation, and some areas within
and near Valles Marineris, Mawrth Vallis, highlands north of Hellas, and the
Terra Cimmeria and Terra Sirenum regions would be favorable areas to look for
zeolites using targeted orbital spectral analysis or future in situ observations.

Plain Language Summary

Our knowledge of early Mars environmental conditions is limited. Field exam-
ples from the Earth and computer models that simulate how zeolites form under
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early Martian conditions showed that they prefer water-limited, high pH condi-
tions and surface temperatures below 150 °C. Therefore, if zeolite minerals are
present in certain locations on the surface of Mars, based on their presence, we
can infer the geological and environmental history of that location. We used
a computer model to identify where zeolite minerals can be present on Mars,
based on existing maps and data sets of Martian surface features, properties,
and compositions. Using that model, we identified several areas of Mars that
would have been favorable for zeolites, which could be targeted for future more
detailed studies.

1 Introduction

Zeolites are some of the most commonly found authigenic silicate minerals in
terrestrial sedimentary deposits (Hay and Sheppard, 2001; Hay, 1966). Zeolite
occurrences in sedimentary environments on Earth can be categorized into six
groups based on their geologic and hydrologic settings; 1) saline-alkaline lakes
(e.g., Lake Tecopa, California; Sheppard and Gude, 1968), 2) soils and land
surfaces (e.g., Lake Bogoria basin, Kenya; Renaut, 1993), 3) deep sea sediments
(e.g., North-West Pacific; Lee, 1988), 4) open hydrologic systems (e.g. the
White River sequence, Wyoming, USA; Lander and Hay, 1993), 5) hydrothermal
alteration (e.g., Yucca Mountain, Nevada, USA; Sheppard et al., 1988), and
6) burial diagenesis (e.g., Mogami district, Yamagata, Japan; Iijima, 1988).
Overall, zeolites are most abundant in volcaniclastic deposits since volcanic
glass is a major zeolite precursor (Hay and Sheppard, 2001). Whether zeolites
form and are preserved depends on the thermodynamic equilibrium of fluid-
mineral reactions caused by water chemistry (Chipera and Apps, 2001), and
kinetically controlled non-equilibrium growth and dissolution reactions (Dibble
and Tiller, 1981). Therefore, the presence and nature of zeolites is a good
probe to reconstruct the geological and hydrological history of zeolite-bearing
environments on Earth (e.g., Chipera and Apps, 2001; McHenry et al., 2020).

Zeolites are also postulated as components of the Martian regolith (e.g., Ming
and Gooding, 1988; Basu et al., 1998; Berkley and Drake, 1981; Bish et al., 2003;
Dickinson and Rosen, 2003; Tokano and Bish, 2005; Cannon et al., 2015). Geo-
chemical modeling shows that zeolites on early Mars are likely to have formed
under alkaline (pH > 8) conditions with low water/rock ratios and surface tem-
peratures below 150 °C (e.g., Semprich et al., 2019, Zolotov and Mironenko,
2016). Since the hydrochemistry and climate of early Mars remain a mystery,
identifying and mapping zeolites on the surface of Mars can be used to recon-
struct not only the paleoclimate and paleohydrochemistry, but also the geolog-
ical evolution of Mars. Ehlmann et al. (2009) detected analcime in craters
near Antoniadi basin, west of Nili Fossae, using Compact Reconnaissance Imag-
ing Spectrometer for Mars (CRISM) orbital data. Carter et al. (2013) con-
ducted a large-scale investigation of hydrous minerals on Mars using CRISM
and OMEGA (Observatoire pour la Mineralogie, l’Eau, la Glace et l’Activite)
orbital imaging spectrometer data. They categorized zeolites and sulfates into
one class due to the difficulty of distinguishing them using orbital data, though
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they typically form in very different environments. However, based on the shape
of the 1.9 �m absorption band, they infer that more than 80% of minerals as-
signed to that class are likely zeolites. Sun and Milliken (2015) conducted a
survey to identify hydrous minerals in 633 crater central peaks using CRISM
data and only identified zeolites in 4.5% of them. These studies emphasized the
difficulty of identifying and distinguishing non-analcime zeolites from sulfates
using Visible-near Infrared – Shortwave Infrared spectral data. Zeolites have
also not yet been reported from in situ observations on Mars or in Martian
meteorites.

Therefore, the identification and delineation of prospective areas for zeolites on
the surface of Mars could serve as a guide for further searches for zeolites using
detailed orbital spectral image analysis and future in situ observations. Predic-
tive modeling for mineral exploration, a widely used statistical and probabilistic
reasoning method in geosciences, can be used in this case. Predictive modeling
for mineral exploration follows specific steps and starts by defining a conceptual
model for the exploration target. To define a conceptual model for exploration
targets for the mineral type of interest (zeolite in this case) requires knowledge
of the possible geological and geochemical formation processes of the target min-
eral. This knowledge allows exploration criteria to be defined, followed by the
selection of suitable geoscience spatial datasets to be used, the extraction and
enhancement of evidential features in each dataset, selecting mapping method(s)
for each evidential feature, selecting method(s) for creating predictive map(s)
from each evidential feature, and then integrating the predictive maps to create
a predictive model and/or to map the prospective areas for the target mineral
(zeolites) (Carranza, 2011). The preferred predictive model for this study should
1) accommodate the multiclass and continuous geodata, and 2) be sufficiently
robust to handle the “information fuzziness” inherent to remote observational
data (Porwal et al., 2003; Zimmermann, 1991). The combination of the weights-
of-evidence method and Fuzzy set theory can fulfill both criteria flexibly and
consistently.

The weights-of-evidence method (WEM) is commonly applied for mineral explo-
ration, landslide susceptibility analysis, and hazard modeling (e.g., Neuhäuser
and Terhorst, 2007; Bonham-Carter et al., 1989; Bonham-Carter, 1994). It has
also been used for habitat quality assessments (e.g., Romero-Calcerrada and
Luque, 2006), and even mapping the potential habitat of underground mush-
rooms (Yang et al., 2012). To map the potential mineral deposits, the model
uses the location of known mineral occurrences to identify the favorable geolog-
ical and environmental factors that can help map the potential distribution of
the desired mineral (Bonham-Carter et al., 1989). Fuzzy set theory is also used
for predictive mineral potential mapping since it provides a mathematical frame-
work for combining and analyzing quantitative and qualitative data independent
of their characteristics or source (Luo and Dimitrakopoulos, 2003; Porwal et al.,
2003; Moon, 1998). Cheng and Agterberg (1999) proposed a hybrid fuzzy WEM,
in which subjective or objective definitions of a fuzzy membership function of
evidence can be supplemented by a more objective WEM-calculated definition
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of conditional probabilities. Due to our limited knowledge of the formation
conditions (geological, mineralogical, physical, and hydrological) of zeolites on
Mars, a data-driven (empirical) approach was used. Data-driven methods typ-
ically assume that a sufficient number of known zeolite occurrences within the
study area have been well studied and documented (Porwal et al., 2003). Since
there are no well-studied and documented zeolite detections on Mars, this study
first models the favorable areas for hydrous minerals and based on that model
identifies the favorable areas for zeolites using other information and assump-
tions.

The conceptual model developed in this study requires: 1) the suitable geologic
and hydrologic environments for the formation of hydrous minerals, which are
commonly formed under lacustrine, hydrothermal, diagenesis/metamorphic, or
pedogenic processes, and 2) the presence of volcanic ash (tuff) as a starting
material for the formation of zeolites. Therefore, as a first step, this study
creates a predictive model (map) for the potential areas for hydrous minerals
on Mars, and then based on the available information and models of distribution
of pyroclastic ash deposits of Mars, create a predictive model (map) for the most
likely areas for zeolites on the surface of Mars.

2 Datasets

2.1 Hydrous mineral Map

Hydrous minerals are important markers of the surface and subsurface condi-
tions on early Mars since their crystal structures contain water and thus evi-
dence of ancient water-related processes. Carter et al. (2013) conducted a global
survey of Martian hydrous minerals using CRISM and OMEGA hyperspectral
data and sorted their hydrous detections into nine classes of spectra: 1) Fe/Mg
- phyllosilicates, 2) chlorites, 3) Al-smectites/micas, 4) Al-rich kaolins, 5) opa-
line silica, 6) zeolites/sulfates, 7) serpentines/carbonates, 8) prehnite, and 9)
epidote. Based on their study, the most common Martian hydrous minerals
are Fe/Mg- phyllosilicates (~89% of all hydrous exposures), followed by the Al-
phyllosilicates (~33% of all hydrous exposures). Over 50% of global hydrous
mineral detections by Carter et al. (2013) are associated with impact structures
(e.g., central peaks, rims, walls, or ejecta). Around 20% are associated with
horizontal/sub-horizontal sedimentary deposits, while alluvial fans/deltas are
about 5% of the cases. Around 20% of the cases are associated with crustal
outcrops. The database of detected hydrous mineral locations by Carter et al.
(2013) was downloaded from https://www.cosmos.esa.int/web/psa/mars-maps.

