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Abstract

Isoprene is a hydrocarbon emitted in large quantities by terrestrial vegetation. It is a precursor to several air quality and

climate pollutants including ozone. Emission rates vary with plant species and environmental conditions. This variability can

be modelled using the Model of Emissions of Gases and Aerosols from Nature (MEGAN). MEGAN parameterizes isoprene

emission rates as a vegetation-specific standard rate which is modulated by scaling factors that depend on meteorological and

environmental driving variables. Recent experiments have identified large uncertainties in the MEGAN temperature response

parameterization, while the emission rates under standard conditions are poorly constrained in some regions due to a lack

of representative measurements and uncertainties in landcover. In this study, we use Bayesian model-data fusion to optimize

the MEGAN temperature response and standard emission rates using satellite- and ground-based observational constraints.

Optimization of the standard emission rate with satellite constraints reduced model biases but was highly sensitive to model

input errors and drought stress and was found to be inconsistent with ground-based constraints at an Amazonian field site,

reflecting large uncertainties in the satellite-based emissions. Optimization of the temperature response with ground-based

constraints increased the temperature sensitivity of the model by a factor of five at an Amazonian field site but had no impact

at a UK field site, demonstrating significant ecosystem-dependent variability of the isoprene emission temperature sensitivity.

Ground-based measurements of isoprene across a wide range of ecosystems will be key for obtaining an accurate representation

of isoprene emission temperature sensitivity in global biogeochemical models.
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Key Points: 21 

• Satellite and ground based observations were used to optimize an isoprene emission model in 22 

a Bayesian model-data fusion framework 23 

• Optimization with satellite observations was highly uncertain due to observation biases and a 24 

high sensitivity to model input errors 25 

• Ground-based observations showed that Amazonian isoprene emissions were 5x more 26 

sensitive to temperature than UK isoprene emissions 27 
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Abstract 30 

Isoprene is a hydrocarbon emitted in large quantities by terrestrial vegetation. It is a precursor to 31 

several air quality and climate pollutants including ozone. Emission rates vary with plant species 32 

and environmental conditions. This variability can be modelled using the Model of Emissions of 33 

Gases and Aerosols from Nature (MEGAN). MEGAN parameterizes isoprene emission rates as a 34 

vegetation-specific standard rate which is modulated by scaling factors that depend on 35 

meteorological and environmental driving variables. Recent experiments have identified large 36 

uncertainties in the MEGAN temperature response parameterization, while the emission rates 37 

under standard conditions are poorly constrained in some regions due to a lack of representative 38 

measurements and uncertainties in landcover. In this study, we use Bayesian model-data fusion 39 

to optimize the MEGAN temperature response and standard emission rates using satellite- and 40 

ground-based observational constraints. Optimization of the standard emission rate with satellite 41 

constraints reduced model biases but was highly sensitive to model input errors and drought 42 

stress and was found to be inconsistent with ground-based constraints at an Amazonian field site, 43 

reflecting large uncertainties in the satellite-based emissions. Optimization of the temperature 44 

response with ground-based constraints increased the temperature sensitivity of the model by a 45 

factor of five at an Amazonian field site but had no impact at a UK field site, demonstrating 46 

significant ecosystem-dependent variability of the isoprene emission temperature sensitivity. 47 

Ground-based measurements of isoprene across a wide range of ecosystems will be key for 48 

obtaining an accurate representation of isoprene emission temperature sensitivity in global 49 

biogeochemical models. 50 

Plain Language Summary 51 

Isoprene is a reactive hydrocarbon emitted by plants into the atmosphere, where it impacts air 52 

quality and regional climate. The emission rate depends on plant species and environmental 53 

conditions. Isoprene emission rates can be estimated with computer models, but these models are 54 

uncertain. For example, the emission capacity of many ecosystems ("standard emission rate") is 55 

not well known due to a lack of measurements, and recent experiments have revealed variability 56 

in the temperature dependance of isoprene emissions that is not captured by current models. Our 57 

goal in this study was to improve a widely-used computer model of isoprene emissions by 58 

updating the standard emission rate and temperature response with observations. We used 59 
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satellite observations to update the standard emission rate, but these results were uncertain due to 60 

observation uncertainties and sensitivity to model input errors. Using ground-based observations, 61 

we found that isoprene emissions were five times more sensitive to temperature at an Amazonian 62 

field site than they were at a UK field site, suggesting the need for an ecosystem-dependent 63 

temperature sensitivity parameterization in the model. Such a parameterization has the potential 64 

to improve models of isoprene emissions during extreme heat events and in a warming climate. 65 

 66 

1. Introduction 67 

 Isoprene is a reactive volatile organic compound (VOC) emitted by terrestrial vegetation, 68 

possibly contributing to abiotic stress tolerance (Monson et al., 2021). Annual isoprene emissions 69 

exceed all other non-methane VOCs, with an estimated global emission rate of 360 - 800 Tg yr-1 70 

(Guenther et al., 2012). Emissions vary widely among plant species and are concentrated in 71 

tropical terrestrial ecosystems (Guenther et al., 1995, 2006), but can also be significant in 72 

temperate regions during the growing season (Wiedinmyer et al., 2005; Potosnak et al., 2014; Seco 73 

et al., 2015). Emission rates vary in response to temperature and sunlight (Guenther et al., 1993), 74 

and are modulated on seasonal and interannual timescales by landcover and canopy environment 75 

changes (Alves et al., 2016; Chen et al., 2018) as well as environmental stressors such as drought 76 

(X. Jiang et al., 2018; Potosnak et al., 2014; Seco et al., 2015) and CO2 inhibition (Heald et al., 77 

2009). 78 

 Isoprene has a short atmospheric lifetime on the order of hours due to rapid oxidation by 79 

the hydroxyl (OH) radical (Sprengnether et al., 2002). This oxidation contributes to the formation 80 

of air quality and climate pollutants, including ozone (Trainer et al., 1987), secondary organic 81 

aerosol (Claeys at al., 2004), and carbon monoxide (CO) (Z. Jiang et al., 2017). The biogenic CO 82 

source from isoprene oxidation exceeds anthropogenic and biomass burning emissions in many 83 

regions (Hudman et al., 2008; Worden et al., 2019), and the relative contribution of biogenic CO 84 

to the total atmospheric CO burden may be increasing due to declining anthropogenic emissions 85 

(Buchholz et al., 2021; Worden et al., 2013). Isoprene is a major sink for OH, which influences 86 

the lifetime of methane and other trace gases (Karl et al., 2007, 2013). Quantifying these 87 

atmospheric chemistry impacts requires accurate isoprene emission estimates.  88 

 The Model of Emissions of Gases and Aerosols from Nature (MEGAN) is widely used to 89 

estimate isoprene emissions (Guenther et al., 2006, 2012). In MEGAN, isoprene emissions are the 90 
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product of a vegetation-specific standard emission rate and dimensionless scaling functions which 91 

depend on temperature, sunlight, leaf area index, leaf age, and soil moisture. MEGAN isoprene 92 

emissions are highly sensitive to meteorology and landcover (Arneth et al., 2011; Misztal et al., 93 

2016) and are thus dependent on the accuracy and resolution of these model inputs (Ashworth et 94 

al., 2010; Pugh et al., 2013). Model performance is generally good when accurate driving variables 95 

are used (Situ et al., 2014; see also Filella et al., 2018; Sarkar et al., 2020), but significant sources 96 

of uncertainty remain. These include the empirical parameterization of the standard emission rates 97 

and the temperature response algorithm (Emmerson et al., 2020; Guenther et al., 2006). 98 

 The standard emission rates are based on leaf- or canopy-scale isoprene flux measurements 99 

which can be extrapolated globally over regions with similar landcover (Guenther et al., 1995). 100 

This methodology introduces biases due to the large variability of isoprene emission rates among 101 

plant species (Guenther et al., 1993) and within ecosystems (Batista et al., 2019; Li et al., 2021). 102 

Emission rate biases are exacerbated by landcover uncertainties (Opacka et al., 2021), particularly 103 

in tropical regions (Fang et al., 2013; Gu et al., 2017; Mougin et al., 2019). An additional source 104 

of uncertainty is the relative lack of isoprene flux measurements to constrain emission rates in the 105 

tropics (Guenther et al., 2006; Marais et al., 2014). Constraining the standard emission rates with 106 

satellite observations has been shown to reduce emission biases in MEGAN (Bauwens et al., 2016; 107 

Marais et al., 2014), allowing the model to be improved in remote regions. 108 

 MEGAN's temperature response algorithm, which simulates the exponential increase in 109 

emissions with temperature up to an optimum value (Guenther et al., 1993, 1995), is another source 110 

of uncertainty. Recent experiments with Arctic vegetation (Angot et al., 2020; Kramshøj et al., 111 

