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Abstract

Regionalization approaches wherein utilities in close geographic proximity cooperate to manage drought risks and co-invest in

new infrastructure are increasingly necessary strategies for leveraging economies of scale to meet growing demands and navigate

deeply uncertain risks. Successful regional cooperative investment and management pathways, however, must equitably balance

the interests of multiple partners while navigating power relationships between regional actors. In long-term infrastructure

planning contexts, this challenge is heightened by the evolving system-state dynamics, which may be fundamentally reshaped

by infrastructure investment. This work introduces Equitable, Robust, Adaptive, and Stable Deeply Uncertain Pathways (DU

PathwaysERAS), an exploratory modeling framework for developing regional water supply management and infrastructure

investment pathways. Our framework explores equity and power relationships within cooperative pathways using multiple rival

framings of robustness, each representing a competing hypothesis about how performance objectives should be prioritized. To

capture the time-evolving dynamics of infrastructure pathways, DU PathwaysERAS features new tools to measure the adaptive

capacity of pathway policies and evaluate time-evolving vulnerability. We demonstrate our framework on a six-utility water

supply partnership seeking to develop cooperative infrastructure investment pathways in the Research Triangle, North Carolina.

Our results indicate that commonly employed framings of robustness can have large and unintended adverse consequences for

regional equity. Results further illustrate that regional and individual vulnerabilities are highly interdependent, emphasizing the

need to craft agreements that limit counterparty risks from the actions of cooperating partners. Beyond the Research Triangle,

these results are broadly applicable to cooperative water supply infrastructure investment and management globally.
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Key Points:11

• We present new tools to develop equitable & robust regional water supply invest-12

ment pathways & clarify their time-evolving vulnerabilities13

• We demonstrate how commonly used framings of water supply robustness can have14

unintended adverse impacts on regional equity15

• Cooperative investments can help water utilities maintain regional supply relia-16

bility but can also expose utilities to new financial risks17
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Abstract18

Regionalization approaches – wherein utilities in close geographic proximity cooperate19

to manage drought risks and co-invest in new infrastructure – are increasingly necessary20

strategies for leveraging economies of scale to meet growing demands and navigate deeply21

uncertain risks. Successful regional cooperative investment and management pathways,22

however, must equitably balance the interests of multiple partners while navigating power23

relationships between regional actors. In long-term infrastructure planning contexts, this24

challenge is heightened by the evolving system-state dynamics, which may be fundamen-25

tally reshaped by infrastructure investment. This work introduces Equitable, Robust,26

Adaptive, and Stable Deeply Uncertain Pathways (DU PathwaysERAS), an exploratory27

modeling framework for developing regional water supply management and infrastruc-28

ture investment pathways. Our framework explores equity and power relationships within29

cooperative pathways using multiple rival framings of robustness, each representing a com-30

peting hypothesis about how performance objectives should be prioritized. To capture31

the time-evolving dynamics of infrastructure pathways, DU DU PathwaysERAS features32

new tools to measure the adaptive capacity of pathway policies and evaluate time-evolving33

vulnerability. We demonstrate our framework on a six-utility water supply partnership34

seeking to develop cooperative infrastructure investment pathways in the Research Tri-35

angle, North Carolina. Our results indicate that commonly employed framings of robust-36

ness can have large and unintended adverse consequences for regional equity. Results fur-37

ther illustrate that regional and individual vulnerabilities are highly interdependent, em-38

phasizing the need to craft agreements that limit counterparty risks from the actions of39

cooperating partners. Beyond the Research Triangle, these results are broadly applica-40

ble to cooperative water supply infrastructure investment and management globally.41

1 Introduction42

Urban water utilities worldwide face growing risks to supply reliability from climate43

change, increasing water demands, as well as their consequent pressures on financial sol-44

vency (IPCC, 2022; AWWA, 2018). Uncertainties within the future projections of de-45

mand growth, local climate impacts, and financial conditions increase the difficulty of46

developing infrastructure investment and management policies that balance supply re-47

liability with financial stability (WUCA, 2016; USGCRP, 2018; Bonzanigo et al., 2018).48

If water utilities under-invest in supply infrastructure or invest too late, they risk widespread49

supply shortfalls under challenging future scenarios. However, if challenging conditions50

do not manifest, particularly in demand growth, the debt burden resulting from large51

near-term investments raises the risk of financial instability (i.e., stranded assets and high52

water rates for customers; (Qureshi & Shah, 2014; Haasnoot et al., 2020)). Moreover,53

in many developed regions, regulatory constraints and a dwindling number of suitable54

locations for new reservoir construction have increased the cost of supply development55

(Lund, 2013; Perry & Praskievicz, 2017). These challenges are acutely felt by water util-56

ities in the United States (US), where aging drinking water infrastructure requires over57

$470 billion of investment over the next 20 years (Congressional Research Service, 2022).58

While the 2021 Infrastructure Investment and Jobs Act allocated over $55 billion in fed-59

eral funding to improve drinking water infrastructure (DeFazio, 2021), most expenses60

will fall on local utilities (AWWA, 2012; Smull et al., 2022). In response to this grow-61

ing financial risk, water utilities in the US are increasingly exploring ‘regionalization’ ap-62

proaches - regionally cooperative strategies involving coordinated drought management63

or infrastructure co-investment to improve the economic efficiency of water supply man-64

agement (Reedy & Mumm, 2012; Tran et al., 2019; Riggs & Hughes, 2019).65

For utilities in close geographic proximity, cooperative “soft path” approaches such66

as water transfers and coordinated water use restrictions can improve the efficiency of67

existing supply sources, delaying or reducing the need for additional supply expansion68

(Gleick, 2003; Brandes et al., 2009; Zeff & Characklis, 2013; Kenney, 2014; Gorelick et69
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al., 2018). When expansion is unavoidable, utilities can leverage economies of scale by70

co-investing in regional supply sources (Riggs & Hughes, 2019; Silvestre et al., 2018; EPA,71

2017). Approaches that coordinate soft-path water supply portfolios with long-term in-72

frastructure sequencing and financial instruments have been shown to reduce utility costs73

further and improve supply reliability (Padula et al., 2013; Cai et al., 2015; Mortazavi-74

Naeini et al., 2014; Zeff et al., 2016; Baum et al., 2018). However, developing and im-75

plementing regionally cooperative policies challenges traditional decision-aiding frame-76

works in two intersecting ways. First, the decadal planning horizons necessary for infras-77

tructure planning introduce significant uncertainties that are difficult to characterize with78

known probability distributions (Stakhiv, 2011; Groves et al., 2019). Second, rather than79

optimizing performance for a single actor, cooperative policies must navigate power dy-80

namics between actors to equitably balance the potentially diverse individual interests81

(Madani & Hipel, 2011; Read et al., 2014; Hamilton et al., 2022; Savelli et al., 2022; Gold82

et al., 2022). These challenges motivate the contribution of the DU PathwaysERAS frame-83

work proposed in this study.84

DU PathwaysERAS builds on the DU Pathways framework (Trindade et al., 2019)85

to facilitate the development of cooperative water supply policies that bridge long-term86

investments with short-term portfolio management. Over the decadal planning horizons87

of infrastructure investment decisions, decision-makers often do not know, or cannot agree88

on, how to characterize the system and its boundaries, the probability distributions of89

relevant uncertainties (e.g., changing drought extremes) and/or the outcomes of inter-90

est and their relative importance (W. E. Walker et al., 2013; Bonzanigo et al., 2018; Kwakkel91

et al., 2016; Lempert et al., 2006; Maier et al., 2016). These conditions, collectively known92

as “deep uncertainty”, challenge traditional decision-making frameworks such as cost-93

benefit analysis (Lempert, 2002; Kwakkel et al., 2016; Dittrich et al., 2016; Marchau et94

al., 2019) and have motivated a rapidly growing body of literature focused on bottom-95

up decision support frameworks (Lempert et al., 2006; Brown et al., 2012; Haasnoot et96

al., 2013; Kasprzyk et al., 2013). These frameworks typically center on exploratory mod-97

eling approaches (Bankes, 1993; Moallemi, Kwakkel, et al., 2020) that use computational98

experiments to discover policies that are robust to large ensembles of deep uncertain-99

ties and identify which uncertainties have consequential impacts on the system (for re-100

cent reviews see (Dittrich et al., 2016; Kwakkel & Haasnoot, 2019; Moallemi, Zare, et101

al., 2020). To facilitate the discovery of robust policies, DU Pathways and DU Pathway-102

sERAS employ the constructive decision-aiding approach of Many-Objective Robust De-103

cision Making (MORDM; (Kasprzyk et al., 2013), which treats the search for candidate104

policies as an iterative learning process where stakeholders explore trade-offs across mul-105

tiple performance metrics (Tsoukiàs, 2008; Kwakkel et al., 2016).106

A key concern in bottom-up robustness-focused decision support frameworks is whether107

they employ static or state-aware contextually appropriate adaptive actions to develop108

robust policies. Static strategies commit to a set of predefined actions that seek to re-109

duce vulnerability in the largest possible range of conditions (W. E. Walker et al., 2013).110

Unfortunately, static strategies tend to be costly and may increase vulnerability to unan-111

ticipated future scenarios (Anderies et al., 2013). In contrast, adaptive state-aware strate-112

gies permit contextually tailored and appropriate changes to actions over time, trigger-113

ing actions based on state information (W. E. Walker et al., 2013; Haasnoot et al., 2013;114

S. M. Fletcher et al., 2017; Erfani et al., 2018; Trindade et al., 2020; Giuliani et al., 2021;115

Pachos et al., 2022). For example, Dynamic Adaptive Policy Pathways (DAPP; (Haasnoot116

et al., 2013) generates a suite of adaptive actions and identify signposts to monitor sys-117

tem performance and trigger adaptive actions. DU Pathways (Trindade et al., 2019) builds118

on this approach by using state-aware rule systems to trigger short-term soft path ac-119

tions (e.g., water restrictions or transfers) and long-term infrastructure investment de-120

cisions. The DU Pathways policies can be viewed as state-aware rule systems approx-121

imate a closed-loop control policy (Bertsekas, 2012; Herman et al., 2020) that triggers122

actions tailored to observed future conditions (i.e., termed model-free policy approxima-123
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tion control techniques in recent proposed reinforcement learning taxonomies — see (Bertsekas,124

2012; Powell, 2019)). The DU PathwaysERAS framework proposed in this study adopts125

the state-aware rule system utilized by DU Pathways.126

Beyond identifying candidate state-aware robust adaptive policies, it also critical127

to understand which deep uncertain factors are most consequential for shaping their suc-128

cess and vulnerabilities. A key facet of recent advances in decision making under deep129

uncertainty is the growing sophistication and use of machine learning, regression, and130

classification techniques to identify consequential drivers of success and failures for achiev-131

ing defined robustness goals (Reed et al., 2022). Scenario Discovery (Groves & Lempert,132

2007; Bryant & Lempert, 2010; Kwakkel & Jaxa-Rozen, 2016) complements adaptive rule133

systems by revealing how deep uncertainties generate vulnerabilities for infrastructure134

investment and management policies. Scenario Discovery is commonly performed by ap-135

plying stakeholder-defined performance thresholds and using machine learning or data136

mining algorithms to delineate regions of the uncertainty space where policies fail to achieve137

these thresholds (Jafino et al., 2020). In water supply systems, supply vulnerability is138

a function of a utility’s capacity-to-demand ratio (Loucks & Van Beek, 2017), and finan-139

cial vulnerability is heavily dependent on a utility’s overall debt burden (AWWA, 2011).140