2.2 Geology

The geologic map of Mars provides unique information on the spatial and tem-
poral sequences of geological processes on the surface of Mars. Tanaka et al.
(2014) applied photogeologic mapping techniques to map 44 geologic units and
13 linear feature types, categorizing units on the surface based on the timing of
major episodes and the types of materials involved (Tanaka et al., 2014). The
geological units are mapped using brightness, characteristics of the morphology
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and topography, and relative ages based on impact crater densities and super-
position. The geology map, created by Tanaka et al. (2014), was downloaded
from https://pubs.usgs.gov/sim/3292/.

2.3 Elemental abundances

The abundance and distribution of elements on the Martian surface helps us
understand how Mars formed and evolved (Boynton et al., 2007). In situ obser-
vations by landers and rovers provide more detailed mineralogic and elemental
information for a few specific sites on the Martian surface, as has the analysis of
Martian meteorites. The Gamma Ray Spectrometer (GRS) on the 2001 Mars
Odyssey Mission (Boynton et al., 2004) detects gamma rays produced in rock
and soil near the surface, providing some element data. The gamma rays mea-
sured are generated only within a few tens of centimeters of the surface and the
measurements are complicated by differences in the size and composition of the
rocks, different amounts of near-surface water, compositional variations with
depth, and the atmosphere (Evans and Squyres, 1987). Poulet et al. (2007)
mapped H, Si, Cl, K, and Th concentrations measured by the GRS for ± ~
45° latitudes assuming that all elements are homogeneous in the top few tens
of centimeters of surface materials. Detailed discussion of gamma-ray spectral
data processing to determine elemental concentrations can be found in Boynton
et al. (2004) and Poulet et al. (2007). For this study, two map products by
Poulet et al. (2007), 2°× 2° and 5°× 5° binned point data, were downloaded
from http://grs.lpl.arizona.edu/data.

2.4 Mineralogy

The concepts of mineral occurrences and associations are important to infer
the identity of unidentified target minerals. Bandfield (2002) produced a global
mineral distribution map using data from the Thermal Emission Spectrometer
(TES) on the Mars Global Surveyor (MGS) spacecraft (Christensen et al., 1992).
He used linear spectral deconvolution method to extract mineral abundance
information and to remove atmospheric components form the TES data at a 1
pixel per degree (ppd) spatial resolution. He selected emissivity spectra of 32
minerals, glass, 6 atmospheric endmembers, and a blackbody spectrum to fit the
73 spectral channels of the TES data. The output was binned global mineral
concentration maps (at a one pixel per degree resolution) including 1) sheet
silicates and high-Si glass, 2) sulfate, 3) plagioclase, 4) hematite, 5) carbonate,
6) K-feldspar, 7) basaltic glass, 8) quartz, 9) High-Ca pyroxene, 10) low-Ca
pyroxene, 11) olivine, 12) amphibole, and 13) RMS (root mean square error)
maps. Mineral concentrations were calculated based on signal strength relative
to the mineral endmembers used in the linear spectral deconvolution method.

Poulet et al. (2007) produced maps of the global distribution of Martian surface
material based on the data from one Martian year of OMEGA observations.
Global maps of hydrated minerals, mafic minerals, and ferric phases were derived
using spectral parameters. Ody et al. (2012) produced maps detailing the
global distribution of these mineral species using the entire OMEGA dataset

5



acquired from January 2004 to August 2010, when the 1 - 2.5 �m channel cooler
failed. Since the 1 - 2.5 �m regions are important to discriminate most martian
mineralogy, these global maps can be considered the final outcome of OMEGA
observations (Ody et al., 2012). Mapping was done at a spatial resolution of 32
ppd (~ 2 km at the equator).

The global mineral abundance maps derived both from TES by Band-
field (2002) and from OMEGA by Ody et al. (2012) were download from
https://www.cosmos.esa.int/web/psa/mars-maps.

2.5 Albedo

A NIR (Near Infrared) 1 �m albedo (lambertian albedo) map produced by Ody
et al. (2012) using the I/F/cos(i) value at 1.08 �m (where i = solar incident
angle) of OMEGA data from January 2004 to August 2010 was used for this
study. The TES bolometric albedo global map with 8 ppd spatial resolution
(Christensen et al., 2001) was also used. Observations of the surface albedo of
Mars show significant changes over time, likely due to global dust storms that
redistribute dust (Pleskot and Miner, 1981; Putzig and Mellon, 2007).

2.6 Thermal inertia

Thermal inertia (I) combines bulk thermal conductivity (k), density (�), and heat
capacity (c), as described by the formula I=√k �c. Thermal inertia will generally
be low for surfaces of fine-grained, unconsolidated materials, intermediate for ce-
mented surfaces or those dominated by sand-sized grains, and high for rocky sur-
faces and bedrock outcrops (Putzig and Mellon, 2007). Therefore, the thermal
inertia of a certain location on Mars is typically consistent with properties in-
cluding the abundance of rocks, particle size, extent of bedrock exposure, degree
of induration, and how these properties are combined within the field of view
(Mellon et al., 2000). Putzig and Mellon (2007) have produced nighttime and
daytime seasonal maps of apparent thermal inertia using three years of TES data
at 1/20 ppd. They have cropped each of the 36 seasonal maps latitudinally and
used the median values to create daytime and nighttime thermal inertia maps.
These two maps were downloaded from https://www.mars.asu.edu/data/.

2.7 Dust cover

TES spectra provide information about apparent particle size effects, which can
serve as a proxy for the presence of dust on the Martian surface (Ruff and
Christensen, 2002). Ruff and Christensen (2002) introduced a dust cover index
(DCI) defined by the average emissivity value in the wavelength region from 1350
to 1400 cm-1. They have produced a DCI map using nadir-pointing, daytime
TES spectral data with brightness temperature > 260 K. The TES were binned
at 8 ppd, with any gaps filled using linear interpolation. This DCI map was
downloaded from http://www.mars.asu.edu/~ruff/DCI/dci.html.

The dust index map derived from TES by Bandfield (2002) using the linear
spectral deconvolution method was also used. The dust index maps show a
remarkable spatial coherence with albedo and thermal inertia maps at many
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scales. Dust free surfaces have very low albedo. However, thermal inertia is not
well-suited for this due to its complex behavior for mixtures of dust and coarse
particles (Ruff and Christensen, 2002).

2.8 Elevation and slope

The geology of terrestrial planets is mostly related to the morphology of the
surface and therefore geological mapping also heavily relies on the morphology.
Elevation information of the planetary surfaces is used to derive the morphology
of the surface to analyze the landscape forms, processes, patterns, and evolution
(Schumm, 1991). The elevation and slope maps were derived from the 463
m/pixel resolution of digital elevation data (DEM) from Mars Orbiter Laser
Altimeter (MOLA) on Mars Global Surveyor (MGS) (Smith et al., 2001). The
MOLA DEM data was downloaded from https://astrogeology.usgs.gov.

2.9 Valley networks

The study of fluvial systems observed on the surface of Mars is important for
determining the aqueous history of Mars. Several global valley network maps on
Mars have been produced both manually from Viking data (Carr and Chuang,
1997), MOLA and THEMIS data (Hynek et al., 2010), and THEMIS, CTX, and
MOLA data (Alemanno et al., 2018), and automated mapping using MOLA
data (Luo and Stepinski, 2009). The global valley network map produced by
Alemanno et al. (2018) was used in this study. They used topographic data
(MOLA) and photographic (THEMIS daytime IR and CTX) data to manually
map all valleys with total lengths > 20 km. Mapping classes include 1) valley
networks, 2) longitudinal valleys, 3) valleys on volcanoes, 4) valleys adjacent to
canyons, 5) single valleys and valley segments, and 6) small outflow channels.
The global geologic map of Mars, created by Tanaka et al. (2014), included
three classes of valleys, 1) single valley, 2) small outflow valley, and 3) trough
fluvial valley. These segment maps were used in this study.

2.10 Pyroclastic deposits

Explosive volcanic eruptions were likely frequent during the Noachian and Hes-
perian periods (Wilson and Head, 2007). The fine-grained pyroclastic deposits
produced by explosive volcanism are difficult to identify via remote sensing
techniques (Broz et al., 2020). The most commonly used method for identi-
fying potential Martian pyroclastic deposits includes identifying 1) areas with
high friability, 2) a small grain-size inferred from maps of low thermal inertia,
3) location near potential volcanic vents, 4) layering, 5) low albedo materials,
6) resurfaced areas near potential volcanic vent/constructs, and 7) mantle-like
draping over topography (Broz et al., 2020 and references therein). Potential
pyroclastic deposits identified previously based on these characteristics result in
an area of ~ 12.4 to 13.4 million km2 (~ 8.6 - 9.3% of the martian surface) (Broz
et al., 2020). This study uses a map of deposits identified in the literature as
potentially pyroclastic that are larger than 105 km2 (Broz et al., 2020; Tanaka,
2000; Kerber et al., 2012). The mapped deposits include Arabia deposits, Elec-
tris deposits, Medusae Fossae Formation, Dorsa Argentea Formation, Hellas
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deposits, Argyre deposits, Tyrrhena Patera deposits, and Isidis deposits.