2016; Seco et al., 2020, 2022) and Australian eucalypt trees (Emmerson et al., 2020) have found 112 

that MEGAN significantly underestimates isoprene emissions from these species at high 113 

temperatures. Updating the parameterization of the temperature response with species-specific 114 

measurements in Australia has been shown to improve MEGAN isoprene emissions estimates, 115 

with significant consequences for predictions of future ozone pollution in a warming climate 116 

(Emmerson et al., 2020). Because temperature and sunlight are the primary drivers of short-term 117 

isoprene emission variability (Guenther et al., 1993), uncertainties in the MEGAN temperature 118 

response have significant implications for isoprene emission modeling. 119 

 In this study we use Bayesian model-data fusion, a form of data assimilation which 120 

combines information from models and observations in a statistically rigorous way, to optimize 121 
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the parameterization of the MEGAN standard emission rate and temperature response. Using top-122 

down isoprene emissions based on satellite formaldehyde retrievals from the Ozone Monitoring 123 

Instrument (OMI; Bauwens et al., 2016) and the TROPOspheric Monitoring Instrument 124 

(TROPOMI), we constrain the standard emission rate in several regions to reduce model biases. 125 

Eddy covariance isoprene measurements at the BR-Sa1 AmeriFlux site in the Tapajós National 126 

Forest in the Brazilian Amazon and isoprene atmospheric mixing ratio measurements at Wytham 127 

Woods near Oxford, United Kingdom, are used to constrain the temperature response 128 

parameterization. The sensitivity of our optimization to model input errors and drought stress, 129 

discrepancies between satellite- and ground-based constraints, and the variability of the 130 

temperature response between the two field sites are discussed. 131 

 132 

2. Methods and Data 133 

 In Section 2.1 we describe the Model of Emissions of Gases and Aerosols from Nature 134 

(MEGAN), with a particular focus on the model sensitivity to temperature. Section 2.2 introduces 135 

the ground-based isoprene measurements (2.2.1) and satellite-based top-down isoprene flux 136 

estimates (2.2.2). Finally, Section 2.3 describes the Bayesian model-data fusion and validates the 137 

method with a simulated observation experiment. 138 

 139 

2.1 MEGAN and the temperature activity factor 𝜸T 140 

 MEGAN is an empirical model in which isoprene emissions are the product of a 141 

vegetation-specific standard rate and activity factors (i.e., dimensionless scaling functions) 142 

(Guenther et al., 2006) which depend on meteorology and leaf phenology (Guenther et al., 1991, 143 

1993). This is shown in the following equation: 144 

𝐸𝐼𝑆𝑂𝑃 = 𝐸0 × 𝐶𝐶𝐸 × 𝛾𝑇 × 𝛾𝑃𝐴𝑅 × 𝛾𝐿𝐴𝐼 × 𝛾𝐴𝐺𝐸 × 𝛾𝐶𝑂2 × 𝛾𝑆𝑀 , (1) 145 

where EISOP is the isoprene emission rate, E0 is the standard emission rate, and 𝜸T, 𝜸PAR, 𝜸LAI, 146 

𝜸AGE, 𝜸CO2, and 𝜸SM are activity factors that represent the emission sensitivity to temperature (T), 147 

photosynthetically active radiation (PAR), leaf area index (LAI), leaf age, CO2 partial pressure, 148 

and soil moisture (SM) stress respectively (Guenther et al., 2006, 2012). Diurnal variability of 149 

modelled emissions is controlled by temperature and sunlight, whereas longer term variability is 150 

influenced by changes in leaf phenology, landcover, drought stress, and CO2 inhibition (Alves et 151 

al., 2016; Chen et al., 2018; Guenther et al., 1993; Heald et al., 2009; Opacka et al., 2021; X. Jiang 152 
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et al., 2018). CCE is a normalization constant which ensures that EISOP = E0 under standard 153 

conditions (see Supplementary Text S1).  154 

 We use the Parameterized Canopy Environment Emission Activity (PCEEA) algorithm for 155 

the activity factors 𝜸T, 𝜸PAR, and 𝜸LAI and the empirical parameter values contained therein 156 

(Guenther et al., 2006). In particular, the temperature response function 𝜸T is given by 157 

𝛾𝑇 = 𝐸𝑂𝑝𝑡 [
𝐶𝑇2 × exp(𝐶𝑇1 × 𝑥)

(𝐶𝑇2 − 𝐶𝑇1 × (1 − exp(𝐶𝑇2 × 𝑥)))
] , (2) 158 

where CT1 (80 kJ mol-1) and CT2 (200 kJ mol-1) are fitting parameters, x is a temperature dependent 159 

variable given by 160 

𝑥 = [

1
𝑇𝑂𝑝𝑡

−
1
𝑇

𝑅
] , (3) 161 

where T is the air temperature (K) (assumed to be equal to the leaf temperature in the PCEEA 162 

algorithm) and R is the ideal gas constant (0.00831 kJ K-1 mol-1). Equation (2) is based on a 163 

photosynthetic electron transport model in which activity increases with temperature up to an 164 

optimum value (Guenther et al., 1991). EOpt is an empirical parameter given by the equation 165 

𝐸𝑂𝑝𝑡 = 𝐶𝐸𝑂 × exp (𝐾2(𝑇𝑑𝑎𝑖𝑙𝑦 − 297)) , (4) 166 

where CE0 (1.75) and K2 (0.08) are empirical coefficients and Tdaily is the average air temperature 167 

of the past 24 hours (Guenther et al., 2006). TOpt is an empirical parameter defined as follows: 168 

𝑇𝑂𝑝𝑡 = 𝑇𝑀𝑎𝑥 + (𝐾1(𝑇𝑑𝑎𝑖𝑙𝑦 − 297)) (5) 169 

where TMax (313 K) is the peak emission temperature under standard conditions and K1 (0.6) is an 170 

empirical coefficient. Equations (4) and (5) describe how the peak isoprene emission rate, as well 171 

as the temperature at which it occurs, changes as a function of Tdaily (see Supplementary Text S2). 172 

This hysteresis, or long-term temperature response, is based on a small number of experiments and 173 

is highly uncertain (Geron et al., 2000; Hanson & Sharkey, 2001; Monson et al., 1994; Pétron et 174 

al., 2001). 175 

 We quantify the sensitivity of 𝜸T to temperature using the Q10 metric, which is defined as 176 

the multiplicative factor by which 𝜸T changes when going from 303 – 313 K (Seco et al., 2020). 177 

All Q10 values presented in this study are calculated using Equations (2) – (5) with an assumed 178 
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Tdaily of 297 K (standard conditions) to ensure a fair comparison between different field sites with 179 

different Tdaily. 180 

 Unless otherwise stated, we drive MEGAN2.1 (Guenther et al., 2012) with hourly 181 

meteorology fields from the Modern-Era Retrospective analysis for Research and Applications, 182 

Version 2 (MERRA-2; Gelaro et al; 2017) at 0.5° × 0.625° spatial resolution and 8-day average 183 

LAI at 2° × 2.5° resolution from the Moderate Resolution Imaging Spectroradiometer (MODIS) 184 

aboard NASA's Terra and Aqua satellites (Yuan et al., 2011). Local temperature measurements 185 

are used to drive the model at BR-Sa1 (Sarkar et al., 2020) and Wytham Woods (Ferracci et al., 186 

2020) instead of MERRA-2 temperature data. We used hourly Goddard Earth Observing System 187 

- Forward Processing (GEOS-FP; provided by the Global Modeling and Assimilation Office 188 

(GMAO) at NASA Goddard Space Flight Center) PAR and windspeed data to filter the Wytham 189 

Woods observations due to their higher native resolution (0.25° × 0.3125°) relative to MERRA-2. 190 

We used gridded 𝜸SM values at 0.5° × 0.5° from 2005 – 2015 as obtained with Community Land 191 

Model (CLM) 4.5 and the MEGAN3 soil moisture algorithm (X. Jiang et al, 2018). We fix 𝜸CO2 = 192 

1 due to the insignificance of CO2 inhibition on short timescales (Heald et al., 2009). A priori E0 193 

at 0.25° × 0.3125° spatial resolution are based on the CLM plant functional type distribution 194 