Infrastructure sequencing fundamentally alters both of these system characteristics and141

may also change relationships and dependencies between supply sources and regional ac-142

tors within the water resources system. In these contexts, time-aggregated measures of143

performance may mischaracterize system vulnerability. To capture the time-evolving dy-144

namics of complex systems, (Steinmann et al., 2020) introduced behavior-based Scenario145

discovery, which applies time-series clustering to identify patterns in how a system evolves146

over time and map how uncertainties generate these behavioral clusters. Studies in sup-147

port of DAPP and adaptation tipping points have also considered time-dependent dy-148

namics of system vulnerability (Haasnoot et al., 2015; van Ginkel et al., 2021). Yet these149

studies still rely on time-aggregated evaluations of system performance, and do not sep-150

arate near-term and long-term vulnerabilities. DU PathwaysERAS contributes a pathways-151

centered time-evolving scenario discovery methodology based on gradient-boosted trees152

to better capture changing vulnerabilities as well as the mathematical challenges posed153

by nonlinearly dependent multi-actor failure modes as well as the complex thresholds154

that adaptive infrastructure investments cause in scenario spaces (e.g., discrete jumps155

in water supply capacity for an actor).156

While adaptive strategies can increase the robustness of infrastructure investment157

and management policies to deep uncertainty, regionally cooperative policies raise an ad-158

ditional question – robustness for whom? For example, regionally aggregated measures159

of performance may appear robust for a group while failing to capture adverse impacts160

on individual actors (De Souza et al., 2011; Hamilton et al., 2022; Gold et al., 2022). Some161

studies have attempted to directly include regional equity using measures of relative vari-162

ability such as the Gini index or the coefficient of variation (e.g., (Hu, Chen, et al., 2016;163

Aalami et al., 2020). However, these measures may have unintended consequences – op-164

tions selected to minimize the variability in system-wide performance can inadvertently165

penalize the most vulnerable partners (Ciullo et al., 2020). Operationalizing equity by166

applying Rawls’ difference principle – which focuses on improving performance by max-167

imizing the performance of the least well-off actor – has been shown to balance perfor-168

mance across diverse coalitions of stakeholders in water resources problems (Zeff et al.,169

2014; Jafino et al., 2020). But defining the “least well-off actor” depends on the choice170

of performance measures (S. Fletcher et al., 2022) – individual actors may have differ-171

ent vulnerabilities. The use of Rawls’ difference principle (Rawls, 1999) in equity-focused172

specifications of objectives or measures is in reality an aspirational ‘means’ to better ad-173

dress the distributional justice of outcomes. However, complex cooperative urban wa-174

ter supply regionalization contexts (e.g., asymmetries in utilities size, power, finances,175

baseline infrastructure, etc.) make it extremely difficult to know if these aspirational means176

are likely to yield equitable outcomes (‘the intended end benefits’). The DU PathwaysERAS177
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framework facilitates an inclusive participatory many-objective framing of cooperative178

pathway policies and rigorous exploratory modeling for aiding regional stakeholders to179

better realize equitable outcomes as they navigate the space of candidate compromises.180

A successful regional policy must not only be equitable, but also cooperatively sta-181

ble, meaning that no partner has incentives to defect from the policy (Dinar & Howitt,182

1997; Madani & Hipel, 2011; Madani & Dinar, 2012; Read et al., 2014). Previous work183

has utilized game theoretic metrics of stability and bargaining frameworks to discover184

cooperatively stable water supply management strategies (Madani & Hipel, 2011; Par-185

rachino et al., 2006; Ristić & Madani, 2019; Alizadeh et al., 2017). These methods rely186

on strong axiomatic assumptions and single objective representations of stakeholder pref-187

erences, limiting their applicability to complex water supply planning problems. Alter-188

natively, analyzing regional power dynamic can provide insights into the drivers of co-189

operative instability and reveal conflict mitigation strategies (Gold et al., 2022). Power190

in a regional system has been broadly defined as “the (in)capacity of actors to mobilize191

means to achieve ends” (Avelino, 2021). To characterize power relationships, (Avelino192

& Rotmans, 2011) suggest a typology that centers on three manifestations of power: power193

over – referring to conditions when actor A can dictate outcomes for B, power to – con-194

ditions when an actor can act to create or resist change and power with – when actors195

can create or resist change through collaboration. Gold et al. (2022) introduced Regional196

Defection Analysis, which evaluates the stability of cooperative infrastructure investment197

and maps power relationships between regional partners. Building upon this prior work,198

the DU PathwaysERAS incorporates Regional Defection Analysis as one of the key ex-199

ploratory modeling evaluation steps to identify how utilities may have power to create200

or resist change, and power over the performance of their cooperating partners. It also201

implicitly highlights how utilities may utilize collaborative power (described as power with202

by Avelino and Rotmans (2011)) to improve regional performance.203

DU PathwaysERAS represents a holistic exploratory framework for identifying eq-204

uitable, robust, adaptive, and cooperatively stable urban water infrastructure investment205

and management regionalization policies. DU PathwaysERAS builds on recent advances206

in water supply portfolio planning, MORDM, and DAPP to develop adaptive pathway207

policies that maintain robust performance across deeply uncertain future states of the208

world and contributes new tools that focus on regional equity and time-evolving vulner-209

ability. The core contributions for DU PathwaysERAS include 1) a formalized process210

to explore and better realize regionally equitable compromise policies, 2) integration of211

Regional Defection Analysis (Gold et al., 2022) to evaluate cooperative stability and ex-212

plore regional power dynamics, 3) a new Infrastructure Disruption Analysis that mea-213

sures the relative importance of utilities candidate individual and cooperative infrastruc-214

ture investments, and 4) a time-evolving scenario discovery process that is designed to215

better inform how to prioritize near term actions and what factors to monitor for main-216

taining the long-term robustness of adaptive infrastructure pathway policies. Another217

major facet of this study’s contribution is the demonstration of the DU PathwaysERAS218

framework in a highly complex multi-actor water supply regionalization context for the219

Research Triangle region of North Carolina, where six neighboring water utilities seek220

to develop cooperative infrastructure investment and management policies.221

2 Regional Test Case222

The Research Triangle (Triangle) region of North Carolina (Figure 1a) is a grow-223

ing urban area home to roughly 2 million people. The region’s rapidly growing water de-224

mand and history of drought have motivated regional water managers to explore coop-225

erative water supply management strategies. Cooperating partners include water util-226

ities serving three large urban areas – Raleigh, Durham, and Cary and three smaller pop-227

ulation centers – Pittsboro, Chatham County, and Chapel Hill (the latter managed by228

the Orange Water and Sewer Authority (OWASA)). The six regional partners seek a re-229
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gional infrastructure investment and management policy that coordinates short term drought230

crisis response and long-term infrastructure investment sequencing.231

Figure 1. a. The Research Triangle region of North Carolina where six utilities seek coopera-

tive infrastructure investment and management policies b. Demand growth projections for the six

utilities

To manage drought crises, the utilities currently rely on a mix of voluntary con-232

servation measures, mandatory water use restrictions, drought rate surcharges and re-233

gional inter-utility transfers of treated water (Authority, 2010; Westbrook et al., 2016).234

Cary operates a water treatment facility on the Jordan Lake, a large regional resource235

owned and operated by the US Army Corps of Engineers (USACE) and can sell water236

to other regional partners through regional interconnections. Four other regional part-237

ners – Durham, OWASA, Pittsboro and Chatham County – have supply allocations to238

the Jordan Lake but currently lack the treatment and conveyance capacity to access it.239

To manage growing demands (Figure 1b, and listed in Table 1), the utilities plan240

to invest in new supply infrastructure. A variety of infrastructure options have been iden-241

tified by each utility (Table 2) that range from small independent investments to large242

cooperative investments. Four regional utilities – Durham, OWASA, Pittsboro and Chatham243

County – are investigating the joint construction of the Western Treatment Plant, a large244

water treatment plant on Jordan Lake. Gorelick et al. (2022), examined three regional245

agreement structure utilities can use to finance the plant, finding that 1) the Western246

Treatment Plant can benefit cooperating partners and 2) a fixed agreement structure where247

utilities receive water in direct proportion to their initial cost sharing minimizes coun-248

terparty risk of cooperating investors. The six cooperating utilities seek a cooperative249

infrastructure investment and management policy to sequence new infrastructure invest-250

ments and coordinate short-term drought crisis response. A core aim of Triangle part-251

ners is to find a compromise policy that maintains robust performance across deeply un-252

certain future conditions while equitably balancing performance across the six regional253

partners.254
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Table 1. Projected water demands for Research Triangle partners (MGD)

Triangle Utility 2020 2040 2060

Cary 27.5 40.7 45
Chatham County 2.1 2.4 2.6
Durham 30.7 38.1 44.4
OWASA 8.3 10.8 12.9
Pittsboro 1.1 2.6 5.6
Raleigh 64.4 91.3 115
Total (avg MGD) 134.1 185.9 225.5

Table 2. Available infrastructure for Triangle partners. ∗ cost not included in modeling,

project underway at time of publication, c cooperative project

Project (Type) Utility Stages
Capacity
(MG or MGD)

Capital Cost
($MILLION)

Earliest
Availability

Cary WTP Upgrades∗ (treatment) Cary Small/Large 8.0 / 16.0 121.5∗ / 243∗ 2015
Cape Fear River Intake
in Harnet County (supply)

Cary Single 12.2 221.4 2032

Sanford Intakec - Cary (treatment) Cary Single 10 56 2015
Sanford Intakec - Chatham County,
Pittsboro (treatment)

Chatham County,
Pittsboro

Small/Large
Chatham: 1.0/2.0
Pittsboro: 3.0/9.0

Chatham: 7.9/11.2
Pittsboro: 49.6/69.3

2022/2028

Western Treatment Plantc (treatment)
OWASA, Durham,
Chatham County, Pittsboro

Small/Large 33.0 / 54.0 243.3/316.8 2020/2022

Reclaimed Water (supply) Durham Small/Large 2.2 / 11.3 27.5/104.4 2022
Teer Quarry (supply) Durham Single 1315 22.6 2022
Lake Michie Expansion (supply) Durham Small/Large 2500 / 7700 158.3/203.3 2032
Cane Creek Reservoir
Expansion (supply)

OWASA Single 3000 127 2032

Stone Quarry Expansion (supply) OWASA Small/Large 1500 / 2200 1.4/64.6 2037
University Lake Expansion (supply) OWASA Single 2550 107 2032
Haw River Intake (supply/treatment) Pittsboro Single 2 4 18.6/27.9 2017/2020
Falls Lake Reallocation (supply) Raleigh Single 5637 142 2022
Little River Reservoir (supply) Raleigh Single 3700 263 2032
Neuse River Intake (supply) Raleigh Single 16 225.5 2032
Richland Creek Quarry (supply) Raleigh Single 4000 400 2055
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3 Methodology255

3.1 Overview256

This study introduces DU PathwaysERAS , an extension of the DU Pathways frame-257

work (Trindade et al., 2019) for identifying equitable, robust, adaptive, and cooperatively258

stable infrastructure investment and management policies. DU Pathways is an exploratory259

decision support framework that combines the constructive decision aiding approach of260

MORDM (Kasprzyk et al., 2013) and the adaptive policy formulation of DAPP (Haasnoot261

et al., 2013) to develop infrastructure investment and management policies that are ro-262

bust to deeply uncertain futures. DU PathwaysERAS builds on this framework by in-263

cluding new tools to evaluate regional equity, cooperative stability, adaptation, and time-264

evolving vulnerability. Our core contributions include 1) a formalized process for explor-265

ing regional equity using rival framings for selecting cooperative regional compromises,266

2) integration of Regional Defection Analysis (Gold et al., 2022) to evaluate cooperative267

stability and the power relationships between regional actors, 3) a new Infrastructure268

Disruption Analysis that measures the sensitivity and dependency of a policy to candi-269

date infrastructure investments, and 4) a pathway-focused time-evolving implementa-270

tion of scenario discovery (Groves & Lempert, 2007; Bryant & Lempert, 2010; Jafino et271

al., 2020; Jafino & Kwakkel, 2021) that captures how deep uncertainties interact to drive272

vulnerability over near-term to long-term planning horizons.273
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Figure 2. Methodological overview a) DU PathwaysERAS flowchart b) Cooperative optimiza-

tion c) DU re-evaluation d) Individual Optimization (part of the Regional Defection Analysis) e)