Kerber et al. (2013) simulated ancient Martian explosive eruptions (assum-
ing a range of higher atmospheric pressures: 50 mbar, 0.5 bar, 1 bar, and 2
bar) using a planetary global circulation model developed by the Laboratoire
de Meteorologie Dynamique (LMD). Most Martian explosive volcanic centers
date to the Hesperian, which likely had higher atmospheric pressure than at
present (e.g., Ramirez, 2017). The particle size used for their simulation was
35 �m in radius representing small, far-field ash. For this study, a combined
ash distribution pattern map created by Kerber et al. (2013) from all major
Martian volcanic centers, assuming each erupted 1.4 × 106 km3 of ash during
their lifetimes under 1 bar of pressure, was selected.

2.11 Open and closed basins

The study of paleolakes on Mars is important because these can capture the
record of geological and hydrological events within their catchments, and the sea-
sonal and orbital cyclic changes through their sedimentary records (Cabrol and
Grin, 2002). Possible paleolake basins observed on Mars have been cataloged
and categorized into two main groups based on their morphological features: 1)
Closed-basin lakes with an inlet valley and no outlet valley, and 2) Open-basin
lakes having inlet valleys and outlet valleys (Cabrol and Grin, 1999; Fassett and
Head, 2008; Goudge et al., 2015, 2012, 2016). For this study, the open and
closed-basin lakes catalog compiled by Goudge et al. (2016) was used. The
database consists of the locations of 205 closed-basin lakes (Goudge et al., 2015)
and 220 open-basin lakes (Goudge et al., 2012; Fassett and Head, 2008). How-
ever, this database does not contain potential paleolakes without inlet valleys
(like Columbus crater; Wray et al., 2011), even though this type of paleolakes
may have been common on early Mars.

3 Methods

3.1 Preparation of factor maps

All the factor maps discussed above were imported into ILWIS via GDAL and
ISIS3. The ILWIS (Integrated Land and Water Information System) is geo-
graphical information system (GIS) and remote sensing software developed by
the Faculty of Geo-Information Science and Earth Observation (ITC) at the Uni-
versity of Twente, the Netherlands. Since 2007, ILWIS is freely available as an
open-source software under the 52𝑜 North initiative (https://www.itc.nl/ilwis/).
GDAL (Geospatial Data Abstraction Library) is an open-source translator li-
brary for raster and vector geospatial data formats (https://gdal.org/). The
ISIS3 (Integrated Software for Imagers and Spectrometers - version 3), devel-
oped and maintained by the U.S. Geological Survey, is an image processing
software package capable of importing raw NASA planetary mission data into
a usable geospatial image product (https://isis.astrogeology.usgs.gov/). All
analysis was done using ILWIS (running on Linux Pop-OS), followed by re-
projecting to a common coordinate system (Plate Carree projection system),
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and resampling into 200 m/pixel resolution using the nearest neighbor method.

Total hydrous mineral locations detected by Carter et al. (2013) are shown in
the Figure 1. The abundance of those hydrous mineral detections along with
the latitudes are shown in the density plot in the Figure 1. This shows that
more than 90% of the total detections (1735/1855) are in the area between
latitudes 40𝑜𝑁 and 40𝑜𝑆. The size of a 32-bit global factor map was around
45.5 GB, and most of the maps used in this study are 32-bit (the rest are 8-bit).
Much memory space, computational power and computational time is required
for map calculations. Each processing steps also produces intermediate maps
mostly similar in size to the original map. Since the importance of the map
classes/area are calculated based on the locations of hydrous mineral detections,
the limited detections in the area beyond 40𝑜𝑁 and 40𝑜𝑆 latitudes will be less
important. Therefore, to reduce the computational power, time, and memory
space, sub maps were created from all the factor maps covering the area between
latitudes 40𝑜𝑁 and 40𝑜𝑆 for the rest of the work.

FIGURE 1 HERE

Figure 1: Map of hydrous mineral detections on Mars. Each point represents the
location of a hydrous mineral detection by CRISM and/or OMEGA. Background
is a grayscale hillshade map created from MOLA DEM. Point density plot shows
on the left side of the map.

All the continuous data raster maps (e.g., elevation, dust cover index, elemen-
tal abundance, etc.) were reclassified into ten classes after careful examination
of the histograms of the pixel values and based on the discussions in the cor-
responding literature. The discontinuous data raster maps (categorical maps,
e.g., geology map) were imported as is. The ten buffer regions (A: 0 - 200 m, B:
200 - 400 m, C: 400 - 600 m, D: 600 - 800 m, E: 800 - 1000 m, F: 1000 - 2500 m,
G: 2500 - 5000 m, H: 5000 - 10000 m, I: 10000 - 100000 m, and J: > 100000 m)
were created from the segment maps and then rasterized. Based on the spatial
association of buffer regions with the hydrous mineral detections, three buffer
maps were selected. The boundaries of all the possible closed and open-basin
lakes were manually digitized with the help of MOLA DEM. Two binary maps
were created from the ash deposits map (ash deposit = 1, other area = 0) and
open and closed paleolake basin map (open/closed basins = 1, other area = 0).

The total hydrous mineral detections within the sub map area (1735 points) were
divided into two classes (train and test) using the stratified random sampling
method. The 𝐻2𝑂 weight percentages at each point location were extracted
from the 𝐻2𝑂 GRS map for the stratified random sampling method assuming
that hydrous mineral abundances at each point location can be represented by
the GRS 𝐻2𝑂 map. Data partition was done using “caret” package in R. The
train point map contains ~80% (1391 points) of the total points, while the test
point map contains the rest of the data points (~20%, 344 points). The factor
maps used in this study are listed in Table 1, and each factor map is referred
to using the MapID in the rest of the text.

9



Table 1: Factor maps used in this study.

# Platform Product MapID Reference
RASTER

1 OMEGA NIR albedo om_albdo Ody et al. (2012)
2 𝐹𝑒3+ om_fe530
3 nphsF𝑒3+ om_nnphs
4 Pyroxene om_pyrox
5 Olivine Spectral Parameter1 om_osp1m
6 Olivine Spectral Parameter2 om_osp2m
7 Olivine Spectral Parameter2 om_osp2m
8 TES Albedo ts_albdo
9 Amphibole ts_amphi Bandfield (2002)
10 Carbonate ts_carbo
11 High Calcium Pyroxene ts_hcpmp
12 Low Calcium Pyroxene ts_lcpmp
13 Hematite ts_hemat
14 K-feldspar ts_kfeld
15 Olivine ts_olvne
16 Plagioclase ts_plgcl
17 Quartz ts_quatz
18 Sulfate ts_sulft
19 Dust ts_dustm
20 Dust Cover Index (DCI) ts_dcimp Ruff and Christensen (2002)
21 Thermal Inertia-Day ts_tiday Putzig and Mellon (2007)
22 Thermal Inertia-Night ts_tingt
23 GRS 𝐻2𝑂 gr_h2omp Boynton et al. (2007)
24 Si gr_simap
25 K gr_kmaps
26 Cl gr_clmap
27 Fe gr_femap
28 Th gr_thmap
29 VIKING Global Mosaic 232m v2 vk_color USGS Astrogeology
30 MGS MOLA DEM mg_mldem Smith et al. (2001)
31 Hilshade map from MOLA mg_hilsd
32 Slope map from MOLA mg_slope

VECTOR
33 Geology Map of Mars 2014 tn_geolo Tanaka et al. (2014)
34 Hydrous mineral map ct_hydst Carter et al. (2013)
35 Open-closed basins tg_basin Goudge et al. (2016)
36 Valley Network ga_vlnet Alemanno et al. (2018)
37 Long Valley ga_logvl Alemanno et al. (2018)
38 Trough Fluvial tn_trflu Tanaka et al. (2014)
39 Pyroclastic ash distribution lk_pyash Kerber et al. (2013)
40 Pyroclastic deposits pb_pydep Broz et al. (2020)

10



3.2 Weights-of-evidence method (WEM)

The WEM was originally developed in the field of quantitative medical diag-
nosis and later used to the prediction of mineral deposits by Bonham-Carter
et al. (1989). This empirical approach can calculate the relative importance
of individual evidence maps using statistical methods (Bayesian relation) under
the assumption that all variables are conditionally independent of mineral occur-
rences (Pan and Harris, 2000). For simplicity, the integration of two explanatory
binary maps by WEM will be discussed. The two explanatory indicator maps,
the pyroclastic ash deposits map and closed basins map as examples in this
case, are denoted by 𝐴 and 𝐶, respectively. The single target indicator variable,
in this case the location map of detected hydrous minerals, is indicated by 𝐻.
These maps are regarded as random variables that are either present or absent
(binary) in a unit cell. The possible relations between 𝐶, 𝐴, and 𝐻 are shown
in Figure 2 Venn diagram. ̄𝐴, ̄𝐶, and 𝐻̄ represent the absence status of 𝐴, 𝐶,
and 𝐻, respectively.