(Lawrence et al., 2011). 195 

 196 

2.2 Data 197 

2.2.1 Eddy covariance and atmospheric mixing ratio measurements 198 

 Isoprene emissions can be estimated from tower- or aircraft- based eddy covariance 199 

measurements (Guenther & Hills., 1998; Karl et al., 2009). This approach is useful for constraining 200 

the diurnal variability of isoprene emissions, making it well-suited for characterizing the 201 

temperature response (Misztal et al., 2014; Seco et al., 2015, 2022; Yu et al., 2017). In this study, 202 

we use tower-based eddy covariance isoprene flux measurements from the AmeriFlux site BR-Sa1 203 

in Brazil's Tapajós National Forest (2.86°S, 54.96°W) (Sarkar et al, 2020), as well as isoprene 204 

mixing ratio measurements from the 2018 Wytham Isoprene iDirac Oak Tree Measurements 205 

(WIsDOM) campaign in Wytham Woods near Oxford, UK (51.46°N, 1.20°W) (Ferracci et al, 206 

2020). The locations of these field sites are shown in Figure 1. The field sites were selected to 207 

represent contrasting ecosystems based on the availability of concurrent isoprene and temperature 208 

measurements. Tapajós National Forest is a protected Amazonian old-growth closed-canopy 209 
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evergreen tropical forest (Sarkar et al., 2020), while the Wytham Woods site is a mixed temperate 210 

woodland where Quercus robur (European oak) is the dominant isoprene emitter (Butt et al., 211 

2009). 212 

 213 
 214 

Figure 1: Locations of the 4 study regions used for the optimization of E0 with top-down constraints (rectangles) and 215 

the two field sites used for the optimization of 𝜸T with eddy covariance and mixing ratio constraints (circles). The 216 

colorbar represents the mean isoprene emission rate (kg / 0.5°×0.5° grid cell / month) from the OMI-based 217 

GlobEmission top-down isoprene emission dataset from 2005 - 2014. 218 

 The BR-Sa1 dataset consists of hourly isoprene emission measurements and surface air 219 

temperature measurements from 1–16 June 2014 (Sarkar et al., 2020). The isoprene fluxes were 220 

calculated from proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) 221 

isoprene mixing ratio measurements using eddy covariance techniques. The spatiotemporal 222 

overlap of the BR-Sa1 data with the OMI-based GlobEmission data allows for a direct comparison 223 

of top-down and eddy covariance constraints. Uncertainties were estimated to be 15%, based on 224 

measurement errors and the variability of the observations (Sarkar et al., 2020). MEGAN was 225 

driven with locally measured temperature data at this site. The soil moisture response 𝜸SM was 226 

equal to 1 at BR-Sa1 throughout the study period (X. Jiang et al., 2018). Further details about the 227 

BR-Sa1 measurements, as well as a more detailed site description, are available in Sarkar et al 228 

(2020). 229 

 The WIsDOM dataset used in this study consists of isoprene mixing ratio and temperature 230 

measurements taken at a height of 15.55m above ground level in a UK mixed forest canopy from 231 

25 May to 6 November 2018 (Ferracci et al., 2020). Isoprene mixing ratios were measured using 232 
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the iDirac (Bolas et al., 2020) portable gas chromatograph with photo-ionization detection (GC-233 

PID) with a measurement precision of 10% and a time resolution of 20 minutes. Temperature was 234 

measured with an EasyLog probe (EL-USB-2, Lascard Ltd.) placed next to the iDirac inlet; this 235 

temperature dataset was used to drive MEGAN at this site. A long and uninterrupted heatwave 236 

occurred at Wytham Woods from 22 June to 8 August 2018 and the associated drought had a 237 

significant impact on local isoprene emission rates (Ferracci et al., 2020; Otu-Larbi et al., 2020). 238 

To avoid the impact of drought stress we use only the data from 25 May to 21 June, hereafter 239 

referred to as the preheatwave period. Local PAR measurements were not available at Wytham 240 

Woods during the preheatwave period, so we used hourly GEOS-FP PAR at 0.25° × 0.325° 241 

resolution to drive MEGAN. Following Ferracci et al (2020), we used a linear mapping to account 242 

for any systematic offset between the GEOS-FP PAR and the locally measured PAR which was 243 

available at Wytham Woods in September 2018 (see Supplementary Text S4). Additionally, hourly 244 

GEOS-FP 10-m wind speed data was used for data filtering (see Section 3.3.2). Wytham Woods 245 

data are available for download at https://archive.ceda.ac.uk. Further details about the WIsDOM 246 

campaign are available in Ferracci et al (2020).  247 

 248 

2.2.2 Top-down emissions 249 

 Isoprene emissions can be estimated from satellite retrievals of its high-yield oxidation 250 

product formaldehyde (CH2O) (Palmer et al., 2003). Regional and global estimates have been 251 

obtained from several sensors including the Global Ozone Monitoring Experiment (GOME) 252 

(Palmer et al., 2003), the SCanning Imaging Absorption SpectroMeter for Atmospheric 253 

CHartographY (SCIAMACHY) (Barkley et al., 2013; Stavrakou et al., 2009a), GOME-2 254 

(Stavrakou et al., 2015), the Ozone Monitoring Instrument (OMI) (Bauwens et al., 2016; Kaiser et 255 

al., 2018; Marais et al., 2012), and the TROPOspheric Monitoring Instrument (TROPOMI). Here 256 

we use top-down isoprene estimates from (i) the GlobEmission global dataset (2005 - 2014) 257 

constrained by OMI CH2O columns (Bauwens et al., 2016), and (ii) the SOLFEO regional dataset 258 

over South America constrained by TROPOMI CH2O columns in 2018. 259 

 The 10-year (2005–2014) GlobEmission inventory (Bauwens et al., 2016) was created by 260 

assimilating OMI CH2O column retrievals into the IMAGESv2 chemistry-transport model (Müller 261 

& Stavrakou, 2005; Stavrakou et al., 2009b, c) using an adjoint-based variational data assimilation 262 

scheme. The inversion is performed at a spatial resolution of 2°×2.5° on a monthly basis. The top-263 
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down emissions are further downscaled to a daily inventory resolution at 0.5°×0.5°, based on the 264 

spatiotemporal variability of the a priori MEGAN inventory used in the inversions. We use the 265 

GlobEmission data in the Eastern Amazon basin (0° – 4°S, 53°W – 61°W), the Western Sahel 266 

(10°N – 14°N, 3°W – 3°E), the Southeastern United States (31°N – 40°N, 81°W – 93°W), and 267 

Eastern Australia (25°S – 33°S, 148°E – 153°E). Data for the year 2005 was omitted from our 268 

analysis due to missing MEGAN driving variables. Figure 1 shows the mean GlobEmission 269 

isoprene emissions, with the locations of the study regions indicated. Discrepancies between 270 

MEGAN and top-down flux estimates have been previously documented in each of these regions 271 

(Bauwens et al., 2016; Marais et al., 2014; Worden et al., 2019), with the Amazon and Southeast 272 

USA accounting for a significant portion of the total global annual isoprene emissions (Guenther 273 

et al., 2006). The SOLFEO dataset (https://emissions.aeronomie.be/index.php/tropomi-274 

based/isoprene-sa) provided an independent set of top-down constraints for the E0 optimization in 275 

the Eastern Amazon region. This dataset provides monthly average isoprene emission rate 276 

estimates for 2018 at 0.5° × 0.5° resolution in South America, based on an assimilation of 277 

TROPOMI CH2O observations into the regional chemistry-transport model MAGRITTEv1.1 278 

(Müller et al., 2019; Stavrakou et al., 2016). Both top-down emission datasets are publicly 279 

available from the Emission portal at https://emissions.aeronomie.be/.  280 

 A validation study using a network of ground-based remotely-sensed CH2O columns 281 

revealed a substantial bias in the TROPOMI CH2O columns (Vigouroux et al., 2020, De Smedt et 282 

al., 2021). The estimated bias is found to be low for high columns (-30% for values higher than 283 

8×1015 molec. cm−2) and high for low columns (+26% for values lower than 2.5×1015 molec. cm−2).  284 

Based on those comparisons, bias-corrected TROPOMI columns are given by the linear regression 285 

relationship: 1.56×C–1.72×1015 molec. cm−2, where C is the TROPOMI CH2O column (in molec. 286 

cm-2). The adjustment increases the columns by 20-50% for TROPOMI columns within (5-40) 287 

×1015 molec. cm−2. Those higher columns would entail substantially higher top-down isoprene 288 

fluxes than those derived based on the standard TROPOMI product. Since the OMI and TROPOMI 289 

formaldehyde products were retrieved using similar algorithms (De Smedt et al., 2018), the top-290 

down estimates of the GlobEmission dataset are also likely similarly underestimated. 291 