Infrastructure Disruption Analysis f) details on approximate DU sampling used for DU optimiza-

tion g) Full DU sampling used during DU re-evaluation.
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Figure 2a shows a flowchart of the DU PathwaysERAS framework. Our process be-274

gins with problem formulation (Figure 2a, box I), where we develop a hypothesis about275

how to formulate performance objectives, select decision variables, sample uncertainties,276

and model the system. We then search for robust regional infrastructure investment and277

management pathway policies (pathway policies) using many-objective optimization un-278

der deep uncertainty (DU optimization; (Trindade et al., 2017); Figure 2a, box II – de-279

tailed in Figure 2b). DU optimization searches for robust pathway policies by evaluat-280

ing candidate policies across an approximate sampling of deeply uncertain states-of-the-281

world (SOWs) illustrated in Figure 2f. Next, we stress-test the regional pathway poli-282

cies discovered through optimization by performing DU re-evaluation (Figure 2a box III283

and detailed in Figure 2c), which subjects each pathway policy to a broader and more284

computationally intensive set of deeply SOWs created with the sampling strategy illus-285

trated in Figure 2g.286

We use the results of DU optimization and DU re-evaluation to identify a regional287

policy that maintains equitable and robust performance for all regional actors. This pro-288

cess seeks to ensure the salience and legitimacy (Cash et al., 2003) of DU PathwaysERAS289

through a co-production process (Figure 2a, box IV) where decision makers evaluate ex-290

plore multiple candidate framings of regional performance and seek to aid the selection291

of a candidate equitable regional compromises after an a posteriori evaluation of can-292

didate alternatives (Bojórquez-Tapia et al., 2022). After identifying one or more candi-293

date compromise policy pathways, we evaluate their cooperative stability (practicality)294

using regional defection analysis (Figure 2a, box V). To perform the regional defection295

analysis, we run a set of individual DU defection optimizations (Figure 2d) that explore296

each cooperating partner’s incentives to defect from the regional pathway policy across297

multiple performance objectives. We then re-evaluate each defection alternative using298

DU re-evaluation (Figure 2d) to measure how defection actions impact the trade-offs and299

robustness performance of each regional partner.300

In addition to exploring the cooperative dynamics of candidate pathway policies,301

DU PathwaysERAS contributes new diagnostic pathway analysis tools. During Path-302

ways Analysis (Figure 2a, box VI) we use visual analytics to examine pathway policies’303

infrastructure sequences. We then perform Infrastructure disruption analysis, which mea-304

sures how each infrastructure option contributes to the robustness of the regional path-305

way policy by evaluating an ensemble of infrastructure disruption scenarios (Figure 2a,306

box VI).307

Finally, we perform time-evolving scenario discovery (Figure 2a, box VII) to ex-308

plore how deep uncertainties generate vulnerability for pathway policies. In water sup-309

ply planning contexts, infrastructure investments fundamentally alter utilities’ capacity-310

to-demand ratios and financial conditions (i.e., debt service schedules). To capture how311

these evolving state dynamics change utilities’ vulnerability to deep uncertainties, we per-312

form scenario discovery across three planning horizons: near-term (through 2030), mid-313

term (through 2045) and long-term (through 2060). We use results of time-evolving sce-314

nario discovery to develop narrative scenarios that inform a dynamic adaptive implemen-315

tation and monitoring strategy (W. E. Walker et al., 2013), which allows utilities to mon-316

itor potential key vulnerabilities and prepare contingency actions.317

3.1.1 Problem Formulation318

DU PathwaysERAS builds on the constructive decision aiding approach of MORDM,319

treating the process of problem formulation as an evolving exploration of hypotheses for320

specifying decision variables, performance objectives, uncertainties, and modeled rela-321

tionships (Tsoukiàs, 2008; Kasprzyk et al., 2013). This constructive approach centers322

on an iterative and exploratory learning process where stakeholders evaluate competing323

hypotheses (or “rival framings”) about how the system should be represented analyt-324
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ically (Majone & Quade, 1980; Quinn et al., 2017). We begin with a formal represen-325

tation of the Triangle water supply planning problem informed by prior work in the Tri-326

angle system (Zeff et al., 2016; Trindade et al., 2019; Gorelick et al., 2022). Formally,327

the many-objective problem seeks to discover the regional water supply pathway policy,328

θ∗ whose dynamic and adaptive decisions minimizes the vector or regional objectives,329

F :330

θ∗ = argminθ F (1)

s.t.
|ME| ≤ 1 ∀ ME ⊆ BI (2)

Where:331

F(θ,X,Ψs) =


maxU (1− fREL)

maxU (fRF)
maxU (fNPC)
maxU (fFC)

maxU (fWFPC)

 (3)

θ = [TT ,RT , IT , IP rank,RC,JLA,TCA] (4)

X = [xLTROF ,xSTROF ] (5)

Where F is the vector of regional objectives, θ is the policy vector of all regional332

decision variables, X is the vector of ROF system states and Ψs is the ensemble of sam-333

pled states of the world. U represents the vector of Triangle partners, TT is the vec-334

tor of transfer triggers, RT is the vector of restriction ROF triggers, IT is the vector335

of infrastructure triggers, IP is the matrix of infrastructure ranks, RC is the vector of336

reserve fund contributions, JLA is the vector of Jordan Lake Allocations and TCA is337

the vector of treatment capacity fractions for each utility. ME is a generic subset of mu-338

tually exclusive infrastructure options within the set of built or potential infrastructure339

options, BI.340

3.1.2 Uncertainty341

We partition uncertainty facing the Triangle water supply system into well char-342

acterized uncertainty (WCU) and deep uncertainty (DU). WCU represents system pa-343

rameters that are stochastic but have reliable historical data or known probability den-344

sity functions (Trindade et al., 2017). DUs represent system parameters that are known345

to be uncertain, but do not have known or agreed upon probability density functions (Lempert346

et al., 2006; Kwakkel et al., 2016; W. E. Walker et al., 2003). In the Triangle, we con-347

sider the natural variability of reservoir inflows to be WCU, as there is over 80 years of348

historical data on all catchments. Because the 80-year historical record is only a single349

draw of a stochastic process, we utilize a synthetic streamflow generator introduced by350

Kirsch et al. (2013) to expand the envelope of reservoir inflow inputs. Details on the syn-351

thetic generation can be found in section S1 of this paper’s supporting information.352

DUs facing the system include changes to inflow distributions due to climate change,353

demand growth, financial variables and parameters governing infrastructure permitting354

and construction. The full set of DU parameters used in this study can be found in Ta-355

ble 3. To construct an ensemble of future states-of-the-world (SOWs) for many-objective356

search, we first generate an ensemble of 1,000 natural inflow samples (NI) using the syn-357

thetic streamflow generator. (Trindade et al., 2020) found that an ensemble size of 1,000358
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Table 3. DU factors and their sampling ranges. These multipliers are applied to best estimates

of each factor by Triangle Utilities

Factor Description Range (multiplier factor)

Near-term demand growth
Demand growth multiplier for the
first 15 years of the planning horizon

0.25-2.25

Mid-term demand growth
Demand growth multiplier for the
second 15 years of the planning horizon

0.25-2.25

Long-term demand growth
Demand growth multiplier for the
final 15 years of the planning horizon

0.25-2.25

Bond Term
A multiplier for number of years over
which infrastructure capital costs are
repaid as debt service

0.8-1.2

Bond Interest Rate
A multiplier that adjusts fixed interest
rate on bonds for infrastructure

0.6-1.2

Discount Rate
A multiplier for the discount rate, affecting
how future infrastructure investment is
discounted to 2015

0.6-1.4

Restriction Efficacy
A multiplier that determines how effective
use restrictions are at reducing water demand

0.8-1.2

Lake Evaporation
A multiplier applied to the rate water is
evaporated from regional reservoirs

0.9-1.1

Western Treatment Plant
Permitting Period

A multiplier that brings forward or delays
the year after which the Western Treatment
Plant can be constructed

0.75-1.5

Western Treatment Plant
Construction Time

A multiplier that lengthens the construction
time that would be needed to build the Western
Treatment Plant

1.0-1.2

natural inflows accurately captures variance in water supply performance measures. We359

then pair each natural inflow with a different sample of DU factors (Ψ) generated us-360

ing Latin Hypercube Sampling (LHS). This DU optimization sampling strategy, detailed361

in Figure 3f, has been shown to discover solutions that outperform other sampling strate-362

gies when evaluated over much broader ensembles of DU SOWs (Trindade et al., 2017,363

2019).364

3.1.3 Performance Objectives365

Based on elicitations of the Triangle utilities, they defined drought crisis manage-366

ment and long-term financial stability as primary performance considerations for eval-367

uating water supply portfolio management and infrastructure investment pathways. Here,368

we translate these considerations into six formal objectives for many-objective search:369

reliability, restriction frequency, infrastructure net present cost, peak financial cost, and370

unit cost of infrastructure investment. Details on the formulation of each objective are371

shown in Table 4. The reliability, restriction frequency and worst-case cost objectives,372

measure utility’s ability to manage short-term drought crises. The reliability and restric-373

tion frequency objectives measure a utility’s ability to maintain reliable water supply with-374

out subjecting customers to exceedingly high levels of restrictions. Worst-case cost mea-375

sures the magnitude of financial shocks that result from intermittent and unpredictable376

drought management costs. These shocks may take the form of revenue disruptions from377

water use restrictions of payments for treated transfers. The infrastructure net-present378

cost objective measures the present-value cost of all infrastructure investment for each379

utility. Including this objective prioritizes the discovery of portfolio pathways that man-380

age reliability and restriction frequency while incurring minimal debt burden. Debt bur-381

den is not the only financial consideration for water utilities however, also of concern is382
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the Peak Financial Cost in any given year, the ratio of all spending (drought mitigation383

costs plus debt service payments) to the annual revenue. This measure is analogous to384

debt covenants that are usually written into bond contracts (AWWA, 2011). Finally, the385

unit cost of the infrastructure investment objective measures the efficiency of infrastruc-386

ture investments and incentivizes the discovery of solutions that minimize stranded as-387

sets (i.e., long periods of time where excess water supply capacity goes unused).388

To discover regionally equitable portfolio pathways, we employ a regional minimax389

formulation to aggregate objectives across the six partner utilities (Zeff et al., 2014). Here,390

the regional value for each objective is defined as the objective value of the worst-performing391

utility. This minimax formulation is an application of Rawl’s difference principle, guar-392

anteeing that all utilities will perform at least as well or better as the regional objective393

(Hammond, 1976; Rawls, 1999).394
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3.1.4 System Model395

We use WaterPaths simulation software (Trindade et al., 2020) to model the re-396

gional water supply system. WaterPaths is an open-source C++ model designed for stochas-397

tic simulation of water supply systems. WaterPaths is selected for this work because of398

its ability to facilitate many-objective search for multi-actor water supply systems and399

efficiently accommodate large ensembles of deep uncertainty on parallel high-performance400

computing systems. WaterPaths’ customizable code base also provides a flexible plat-401

form to evaluate both short-term drought crisis actions and long-term infrastructure in-402

vestment sequences. WaterPaths contains functionality to efficiently calculate both short-403

and long-term ROFs, facilitating state-aware rule systems that support adaptive policy404

pathways. In addition, WaterPaths can export detailed time-series output of various sys-405

tem states and performance measures, allowing users to perform detailed diagnostics of406

pathway policies.407

WaterPaths is highly generalizable, and can be instantiated for a wide range of wa-408

ter supply planning contexts. The six utility instance of WaterPaths for the Triangle sys-409

tem used in this work was first developed by (Gorelick et al., 2022). During each 45-year410

simulation, the WaterPaths instance performs a weekly mass balance for all system reser-411

voirs and tracks weekly utility finances. This simulation can be efficiently parallelized412

to perform both cooperative DU optimization, and DU re-evaluation described in the413

following sections.414

3.2 Cooperative DU Optimization415

We use the Multi-master Borg MOEA (MM Borg, (Hadka & Reed, 2012, 2015))416

to discover Pareto-approximate infrastructure investment and management policies. Over-417

all MOEAs have been widely applied to water resources problems as they have been shown418

to solve nonconvex, nonlinear, multimodal, and discrete many-objective problems that419

challenge traditional search techniques (Maier et al., 2014; Nicklow et al., 2010; Reed et420

al., 2013). The MM Borg MOEA is a global population-based evolutionary algorithm421

that features adaptive search operators, epsilon dominance archiving (Laumanns et al.,422