FIGURE 2 HERE

Figure 2: Venn diagram for the relations between binary patterns.

The prior probability 𝑃{𝐻} is the probability of the occurrence of hydrous
minerals in the entire study area, which can be calculated using the ratio of
detected hydrous mineral pixels (or area), 𝐻 to the total number of pixels in
the study area (or total area), 𝑇 .

𝑝(𝐻) = 𝐻
𝑇 ————— (eq. 1)

The relations between 𝐴, 𝐶, and 𝐻 can be expressed by eight probabilities based
on the assumption of conditional independence between 𝐴 and 𝐶 with respect
to 𝐻.

𝑝 (ACH) , 𝑝 (AC𝐻̄) , 𝑝 (𝐴 ̄𝐶𝐻) , 𝑝 ( ̄𝐴CH) , 𝑝 ( ̄𝐴 ̄𝐶𝐻) , 𝑝 ( ̄𝐴𝐶𝐻̄) , 𝑝 (𝐴 ̄𝐶𝐻̄) , 𝑝 ( ̄𝐴 ̄𝐶𝐻̄)

These eight probabilities are mutually related by,

𝑝 (ACH) = 𝑝 (𝐴|𝐻) 𝑝 (𝐶|𝐻) 𝑝(𝐻) ————— (eg. 2)

𝑝 (AC𝐻̄) = 𝑝 (𝐴|𝐻̄) 𝑝 (𝐶|𝐻̄) 𝑝 (𝐻̄) ————— (eq. 3)

Based on the above relations, four conditional probabilities (posterior probabil-
ities) can be calculated. As an example,

𝑝 (𝐴)
(𝐻) = 𝑝(𝐴)×𝑝(𝐻/𝐴)

𝑝(𝐻) —————- (eq. 4)

where 𝐻 is the occurrence of hydrous minerals, 𝐴 is the pyroclastic deposits
map, and 𝑝(𝐻/𝐴) is the conditional probability of having hydrous minerals in
the area where pyroclastic deposits are present.

11



Four weights, 𝑊 +
𝐴 , 𝑊 −

𝐴 , 𝑊 +
𝐶 , and 𝑊 −

𝐶 , can be calculated for each evidence
class and these weights are dependent on the spatial relationship between the
potential occurrence of hydrous minerals and the selected evidence map.

𝑊 +
𝐴 = ln{𝑝 (𝐴|𝐻) /𝑝 (𝐴|𝐻̄)}, 𝑊 −

𝐴 = ln{𝑝 ( ̄𝐴|𝐻) /𝑝 ( ̄𝐴|𝐻̄)}—— (eq. 5)

𝑊 +
𝐶 = ln{𝑝 (𝐶|𝐻) /𝑝 (𝐶|𝐻̄)}, 𝑊 −

𝐶 = ln{𝑝 ( ̄𝐶|𝐻) /𝑝 ( ̄𝐶|𝐻̄)}—— (eq. 6)

𝑊 + in each evidential map indicates the importance of the presence of the
factor class for the occurrence of hydrous minerals. Positive 𝑊 + values for
a factor class indicate its favorability for the occurrence of hydrous minerals,
while negative 𝑊 + values denote unfavorability. 𝑊 − is used to evaluate the
importance of the absence of a factor class for the occurrence of hydrous minerals.
If 𝑊 − is positive, it indicates that the absence of the factor class creates the
area more favorable for the occurrence of hydrous minerals. If 𝑊 − is negative,
absence of the factor class is unfavorable. Zero weights do not show a correlation
between the factor class and hydrous mineral occurrences.

The contrast (𝐶 = 𝑊 + − 𝑊 −) represent the strength of association between
the explanatory map (e.g., pyroclastic deposit map, 𝐴) and the target map
(e.g., detected hydrous mineral location map, 𝐻). Large contrast values imply
strong association between two factors while small contrast values indicate the
opposite. The studentized contrast (𝐶std, also called the normalized contrast)
is defined as the ratio of 𝐶 to its standard deviation (𝑆(𝐶)) and is used as an
indicator of confidence.

𝐶std = 𝐶
√𝑆2(𝑊 +)+𝑆2(𝑊 −) —————— (eq. 7)

where, 𝑆2 (𝑊 +) and 𝑆2 (𝑊 −) are the variances of 𝑊 + and 𝑊 −, respectively.

The hydrous mineral train points (1391 points) were used to calculate the weight
values (𝑊 +, 𝑊 −), 𝐶, and 𝐶std for each class in each map. Based on the weights
and 𝐶std, the study proceeded with the 30 selected factor maps (Table 2). These
maps are spatially highly correlated (positively and negatively) with the hydrous
mineral detections.

3.3 Fuzzy Set Theory

Most tools used for formal reasoning, modeling, and computing are determinis-
tic, precise, and crisp. They are yes-or-no-types rather than more-or-less types.
As an example, zeolite is present-or-not in a closed basin of Mars, instead of
more possibility/ less possibility (can be/ cannot be) present. In classical set
theory, an element either belongs to a set or not, the same as in optimization,
and a solution is therefore either feasible or not. Fuzzy set theory, coined by Lo-
tif A. Zadeh (Zadeh, 1965), involves capturing, exemplifying, and working with
linguistic notions-objects for which boundaries are unclear. While the Boolean
set theory defines a membership value of either 1 or 0 (true or false), the fuzzy
set theory defines the degree of membership in a set, represented by values
between 0 and 1.
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Let X be a collection of objects, with a generic element of X denoted by x.

Thus, X = {𝑥}.

A fuzzy set A in X is characterized by a membership function (or grade of
membership or degree of compatibility or degree of truth) 𝑓𝐴(𝑥) which associates
with each object in X a real number in the interval [0,1], with the value of 𝑓𝐴(𝑥)
at 𝑥 representing the grade of membership of 𝑥 in A. The membership function
of a fuzzy set A is denoted by 𝜇𝐴 and its form is

𝜇𝐴 ∶ 𝑋 → [0, 1] ——————— (eq. 8)

Typically, a fuzzy model consists of the following feedforward modules, 1) a
fuzzifier (encoder: converts input categorical or numerical data into fuzzy val-
ues), 2) an inference engine (processor: the mind of the fuzzy model, simulates
the human decision-making process), and 3) a defuzzifier (decoder: converts a
synthesized fuzzy set back to a crisp set using a mathematical function or a
subjectively or objectively defined threshold fuzzy value).

3.3.1 Fuzzifier: Fuzzification of Predictor Maps The value of the mem-
bership function can be calculated using two methods; 1) calculate the member-
ship function using a membership function curve, 2) assign membership values
for each class artificially based on expert knowledge of the system concerned. In
this study both methods were adopted. For the factor maps of valley network
(ga_vlnet), ash thickness (lk_pyash), and map of open/closed basins (tg_basin),
fuzzy membership values were added manually, while the fuzzy membership val-
ues for the rest of the maps were calculated using membership function curves.

In this study, four membership functions were modeled, and results were com-
pared to select the best method. The methods include membership function
calculation using positive weight (𝑊 +), contrast (𝐶), and studentized contrast
(𝐶std) of each map unit calculated using the WEM method.

3.3.1.1 Method 1 (Zimmermann, 1991). Logistic membership function,
𝜇𝐴(𝑥),
𝜇𝐴(𝑥) = 1

1+𝑒−𝑎(𝑤pij−𝑏) ————– (eq. 9)

where, 𝑤pij is the positive weight of the 𝑗th class of the 𝑖th evidential map (fuzzy
set), b is a specified fuzzy score at cross-over point for the function, and a is
a specified slope of the function at cross-over point. Slope values, a, used for
each factor map are shown in table 2. The value of the cross-over point, b, is
assigned as 0.5. The logistic membership function transforms the class weights
into fuzzy membership values range from 0 to 1.

3.3.1.2 Method 2 (Cheng and Agterberg, 1999). Fuzzy membership
values were calculated using the contrast values in each evidential map,

𝜇𝐴(𝑥) = 𝐶ij−𝐶min
𝐶max−𝐶min

——— (eq. 10)
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where, 𝐶max and 𝐶min are the maximum contrast (𝐶max = max (𝑊 + − 𝑊 −)),
and the minimum contrast of the 𝑖th fuzzy set, respectively. 𝐶ij is the contrast
value of the 𝑗th class in the 𝑖th evidential map.