 The optimization of E0 was found to be largely insensitive to the assumed uncertainty of 292 

the top-down emissions (see Supplementary Text S3). A relatively large uncertainty of 30% was 293 

used to avoid overfitting the model to the top-down emissions, but this is likely an underestimate 294 

https://emissions.aeronomie.be/index.php/tropomi-based/isoprene-sa
https://emissions.aeronomie.be/index.php/tropomi-based/isoprene-sa
https://emissions.aeronomie.be/
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of the true uncertainty in some regions due to the biases in the satellite CH2O retrievals (Vigouroux 295 

et al., 2020, De Smedt et al., 2021).    296 

 297 

2.3 Parameter estimation using Bayesian model-data fusion 298 

 We use Bayesian model-data fusion, a form of data assimilation used to combine 299 

information from models and observations in a statistically rigorous way, to constrain the MEGAN 300 

parameters with observations. Given a parameter vector x and observations O, we can derive the 301 

posterior probability density function of x as 302 

𝑃(𝒙|𝑶) ∝ 𝑃(𝒙)𝑃(𝑶|𝒙) (6) 303 

where P(x) is the a priori probability distribution of x and P(O|x) is the observation probability 304 

given x, also called the model likelihood function. In this study we assume a non-informative 305 

uniform P(x) for all parameters such that P(x) = 1 for all x ∈ [xmin, xmax] and P(x) = 0 outside of 306 

this range. The limits xmin and xmax were respectively set to 1/5 and 5 times the a priori parameter 307 

value for all parameters except for TMax, which was constrained to TMax ∈ [20°C, 60°C] to avoid 308 

unphysical parameterizations. For all x ∈ [xmin, xmax] the posterior probability P(x|O) is then 309 

proportional to the observation probability P(O|x), which we define for N observations as 310 

𝑃(𝑶|𝒙) = exp (−0.5 ∑
(𝑀𝑛 − 𝑂𝑛)2

𝜎𝑛
2

𝑁

𝑛=1

) (7) 311 

where On is the nth observation (top-down or eddy covariance isoprene measurements), Mn is the 312 

corresponding model state (in our case, MEGAN isoprene emissions), and 𝜎𝑛
2 is the observation 313 

error variance. This definition of P(O|x) assumes Gaussian error statistics and no covariance 314 

between observation errors.  315 

 We sample the probability distribution P(x|O) using an adaptive Metropolis-Hastings 316 

Markov Chain Monte Carlo (MHMCMC) algorithm (Haario et al., 2001). The MHMCMC 317 

algorithm has been previously applied to parameter estimation problems in the context of 318 

ecosystem modeling (Bloom et al., 2015; Bloom & Williams, 2015; Xu et al., 2006; Ziehn et al., 319 

2012), and consists of the following 4 basic steps: 320 

1. Choose an initial parameter state vector: 𝒙𝒊 321 

2. Perturb the parameters: 𝒙𝑖+1 = 𝒙𝑖 + ∆𝒙 322 

3. Run model with both sets of parameters: 𝑴(𝒙𝑖) and 𝑴(𝒙𝑖+1) 323 
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4. Accept new parameters if  
𝑃(𝒙𝑖+1|𝑶)

𝑃(𝒙𝒊|𝑶)
> 𝑈 ∈ [0,1] ; else 𝒙𝑖+1 = 𝒙𝑖 324 

where xi is the ith iteration of the parameter state vector, Δx is the parameter perturbation step-size, 325 

U is a uniform distribution (Ziehn et al., 2012; see also Bloom & Williams, 2015), and P(x|O) is 326 

the observation probability, given by Equation (7) for all x ∈ [xmin, xmax] and equal to 0 otherwise. 327 

Our implementation of the MHMCMC algorithm follows Bloom et al. (2020) and uses a Matlab 328 

code developed by Yang et al (2021, 2022).  329 

 The use of an adaptive step size Δx reduces the number of iterations required to explore 330 

the parameter space, with smaller step sizes being used in regions of parameter space where the 331 

probability function in (7) is steeper. Step 4 of the MHMCMC algorithm ensures that parameter 332 

values which maximize the probability in (7) are more likely to be accepted. Because only the ratio 333 

of probabilities is used, P(x|O) does not need to be normalized. In our experiments, Steps 1 - 4 334 

were repeated for 4×104 iterations. The first half of the samples were discarded to allow for the 335 

statistical properties of the parameter distribution to stabilize, and the remaining half were 336 

subsampled by a factor of 20 to reduce correlations between samples (Ziehn et al., 2012), giving a 337 

final distribution of 1000 parameter samples for each experiment.  338 

  We validated our MHMCMC approach using a series of simulated observation 339 

experiments. The purpose of these experiments was to ensure that the MHMCMC scheme was 340 

capable of estimating MEGAN parameters when provided with suitable observational constraints. 341 

In the initial experiment, the posterior 𝜸T parameterization of Emmerson et al (2020) (based on 342 

eucalypt measurements) was used to calculate a "true" temperature response with Equation (2). 343 

We sampled this "true" temperature response from 290  – 330 K at 2 K intervals to produce pseudo-344 

observations, which were perturbed with Gaussian noise (𝞂 = 0.1 – 2.0, approximately 3% – 60% 345 

of the mean "true" 𝜸T) to simulate measurement error. The PCEEA parameterization of 𝜸T was 346 

used as the a priori, as in all other experiments in this study. Figure 2 (a) shows the results of a 347 

simulated observation temperature optimization experiment, with 𝞂 = 0.5. The optimized posterior 348 

𝜸T is in good agreement with the truth and is much more sensitive to temperature (Q10 = 3.01) than 349 

the a priori (Q10 = 1.73). The MEGAN 𝜸T parameters TMax, CEO, CT1, and CT2 could be constrained 350 

with pseudo-observations provided that the observation errors were sufficiently small. Figure 2 (b) 351 

– (e) show that the optimized parameters are consistent with those derived by Emmerson et al 352 

(2020). These results demonstrate that MHMCMC is a suitable method for constraining MEGAN 353 

parameters with observations. 354 
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 355 
 356 

Figure 2: (a) A priori MEGAN 𝜸T (black), median posterior 𝜸T (solid red) and interquartile range (dashed red) as a 357 

function of temperature compared with pseudo-observations. The dotted black line represents the "true" 𝜸T as 358 

calculated using the posterior parameterization of Emmerson et al (2020). All 𝜸T curves in (a) were calculated using 359 

Equation (2). The posterior parameter distributions for TMax, CEO, CT1, and CT2 (from Equations (2), (4), and (5)) are 360 

shown in (b) – (e) respectively, with the median values (dotted blue line) agreeing closely with the "true" values (thin 361 

dotted black line). The a priori parameter values are indicated by the solid black lines. The a priori probability 362 

distribution for each parameter (not shown) was uniform and spanned from 1/5 – 5 times the a priori values, except 363 

for TMax which was constrained between 293 – 333K. 364 

 Additional simulated observation experiments were used to assess the impact of 365 

observation errors and temporal resolution on the optimization using time series pseudo-366 

observations. We found that while the standard emission rate E0 could be easily constrained with 367 

relatively imprecise (< 50% error) or infrequent (e.g., monthly) observations (see Supplementary 368 

Text S3), the 𝜸T parameters could only be properly constrained with more precise and higher 369 

frequency observations (see Supplementary Text S5). A sensitivity analysis revealed that MEGAN 370 

is highly sensitive to the E0 scaling factor but less sensitive to the 𝜸T parameters at typical ambient 371 

temperatures (see Supplementary Text S6). We therefore limit our 𝜸T parameter optimization to 372 

the BR-Sa1 and Wytham Woods sites, where sufficiently precise and frequent isoprene 373 

measurements are available to constrain the temperature response. 374 

 375 
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3. Results 376 

 Section 3.1 presents the optimization of the standard emission rate E0 using satellite-based 377 

top-down constraints in our four study regions (3.1.1) and using eddy covariance measurements at 378 

the Amazonian BR-Sa1 site (3.1.2). Section 3.2 presents the optimization of the 𝜸T parameters 379 

using eddy covariance observations at BR-Sa1 (3.2.1) and using isoprene mixing ratio 380 

measurements at the UK Wytham Woods site (3.2.2). 381 

3.1. Optimization of standard emission rate E0 382 

3.1.1 Top-down constraints 383 

 Monthly OMI-based GlobEmission data were used to constrain the standard emission rate 384 

E0 in four study regions (Figure 1) for the period of 2006 – 2014. The study regions were selected 385 

to represent a diversity of ecosystems with substantial isoprene emissions. The MEGAN a priori 386 

emissions were calculated as described in Section 2.1. We performed the optimization both with 387 

and without the MEGAN3 soil moisture response 𝜸SM enabled to assess the impact of this uncertain 388 

model component. All MEGAN 𝜸 factor parameters were fixed to their a priori (PCEEA) values, 389 

as defined in Section 2.1. 390 

 391 
 392 

Figure 3: Comparison of a priori and a posterioi fluxes with top-down GlobEmission fluxes for (a) the eastern Amazon, 393 