2002), stagnation detection, and randomized restarts to solve challenging many-objective423

problems. In its serial implementation, Borg has been shown to perform as well or bet-424

ter than other state-of-the-art MOEAs when applied to challenging water resources ap-425

plications (Reed et al., 2013; Gupta et al., 2020). The multi-master implementation of426

the Borg MOEA exploits high performance computing resources by employing a hybrid427

parallelization scheme that uses both multiple population and master-worker paralleliza-428

tion strategies to increase the scalability and difficulty of many-objective search prob-429

lems (Cantu-Paz & Goldberg, 2000; Hadka & Reed, 2015).430

To discover regional pathway policies that maintain robust performance across deeply431

uncertain futures, we use DU optimization (Trindade et al., 2017) (Figure 2b). DU op-432

timization evaluates each candidate pathway policy across the sampling of WCU and DU433

SOWs described in Section 5.2.1 and shown in Figure 2f. This approximate sampling scheme434

approximates the much broader and computationally intensive sampling scheme shown435

in Figure 2g. The DU optimization process begins with randomly generated population436

of decision variable vectors which are evaluated using WaterPaths over the approximate437

DU sampling. WaterPaths returns the six objective values which are passed to the MM438

Borg MOEA. The MOEA then assesses Pareto dominance and uses recombination op-439

erators to generate new decision variable vectors. This process is repeated until the al-440

gorithm has reached a specified number of function evaluations.441
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3.3 DU re-evaluation442

During DU re-evaluation, we stress test the Pareto-approximate pathway policies443

discovered through DU optimization across a broader ensemble of SOWs generated us-444

ing the DU re-evaluation sampling strategy shown in Figure 2g. This stress testing is445

central to the exploratory modeling process employed by DU PathwaysERAS because it446

provides a platform for the six utilities to evaluate the robustness of candidate strate-447

gies and characterize their vulnerability to over a wide range of plausible future condi-448

tions (Moallemi, Kwakkel, et al., 2020; Kwakkel, 2019). The DU re-evaluation sampling449

scheme represents a significantly more challenging and computationally demanding set450

of SOWs than the approximate sampling scheme used during DU optimization.451

To perform DU re-evaluation, candidate policy pathways are evaluated across an452

ensemble of 2 million scenarios, each representing a unique paring of WCU inflows (NIS)453

and DU SOWs (Ψ), illustrated in Figure 2g. We sample DU SOWs by generating an en-454

semble of 2,000 parameter combinations using LHS across pre-specified ranges of plau-455

sible DU parameter values (shown in Table 3). Each LHS is paired with an ensemble of456

1,000 synthetically generated WCU inflows, created using synthetic streamflow gener-457

ation as detailed in Section 5.2.2. Each DU SOW produces one vector of objectives val-458

ues, which are aggregated across the 1,000 NIs as shown in Figure 2g.459

3.4 Selection of candidate compromise pathway policies460

The Triangle partners seek an equitable and robust pathway policy that balances461

performance across the six cooperating regional utilities . DU PathwaysERAS facilitates462

regional partners in the identification of candidate compromise pathway policies through463

the interactive exploration of multiple and potentially competing hypotheses for fram-464

ing the individual and/or collective requirements needed for solutions to be acceptable465

to all parties involved (Tsoukiàs, 2008; Bojórquez-Tapia et al., 2021). The negotiated466

pathway policy selection processes benefit from exploring alternative framings for com-467

promises because they enhance direct discussions of the performance trade-offs across468

the utilities’ conflicting performance objectives as well as their robustness. It is impor-469

tant to help cooperating urban water utilities recognize and avoid myopic planning that470

can emerge as an unintended consequence of narrow definitions of “optimality” or “ro-471

bustness” (Brill et al., 1990; Kasprzyk et al., 2013; Herman et al., 2015; McPhail et al.,472

2018). Exploring trade-offs (performance or robustness), vulnerabilities, and inter-regional473

dependencies can help to escape preconceived notions of what is possible and how to achieve474

it (Gettys & Fisher, 1979; Kasprzyk et al., 2013; Kwakkel et al., 2016).475

In the DU PathwaysERAS framework, the identification of candidate regional com-476

promise pathway policies begin with the results of cooperative DU optimization, which477

provides the Triangle partners with a set of Pareto-approximate regional policy alter-478

natives, each representing a non-dominated set of regional performance objectives (Coello479

et al., 2007; Reed et al., 2013). In practice, the utilities are not interested in the full range480

of Pareto-approximate alternatives - some may yield unacceptable performance objec-481

tives, while others may inequitably distribute costs and benefits across regional partners.482

Utilities can explore candidate compromises by filtering (or “brushing”) the Pareto-approximate483

set according to a set of criteria that reflect performance priorities, such as maintain-484

ing supply reliability or minimizing infrastructure investment costs (Kollat & Reed, 2006;485

Woodruff et al., 2013).486

Here, we demonstrate the facilitated process of selecting an equitable and robust487

regional compromise by comparing four framings (expressed preferences and specified488

requirements) that the Triangle partners could use to define their perspectives on what489

constitutes equitable and robust system performance. Each framing (Table 5 and dia-490

grammed in Figure 3) pairs an alternative specification of the prioritized performance491

requirements (Simon, 1966) and the specific sampling strategy that was used to compute492
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Table 5. Candidate framings of regional compromise

Name
Performance
measures

Aggregation across
deep uncertainty

Minimum expected
investment (MEI)

Reliability > 98%
Restriction Frequency < 20%
Worst-case Drought management Cost < 10% AVR
Min. Infrastructure net present cost

Expectation across approximate
DU sampling used for DU
optimization (Figure 2f)

Expected drought
performance and
financial stability (EDF)

Reliability > 98%
Restriction Frequency < 20%
Worst-case Drought management Cost < 10% AVR
Peak financial cost < 80% AVR
Unit Cost of Expansion $<$5/kgal

Expectation
across approximate
DU sampling used
for DU optimization (Figure 2f)

Drought crisis
robustness (DCR)

Reliability > 98%
Restriction Frequency < 20%
Worst-case Drought management Cost < 10% AVR

Satisficing across full DU
sampling used for DU
re-evaluation (Figure ref{fig:paper3-methods}g)

Drought crisis and long-term
financial stability robustness (DFSR)

Reliability > 98%
Restriction Frequency < 20%
Worst-case Drought management Cost < 10% AVR
Peak financial cost < 80% AVR
Unit Cost of Expansion $<$5/kgal$

Satisficing
across full DU sampling
used for DU re-evaluation
(Figure 2g)

the performance requirements across the deep uncertainties. All four framings for select-493

ing candidate compromise pathway policies seek to equitably balance performance across494

regional utilities by applying Rawls’ difference principle through a regional minimax for-495

mulation (Rawls, 1999; Hammond, 1976). This definition of equity is intended to ensure496

the provision of consistent minimum performance across all regional partners (Osman497

& Faust, 2021; S. Fletcher et al., 2022).498
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Figure 3. Selected framings of regional compromise. Each framing (represented by the the

four lines) combines a prioritized set of performance criteria (shown in panels on the left) with a

sampling and aggregation strategy (shown on the right). Selecting a compromise using Minimum

Expected Investment (MEI) combines drought crisis performance with performance measures cal-

culated in expectation using the approximate sampling of DU SOWs used for DU optimization.

The Expected Drought Performance and Financial Stability framing (EDF), utilizes both drought

crisis performance and long-term financial stability measures to evaluate regional performance.

The Drought Crisis Robustness framing (DCR) measures regional performance by using a set of

drought crisis performance satisficing criteria across DU re-evaluation sampling. Drought Crisis

and Long-term Financial Stability Robustness (DFSR) applies satisficing criteria to both drought

crisis and long-term financial stability measures across DU re-evaluation sampling
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The Minimum Expected Investment Compromise499

In the first regional compromise framing, termed minimum expected investment500

(MEI, represented with a light blue line in Figure 3), the Triangle partners seek to se-501

lect the portfolio pathway that minimizes regional infrastructure net present cost while502

meeting three regional drought crisis performance criteria - Reliability > 98%, Restric-503

tion Frequency < 20% and Worst-Case Drought Management Cost < 10% AVR. This504

framing mirrors approaches widely used in water supply planning literature that seek505

to balance infrastructure investment cost with tolerable drought risk (Borgomeo et al.,506

2016; Beh et al., 2015; S. M. Fletcher et al., 2017; Erfani et al., 2014; Pachos et al., 2022).507

Using the minimum expected investment framing, the utilities evaluate objectives in ex-508

pectation across approximate DU optimization sampling (Figure 2f), reflecting a method-509

ological choice to solely focus on the outcomes of a robust optimization that exploits ap-510

proximate sampling strategies to discover policies that maintain performance across deeply511

uncertain futures (e.g., see examples in (Mortazavi-Naeini et al., 2014; Watson & Kasprzyk,512

2017; Eker & Kwakkel, 2018; Pachos et al., 2022; Hall et al., 2020). The minimum ex-513

pected investment compromise emphasizes the equity across regional partners by apply-514

ing a regional minimax to all performance objectives, defining the regional value for each515

performance objective as the objective value for the worst-performing regional partner,516

ensuring that all other utilities perform as well or better (Hammond, 1976).517

The Expected Drought and Long-term Financial Stability Compromise518

For the second framing, termed expected drought performance and long-term fi-519

nancial stability (EDF, represented with a dark blue line in Figure 3), the utilities re-520

place minimum infrastructure net present cost with two financial stability requirements521

- peak financial cost < 80% AVR and unit cost of expansion < $5/kgal. Including the522

peak financial cost criterion emphasizes budgetary stability. Values of peak financial cost523

above 80% risk violating debt covenants, minimum ratios of revenue to expenses stip-524

ulated in bond contracts (AWWA, 2011). A debt covenant violation can severely impact525

utility credit ratings and result in increased water rates (Raftelis, 2005; Hughes & Leurig,526

2013). By including unit cost of expansion, Triangle partners prioritize financially effi-527

cient infrastructure investments (Gorelick et al., 2019). High values unit cost of expan-528

sion suggest that utilities have stranded assets - infrastructure that is still within its de-529

sign lifetime but does not provide its intended service or has been abandoned (Kalin et530

al., 2019; Haasnoot et al., 2020). Stranded assets may lead to budgetary instability or531

increased water rates, as utilities must pay for infrastructure that does not generate as532

much revenue as expected (AWWA, 2011). Like the minimum expected investment fram-533

ing described above, the expected drought performance and financial stability compro-534

mise measures objectives in expectation across DU optimization sampling (Figure 2f)535

and emphasizes regional equity using a regional minimax formulation.536

The Drought Crisis Robustness Compromise537

The third compromise framing, termed drought crisis robustness (DCR, yellow line538

in Figure 3), represents the a priori prioritization of performance preferences that the539

Triangle utilities have used to evaluate pathway policies in previous studies of the Tri-540

angle water supply system (Herman et al., 2014; Trindade et al., 2017, 2019; Gold et al.,541