3.3.1.3 Method 3 (Porwal et al., 2003). Porwal et al. (2003) defined the
piece-wise linear membership function as the fuzzifier in their model based on
the contrast value. The membership value, 𝜇𝐴 (𝑥ij) is calculated using

𝜇𝐴(𝑥) =
⎧{
⎨{⎩

0.01 if 𝐶ij = 𝐶min&𝐶min < 0
0.5 − 𝐶ij

2×𝐶min
if 𝐶min < 𝐶ij ≤ 0

0.5 + 𝐶ij
2×𝐶max

if 0 ≤ 𝐶ij ≤ 𝐶max

———– (eq. 11)

where, 𝐶ij is the contrast value of the 𝑗th class of 𝑖th evidential map, and 𝐶min
and 𝐶max are the minimum and maximum contrast values of the 𝑖th map.

3.3.1.4 Method 4 (this study) This study employs a Logistic membership
function, 𝜇𝐴(𝑥),
𝜇𝐴(𝑥) = 1

1+𝑒−𝑎((𝑤pij×𝐹)−𝑏) ————– (eq. 12)

where 𝑤pij is the positive weight of the the 𝑗th class of 𝑖th evidential map. b is a
specified fuzzy score at the cross-over point for the function, a is a specified slope
of the function at the cross-over point. Multiplication factor 𝐹 was calculated
using studentized contrast (𝐶std) of each class in each evidential map.

𝐹 = {0.1 𝐶std < 1.5
1.0 𝐶std ≥ 1.5 ———- (eq. 13)

The fuzzy membership values must show not only the relative importance of
each map, but also the relative importance of each class (map units) in each
map. Therefore, different slope values “𝑎” were chosen for each map based on
the importance of each map and their classes (map units) (Table. 2). The fuzzy
membership function maps are named using the respective MapID followed by
prefix fzm_.

Table 2: Slope "𝑎" values used in Logistic membership functions (eq. 9 and 12).

Map 1 - 10 a Map 11 - 20 a Map 21 - 30 a
fzm_gr_femap 1 fzm_ts_kfeld 1 fzm_gr_h2omp 3
fzm_gr_kmaps 1 fzm_ts_olvne 1 fzm_om_fe530 4
fzm_om_osp1m 1 fzm_ts_plgcl 1 fzm_om_nnphs 4
fzm_om_osp2m 1 fzm_ts_sulft 1 fzm_tn_geomp 5
fzm_om_osp3m 1 fzm_gr_simap 2 fzm_gr_clmap 5
fzm_om_pyrox 1 fzm_gr_thmap 2 fzm_mg_mldem 5
fzm_ts_amphi 1 fzm_ts_carbo 2 fzm_om_albdo 5
fzm_ts_hcpmp 1 fzm_ts_quatz 2 fzm_ts_albdo 5
fzm_ts_lcpmp 1 fzm_ts_tiday 2 fzm_ts_dcimp 5
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Map 1 - 10 a Map 11 - 20 a Map 21 - 30 a
fzm_ts_hemat 1 fzm_ts_tingt 2 fzm_ts_dustm 5

The fuzzy membership values of the different map units in the geologic map
calculated using the above four methods are shown in Figure 3. This shows
that the method developed in this study (Method 4) performs the best and was
therefore chosen as the fuzzy membership calculation method for this study.

FIGURE 3 HERE

Figure 3: Calculation of fuzzy membership functions using different methods.
The geology map (tn−geomp) was used as the example in this figure. The Weight
𝑊 + x-axis refers to Method 1 (Zimmermann, 1991) and Method 4 developed in
this study, while the Contrast C x-axis refers to Method 2 (Cheng and Agterberg,
1999) and Method 3 (Porwal et al., 2003).

Figure 4 plots the fuzzy membership values against the geological map units
in (relative) chronological order. It shows that high fuzzy membership values
were received for the Noachian age terrains, where most hydrous mineral de-
tections were found (Carter et al., 2013). Hesperian and Noachian highland
undivided (HNhu) and Hesperian transition terrains (Htu and Ht) show high
Fuzzy membership values after high values seen in Early and Middle Noachian
highland massifs (mHnm and eNhm). The peak observed at the Late Noachian
to Early-Hesperian transition has been proposed as an epoch of intense surface
flow (Irwin et al., 2005). Carter et al. (2013) observed fewer hydrous min-
eral exposures in Hesperian aged terrain, and a negligible number of hydrous
mineral exposures in Amazonian-aged terrains. Figure 4 also shows a peak for
Amazonian and Hesperian impact (AHi). This might be due to the delivery of
preexisting clay-rich material underneath more recent terrains to the surface by
impact excavation (Barnhart and Nimmo, 2011). It is also important to note
that the number of hydrous mineral occurrences corresponding to a geologic
units does not necessarily reflect the time of their formation. Those hydrous
mineral detections can be younger (e.g., weathering) or older (e.g., transported
from other places and deposited) than the outcrop (geologic unit) in which they
are present (Carter et al., 2013).

FIGURE 4 HERE

Figure 4: Calculated fuzzy membership values as a function of time (geological
units). eNh: Early Noachian highland, eNhm: Early Noachian highland massif,
mNh: Middle Noachian highland, mNhm: Middle Noachian highland massif,
Nve: Noachian volcanic edifice, Nhe: Noachian highland edifice, Nhu: Noachian
highland undivided, lNH: Late Noachian highland, lNv: Late Noachian volcanic,
HNb: Hesperian and Noachian basin, ANa: Amazonian and Noachian apron,
HNt: Hesperian and Noachian transition, HNhu: Hesperian and Noachian high-
land undivided, Htu: Hesperian transition undivided, Ht: Hesperian transition,
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eHh: Early Hesperian highland, eHb: Early Hesperian basin, eHv: Early Hespe-
rian volcanic, eHt: Early Hesperian transition, Hve: Hesperian volcanic edifice,
Hto: Hesperian transition outflow, lHv: Late Hesperian volcanic, lHb: Late
Hesperian basin, lHl: Late Hesperian lowland, lHvf: Late Hesperian volcanic
field, lHt: Lte Hesperian transition, AHtu: Amazonian and Hesperian transi-
tion undivided, AHv: Amazonian and Hesperian volcanic, AHi: Amazonian
and Hesperian impact, eAb: Early Amazonian basin, mAl: Middle Amazonian
lowland, Aa: Amazonian apron, Av: Amazonian volcanic, Ave: Amazonian vol-
canic edifice, lAa: Late Amazonian apron, lAv: Late Amazonian volcanic, lAvf:
Late Amazonian volcanic field.

Fuzzy membership function values were manually added to the factor maps
of valley network (ga_vlnet) and ash thickness (lk_pyash) (Table 3). These
membership values were chosen arbitrarily based on subjective judgment about
the relative importance of each class (map unit) in each factor map.

Table 3: Fuzzy membership values (fzm) in map classes of maps of valley net-
works (ga_vlnet) and ash thickness map (lk_pyash).

ga_vlnet distance class fzm_ga_vlnet lk_pyash thickness class fzm_lk_pyash
0 - 200 m 1.0 0.00 - 6.25 m 0.1
200 - 400 m 0.9 6.25 - 12.50 m 0.2
400 - 600 m 0.8 12.50 - 25.00 m 0.4
600 - 800 m 0.7 25.00 - 50.00 m 0.5
800 - 1000 m 0.6 50.00 - 100.00 m 0.6
1000 - 2500 m 0.5 100.00 - 200.00 m 0.7
2500 - 5000 m 0.4 200.00 - 400.00 m 0.8
5000 - 10000 m 0.3 400.00 - 800.00 m 1.0
10000 - 100000 m 0.2
> 100000 m 0.1

Figure 5 shows the entire fuzzification process using MOLA DEM as an example.
It shows the original MOLA DEM (a), classified MOLA DEM (b) and after
assigning the calculated fuzzy membership values for each elevation class (c).

FIGURE 5 HERE

Figure 5: Fuzzification process showing the original MOLA DEM (a), classified
MOLA DEM (b), and a map after assigning the fuzzy membership values for
each elevation class (c).

3.3.2 Inference Engine The mind of a fuzzy model, the inference engine,
uses the individual fuzzy sets conveyed by the fuzzifier while filtering out the
informational noise to create a synthesized fuzzy set. A fuzzy inference engine
consists of multiple serial or parallel networks that use fuzzy operators to sequen-
tially combine fuzzy sets (Porwal et al., 2003). The most basic fuzzy operators
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are fuzzy OR, fuzzy AND, fuzzy algebraic products, fuzzy algebraic sum, and
fuzzy Gamma (𝛾) operator.