(b) the western Sahel, (c) the southeastern US, and (d) eastern Australia. Shown are the a priori MEGAN2.1 fluxes 394 

(dashed-dotted line), the a priori fluxes with the inclusion of the MEGAN3 drought stress response 𝜸SM (dotted line), 395 
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the median a posteriori MEGAN2.1 fluxes (solid red line), and the median a posteriori MEGAN2.1 fluxes with the 396 

inclusion of the MEGAN3 drought stress response 𝜸SM (solid blue line).  397 

 Optimization of the standard emission rate E0 reduced MEGAN isoprene emissions in all 398 

four study regions, leading to better agreement between MEGAN and the OMI-based 399 

GlobEmission flux estimates (Figure 3). The optimized E0 values were well-constrained and 400 

significantly reduced relative to their a priori values (Figure 4). Constraining E0 with the 401 

TROPOMI-based SOLFEO fluxes produced a consistent result in the Eastern Amazon (Figure 4), 402 

indicating that the biases observed in this region are not unique to the GlobEmission dataset. Our 403 

results are consistent with previous studies which have used top-down constraints to reduce biases 404 

in modelled isoprene emissions (Kaiser et al., 2018) and in E0 (Marais et al., 2014). 405 

 406 
 407 

Figure 4: Comparison of the a posteriori E0 inferred from the top-down constraints in all four study regions. The red 408 

boxes indicate the E0 inferred from the OMI-based constraints and MEGAN2.1,whereas the blue boxes denote the E0 409 

estimated from the OMI-based constraints and MEGAN2.1 with the inclusion of the MEGAN3 drought stress response 410 

𝜸SM. The green bar for the Amazon shows the a posteriori E0 obtained from the TROPOMI-based SOLFEO fluxes.  411 

 Enabling 𝜸SM reduces the a priori emissions in each region (Figure 3). The optimized E0 412 

values are consequently larger than in the no-𝜸SM case (Figure 4) because some of the bias between 413 

MEGAN and GlobEmission has already been accounted for by 𝜸SM. This change was most 414 

significant in Eastern Australia, where the difference between the two optimization results is over 415 
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40% due to the large impact of 𝜸SM on the a priori emissions. The significance of drought stress 416 

for Eastern Australian isoprene emissions has been previously reported (Emmerson et al., 2019) 417 

and our results are consistent with this. Although the impact on the a priori emissions and posterior 418 

E0 was large, inclusion of 𝜸SM had little impact on the posterior emissions in all four regions. This 419 

is an example of equifinality, in which different combinations of model inputs and parameters (in 420 

this case E0 and 𝜸SM) produce the same output. The sensitivity of the optimization results to 𝜸SM 421 

is a source of uncertainty which is discussed further in Section 4.1.  422 

 423 

3.1.2 Eddy covariance constraints 424 

 The standard emission rate E0 was constrained using hourly eddy covariance measurements 425 

at the BR-Sa1 site. For this experiment, MEGAN was driven with locally measured air temperature 426 

data. The a priori MEGAN emissions are biased low relative to the BR-Sa1 observations, but this 427 

bias is largely corrected for in the optimization (Figure 5 (a)). The posterior E0 is well-constrained 428 

and approximately 36% larger than the a priori value (Figure 5 (b)).  429 

 430 
 431 

Figure 5: A priori and a posteriori isoprene fluxes and E0 estimated with BR-Sa1 eddy covariance data (a–d) and 432 

GlobEmission fluxes (e–f). (a) Comparison of BR-Sa1 eddy covariance fluxes (+ symbols) with a priori (black line) 433 

and a posteriori (red line) MEGAN fluxes, estimated with local temperature data. (b) A priori E0 and a posteriori 434 

distribution of E0  calculated with local temperature data. (c) Comparison of BR-Sa1 eddy covariance fluxes (+ 435 

symbols) with a priori (black line) and a posteriori (red line) MEGAN fluxes, calculated with MERRA-2 temperature 436 
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data. (d) A priori E0 and a posteriori distribution of E0 inferred with MERRA-2 temperature data. (e) Comparison of 437 

GlobEmission isoprene fluxes (green stars) with 24-h mean a priori (black line) and a posteriori (red line) MEGAN 438 

fluxes, estimated with local BR-Sa1 temperature data. (f) A priori E0 and a posteriori distribution of E0 inferred with 439 

local temperature data. The dotted red lines in panels (a), (c), and (e) denote the interquartile range. The dashed black 440 

vertical lines in (b), (d), and (f) denote the uniform a priori E0 distribution, indicating the permissible range of E0 441 

values. 442 

 The optimization was highly sensitive to the temperature input data. Figure 5 (c) shows 443 

that driving MEGAN with MERRA-2 temperatures leads to a significant reduction in the a priori 444 

emissions. This is due to the negative bias of the MERRA-2 temperature relative to the measured 445 

temperature at BR-Sa1 (approximately 1 – 2 degrees K), which was also reported by Sarkar et al 446 

(2020). The enhanced negative emission bias is compensated for by increasing the posterior E0 by 447 

45% relative to the local temperature case (Figure 5 (d)). While the posterior emissions are similar 448 

in both cases (Figures 5 (a) and 5 (c)), the E0 values which produce those emissions are very 449 

different. This is another example of equifinality, as described in Section 3.1.1. Sensitivity to 450 

model input data is a significant source of uncertainty and is discussed further in Section 4.2. 451 

 Optimizing MEGAN with daily top-down emissions from GlobEmission (Figure 5 (e)) 452 

resulted in a 22% reduction in E0 relative to the a priori (Figure 5 (f)). The large discrepancy 453 

between the top-down and eddy covariance constraints at BR-Sa1, discussed further in Section 454 

4.3, has been previously reported in the Amazon (Gu et al., 2017). It could be attributed to the low 455 

bias in the OMI CH2O columns, which translates to low-biased GlobEmission fluxes (see Section 456 

2.2.2). 457 

 458 

3.2. Optimization of temperature response 𝜸𝑻 459 

3.2.1 Tapajós National Forest (AmeriFlux Site BR-Sa1, Brazil) 460 

 Figure 6 (a) shows the BR-Sa1 isoprene flux time series from 1-16 June 2014, along with 461 

the MEGAN a priori isoprene emissions calculated using locally measured temperature data 462 

(Sarkar et al., 2020). The time series of MEGAN 𝜸 factors plotted in Figure 6 (b) shows that the 463 

variability in MEGAN is dominated by 𝜸T and 𝜸PAR, while 𝜸LAI, 𝜸AGE, and 𝜸SM have constant 464 

values at or very close to 1 throughout the time series. Figure 6 (c) shows that both the modelled 465 

and observed emission variability is directly proportional to the temperature and sunlight response 466 

(𝜸T × 𝜸PAR), with a correlation of r2 = 0.799 for the observed emissions. The steeper slope of the 467 
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observed linear fit relative to MEGAN in Figure 6 (c) is due to the large afternoon emission peaks 468 

observed in Figure 6 (a) that are not apparent in the a priori emissions. The linear fit allows us to 469 

derive an observed temperature response 𝛾𝑇
′ from the BR-Sa1 flux measurements. 470 

 471 
 472 

Figure 6: (a) Time series of BR-Sa1 (+ symbols) and MEGAN (solid black line) fluxes between 1–16 June 2014. (b) 473 

Time series of 𝜸T, 𝜸PAR, 𝜸LAI, 𝜸AGE, and 𝜸SM between 1–17 June 2014. (c) Correlation between the observed BR-Sa1 474 

fluxes (+ symbols) and the product 𝜸T × 𝜸PAR in MEGAN. The blue dashed line in (c) indicates the linear fit between 475 

the BR-Sa1 fluxes and 𝜸T × 𝜸PAR, whereas the solid black line denotes the fit between the MEGAN fluxes and 𝜸T × 476 

𝜸PAR.   477 

 The linear fit in Figure 6 (c) gives 478 

𝛾𝑇
′ =

𝐸𝐼𝑆𝑂𝑃 − 𝑏

𝑚𝛾𝑃𝐴𝑅
, (8) 479 

where EISOP is the observed isoprene emission rate, 𝜸𝑻
′  is the observed temperature response, 𝛾𝑃𝐴𝑅 480 

is the MEGAN sunlight response, and m and b are the slope and intercept of the linear fit, 481 

respectively. This is equivalent to solving the Equation (1) for 𝜸T, with a slope of 𝑚 =482 