2019). Using this framing, the utilities evaluate drought crisis performance criteria across542

the broader DU re-evaluation sampling of deep uncertainties (Figure 3g). Here, we ag-543

gregate performance across deeply uncertain states of the world using a satisficing met-544

ric, which measures the fraction of DU re-evaluation states of the world where utilities545

meet the drought performance criteria (Reliability > 98%, Restriction Frequency < 20%546

and Worst-Case Drought Management Cost < 10% AVR). Satisficing metrics reflect the547

tendency of decision makers to seek policies that meet one or more performance require-548

ments across many plausible future conditions, even at the expense of optimal perfor-549
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mance in a favorable future (Herman et al., 2015; Simon, 1966). We use a domain criterion-550

based measure of satisficing (Starr, 1963), that measures the fraction of SOWs that a551

candidate portfolio pathway meets performance criteria:552

S =
1

N

N∑
j=1

Λθ,j (6)

Where,553

Λθ,j =

{
1, if F (θ)j ≤ Φj

0, otherwise
(7)

Where Φ is a vector of performance criteria for utility j, θ is the portfolio and N554

is the total number of sampled SOWs.555

Here, we prioritize regional equity by evaluating the regional robustness as the ro-556

bustness of the worst-performing utility.557

The Drought Crisis and Long-term Financial Stability Robustness Com-558

promise559

For the fourth and final compromise framing, termed drought crisis and long-term560

financial stability robustness (DFSR, orange line in Figure 3), the Triangle partners pair561

the expanded set of performance measures used in the expected drought and financial562

objectives framing with satisficing over DU re-evaluation sampling (Figure 3g) used in563

the drought-focused robustness framing. Like the drought-focused robustness compro-564

mise, the regional robustness is defined as the robustness of the worst-performing regional565

actor.566

3.5 Regional Defection Analysis567

The implementation of a compromise pathway policy relies on the strong assump-568

tion that once selected, the regional partners will adhere to the selected compromise. While569

the cooperative agreement structure implemented in this work was designed by Gorelick570

et al. (2022) to improve the performance of all Triangles utilities while minimizing con-571

flicts between cooperating partners, utilities may have incentives improve their own per-572

formance by defecting from the selected policy. Our regional defection analysis repre-573

sents a formal test of the cooperative stability of this agreement structure by exploring574

the incentives that individual utilities may have to defect and revealing the consequences575

of defection on each utility’s cooperating partners. The regional defection analysis also576

investigates power relationships within the regional partnership, revealing which actors577

have the power to unilaterally improve their performance (Avelino & Rotmans, 2011),578

and whether utilities are seeding their regional partners power over their own performance579

by joining the regional partnership (Gold et al., 2022; Avelino & Rotmans, 2011).580

We implement the regional defection analysis in two steps – individual optimiza-581

tion and DU re-evaluation. During the individual optimization step, we utilize the Borg582

MOEA to search for defection alternatives for each cooperating partner. We perform a583

total of six individual defection optimizations (one for each regional utility). During each584

individual defection optimization, the Borg MOEA optimizes the defecting utility’s in-585

dividual objectives using only the decision variables of the defecting utility, while keep-586

ing the decision variables of all other cooperating partners at the values prescribed by587

the original cooperative pathway policy. A flow chart of individual defection is shown588

in Figure 2d. To examine to consequences of defection, we then re-evaluate the defec-589
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tion alternatives for each utility across the sample of DU SOWs described in DU-reevaluation590

above and detailed in Figure 2g.591

We measure the impact of regional defection by analyzing how defection alterna-592

tives change robustness for each regional partner. To evaluate the incentives that each593

utility has for defecting from the regional partnership, we measure the greatest improve-594

ment the utility can achieve for each performance criteria without reducing its overall595

robustness:596

RRDA
i = maxj [η

j
i ] ∀ j ∈ β (8)

ηji =

{
S(θdef )

j
i − S(θcomp)

comp
i if∀ : S(θdef )

comp
all

0 otherwise
(9)

Where β is the set of all re-optimized alternatives, S(θdef )
j
i is the robustness of the597

ith performance criteria in the jth re-optimized portfolio, θdef , and S(θcomp)
j
i is the ro-598

bustness for the ith performance criteria in the selected compromise portfolio, θcomp.599

For cooperating utilities, we measure the maximum loss in robustness resulting in600

defection from a cooperating partner:601

RRDA
i = max

j
ηji ∀j ∈ β (10)

3.6 Infrastructure Disruption Analysis602

DU PathwayERAS introduces a novel infrastructure disruption analysis to measure603

the adaptive capacity of pathway policies and examine how each infrastructure option604

contributes to the robustness of regional utilities. By measuring the adaptive capacity605

of pathways, the infrastructure disruption analysis allows decision makers to assess path-606

dependency and avoid decision ”lock-ins”- which occur when taking adaptive action is607

expensive or degrades system performance (W. E. Walker et al., 2013; Haasnoot et al.,608

2020). The infrastructure disruption analysis supplements the regional defection anal-609

ysis by revealing how each policy pathways provide robust performance across multiple610

performance criteria. The contribution of cooperative infrastructure investments to the611

robustness of individual utilities provides a direct measure of the utilities ability to har-612

ness cooperative power (or power with as defined by Avelino and Rotmans (2011)).613

To conduct infrastructure disruption analysis, we develop a set of infrastructure614

disruption scenarios, Π, where infrastructure options become unavailable to Triangle util-615

ities.616

Π = [BI k,BI k+1, ...,BI m] (11)

Where BI k represents the vector of regional infrastructure options with option k un-617

available, and m represents the total number of infrastructure options.618

We pair each infrastructure disruption scenario with all 2 million DU re-evaluation619

scenarios and evaluate each candidate portfolio pathway across the full set of paired sam-620

ples, as shown in Figure 2f. We examine the impact of pathways disruption by measur-621

ing the change in robustness from infrastructure disruption scenarios.622

RIDA
i,BI k

= S(θcomp)i − S(θBI k)i (12)
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Where i is the performance criteria, and BI k is the infrastructure disruption scenario623

for infrastructure option k.624

3.7 Time-evolving Scenario Discovery625

In the final step of DU PathwaysERAS , we perform scenario discovery (Groves &626

Lempert, 2007; Bryant & Lempert, 2010; Jafino & Kwakkel, 2021) learn about how un-627

certainty generates vulnerability for candidate policy pathways, and evaluate how vul-628

nerability changes over time. Using this information, we develop narrative scenarios to629

inform an implementation and monitoring strategy (Haasnoot et al., 2018). Scenario Dis-630

covery uses machine learning and data mining algorithms (e.g., classification, cluster-631

ing, and regression) to determine which deep uncertainties most strongly influence the632

performance of a pathway policy and delineating regions of the uncertainty space that633

are likely to cause performance failures (Groves & Lempert, 2007; Bryant & Lempert,634

2010). The infrastructure investments made across the planning horizon change both the635

physical system and utility financial conditions, likely changing their vulnerabilities as636

well. To capture evolving system vulnerability, DU PathwayERAS introduces a time-evolving637

implementation of scenario discovery. To capture near-term vulnerability, which reflects638

how the system will perform prior to significant infrastructure investment, we first per-639

form scenario discovery across output from the first 10-years of the simulation period.640

We then examine how vulnerability evolves by performing scenario discovery using a 22-641

year planning horizon and a 45-year planning horizon. Under each planning horizon, we642

search for combinations of deep uncertainties that cause compromise portfolio pathways643

to fail to meet performance criteria. We classify each DU SOW as either a “success” or644

“failure” based on the performance criteria. We then use a gradient-boosted trees algo-645

rithm (Drucker & Cortes, 1996) to partition the uncertainty space into predicted regions646

of success and failure. Gradient-boosted trees classification is well suited to scenario dis-647

covery in regional water supply planning contexts because it can define boundaries that648

are nonlinear and non-differentiable, traits that are particularly useful in infrastructure649

pathways context that contain discrete capacity expansions. Boosted Trees are also easy650

to interpret, provide a simple means of ranking uncertainties and are resistant to over-651

fitting (Trindade et al., 2019).652

4 Computational Experiment653

The cooperative DU optimization was performed on Pittsburgh Supercomputing654

Center’s Bridges2 supercomputer, accessed through the NSF XSEDE program (Towns655

et al., 2014). During the DU optimization, we ran five random seeds of the MM Borg656

MOEA, using MM Borg’s default parameterization (Hadka & Reed, 2012). Each ran-657

dom seed contained two masters and was run for 150,000 function evaluations. Next, we658

performed DU re-evaluation by stress-testing each Pareto-approximate policy across the659

full DU sampling shown in Figure 3g. DU re-evaluation was performed on the Texas Ad-660

vanced Computing Center’s Stampede2 supercomputer, accessed through XSEDE. We661

used results from DU optimization and DU re-evaluation to select and evaluate candi-662

date compromise policies. We then performed individual optimization for the regional663

defection analysis on Bridges2. Each individual optimization was run for 50,000 func-664

tion evaluations across two random seeds of MM Borg, with each seed using two mas-665

ters. The infrastructure disruption analysis was performed on Stampede2, where 22 in-666

frastructure disruption scenarios were evaluated across the full DU sampling shown in667

Figure 3g. Finally, we performed time-evolving scenario discovery using the scikit-learn668

Python implementation of gradient-boosted trees (Pedregosa et al., 2011). Each clas-669

sification used an ensemble of 250 trees of depth two and a learning rate of 0.1.670
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5 Results and Discussion671

We use DU PathwaysERAS to explore the consequences of different candidate strate-672

gies for selecting comprises across for the six Research Triangle partners. A key goal is673

to better understand and avoid unintended consequences across the candidate cooper-674

ative infrastructure investment and management policies. Our results contribute a rig-675

orous evaluation of the effectiveness of the inter-utility agreement structure recommended676

in Gorelick et al. (2022). We seek a compromise policy that is equitable, robust, adap-677

tive, and cooperatively stable. In Section 5.5.1, we show how narrowly framing the se-678

lection of a regional compromise pathway policy solely on managing short-term drought679

crises can lead to shallow representations of robustness and unintended regional inequities.680

In Section 5.5.2, we evaluate the cooperative stability of a high-performing and broadly681

robust pathway policy identified in Section 5.5.1 using regional defection analysis. In Sec-682

tion 5.5.3, we further examine the adaptive capacity of the high performing compromise683

policy by quantifying its sensitivity to disruptions in planned infrastructure investment684

sequences. Lastly, in Section 5.5.4, we utilize scenario discovery to reveal consequential685

future scenarios to guide the implementation and monitoring of the suggested compro-686

mise pathway policy for the Research Triangle region’s utilities.687

5.1 Avoiding the Unintended Consequences from Myopic Compromises688

We begin by examining how the representation of performance trade-offs shapes689

our perception of the robustness and regional equity of Pareto-approximate infrastruc-690

ture investment and management policies. Figure 4 shows three representations of the691

regional performance of Pareto-approximate policies. Each candidate policy represents692

a different set of ROF-based management and investment rules that coordinates regional693

drought mitigation actions, structures the development of the shared regional Western694

Jordan Lake water treatment plant, and generates its own adaptive set of cooperative695

infrastructure investment pathways. Figure 4a shows the performance of Pareto-approximate696

policies across the six-objective regional DU optimization space. Each line (grey and col-697

ored) represents a Pareto-approximate regional policy, and each axis represents a regional698

performance objective calculated across the ensemble of WCU natural inflows, and DU699

factors developed using the approximate DU optimization sampling scheme (detailed in700

Figure 2f). The light blue line represents the minimum expected investment (MEI) com-701

promise, which seeks to minimize drought risk with the lowest possible infrastructure net702

present cost. The dark blue line represents the expected drought performance and finan-703

cial stability compromise, which also seeks to minimize drought risk but prioritizes long-704

term financial stability in the form of low peak financial and unit costs (Figure 4a). The705

pathway policy designated by the yellow line in the initial panel of Figure 4 represents706

the drought crisis robustness compromise and the orange line represents the drought and707

expanded financial robustness compromise.708

In Figure 4a, we observe that all four of the candidate compromises maintain high709

levels of performance for reliability, restriction frequency, and worst-case cost objectives710