3.3.2.1 Fuzzy OR Fuzzy OR is similar to a Boolean OR (logical union), and
the output membership values are controlled by the maximum values from any
of the input maps, for any location. The fuzzy OR is defined as,

𝜇𝑋 = MAX (𝜇𝐴, 𝜇𝐵, 𝜇𝐶 , ....) ——–(eq. 14)

using this operator, the combined membership value at a specific location is
represented by the most suitable evidence maps. As an example, several at-
tempts were made to derive the abundance of olivine using OMEGA and TES
data. This study selected four olivine maps as factor maps and used a fuzzy
OR operator to integrate those maps to extract the most suitable locations for
olivine. The fuzzy OR operator was used to create the maps listed below,

max_gr_clfek = MAX(fzm_gr_clmap,fzm_gr_femap,fzm_gr_kmaps)–(eq.
15)

max_olivine = MAX(MAX(fzm_om_osp1m,fzm_om_osp2,fzm_om_osp3),
zm_ts_olvne)–(eq. 16)

max_pyrox = MAX(fzm_ts_lpcmp,fzm_ts_hcpmp,fzm_om_pyrox)–(eq. 17)

max_qtz_crb_hem = MAX(fzm_ts_quatz,fzm_ts_carbo,fzm_ts_hemat)–(eq.
18)

3.3.2.2 Fuzzy AND Fuzzy AND is similar to a Boolean AND (logical inter-
section) operation on classical set values of (0,1). It is defined as

𝜇𝑋 = MIN (𝜇𝐴, 𝜇𝐵, 𝜇𝐶 , ....) —————(eq. 19)

where, 𝜇𝐴𝑚, 𝜇𝐵, 𝜇𝐶 , ... are membership values at a particular location (x, y) on
map A, map B, map C, .., respectively. The effect of Fuzzy AND is to make
it so the output map is controlled by the smallest fuzzy membership value at
each location (Bonham-Carter, 1994). This rule is suitable for the places where
two or more pieces of evidence must be present together for the hypothesis
to be true. In this study, as an example, selecting the minimum albedo fuzzy
membership value in each corresponding pixel in albedo fuzzy membership maps
derived from both OMEGA and TES data will increase the confidence of the
final albedo fuzzy membership map. The fuzzy AND operator was used to
create the maps listed below,

min_dust_nnphs = MIN(fzm_ts_dustm,fzm_ts_dcimp,fzm_om_nnphs)–(eq.
20)

min_om_ts_albdo = MIN(fzm_om_albdo,fzm_ts_albdo)–(eq. 21)

min_ti_day_ngt = MIN(fzm_ts_tiday,fzm_ts_tingt)–(eq. 22)

min_gr_clfek = MIN(fzm_gr_clmap,fzm_gr_femap,fzm_gr_kmaps)–(eq. 23)
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Finally, six maps were created combining the above fuzzy membership maps.

min_physical = MIN(min_dust_nnphs,min_om_ts_albdo,min_ti_day_ngt)–
(eq. 24)

max_physical = MAX(min_dust_nnphs,min_om_ts_albdo,min_ti_day_ngt)–
(eq. 25)

min_elements = MIN(min_gr_clfek,fzm_gr_simap,fzm_gr_h2omp)–(eq. 26)

max_elements = MAX(max_gr_clfek,fzm_gr_simap,fzm_gr_h2omp)–(eq.
27)

min_minerals = MIN(max_olivine,max_pyrox,max_qtz_crb_hem)–(eq. 28)

max_minerals = MAX(max_olivine,max_pyrox,max_qtz_crb_hem)–(eq. 29)

Figure 6 shows two output maps created from two different set of fuzzy operators.
Though the input maps for both sets were the same, different output maps were
made based on the fuzzy operators used (eq. 24 and 25).

FIGURE 6 HERE

Figure 6: Integrated fuzzy membership maps. a) Max−physical (eq. 25), and
b) Min−physical (eq. 24).

3.3.2.3 Fuzzy Algebraic Product (FAP) The combined membership func-
tion is defined as

𝜇𝑋 = ∏𝑛
𝑖=1 𝜇𝑖 ——————–(eq. 30)

where 𝜇𝑖 is the fuzzy membership function for the i-th map and 𝑖 = 1, 2, 3,
…., n maps are to be combined. The combined fuzzy membership values tend
to be very small with this operator, due to the effect of multiplying several
numbers less than 1. The output is always smaller than, or equal to, the smallest
contributing membership value, and is therefore “decreasive.”

3.3.2.4 Fuzzy Algebraic Sum (FAS) Fuzzy algebraic sum is complemen-
tary to the fuzzy algebraic product and defined as

𝜇𝑋 = 1 − ∏𝑛
𝑖=1 (1 − 𝜇𝑖) ——————–(eq. 31)

The result is always larger or equal to the largest contributing fuzzy membership
value. The effect is therefore “increasive.” The pieces of evidence that both favor
a hypothesis reinforce one another and the combined evidence is more supportive
than either piece of evidence taken individually. It is also important to note that
whereas the fuzzy algebraic product is an algebraic product, the fuzzy algebraic
sum is not an algebraic summation (Bonham-Carter, 1994).

Six map combinations were selected using seven input maps created during
the previous step (Table 4). From these 6 map combinations, twelve maps
were created calculating fuzzy algebraic product (FAP) and fuzzy algebraic sum
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(FAS). The resulting fuzzy algebraic products (FAP) and algebraic sum (FAS)
maps for the sixth map combination (FAP_6 and FAS_6 in Table 4) are shown
in Figure 7.

Table 4: Input map combinations used to create 12 map combinations. FAP:
fuzzy algebraic product. FAS: fuzzy algebraic sum.

Map combination FAP_1 FAS_1 FAP_2 FAS_2 FAP_3 FAS_3 FAP_4 FAS_4 FAP_5 FAS_5 FAP_6 FAS_6
min_physical x x x
max_physical x x x
min_elements x
max_elements x x
min_minerals x x x
max_minerals x x x
fzm_geology x x x x x x

FIGURE 7 HERE

Figure 7: Fuzzy algebraic product (FAP) and fuzzy algebraic sum (FAS) maps
of map combination 6 (FAP_6𝑎𝑛𝑑𝐹𝐴𝑆_6) listed in Table 4.

3.3.2.5 Gamma (𝛾) operation. Gamma operation is defined in terms of
fuzzy algebraic product and the fuzzy algebraic sum by

𝜇𝑋 = (Fuzzyalgebraicsum)𝛾 ∗ (Fuzzyalgebraicproduct)1−𝛾 ———–(eq. 32)

where 𝛾 is a parameter chosen in the range of 0 to 1 (Zimmermann and Zysno,
1980). When � is 0, the combination equals the fuzzy algebraic product, and
when the 𝛾 is 1, the combination is equals the fuzzy algebraic sum. A wise
selection of 𝛾 creates output values that ensure a flexible compromise between
the “increasive” effects of the fuzzy algebraic sum and the “decreasive” effects
of the fuzzy algebraic product. The effect of choosing different values of gamma
(𝛾) for combining two fuzzy memberships values is shown in Figure 8.

FIGURE 8 HERE

Figure 8: A graph of fuzzy membership obtained by combining two fuzzy mem-
bership values versus gamma.

Twenty-five (25) maps were calculated using different map combinations listed
in Table 4 with different gamma values (Table 5). In other words, 25 infer-
ence network models were created. After visual and statistical analysis of all
25 maps, map combinations 2 (Fz_02) and 6 (Fz_06) in the Table 4 were se-
lected for further analysis. Figure 9 shows the favorability coverage and the
test and train accuracy of each map combination with respect to the gamma
values. Favorability coverage was calculated based on the area higher than 0.5
fuzzy membership values (pixel values) compared to the total map area. This
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shows that the percentage of (favorability) coverage and test and train accuracy
of both map combinations increases with the increase of gamma values. The
best predictive model in this case would be the model with the highest train
and test accuracy with lowest spatial coverage. The test and train accuracy
(success rate) higher than 80% were defined as the selection criteria and based
on that a 0.84 gamma value was selected. However, both map combinations (F2
and F6) scored more than 80% accuracy, though the F6 shows higher spatial
coverage than F2. Four favorability map classes were created from each map
(Fz_02_0.84 and Fz_06_0.84) based on the favorability index (pixel values).
Classes include Unfavorable (pixel value 0 - 0.25), Less favorable (pixel value
0.25 - 0.50), Favorable (pixel value 0.50 - 0.75), and Most favorable (pixel value
0.75 - 1.00). This step is called as defuzzification. Results were validated using
train and test data sets. Table 6 shows the results of the accuracy assessment.
The values are in percentages representing the number of data points in each
class with respect to the total number of points in the dataset. This shows that
Fz_06_0.84 (final map created using map combination F6 with 0.84 gamma
value) shows the highest test and train accuracy for the most favorable class.
Therefore, map F_06_0.84 was selected as the final map to depict the highest
potential areas for hydrous minerals (Figure 10) and to identify the potential
locations for zeolite in the next step.