𝐸0 × 𝐶𝐶𝐸 × 𝛾𝐿𝐴𝐼 × 𝛾𝐴𝐺𝐸 × 𝛾𝐶𝑂2 × 𝛾𝑆𝑀 and an intercept of b = 0. The strong correlation in Figure 483 

6 (c) indicate that the BR-Sa1 flux observations are broadly consistent with the diurnal variability 484 

in MEGAN which has been previously reported at this site (Sarkar et al., 2020). 485 

 This derivation of 𝜸𝑻
′  is sensitive to errors in model inputs and the other MEGAN 𝜸 factors. 486 

Uncertainties in E0, 𝜸LAI, 𝜸AGE, and 𝜸SM, which are implicit in the slope m, are negligible as all 487 

four terms are constant for the BR-Sa1 time series. Constant errors in these terms would not impact 488 
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the agreement between the MEGAN 𝜸T and observed 𝜸𝑻
′  because both quantities would be scaled 489 

by the same constant slope m in Equation (8). Uncertainties in 𝜸PAR and in the PAR input data are 490 

important due to the large influence of 𝜸PAR on emission variability on short time scales, 491 

particularly given the lack of available local PAR measurements at BR-Sa1. We filtered the 492 

observations for MERRA-2 PPFD > 650 μmol/m2/s (equivalent to PAR > 136 W/m2) to limit the 493 

impact of 𝜸PAR uncertainties on our calculation of 𝜸𝑻
′ . This restricts our analysis to intervals 494 

centered around midday (approximately 10 am – 4 pm local time), limiting the variability of 𝜸PAR 495 

and preventing uncertainties in 𝜸PAR from being amplified under low-light conditions when the 496 

denominator in (8) becomes small. Further increasing the PPFD threshold beyond 650 μmol/m2/s 497 

did not significantly reduce scatter but led to excessive data loss. To avoid errors due to model 498 

inputs, only the locally measured temperature was used to drive MEGAN in the 𝜸T optimization. 499 

 500 

 501 
 502 

Figure 7: (a) A priori MEGAN 𝜸T (black), median posterior 𝜸T (solid red) and interquartile range (dotted red) as a 503 

function of temperature (calculated using Equation (2)) compared with the observed 𝛾𝑇
′  (+ symbols) at BR-Sa1 504 

(calculated using Equation (8)). (b) As in (a), but resampled from hourly to daily averages for comparison with OMI-505 

based GlobEmission-derived temperature response (green stars). The Q10 values in (a) and (b) indicate the fractional 506 

change in 𝜸T between 303 – 313K. Posterior parameter distributions for K2, CT1, and CT2 are shown in panels (c) – (e) 507 

(light blue). The median posterior values are indicated by the dashed blue lines in (c) – (e), while the a priori values 508 
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are indicated by the solid black lines. The uniform a priori parameter distribution is indicated by the dashed black 509 

vertical line in (c) – (e). 510 

 The filtered 𝜸𝑻
′  observations are shown in Figure 7 (a), along with the MEGAN a priori 𝜸T. 511 

The observed 𝜸𝑻
′  is more sensitive to temperature compared to the a priori, which is consistent 512 

with the sharp afternoon emission peaks in the BR-Sa1 time series data that are not captured by 513 

MEGAN in Figure 6 (a).   514 

 MEGAN has different sensitivity to each of the 𝜸T parameters TMax, K1, K2, CT1, and CT2 515 

(see Supplementary Text S6). We therefore ran optimization experiments using all 31 unique 516 

combinations of these 5 parameters to identify the largest combination that could be reliably 517 

constrained by the observations while significantly improving model-observation agreement. The 518 

subset of K2, CT1, and CT2 yielded the best results, with the posterior 𝜸T agreeing closely with the 519 

observed 𝜸𝑻
′  (Figure 7 (a)). The posterior 𝜸T is more than 5 times more sensitive to temperature 520 

(Q10 = 9.29) than the a priori (Q10 = 1.74). This heightened temperature sensitivity is consistent 521 

with previous studies, which have found that the a priori MEGAN 𝜸T parameterization 522 

underestimates emissions at high temperatures for Australian eucalypt species (Emmerson et al., 523 

2020) and Arctic vegetation (Angot et al., 2020; Kramshøj et al., 2016; Seco et al., 2020, 2022). 524 

Figure 7 (b) shows that the median posterior 𝜸T is also consistent with the observed 𝜸𝑻
′  as 525 

calculated with daily top-down GlobEmission fluxes, indicating that the top-down and eddy 526 

covariance constraints are consistent with respect to the temperature dependence of emissions. The 527 

K2, CT1, and CT2 distributions from the MHMCMC optimization are shown in Figure 7 (c) – (e). 528 

All three parameters are well constrained and significantly different from the MEGAN a priori 529 

values (K2: posterior = 0.17, prior = 0.08; CT1: posterior = 222 kJ/mol, prior = 80 kJ/mol; CT2: 530 

posterior = 502 kJ/mol, prior = 200 kJ/mol). Optimization of an alternative parameter combination 531 

is shown in Supplementary Text S7. 532 
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 533 
 534 

Figure 8: (a) A priori and posterior MEGAN isoprene flux estimates at BR-Sa1 from 1–16 June 2014. The posterior 535 

emissions were calculated using the optimized 𝜸T based on eddy covariance observations (+ symbols). The dotted red 536 

line denotes the interquartile range on the posterior emission estimate. The mean bias of the a priori and a posteriori 537 

MEGAN emissions relative to the BR-Sa1 measurements are indicated. (b) Correlation between observed and 538 

modelled hourly mean isoprene emission rates at BR-Sa1. The solid red line is a linear fit to the posterior modelled 539 

emissions (red circles), whereas the solid black curve is a linear fit to the a priori emissions (+ symbols). 540 

 Figure 8 (a) shows that the posterior MEGAN isoprene emissions are in good agreement 541 

with the BR-Sa1 measurements, with a mean bias reduction of ~6% relative to the a priori. In 542 

particular, the posterior estimate is better able to capture the observed day-to-day variability in the 543 

afternoon peak emissions. This contrasts with the E0 optimization at BR-Sa1 (Figure 5 (a)). In that 544 

case, the temporal variability of the model was fixed in the optimization because E0 is a simple 545 

scaling factor. Figure 8 (b) shows the improved correlation between the posterior and observed 546 

emissions (r2=0.87 for the posterior, versus r2=0.80 for the a priori).  547 

 548 

3.2.2 Wytham Woods (WIsDOM campaign, Oxford, UK) 549 

 Figure 9 (a) shows the WIsDOM isoprene mixing ratio measurements from 25 May to 21 550 

June 2018 at Wytham Woods (Ferracci et al., 2020), resampled to hourly averages. Because the 551 

WIsDOM measurements are isoprene mixing ratios, a direct comparison with MEGAN is not 552 

possible without the use of an atmospheric model. However, an observed temperature response 𝜸𝑻
′  553 

can be obtained using the same methodology as at BR-Sa1 if the variability in the observed 554 
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isoprene mixing ratios is primarily due to the temperature and sunlight emission response (𝜸T × 555 

𝜸PAR). This requires that we filter the WIsDOM observations to minimize variability in 556 

photochemical loss rates and dispersion, the two main isoprene removal pathways (Ferracci et al., 557 

2020). Of these two pathways, dispersion is the primary loss mechanism due to the short residence 558 

time of isoprene within the forest canopy (seconds to minutes; Fuentes et al., 2007; Gerken et al., 559 

2017) compared to its photochemical oxidation lifetime (30min - 1 hour) (Ferracci et al., 2020). 560 

 561 
 562 

Figure 9: (a) Isoprene mixing ratios at the top of the canopy at Wytham Woods from 26 May – 21 June 2018 resampled 563 

to hourly averages. The blue circles indicate the observations which remain after filtering for PPFD > 650 μmol/m2/s, 564 

wind speed between 1.88 m/s and 4.73 m/s, and wind direction between 36° and 245°. (b) Time series of a priori 565 

MEGAN 𝜸 factors at Wytham Woods. (c) Correlation between the filtered WIsDOM isoprene mixing ratio 566 

measurements (blue circles) and the product 𝜸T × 𝜸PAR in MEGAN. The blue dashed line in (c) indicates the linear fit 567 

between the WIsDOM measurements and 𝜸T × 𝜸PAR.  568 

 We filter the preheatwave isoprene measurements for PPFD > 650 μmol/m2/s to reduce 569 

variability in photochemical isoprene loss rates and in the sunlight-driven emission response 𝜸PAR 570 

following the methodology of Ferracci et al (2020). We then keep only those measurements with 571 

a concurrent GEOS-FP 10-metre windspeed within one standard deviation of the mean 572 

preheatwave windspeed (2.12 – 5.31 m s-1) to minimize variability in isoprene dispersion rates. As 573 

a final step, only data with a GEOS-FP 10-metre wind direction within one standard deviation of 574 

the mean (between 36° and 245°) were kept to minimize variability in isoprene source strength. 575 
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The filtered time series is shown in Figure 9 (a). Additional information about this data filtering 576 

methodology is available in Ferracci et al (2020). 577 

 The MEGAN 𝜸 factors for the preheatwave period at Wytham Woods are shown in Figure 578 