(i.e., drought crisis performance measures). The minimum expected investment compro-711

mise (MEI, light blue) achieves this high level of performance with the lowest infrastruc-712

ture net present cost - spending $30M less than the expected drought performance and713

financial stability compromise (EDF, dark blue) and $80M less than either compromise714

selected using satisficing robustness criteria (DCR, yellow and DFSR, dark orange). How-715

ever, the minimum expected investment (MEI) compromise policy’s low infrastructure716

net present cost does not translate to long-term financial stability. The MEI solution gen-717

erates a higher peak financial cost than either of candidate compromise policies that pri-718

oritize financial stability criteria (EDF, dark blue and DFSR, dark orange). The min-719

imum expected investment (MEI) compromise policy also produces high unit cost for720

its water supply capacity expansion investments, indicating that despite its low expected721

net present cost of investment, it may trigger infrastructure development that is under-722

–23–



manuscript submitted to Water Resources Research

utilized. These stranded assets increase budgetary instability and can drive up water rates723

(Raftelis, 2005; Hughes & Leurig, 2013). This finding highlights how planning methods724

that strictly focus on minimizing expected infrastructure investment costs are ill-equipped725

to evaluate dynamic and adaptive management and investment pathways because they726

ignore important dimensions of long-term financial stability (Dittrich et al., 2016; Kwakkel,727

2020).728

Of the four selected compromises shown in Figure 4a, only the expected drought729

performance and financial stability compromise (dark blue) appears to balance drought730

crisis and long-term financial stability objectives. However, evaluating performance un-731

der the broader ensemble of deep uncertainties used in DU re-evaluation changes this732

perception. Figure 4b shows the performance of Pareto-approximate policies in terms733

of the satisficing robustness requirements that focus managing short-term drought cri-734

sis performance for each cooperating partner. Each vertical axis represents the robust-735

ness of one cooperating partner, measured as the percent of sampled SOWs where the736

drought crisis focused performance requirements are met (Reliability > 98%, Restric-737

tion Frequency < 20%, and Worst-Case Drought Management Cost < 10% AVR) un-738

der the broader DU re-evaluation sampling. Higher values indicate increased robustness.739

Though all four compromises seek to ensure regional equity, the two compromises that740

measure performance using regional objective values – including the compromise in dark741

blue that performed well in Figure 4a – yield highly inequitable robustness, penalizing742

Durham and Raleigh, the two largest utilities. In contrast, the two policies selected us-743

ing the two different framings for regional robustness (yellow and orange) are robust for744

all regional partners.745
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OWASA Durham Cary Raleigh Chatham Pittsboro
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performance and �nancial stability criteria in expectation across DU optimization
sampling
DCR  Drought crisis robustness- satis�es drought crisis performance criteria
across DU re-eevaluation sampling

DFSR  Drought crisis and long-term �nancial stability robustness -satis�es drought 
performance and �nancial stability criteria across DU re-eevaluation sampling

MEI Minimum expected investment - Meets drought performance criteria 
with minimum expected infrastructure net present cost across DU Optimzation 
sampling
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Figure 4. a) the regional objective space, with four compromises highlighted. All four com-

promises perform well in drought criteria (Rel, RF and WCC). The minimum expected invest-

ment compromise (MEI) yields lower infrastructure net present cost, but does not perform well in

other financial objectives. B) Drought crisis robustness, defined as the percentage of DU SOWs

where drought performance criteria are met for each regional actor.
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Adding long-term financial stability requirements in the evaluation of the candi-746

date regional pathway policies’ robustness has the potential to strongly change the util-747

ities’ perceptions and preferences when selecting a compromise alternative. Figure 4c shows748

the robustness of cooperating partners using satisficing across both drought performance749

and long-term financial stability criteria across the larger SOWs ensemble used in DU750

re-evaluation (Reliability > 98%, Restriction Frequency < 20%, Worst-Case Drought751

Management Cost < 10% AVR, Peak Financial Cost < 80% and Unit Cost of Expan-752

sion < $5/kgal). Using this expanded set of requirements, the robustness of Chatham753

County and Pittsboro, the two smallest regional partners, are significantly reduced un-754

der the minimum expected investment (MEI) and drought crisis robustness (DCR) com-755

promise pathway policies. The drought crisis robustness (DCR) compromise policy, which756

appears to equitably balance performance across the participating regional utilities when757

evaluated solely using the drought crisis robustness framing (Figure 4b), shows partic-758

ularly reduced robustness for Chatham County, meeting the expanded set of drought cri-759

sis and long-term financial stability criteria in only 33% of sampled DU SOWs.760

Together, Figures 4a-c reveal how myopic strategies for identifying candidate re-761

gional compromise pathway policies can lead to solutions with potentially severe unin-762

tended consequences for some of cooperating Research Triangle partners. Figure 4b shows763

how the sole focus on traditional trade-off analyses using only performance in the ob-764

jective space (MEI, light blue and EDF, dark blue lines) fail to yield robust drought cri-765

sis responses for Durham and Raleigh, the region’s two largest utilities. In other words,766

they do not trigger sufficient infrastructure investment to maintain reliable capacity-to-767

demand ratios under challenging future scenarios. Figure 4c adds further insights, show-768

ing how policies that do not prioritize long-term financial stability lead to financial fail-769

ure for the smallest utilities, drawing them into financially risky cooperative investments.770

In sum, these results demonstrate how balancing the performance of cooperating part-771

ners with diverse interests and asymmetric vulnerabilities is a core challenge when craft-772

ing regionally cooperative infrastructure investment and management policies (Herman773

et al., 2015; Sjöstrand, 2017; Hamilton et al., 2022). Our findings also highlight how meth-774

ods that advocate conflict resolution using a priori assumptions about performance cri-775

teria - even when formulated as multi-objective problems (e.g., (Hu, Wei, et al., 2016;776

Tian et al., 2019)) - may lead to overly optimistic evaluations of regional performance.777

These findings emphasize the need for exploring multiple rival problem framings when778

seeking equitable solutions to cooperative planning problems (Quinn et al., 2017; S. Fletcher779

et al., 2022).780

To understand more about how and why the four compromise policies lead to dif-781

fering performance across utilities, we examine how the performance of each policy is dis-782

tributed across the broader evaluation of DU SOWs. Figure 5 shows the cumulative dis-783

tributions of utility performance across the broad ensemble of DU SOWs used to con-784

duct DU re-evaluation. Each panel represents the performance of one utility in one ob-785

jective. As in Figure 4, colored lines represent compromise policies, and grey lines rep-786

resent brushed policies. Vertical dashed lines in Figure 5 represent the satisficing thresh-787

old for each objective. Panels 5a and 5f reveal that for Raleigh and Durham, the reli-788

ability objective explains the differences in drought crisis robustness shown in Figure 4b.789

The policies selected using objective space performance (MEI, light blue and EDF, dark790

blue) fail to meet reliability criteria roughly 60% of DU SOWs for both utilities. This791

result highlights the importance of stress-testing candidate rule systems across broad and792

challenging ensembles of DU SOWs. Though the approximate DU sampling scheme was793

able to discover pathway policies that maintain supply reliability for all four utilities (for794

example the DSFR compromise, shown in orange), performance in the reliability objec-795

tive does not directly translate from the approximate DU sampling used for DU opti-796

mization and the much more challenging and computationally intensive sampling used797

during DU re-evaluation. Selecting compromise policies using only the performance of798
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approximate sampling schemes can cause utilities to over-estimate the robustness and799

under-estimate disparities between regional partners.800

In addition to revealing differences in reliability for the region’s largest utilities, Fig-801

ure 5 reveals the extent of vulnerability for the region’s smallest partners. Under the drought802

crisis robustness compromise (DCR, yellow), Chatham County incurs unsustainable peak803

financial costs (Figure 5m), and high values of unit cost of expansion (Figure 5o) under804

a large percentage of SOWs. This suggests that under many scenarios, the compromise805

triggers infrastructure investments that cause Chatham County to violate debt covenants806

and ultimately end up as stranded assets. Pittsboro also shows increased vulnerability807

under the DCR compromise, though its primary failure mode is in reliability. While Pitts-808

boro is able to maintain near 100% under the other compromise framings, its performance809

under the DCR compromise illustrates how regionally aggregated measures of perfor-810

mance can fail to capture the interests of all cooperating by focusing on regionally ag-811

gregated measures of performance, even when those measures are explicitly designed to812

maintain regional equity.813
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Figure 5. Cumulative distribution of performance across deeply uncertain states of the world.

OWASA and Cary are omitted from this plot because they maintain high performance across all

sampled DU SOWs. The four compromise policies are highlighted in color, and the remaining

Pareto-approximate policies are shown in grey. The dashed line represents the satisficing criteria

for each objective.
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Our exploration of candidate framings of regional compromise illustrates how a pri-814

ori assumptions about performance priorities can lead to myopic policy choices that fail815

to equitably balance the interests of the six regional partners. Of the four highlighted816

regional compromises, only the drought and expanded financial robustness compromise817

(orange) equitably achieves high levels of robustness for all cooperating partners. Though818

the compromise shows a high regional unit cost of expansion when measured in the ob-819

jective space (shown in Figure 5a), Figure 5 reveals that it maintains low unit cost of820

expansion for all utilities across the majority of DU SOWs. The high expected value of821

the regional unit cost of supply expansion objective in the DU optimization results is ac-822

tually a result of bias in the expected value by a small number of SOWs (for details see823

this paper’s S3 of this paper’s supporting information). This compromise appears to be824

a strong candidate for implementation, yet important questions about its practicality825

and performance remain: Do cooperating partners have incentives to adhere to the re-826

gional policy once it’s been implemented? Does the level of coordination specified by the827

regional policy expose utilities to new risks from their regional partners? Do regional power828

dynamics constrain utilities’ ability to successfully cooperate? To answer these questions,829

we analyze this policy using the next step in DU PathwaysERAS , regional defection anal-830

ysis.831

5.2 Cooperative stability and regional power dynamics832

Our regional defection analysis formally tests the cooperative stability of the inter-833

utility agreement structure recommended by Gorelick et al. (2022). The specific param-834

eterized ROF-based rules that are used to implement the suggested inter-utility agree-835

ment structure however matter greatly as captured by the significant differences in the836

performance and robustness behaviors of the four compromise pathway policies evalu-837

ated in Section 5.6.1. The drought crisis and long-term financial stability (DFSR) com-838

promise solution appears to be the overall most equitable of the 4 compromise pathway839

policies. However, a key question remains: does it create tensions between the cooper-840

ating regional utilities that endanger their willingness to cooperate? Addressing this ques-841

tion warrants a careful examination of the potential for regional robustness conflicts. Fig-842

ure 7a explores the relative equity of regional robustness – defined as the robustness value843

of the worst-off cooperating partner – for each Pareto-approximate policy, ranked in de-844

scending order. We highlight the equitable compromise (DFSR, orange) along with the845

policies that maximize robustness for Raleigh (red), Durham (purple), Pittsboro (green),846

and Chatham County (cyan). While Raleigh’s preferred policy only slightly reduces re-847

gional robustness, the preferred policies of Pittsboro, Durham, and Chatham County in-848

cur large reductions in regional robustness, increasing the potential for conflicts with at849

least one other utility.850

The inter-utility robustness trade-offs shown in Figure 6b illustrates these conflicts.851

Each axis in the figure represents the robustness of a utility based on the drought cri-852

sis and long-term financial stability criteria, and each line represents a Pareto-approximate853

policy. The equitable compromise (DFSR, orange) achieves strong robustness for all re-854

gional partners; however, four utilities – Raleigh, Durham, Chatham County, and Pitts-855

boro – achieve higher robustness through other regional pathway policies. While the in-856

dividual robustness gains are modest relative to the equitable (DFSR, orange) compro-857

mise, each utility’s maximally robust pathway policy yields potentially severe consequences858

for the other regional partners. The results shown in Figure 7b suggest that each util-859

ity may have incentives to exploit the investments of their cooperating partners to im-860

prove their own performance (i.e., defect from the DFSR compromise; (Gold et al., 2022)861