Table 5: List of calculated 25 maps using different map combination and gamma
values.

Map 1 - 5 Map 6 - 10 Map 11 - 15 Map 16 - 20 Map 21 - 25
Fz_01_0.65 Fz_02_0.80 Fz_02_0.85 Fz_03_0.97 Fz_06_0.82
Fz_01_0.75 Fz_02_0.81 Fz_03_0.85 Fz_04_0.85 Fz_06_0.83
Fz_01_0.85 Fz_02_0.82 Fz_03_0.90 Fz_05_0.85 Fz_06_0.84
Fz_01_0.90 Fz_02_0.83 Fz_03_0.95 Fz_06_0.80 Fz_06_0.85
Fz_01_0.95 Fz_02_0.84 Fz_03_0.96 Fz_06_0.81 Fz_06_0.86

FIGURE 9 HERE

Figure 9: Percentage of accuracy and spatial coverage in each map combination
(F2 and F6) against different gamma values.

Table 6: Test and train accuracy (success rate) of each map combinations. This
shows the number of hydrous mineral detections in each class as a percentage
with respect to the total number of data points. The train dataset is indicated
by letters “_trn” after the fuzzy map Fz_02_0.84 or Fz_06_0.84, while the
test dataset indicated by letters “_tst”.

Class Fz_02_0.84_trn Fz_02_0.84_tst Fz_06_0.84_trn Fz_06_0.84_tst
Unfavorable 0.1 0 0.3 0
Less favorable 18.9 16.5 13.1 10.4
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Class Fz_02_0.84_trn Fz_02_0.84_tst Fz_06_0.84_trn Fz_06_0.84_tst
Favorable 75.5 78.5 54.6 57.3
Most favorable 5.5 5.0 32.0 32.3

FIGURE 10 HERE

Figure 10: a) Favorability map for hydrous minerals (Map Fz_06_0.84). The
areas are ranked based on their fuzzy membership values. Fuzzy membership
ranges from 0 to 1 (less favorable to highly favorable). b) Favorability class map
derived from map (a) showing the potential area for the hydrous minerals on
Mars up to 40 degrees latitude.

As discussed in the introduction, the greatest abundances of zeolites on Earth
are found in volcaniclastic deposits. Therefore, it is hypothesized that zeolites
are most likely to be found in places where pyroclastic deposits were subjected
to aqueous alteration. The possible aqueous alteration areas were mapped using
hydrous mineral detections in previous steps. Ash distribution patterns on Mars
modeled by Kerber et al. (2013) were used to identify the most favorable areas
for zeolites on early Mars. Ash thickness in their model is proportional to
the possibility that zeolites could form, because great thickness can reflect a
large amount of ash in the area or a high possibility of finding ash in the area
according to the model. The map of possible pyroclastic deposits larger than
105𝑘𝑚2 is also used in this study to achieve more robust results. The open and
closed basin paleolakes maps are finally used to select the most likely paleolake
basins to look in for zeolites using detailed orbital studies. The ash thickness
map modelled by Kerber et al. (2013), potential pyroclastic deposits (black
outlines), and closed and open basin paleolakes (black filled areas) are shown
in Figure 11. Ash thickness in the map is represented by the fuzzy membership
values. Assigned fuzzy membership values positively increase with the modeled
ash thickness (Table 3).

FIGURE 11 HERE

Figure 11: The map shows the thickness of possible ash deposits modelled by
Kerber et al. (2013), pyroclastic ash deposits (black outline) compiled by Broz
et al. (2020) and open and closed basins (black filled areas) compiled by Goudge
et al. (2016). Values in the legend are fuzzy membership values corresponding
to the thickness of the modeled ash deposits.

Figure 12 shows the three-stage inference engine used to create the final map.
Only the inference engine (workflow) of the selected final map (Fz_06_0.84) was
outlined here to make the flow chart clear and simple. At the first stage, all the
fuzzified evidential maps which were created using the membership functions de-
fined by the weight-of-evidence method were combined using fuzzy operators to
result three intermediate fuzzy evidential maps (max_physical, max_mineral,
tn_geolo). These maps were later combined using the fuzzy gamma (𝛾) oper-
ator to create the synthesized fuzzy favorability map for the hydrous minerals
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(fav_hydrous). In the third step, hydrous mineral favorability fuzzy member-
ship map was combined with ash thickness (lk_pyash), pyroclastic deposits
(pb_pydep), and open and closed basin (tg_basin) maps to generate a favora-
bility map for the zeolites.

FIGURE 12 HERE

Figure 12: The fuzzy inference engine used to crate map Fz_06.

4 Results and discussion

The potential zeolite bearing terrain map calculated using the data-driven fuzzy
weights-of-evidence method is shown in Figure 13. This shows that the eastern
and western Arabia deposits and some sites of Medusae Fossae Formation show
the highest probability for finding zeolites within the previously mapped poten-
tial pyroclastic deposits. Areas of interest outside the mapped pyroclastic de-
posits include certain areas of Valles Marineris, Mawrth Vallis, highlands north
of Hellas, and the Terra Cimmeria and Terra Sirenum regions. Since there is
no ground truth yet to validate the resultant potential zeolite bearing map, the
zeolite detection using orbital images and the geological and hydrological set-
tings favorable for the formation of zeolites in the area based on the literature
will be discussed. Favorable geological and hydrological settings for the forma-
tion of zeolites include tuff (volcanic ash deposits), water, and the presence of
key hydrous minerals inferring near-surface temperature alteration, low-grade
metamorphic alteration, or hydrothermal alteration.

FIGURE 13 HERE

Figure 13: Potential zeolite bearing terrains calculated using the data driven
fuzzy weights-of-evidence method. Value range indicates the possibility of find-
ing zeolite based on the calculations. 1 = highest possibility, 0 = Lowest possi-
bility. Background is a hillshade from MOLA DEM.

4.1 Arabia Terra

Arabia Terra is a cratered Noachian highland area and is probably composed of
a mixture of impact breccias and volcanic, aeolian, and fluvial deposits (Davis
et al., 2019; Tanaka, 2000). The zeolite mineral analcime was first detected in
the west of Nili Fossae in craters near the Antoniadi basin and in the eastern
portion of the Arabia Terra by Ehlmann et al. (2009) using CRISM data. Ash
dispersion modeling (e.g., Kerber et al., 2012; Kerber et al., 2013) suggests
that extensive ash deposits should be common in the Arabia Terra. Fassett
and Head (2007) observed the hundreds of meters of material deposited on the
surface of the northeast Arabia Terra, likely as airfall. The fluvial systems in the
region are interpreted to have been formed by precipitation and runoff during
the mid-Noachian and early-Hesperian (Davis et al., 2016, 2019). Whelley et al.
(2021) also identified the presence, thickness, and distribution of altered volcanic
ash layers in Arabia Terra using orbital spectral data. They identified the
interlayered sequence of volcanic ash units containing hydroxy sulfates, Fe/Mg-
smectites, Al-smectites, aluminosilicates, and hydrated silica.
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4.2 Medusae Fossae Formation

The Medusae Fossae Formation (MFF) in southern Elysium and northern Mem-
nonia and Amazonis Planitia and Aeolis Planitia (Kerber and Head, 2010) is
characterized by large accumulations of friable, fine-grained deposits most likely
composed of volcanic ash, ignimbrites, or aeolian dust (Mandt et al., 2008; Ker-
ber and Head, 2010). Both the Tharsis Montes and Elysium Montes could be
the source of pyroclastic deposits. Modified and inverted fluvial channels indi-
cate that there was some fluvial activity during the formation or modification
of the MFF (Kerber and Head, 2010).

4.3 Valles Marineris

Viviano-Beck et al. (2017) compositionally mapped the Valles Marineris wall
units and identified zeolites along with chlorite and carbonate on the north
and south walls of eastern Coprates Chasma. They were spatially associated
with olivine-rich dikes, suggesting hydrothermal alteration from primary igneous
phases to zeolite (Viviano-Beck et al., 2017). The coexistence of zeolites and
carbonates implies that the fluids were alkaline. A wide variety of hydrated
mineral assemblages is also identified in a depression close to Noctis Labyrinthus,
at the western end of Valles Marineris, where Fig 13 shows high probability of
finding zeolites (e.g., Thollot et al., 2012). Mitrofanov et al. (2022) recently
observed unusually high hydrogen abundances at Candor Chaos in the central
area of Valles Marineris using the FREND (Fine Resolution Epithermal Neutron
Detector) neutron telescope onboard ExoMars Trace Gas Orbiter (TGO). Based
on these results, they concluded that the high (40.3%) mean derived Water
Equivalent Hydrogen (WEH) value at the Candor Chaos could be related to
locally large abundances of highly hydrated minerals or water ice permafrost.