9 (b). The MEGAN3 𝜸SM was not available for 2018, but the insignificance of drought stress at 579 

Wytham Woods during the preheatwave period has been previously reported (Ferracci et al., 2020; 580 

Otu-Larbi et al., 2020). The leaf phenology activity factors 𝜸LAI and 𝜸AGE exhibited minimal 581 

variability (Ferracci et al., 2020). The variability of observed isoprene mixing ratios (Figure 9 (a)) 582 

closely follows the variability of 𝜸T and 𝜸PAR (Figure 9 (b)). This is confirmed in Figure 9 (c), 583 

which shows the strong linear correlation between the filtered Wytham Woods isoprene 584 

observations and 𝜸T × 𝜸PAR. Following the same methodology as at BR-Sa1, we define an observed 585 

temperature response 𝜸𝑻
′  as 586 

𝛾𝑇
′ =

𝐶𝐼𝑆𝑂𝑃 − 𝑏

𝑚𝛾𝑃𝐴𝑅
, (9) 587 

where CISOP is the filtered isoprene mixing ratio, 𝜸PAR is the MEGAN sunlight response, and m 588 

and b are the slope and intercept of the linear fit in Figure 9 (c). Figure 10 (a) shows that there is 589 

good agreement between the observed 𝜸𝑻
′  and the a priori MEGAN 𝜸T, which is supported by the 590 

modeling work by Otu-Larbi et al. (2020) for the preheatwave period. This is in stark contrast to 591 

the behavior observed in Figure 7 (a) at BR-Sa1.  592 

 The observed 𝜸𝑻
′  was used to constrain the MEGAN 𝜸T parameters at Wytham Woods. We 593 

tested all 31 parameter combinations, but for consistency with BR-Sa1 we present only the 594 

optimization results for the subset K2, CT1, and CT2 (Figure 10). The posterior 𝜸T (Q10 = 2.29) is 595 

within error of the MEGAN a priori (Q10 = 1.74), and both quantities are in good agreement with 596 

the observed 𝜸𝑻
′  (Figure 10 (a)). Figures 10 (b) – (d) show that the 𝜸T parameters are not as 597 

precisely constrained as at BR-Sa1, which is due to the lower sensitivity of MEGAN to K2 and CT1 598 

at the lower ambient temperatures of Wytham Woods (see Supplementary Text S6). Unlike at BR-599 

Sa1 (Figures 8 (c) – (e)), the median posterior parameters are all relatively close to their a priori 600 

values. This indicates that the temperature sensitivity of isoprene emissions at Wytham Woods 601 

during the preheatwave period is accurately represented by the a priori parameterization of 𝜸T, in 602 

contrast to what was observed at BR-Sa1. This is discussed further in Section 4.4. 603 
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 604 
 605 

Figure 10: (a) A priori MEGAN 𝜸T (black), median posterior 𝜸T (solid red) and interquartile range (dotted red) as a 606 

function of temperature (calculated using Equation (2)) compared with the observed 𝛾𝑇
′  (+ symbols) (calculated using 607 

Equation (9) from filtered mixing ratio observations) at Wytham Woods. Posterior parameter distributions for K2, CT1, 608 

and CT2 are shown in panels (b) – (d) (light blue). The median posterior values are indicated by the dashed blue lines 609 

in (b) – (d), while the a priori values are indicated by the solid black lines. The uniform a priori parameter distribution 610 

is indicated by the dashed black vertical line in (b) – (d). 611 

4. Discussion 612 

4.1 Sensitivity to drought stress  613 

 The sensitivity of MEGAN to drought stress is a source of error in our parameter 614 

optimization experiments. Our optimization of E0 in Eastern Australia was highly sensitive to the 615 

MEGAN3 drought stress activity factor 𝜸SM (Figure 3), consistent with previous studies 616 

(Emmerson et al., 2019). Enabling 𝜸SM increased the posterior E0 by 40% relative to the no-𝜸SM 617 

optimization because much of the bias between MEGAN and GlobEmission was already 618 

accounted for by the drought stress factor. We can mitigate this source of uncertainty by focusing 619 

our optimization efforts on regions and time periods which are not subject to drought stress, such 620 

as the Eastern Amazon during the BR-Sa1 measurement period and Wytham Woods during the 621 

2018 preheatwave period.  622 
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 While in principle we could enable the MEGAN3 𝜸SM in all experiments to account for 623 

drought stress, there are uncertainties in 𝜸SM itself which limit the usefulness of such an approach. 624 

In particular, 𝜸SM does not account for the observed increase in isoprene emission rates that 625 

accompany moderate drought stress (Ferracci et al., 2020; Otu-Larbi et al., 2020; Potosnak et al., 626 

2014; Saunier et al., 2020). Including 𝜸SM in our optimization experiments therefore risks 627 

misattributing uncertainties in 𝜸SM to other model parameters including E0 and 𝜸T. A recent study 628 

has found that the parameterization of the MEGAN 𝜸SM can be improved using a combination of 629 

ecosystem-scale isoprene flux measurements and satellite-derived soil moisture (Opacka et al., 630 

2022). Future work in this direction, along with updates to the 𝜸SM algorithm to account for the 631 

impact of moderate drought stress on emissions, should improve the utility of the MEGAN drought 632 

stress response and allow parameter optimization experiments to be reliably performed under 633 

drought conditions.  634 

 635 

4.2 Sensitivity to errors in model input data: temperature and LAI 636 

 The sensitivity of MEGAN to meteorology and landcover inputs is another source of 637 

uncertainty in our parameter optimization. Biases in temperature and LAI inputs are particularly 638 

important, as these are among the primary drivers of short- and long-term variability in MEGAN, 639 

respectively (Alves et al., 2016, 2018; Chen et al., 2018; Guenther et al., 1993; Opacka et al., 640 

2021). The impact of input biases on our optimization is apparent in Figures 5 (a) – (d), where 641 

there is a 45% difference between the posterior E0 at BR-Sa1 depending on whether local or 642 

MERRA-2 temperature data was used due to discrepancies between the two temperature datasets. 643 

These discrepancies could reflect region-specific biases in the MERRA-2 temperature data (e.g., 644 

Draper et al., 2018; Gupta et al., 2020) or could simply be due to the coarse spatial resolution of 645 

the MERRA-2 data. 646 
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 647 
 648 

Figure 11: (a) Mean annual (2014) isoprene emission bias as calculated with MEGANv2.1 in the Amazon (light blue) 649 

and the Sahel (orange) when running the model with biased temperature (T ± 1 %) or leaf area index (LAI ± 10 %) 650 

input data. (b) A priori MEGAN 𝜸T (calculated using Equation (2)) superimposed with range of temperatures in the 651 

un-perturbed MERRA2 input data for both the Amazon (dash-dotted line) and the Sahel (dotted line) in 2014. (c) A 652 

priori MEGAN 𝜸LAI (calculated using Equation S5) superimposed with range of LAI values in the unperturbed 8-day 653 

average MODIS LAI input data for both the Amazon and the Sahel in 2014. The heightened sensitivity of MEGAN 654 

to LAI in the Sahel is indicated by the steeper slope of 𝜸LAI in the Sahel LAI range compared to the Amazon. 655 

 The sensitivity of MEGAN isoprene emissions to temperature and LAI inputs is illustrated 656 

in Figure 11, which shows the impact of temperature and LAI biases on annual mean (2014) 657 

MEGAN isoprene emission rates in the Eastern Amazon and Western Sahel regions. A 1% 658 

temperature bias (~2.5–3.5K, consistent with the difference between the local BR-Sa1 and 659 

MERRA-2 temperatures) leads to emission biases exceeding 30% (Figure 11 (a)) in both regions. 660 

Note that this sensitivity test used the a priori parameterization of 𝜸T (Q10 = 1.74). The impact of 661 

temperature input errors would be even more significant if we instead used the posterior 662 

parameterization from BR-Sa1 due to the enhanced temperature sensitivity of isoprene emissions 663 

at that site (Q10 = 9.29). The sensitivity to LAI is much lower and varies significantly between the 664 

two regions, with a 10% LAI bias (based on the estimated uncertainty of the MODIS LAI product 665 