). This potential for conflict raises three questions about how the underlying power re-862

lationships (Avelino, 2021) between the cooperating utilities could impact the practical-863

ity of the DFSR compromise policy. First, do utilities have the power to improve their864

robustness through regional defection from the regional partnership? Second, by enter-865

ing the regional agreement, do utilities yield power over their performance to their re-866
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gional partners? Third, if these power dynamics are present, will they destabilize the co-867

operative regional partnership? To answer these questions, we turn to the results of the868

regional defection analysis.869

Figure 6. a) Regional ranking of Pareto-approximate policies by robustness. Each bar rep-

resents a cooperative policy, colored bars represent highlighted policies, and grey bars represent

brushed policies. b) Robustness conflicts between regional partners. Each axis represents the

robustness of one utility, and each line represents a Pareto-approximate policy. Colored lines

represent highlighted policies, and grey lines represent brushed policies.
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Figure 7 shows the results of the regional defection analysis. Each panel represents870

the change in robustness for one utility under a different defection scenario. Blue bars871

on the right side of the plots indicate that defection improves robustness, and brown bars872

on the left side indicate that defection degrades robustness. Cary and OWASA are omit-873

ted from this figure because individual optimization for two utilities failed to discover874

any defection alternatives. Overall, Figure 7 shows that the regional agreement struc-875

ture developed by Gorelick et al. (2022) limits the incentives for utilities to defect and876

minimizes the impacts of any defections on cooperating partners. While Figure 6 shows877

a utility’s preferred pathway policy may come at the cost of a cooperating partner’s ro-878

bustness (e.g., Durham in purple), individual utilities do not have the power to unilat-879

erally enact those policies. Instead, Figure 7 shows that these individually optimal poli-880

cies would require the cooperation of some or all partners to implement – unlikely, given881

the adverse impacts on those partners – and that of the six Triangle Partners, only Chatham882

County, and Raleigh have clear incentives to defect from the regional partnership (Fig-883

ures 7b and 7d). These defections do not adversely impact other regional partners. More-884

over, while Figure 7a and 7c indicate that Durham and Pittsboro defection may degrade885

performance of their partners, these defection actions do not benefit the defecting util-886

ities. Instead of being a cause for concern, the impacts of defections in Figure 7 reveal887

how utilities can strengthen the cooperative agreement to reduce the potential for con-888

flict between partners.889

Figure 7. Results of the regional defection analysis. Each panel represents the impacts of

regional defection from a different regional partner. Blue bars to the right indicate that a utility

can improve its robustness through defection and brown bars to the left indicate that a utility’s

robustness is degraded from defection.

In sum, the DSFR compromise policy identified in Section 5.7.1 represents a co-890

operatively stable (practical) regional infrastructure investment and management pol-891

icy. Despite the potential for robustness conflicts (Figure 6b), these results indicate that892

the primary power dynamic in the Triangle region emerges from regional cooperation (de-893

scribed as power with by Avelino and Rotmans (2011)). Through coordinated drought894
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management and cooperative infrastructure investment, Triangle utilities can improve895

their robustness to deeply uncertain future scenarios.896

5.3 Pathways Analysis897

5.3.1 Adaptive Infrastructure Pathways898

DU PathwaysERAS balances regional drought crisis and long-term financial stabil-899

ity robustness through planned adaptation (W. E. Walker et al., 2013) guided by the re-900

gional pathway policy’s ROF-based rule system. This rule system generates a state-aware901

dynamic and adaptive infrastructure pathway tailored to the unique challenges of each902

sampled SOW. In this section, we visualize how these infrastructure pathways adapt to903

varying conditions represented in the DU SOWs. Figures 8a-f show the infrastructure904

pathways generated by the drought performance and long-term financial stability com-905

promise policy across 1,000 SOWs, each representing one LHS of DU factors paired with906

one realization of synthetic inflows. Some SOWs require higher infrastructure investment907

than others, and the compromise regional pathway policy adapts by triggering invest-908

ments at different times and intensities for each of the utilities. To facilitate a visual ex-909

ploration of the ensemble of pathways generated across DU SOWs, we clustered and clas-910

sified representative pathway results that capture high, medium, or low infrastructure911

intensities depending on how early and often investments are triggered. The median week912

that each infrastructure option is triggered for each intensity is traced in green, and the913

frequency that each instruction option is triggered across all SOWs during each simu-914

lation year is shown by the shading behind the green lines.915

Figures 8a-d establish cooperative infrastructure investment as central to the re-916

gional pathway policy. The Western Treatment Plant – jointly developed by Durham,917

OWASA, Chatham County, and Pittsboro – is constructed under all futures, though se-918

quenced differently across SOWs. Under mild and moderate SOWs (represented by the919

light and medium green lines), the partners construct the large version of the treatment920

plant, usually in the third decade of the planning period. Under challenging SOWs that921

require heavy infrastructure investment (represented as the dark green lines), the util-922

ities construct the small plant early in the planning period and subsequently expand it923

in the fourth decade. To manage moderate and challenging SOWs, Chatham County and924

Pittsboro (Figures 9i and 9k) take further adaptive action by constructing the cooper-925

ative Sanford Intake.926

Cary and Raleigh (Figures 8e and 8f), not participants in the joint infrastructure927

projects, develop a similarly adaptive set of infrastructure pathways. Both utilities con-928

struct no infrastructure in mild SOWs and increase the scope and scale of investments929

under moderate and challenging SOWs. The difference between infrastructure pathways930

of all six utilities under mild, moderate, and challenging SOWs highlights the benefits931

of state-aware rule systems that generate adaptive infrastructure sequences (Zeff et al.,932

2016; Trindade et al., 2019). Though challenging SOWs require intensive infrastructure933

investment, the ROF-based management and investment rules – trained through expo-934

sure to an ensemble of DU SOWs – avoid triggering extensive infrastructure development935

under mild future conditions.936
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Figure 8. a-f) infrastructure pathways generated by the compromise pathway policy across

1,000 DU SOWs. Three clusters summarizing infrastructure pathways are plotted as green lines

which represent the median week that options are triggered. The frequency that each option is

triggered across all SOWs is plotted as the shading behind the lines. g-l) results of the infrastruc-

ture disruption analysis. Each row represents an infrastructure disruption scenario, each column

represents a performance criterion.
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5.3.2 Measuring the benefits of infrastructure investment937

The DU PathwaysERAS framework builds on prior published work by contribut-938

ing an Infrastructure Disruption Analysis that provides a deeper look into the sensitiv-939

ity and dependency of the compromise pathway policy’s ROF-based rule system to each940

candidate infrastructure investment. The IDA complements existing methods for ana-941

lyzing adaptive infrastructure pathways (e.g., (Haasnoot et al., 2013; Trindade et al., 2019;942

Gold et al., 2022) to explicitly map how each infrastructure option contributes to regional943

and individual robustness. Figures 9g-I show the results of the Infrastructure Disrup-944

tion Analysis for each utility. In each panel, columns represent performance criteria, and945

each row represents an infrastructure disruption scenario – a future where one infrastruc-946

ture option is unavailable. For infrastructure options that can be implemented sequen-947

tially (such as the Western Water Treatment Plant), we run one scenario to remove each948

sequential option and an additional scenario where all options are removed. Brown shad-949

ing in Figures 8g-l indicates infrastructure disruption results in decreased robustness, and950

teal shading indicates increased robustness.951

Figures 8g-k show that the cooperative Western Treatment Plant provides strong952

and diverse benefits for its four investors. The treatment plant plays a crucial role in main-953

taining drought crisis performance (reliability, restriction frequency, and worst-case cost)954

for all four partner utilities, providing particularly large drought crisis benefits for Durham955

(Figure 8h) and Pittsboro (Figure 8j). The treatment plant also plays a key role in Chatham956

County’s long-term financial stability (Figure 8i). Removing the treatment plant reduces957

Chatham County’s robustness in peak financial cost and unit cost of supply expansion,958

suggesting that the joint treatment plant represents the most economically efficient in-959

vestment of the available infrastructure options. These results clarify how the cooper-960

ative investment benefits regional partners (i.e., what partners gain from power with)961

and support recent findings that regional water supply planning can exploit economies962

of scale to maintain supply reliability in a financially efficient manner (Reedy & Mumm,963

2012; Tran et al., 2019).964

However, Figure 8 also illustrates how cooperative investment can lead to conflict965

between regional partners. Figures 8i and 8j show that the Sanford Intake, a joint in-966

frastructure project available to Chatham County and Pittsboro, is a potential source967

of tension between the two utilities. Removing the intake from the available supply sources968

reduces Pittsboro’s robustness in restriction frequency and worst-case cost criteria (Fig-969

ure 8j). However, removing the project improves Chatham County’s robustness in the970

unit cost of expansion criteria without hurting performance in any other performance971

measure (Figure 8i). Here, the regional pathway policy dictates that Chatham County972

should make an investment solely to benefit its cooperating partner, an unlikely action973

for a utility facing financial risk.974

Figure 8 also contains a possible resolution to this problem. The Sanford Intake975

is a flexible infrastructure option that utilities can implement sequentially. Figure 9i re-976

veals that the large intake option is the source of financial risk for Chatham County, while977

the smaller version represents an economically efficient investment. Pittsboro benefits978

from both intake projects but removing the large project does not degrade its perfor-979

mance. Therefore, if two utilities modify the pathway policy by removing the large ver-980

sion of the Sanford Intake, Pittsboro can maintain the robustness benefits of the small981

intake without risking costly stranded assets for Chatham County.982

5.4 Scenario discovery: finding time-evolving drivers of failure983

Where Infrastructure Disruption Analysis reveals how each infrastructure option984

contributes to robustness, scenario discovery explores which deep uncertainties gener-985

ate vulnerabilities for the compromise pathway policy. In the DU PathwaysERAS frame-986

work, we contribute a time-evolving scenario discovery, that identifies: 1) which deeply987
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uncertain factors most strongly influence the performance of a pathway policy, 2) how988

these factors influence drought crisis performance and long-term financial stability, and989

3) how these vulnerabilities evolve over time. Figure 10 presents the results of scenario990

discovery conducted across three different planning horizons for four of the six regional991

partners. Cary and OWASA are omitted from this figure because both utilities meet per-992

formance criteria under nearly all sampled DU SOWs. For each utility and each time993

horizon, we present scenario discovery results in three ways. The top plot in each panel994

of Figure 10 shows a factor map containing each planning horizon’s two most important995

deep uncertainties as determined by gradient-boosted trees. Each point on the factor map996

represents a DU SOW – white points indicate DU SOWs where all performance crite-997

ria are met, and red points indicate SOWs where at least one criterion is not met. Blue998

shaded regions indicate regions of the uncertainty space predicted by gradient-boosted999

trees classification to meet all performance criteria, while red shaded areas represent re-1000

gions predicted to cause failure. Below each factor map is a bar plot showing the per-1001

centage of failure SOWs that are attributed to each performance criteria (for example,1002

for Durham under the 10-year planning horizon, reliability failures occur in roughly 90%1003

of failure SOWs). The heatmap below each bar plot shows the importance of each DU1004

factor as determined by gradient-boosted trees. Dark shading indicates high factor im-1005

portance, while light shading indicates low factor importance.1006

Figure 9 shows that utilities’ vulnerability evolves over time. For example, under1007

the 10-year planning horizon (Figure 9j), Pittsboro appears highly vulnerable to failures1008

in unit cost of supply expansion, but this vulnerability decreases as the planning hori-1009

zon increases. This evolution is likely due to significant infrastructure investments made1010

early in the simulation period (Figure 9d), which do not appear to be efficient until Pitts-1011

boro’s demand has had time to grow sufficiently. Under the 45-year planning horizon (Fig-1012

ure l), Pittsboro has two primary vulnerabilities, high demand growth, which causes fail-1013

ures in worst-case cost, and low demand growth, which generates stranded assets.1014

Chatham County’s vulnerability evolves in the opposite direction. Under the 10-1015

year planning horizon, Chatham County (Figure 9g) appears to be only vulnerable to1016

restriction frequency failures that result from high near-term demand growth. However,1017

when evaluated under a 45-year planning horizon (Figure 9i), Chatham County appears1018

vulnerable to low-demand growth futures, which cause failure in the unit cost of supply1019

expansion criteria. This evolving vulnerability reveals a potential trap for Chatham County1020

–while the risk of supply failures suggests the need for early infrastructure investment,1021

overreaction to this risk can lead to financial instability. This finding highlights how per-1022

forming scenario discovery across time reveals vulnerabilities that are not apparent with1023

a single time horizon (Haasnoot et al., 2018; Steinmann et al., 2020).1024

–35–



manuscript submitted to Water Resources Research

Figure 9. Scenario discovery results. The top plot is a factor map showing vulnerability to

the top two deep uncertainties. Each points represent DU SOWs, white points represent SOWs

where performance criteria are met and red points represent SOWs where that fail at least

one performance criterion. Red shaded areas are regions of the uncertainty space predicted to

cause failure by gradient-boosted trees, blue regions represent regions predicted to succeed. Bar

plots below each factor map show the % of failure SOWs that fail each performance criteria.