4.4 Mawrth Vallis

Mawrth Vallis sits at the boundary between the northern lowlands and the
southern highlands (Bishop et al., 2013) and hosts the largest outcrop of Al/Si-
rich clays on Mars (Bishop and Rampe, 2016). The Al/Si-rich clay unit mainly
consists of montmorillonite, opal, kaolinite/halloysite, aluminosilicates, and ze-
olite (Bishop et al., 2013). Bishop and Rampe (2016) have identified the poorly
crystalline aluminosilicates as allophane and imogolite using CRISM and TES
data. They suggested that the ash from one or many of the supervolcanoes iden-
tified in northern Arabia Terra could be the source of allophane + imogolite unit
at Mawrth Vallis. Loizeau et al. (2012) estimated the age and duration of aque-
ous activity in the Mawrth Vallis region using crater counting. Michalski et
al. (2013) developed multiple working hypotheses as to how the compositional
stratigraphy at Mawrth Vallis region formed and their favored hypothesis for
the observed compositional stratigraphy was that volcanogenic acidic aerosols
and snow or ice and small volumes of water chemically altered tephra deposits.

4.5 North Hellas Highlands

The model also shows a high favorability for zeolites in the North Hellas highland

23



region. Terby crater in the North Hellas highlands hosts the thickest lake sedi-
ments yet observed on Mars (Ansan et al., 2011). Hargitai et al. (2018) mapped
potential paleolakes to the northeast of Hellas Basin in the Navua-Hadriacus-
Ausonia region, identifying 34 potentially paleolake-hosting depressions. These
lakes may have formed in the Hesperian during a volcanically active period (Har-
gitai et al., 2018). Zhao et al. (2020) identified 64 paleolakes with diameters
larger than 4 km. They observed lacustrine deposits, volcanic ash, aeolian sand
deposits, exposures of bedrock, and impact breccia/melts in the area. Previous
studies of the northwestern Hellas region showed high concentrations of aqueous
minerals including carbonates, chlorides, sulfates, and phyllosilicates (Osterloo
et al., 2010; Carter et al., 2013; Ehlmann and Edwards, 2014; Wray et al., 2016;
Zhao et al., 2020).

4.6 Terra Cimmeria/Terra Sirenum Region

The Terra Cimmeria/Terra Sirenum region has light-toned knobs that contain
phyllosilicates possibly formed by aqueous alteration of the fine-grained (poten-
tially ashfall) Electris Deposit described by Grant and Schultz (1990). The clays
in these deposits likely formed in a network of local lakes (Wendt et al., 2013).
The mineralogical, morphological, and stratigraphical study of Terra Cimme-
ria/Terra Sirenum region done by Wendt et al. (2013) shows the long-lasting,
complex aqueous history involving localized lakes, valley networks, and multiple
stages of mineral alteration.

Missing data or misinterpreted patterns are two major sources of uncertainty
in mapping mineral favorability. This is more critical in poorly explored areas
where fewer data are available than in well-explored areas. Most areas on Mars
are poorly explored. The fuzzy weights-of-evidence method adopted here pro-
vides a framework for calibrating fuzzy membership functions to replace missing
data for posterior probability calculations (Cheng and Agterberg, 1999). Since
the weights-of-evidence method is objective, it also avoids the subjective choice
of weighting factors. The objective methods are more important in poorly ex-
plored areas where little knowledge is available. One of the main disadvantages
of the weights-of-evidence method is that it is only applicable in regions where
the response variable is fairly well known. If the response variable is poorly
known for a certain region, the results must be interpreted with caution. The
response variable used in this study is the location of hydrous minerals. Carter
et al. (2013) discussed several biases and limitations for hydrous mineral detec-
tions, which can directly influence the probabilistic model applied here.

1. Carter et al. (2013) demonstrated that the detection capabilities of hy-
drous minerals on Mars using orbital data are limited by the pixel res-
olution of the instrument. Areas with hydrous minerals larger than the
smallest ground resolution cell (~20m in CRISM) can be detected. In
addition, orbital spectral data both from CRISM and OMEGA exhibit
instrumental artifacts that can affect the identification of minerals (false
positives and false negatives). Also, observational biases such as surface
dust cover, ice, photometric effects, residuals in the atmospheric correc-
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tion, and spectral mixing with non-hydrated minerals could affect the
hydrous mineral detections from orbital data.

2. 98% of the Martian surface has not yet been observed using high resolution
CRISM images. Though the multi-spectral CRISM observations cover
almost the entire planet, hydrous mineral detection from multispectral
CRISM data is mostly discarded by Carter et al. (2013) due to their low
spectral resolution.

3. Some regions have been studied more than others, resulting in more hy-
drous mineral detection than in the less studied areas.

4. Small hydrous mineral exposures are covered by fewer pixels and on aver-
age have spectra with lower S/N ratios, making them harder to identify.

In addition to the limitations of the response variable (hydrous mineral detec-
tion), two other types of uncertainties and errors can be mainly identified; 1)
errors and uncertainties associated with the original data or introduced during
the pre-processing and processing of vector/raster data, and 2) errors and uncer-
tainties introduced during the information representation and digital fusion of
the factor maps (Moon, 1998). Since the global maps used in this study were of
different resolutions, coordinate systems, and different file formats, errors and
uncertainties can be introduced during the resampling process, reclassification
process, projection and transformation, and data handling. These errors and
uncertainties can transmit through the entire process and into the final results.
Some of the errors and uncertainties are introduced during the information rep-
resentation and digital fusion, and the methods used to eliminate some of these
errors and uncertainties are briefly discussed below.

This study did not test the Conditional Independence (CI) among the eviden-
tial maps, though some evidential maps seem to have a conditional dependence
(e.g., Albedo, Thermal inertia, dust cover index). Conditional dependence can
create problems when combining maps using fuzzy algebraic product, fuzzy al-
gebraic sum, and 𝛾 operator. However, before applying these three operators,
all the similar maps were synthesized using fuzzy OR and fuzzy AND opera-
tors to eliminate the effect of Conditional Independence. Therefore, it is not
necessary that conditionally dependent maps are rejected in the predictive min-
eral mapping process using fuzzy logic, if an appropriate inference network is
used (Porwal et al., 2003). However, if extremely high or low noise values are
associated with some pixels in evidential maps, the fuzzy OR and fuzzy AND
operators would propagate into the final synthesized fuzzy favorability map
(Knox-Robinson, 2000). These noises (no data pixels and saturated pixels) were
observed in most of the used image products. If fuzzy algebraic sum (FAS) and
fuzzy algebraic product (FAP) operators were used individually, these noises
could be amplified because of the increasive and decreasive tendencies of these
two operators, respectively. The fuzzy 𝛾 operators balanced these tendencies
of the FAS and FAP operators by using appropriate values of 𝛾 (Porwal et al.,
2003; Knox-Robinson, 2000). One of the main advantages of fuzzy models are
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their capability to control the propagation of extreme-value noise to the out-
put. This study continues to select the best sites (pixels) that have the highest
favorability index for zeolites for detailed high resolution spectral studies.

5 Conclusions

In this study, the data-driven fuzzy based weights-of-evidence method was ap-
plied to produce a hydrous mineral favorability map and a zeolite mineral favor-
ability map of the surface of Mars up to 40𝑜 latitudes towards both poles. The
results of this work lead to the following main conclusions:

1. The methods applied in this study dealt well with qualitative, quantita-
tive, multi-source data/information for Mars, acquired from orbital data,
which may be imprecise and incomplete due to the limitations of spatial
resolution, spatial coverage, surface dust, instrumental biases, and other
intrinsic biases.

2. The weights-of-evidence method provided a simple statistical method for
predicting mineral potential based on limited known occurrences.

3. The most important and sensitive processes in fuzzy modeling were the
definition of fuzzy membership values of multiclass evidential maps and
the selection of fuzzy set operators and an appropriate inference network
for combining the evidential maps.

4. The favorability map for hydrous minerals obtained by a well-tuned fuzzy
inference engine indicates a strong correlation (success rate) between the
areas of high favorability of hydrous minerals and known hydrous mineral
detections.

5. Favorability for zeolites was derived from the favorability of hydrous min-
eral map and the pyroclastic deposits (modeled and confirmed) map and
agrees with previous studies conducted in those favorable areas, support-
ing the validity of the conceptual model used and its accuracy.

6. The favorable areas for zeolites identified in this method include the east-
ern and western Arabia deposits and some sites in the Medusae Fossae
formation within previously mapped potential pyroclastic deposits. Fa-
vorable areas for zeolites outside the mapped pyroclastic deposits include
certain areas of Valles Marineris, Mawrth Vallis, highlands north of Hellas,
and the Terra Cimmeria, and Terra Sirenum regions.
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