The heatmap at the bottom of each panel shows the importance of DU factors determined by

gradient-boosted trees.
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Figure 9 further illustrates that each partner’s vulnerability is governed by inter-1025

actions between multiple deep uncertainties. For example, under all three planning hori-1026

zons, Durham is vulnerable to combinations of high near-term demand and low restric-1027

tion effectiveness, which cause failure in the reliability objective (Figure 9a). Durham’s1028

vulnerability to restriction effectiveness reveals that the policy pathway relies on Durham’s1029

water use restrictions to manage drought in high-demand growth futures. When the util-1030

ity maintains restriction effectiveness at or above the nominal estimate (value of 1.0),1031

it can manage demand growth more than twice the current projection. However, if re-1032

strictions are less effective than estimated, Durham will be unable to maintain reliable1033

supply in high-demand futures. This finding provides actionable information for improv-1034

ing the pathway policy – if Durham can develop methods to ensure the effectiveness of1035

water use restriction (e.g. Halich and Stephenson (2009)), or control demand growth (e.g.1036

Kenney (2014)), it can mitigate its vulnerability to supply failures.1037

Yet controlling demand growth is a delicate balance for Durham. Figures 9a-c re-1038

veal that Durham is also vulnerable to a second form of failure – high unit cost of sup-1039

ply expansion. When near-term demand does not grow (demand growth multiplier ≥1040

0), the pathway policy may to cause Durham to over invest in supply infrastructure. Durham1041

appears most vulnerable over-investment when evaluated under the 22-year planning hori-1042

zon in SOWs with low near-term demand growth. This vulnerability persists under the1043

45-year planning horizon, suggesting that low near-term demand is a strong indicator1044

of the long-term risk of stranded assets.1045

Near-term demand growth represents a key signpost for all four utilities shown in1046

Figure 9. For the Western Treatment Plant partners (Durham, Chatham County and1047

Pittsboro), near-term demand growth can foreshadow both stranded assets and future1048

supply failures. If utilities observe very low near-term demand growth, they should re-1049

consider the development of the Western Treatment Plant, which ¬may become a stranded1050

asset. In these scenarios, utilities can focus on the smaller, less expensive treatment plant1051

option or delay the start of construction. In contrast, if near-term demand growth is higher1052

than expected, Durham should investigate strategies for improving the effectiveness of1053

water use restrictions, while Pittsboro should investigate alternative financial instruments1054

to mitigate worst-case drought management costs (e.g., (Zeff & Characklis, 2013)). Near-1055

term demand growth can also inform long-term planning for Raleigh, as it represents a1056

predictive indicator for supply failures under the 22 and 45-year planning horizons. Un-1057

der the highest demand growth scenarios, Raleigh cannot avoid supply failures, suggest-1058

ing that if the utility observes rapid near-term demand growth, it should consider ad-1059

ditional sources of supply expansion beyond the alternatives included in the pathway pol-1060

icy.1061

We synthesize the results shown in Figure 9 into a set of narrative scenarios (Ta-1062

ble 6) to guide implementation and monitoring of the compromise pathway policy (Groves1063

& Lempert, 2007; Haasnoot et al., 2015). These narrative scenarios supplement the au-1064

tonomous adaptation of the ROF-generated infrastructure pathways by guiding antic-1065

ipatory monitoring (Groves et al., 2015; Haasnoot et al., 2018), and offering contingency1066

actions to mitigate challenging future conditions (Lempert, 2002; G. Walker, 2013).1067

6 Conclusion1068

This study presents DU PathwaysERAS , a framework for identifying infrastructure1069

investment and management policies that are robust, equitable, adaptive, and cooper-1070

atively stable. In the Triangle system, our exploration of regional compromise reveals1071

that a priori assumptions about performance priorities can unintentionally lead to in-1072

equitable regional compromises. Although all four framings of regional compromise place1073

significant value on regional equity by apply Rawls’ difference principle, we find that the1074
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Table 6. Narrative scenarios to guide implementation and monitoring

Scenario Utility Consequence Signpost
Contingency
Action

Rapid demand growth
stresses Durham’s water
supply

Durham Supply Failure
Near-term demand
> 1.25x projection

Invest in restrictive
effectiveness

Rapid demand growth
stresses Raleigh’s
water supply

Raleigh Supply Failure
Near-term demand
> 0.75x projection

Develop additional
infrastructure

Rapid demand growth
causes Chatham County
over-restriction

Chatham
County

Over-restriction
Near-term demand
> 2x projection

Prepare customers
for potential restrictions

Rapid demand growth
drives Pittsboro
worst-case cost

Pittsboro
Unmanageable
worst-case cost

Near-term demand growth
> 1.25 x projection

Financial instruments

Stagnant demand generates
stranded assets for Western
Treatment Plant partners

Durham,
Chatham
County,
Pittsboro

Stranded assets
Near-term demand growth
< 0.25

Delay or shrink
Western Treatment Plant

choice of performance measures included in robustness assessment fundamentally shape1075

the equity of regional comprise policies.1076

For the Triangle partners, our Regional Defection Analysis reveals that the coop-1077

erative agreement structure minimizes the exposure of each actor to the actions of their1078

cooperating partners, and demonstrates that the primary power dynamic in the regional1079

system is from collaboration (power with). The Infrastructure Disruption Analysis fur-1080

ther illustrates how this cooperative power dynamic manifests through the shared West-1081

ern Treatment Plant, which improves the robustness of all cooperative partners. The in-1082

frastructure defection analysis also reveals a decision lock-in for Chatham County, and1083

a simple means of adjusting the policy to avoid stranded assets. Finally, the time-evolving1084

scenario discovery reveals that utility vulnerabilities evolves over time, and highlights1085

adaptive contingency actions the utilities can take to maintain performance under chal-1086

lenging future scenarios. Beyond the Triangle system, DU PathwaysERAS can be broadly1087

applied to cooperative infrastructure investment problems facing deep uncertainty.1088

This study finds stranded assets to be a key concern for maintaining long-term fi-1089

nancial stability of utility partners. While this work utilizes unit cost of expansion a proxy1090

for stranded assets, future work should examine alternative measures to capture this vul-1091

nerability and study how applying different metrics can change resulting infrastructure1092

pathways. Future work should also consider implementation uncertainty to guide the de-1093

velopment of actionable policy pathways.1094
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S1 Synthetic streamflow generation

Synthetic streamflow generation by the (Kirsch et al., 2013) generator begins by

log transforming and whitening the record of historical weekly inflows, Qk ∈ R(80×52)

to create a matrix Zk ∈ R(80×52) for each gage k. Next, a matrix of integer indices M ∈

R(1000×52) is generated by sampling with replacement from (1, 2, . . . , 80). Mi,j represents

the historical year that will be used to create the streamflow value for synthetic year i

in week j. M is used to make a matrix of uncorrelated synthetic flows, Ck with entries

Cki,j
= ZkM(i,j),j

. The same matrix M is used to for all sites to preserve spatial cor-

relation for synthetic records. Next, a matrix of historical autocorrelation, pHk = corr(Zk)

is created for each gage and a Cholesky decomposition is used to find an upper trian-

gular matrix Uk ∈ R(52×52) such that pHk = UkU
T
k . Upper triangular matrix Uk is

then used to impose the historical autocorrelation structure on matrix Ck to make a new

synthetic record Sk = Ck·Uk. Finally, Sk is transformed back into real space to gen-
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erate a record of reservoir inflows that preserve the spatial and temporal correlation struc-

tures of the historical record.

To improve the inter-annual correlations of synthetic streamflows, this process is

repeated using a shifted version of historical inflows, Qk′ beginning at week 27 of each

year and ending at week 26 of the following year. Matrices Zk′ , and Uk′ and created based

off this shifted record and Ck′ is created separately shifting matrix Ck. A new matrix

of synthetic inflows, Sk′ is created using the operation Sk′ = Ck′ ·Uk′ and transform-

ing the product back to real space. The final set of synthetic streamflows is comprised

of columns 27-52 of Sk and columns 1-26 of Sk′ . For more details on the synthetic gen-

eration process, refer to Kirsch et al. (2013) and Herman et al. (2016).

The number of streamflow samples used in this paper were chosen based on em-

pirical assessment. (Trindade et al., 2017) empirically assessed the number of the num-

ber of realizations needed to estimate the objective functions for the Research Triangle

test case by examining sample sizes varying from 100 to 5000 realizations. Results of the

empirical assessments showed that 1000 evaluates per modeling run is sufficient to ap-

proximate the mean and variances of the Monte Carlo distributions used to determine

candidate solutions’ objectives. The approach used by (Trindade et al., 2017) is derived

from early studies of metaheuristic search dynamics given noisy objective functions (e.g.

(Miller & Goldberg, 1996; Smalley et al., 2000)) which show that relatively small Monte

Carlo samples per function evaluations can provide good approximations when verified

with much larger samples after search has been completed.

S2 Runtime Diagnostics

Multiple instances of MOEA search are run ensure the algorithm has overcome any

biases in search generated by the initial population (Salazar et al., 2017). In this exper-

iment, a total of 10 random seeds were run, using the multi-master configuration of the

Borg MOEA with two seeds per master. The true Pareto set for this problem is not known,

so to assess the convergence convergence we measure relative hypervolume (Zitzler et al.,

2003), which compares performance of the approximate Pareto sets discovered at set check-

points within search to the final ”reference set”, which contains non-dominated solutions

across all seeds. If the relative hypervolume is found to plateau, we conclude that the

algorithm has converged to a satisfactory approximation of the true Pareto set.

–2–



manuscript submitted to Water Resources Research

Runtime diagnostics for all seeds optimizations are shown in Figure S1. There was

very little variance across seeds, and the hypervolume of all defection optimizations plateaued

after around 50,000 function evaluations.

S3 Distribution of Unit Cost objective for the DSFR compromise

Figure S2 shows the distribution of the unit cost of expansion objective for Durham

across the 2,000 SOWs used for DU reevaluation for the DFSR compromise. Of the 2,000

DU SOWs, over 1,900 return unit costs near zero. However, the extreme tail of the unit

cost of expansion increases to over $1,000/kgal. This extreme tail explains the high re-

gional value of the unit cost objective shown in Figure 4a - because DU optimization cal-

culates values in expectation across all sampled futures, extreme values in the tails have

a large impact on the objective value. Future work may reduce the impact of these ex-

treme SOWs by using other summary statistics such as the median or 90th% unit cost.

Figure S1. Runtime diagnostics for 10 random seeds. The plateau of hypervolume across

all seeds for all formulations indicates that number of function evaluations (NFE) were

enough to achieve maximum attainable convergence.
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Figure S2.Distribution of Unit Cost for Durham across 2,000 DU SOWs
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