(Fang et al., 2013)) leading to a 10% emission bias in the Sahel but only a 2% emission bias in the 666 
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Amazon (Figure 11 (a)). This variable sensitivity is due to the saturation of 𝜸LAI in high-LAI 667 

environments such as the Amazon (Figure 11 (c)), which represents the shading of foliage by the 668 

upper layers of the forest canopy (Guenther et al., 2006) (see Equation S5 in Supplementary Text 669 

S8).  670 

 The high sensitivity of MEGAN emissions to temperature biases shows the importance of 671 

using reliable locally constrained model inputs to drive MEGAN, such as the locally measured 672 

temperature at BR-Sa1 and Wytham Woods. Biases in LAI are unlikely to have any significant 673 

impact on our optimization in high-LAI environments such as the Amazon but may introduce 674 

biases of 10% or more in low-LAI environments like the Sahel. In such cases, locally constrained 675 

LAI data may be necessary to mitigate this source of error and obtain reliable posterior parameters. 676 

The spatial variability of the MEGAN temperature and LAI sensitivity on a global scale is 677 

presented in Supplementary Text S8. 678 

 It is possible that the sensitivity to LAI presented here is an underestimate of the true 679 

sensitivity because it does not account for leaf age fractionation (i.e., what fraction of the total LAI 680 

is made up of immature, mature, or senescing leaves). Isoprene emissions are known to vary as a 681 

function of leaf age (Guenther et al., 2006), and changes in leaf age fractionation have been shown 682 

to significantly impact photosynthesis rates and isoprene production in the Amazon basin (Alves 683 

et al., 2018; Wu et al., 2016). While this effect is modeled by the leaf age activity factor 𝜸AGE in 684 

MEGAN, the leaf age fractionations used to calculate 𝜸AGE are derived from changes in the 685 

MODIS 8-Day LAI product (Guenther et al., 2006). This method of calculating leaf age 686 

fractionations inherently reduces the variability of 𝜸AGE in environments with relatively constant 687 

total LAI such as the Amazon. The use of directly measured leaf age fractionations has been shown 688 

to improve modelled isoprene emissions in the Amazon on seasonal time scales (Alves et al., 689 

2018). Given the short duration of the BR-Sa1 and preheatwave WIsDOM time series it is unlikely 690 

that 𝜸AGE would have a significant impact on our temperature optimization experiments, but it may 691 

lead to significant seasonally-dependent biases to our 9-year E0 optimization experiments. 692 

 693 

4.3 Discrepancies between top-down and eddy covariance constraints 694 

 The a priori MEGAN isoprene emissions at BR-Sa1 were biased high relative to the top-695 

down constraints from GlobEmission (OMI-based) and SOLFEO (TROPOMI-based) but biased 696 

low relative to the local eddy covariance measurements, leading to inconsistent posterior E0 values. 697 
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The disagreement between the top-down and eddy covariance constraints is likely due to the low 698 

bias of the OMI and TROPOMI CH2O columns, discussed in Section 2.2.1. Note that similar 699 

discrepancies between top-down and eddy covariance isoprene fluxes have previously been 700 

reported in the Amazon (Gu et al., 2017), which may also have been due to underestimated 701 

spaceborne columns. Correcting the low OMI and TROPOMI CH2O column biases with ground-702 

based validation studies in the Amazon would result in higher top-down emissions than in 703 

GlobEmission and SOLFEO, and consequently smaller discrepancies between the top-down and 704 

eddy covariance constraints. Other uncertainties in top-down emissions may also contribute to 705 

these discrepancies. Top-down estimates are sensitive to CH2O retrieval errors (Millet et al., 2006), 706 

chemistry-transport model errors (Barkley et al., 2013; Stavrakou et al., 2015), spatial smearing 707 

errors due to non-local CH2O sources (Palmer et al., 2003; Turner et al., 2012), and non-biogenic 708 

CH2O background sources such as biomass burning and methane oxidation (Marais et al., 2012; 709 

Wolfe et al., 2016). 710 

 Chemistry-transport model errors have been identified as a source of particular concern in 711 

top-down isoprene emissions in tropical regions due to their impacts on the CH2O yield from 712 

isoprene oxidation as well as the diurnal variability of isoprene and CH2O concentrations 713 

(Kefauver et al., 2014). This is particularly relevant in the Amazon due to the large uncertainties 714 

in regional NO2 and OH, both of which impact isoprene oxidation chemistry (Wells et al., 2020; 715 

Liu et al., 2016; Liu et al., 2018; Jeong et al., 2022; Wolfe et al., 2016). Stronger constraints on 716 

this chemistry, such as direct space-based isoprene retrievals from the Cross-track Infrared 717 

Sounder (CrIS) (Fu et al., 2019; Wells et al., 2020), may mitigate some of these uncertainties. For 718 

example, CrIS isoprene column retrievals have recently been validated using ground-based 719 

remotely sensed isoprene columns in the Amazon and combined with OMI CH2O and NO2 720 

retrievals to reveal large day-to-day variability in isoprene oxidation lifetime (Wells et al., 2022). 721 

Taking full advantage of top-down emissions estimates to optimize MEGAN will require a better 722 

understanding of the sensitivity of these estimates to chemistry-transport model errors. This 723 

sensitivity could be quantified by obtaining top-down emission estimates using multiple 724 

chemistry-transport models (Miyazaki et al., 2020). Simulated inversion experiments could also 725 

be performed to directly probe the impact of chemistry model errors on top-down emissions based 726 

on satellite pseudo-observations. 727 
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 An additional important issue is the representativeness of the eddy covariance observations 728 

at BR-Sa1. The top-down fluxes are provided at 0.5° × 0.5° spatial resolution, corresponding to a 729 

pixel size of roughly 3000 km2 near the equator (Bauwens et al., 2016). Extrapolating the BR-Sa1 730 

flux measurements to this large pixel size can incur biases due to the spatial heterogeneity of 731 

isoprene emissions (Batista et al., 2019; Li et al., 2021). However, independent aircraft-based eddy 732 

covariance isoprene flux measurements from the Green Ocean Amazon campaign (Gu et al., 2017) 733 

show similar discrepancies with OMI-based emissions, which suggests that this problem cannot 734 

be entirely due to the representativeness of the BR-Sa1 measurements.  735 

   736 

4.4 Variability of 𝜸T between ecosystems 737 

 The optimized 𝜸T at the Amazonian BR-Sa1 site was roughly five times more sensitive to 738 

temperature (Q10 = 9.29) than the MEGAN a priori (Q10 = 1.74). Due to the increased temperature 739 

sensitivity of the posterior 𝜸T, applying this parameterization to the broader Amazon region would 740 

have potentially significant impacts on regional isoprene emissions. However, it is difficult to 741 

extrapolate results from a single measurement site to a broader geographic area due to landcover 742 

and species distribution heterogeneity. Measurements from other Amazonian sites could be used 743 

to determine whether this posterior parameterization is representative of the region.  744 

 Unlike at BR-Sa1, the optimized 𝜸T at the UK Wytham Woods site was not significantly 745 

different from the a priori. This demonstrates that the performance of 𝜸T varies across ecosystems, 746 

and that any updates to the parameterization of 𝜸T should be applied on an ecosystem-specific 747 

scale. This has been done previously for Australian eucalypt species (Emmerson et al., 2020), and 748 

other studies have demonstrated that this may also be necessary for Arctic vegetation (Angot et 749 

al., 2020; Kramshøj et al., 2016; Seco et al., 2020, 2022). Accurately modeling the sensitivity of 750 

isoprene emissions to temperature will depend on the development of an ecosystem-specific 751 

parameterization for 𝜸T, which could be derived using our methodology wherever suitable 752 

observations are available. This has the potential to significantly improve models of atmospheric 753 

chemistry in a warming climate or during severe heat wave events (Emmerson et al., 2020) in 754 

addition to improving day-to-day emission variability. 755 

 An ecosystem-specific parameterization would be particularly useful when relying on 756 

simplified canopy models such as the PCEEA algorithm, which is primarily weighted towards 757 

warm broadleaf forests yet is applied globally to all ecosystem types (Guenther et al., 2006). The 758 
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PCEEA algorithm has been shown to introduce local emission biases of up to 25% relative to more 759 

sophisticated multi-level canopy model versions of MEGAN even though global mean emissions 760 

are consistent to within 5% (Guenther et al., 2006). However, more sophisticated canopy physics 761 

models can still introduce ecosystem-specific temperature and sunlight biases, leading to 762 

vegetation-dependent emission errors (Silva et al., 2020).  763 

 An unresolved source of uncertainty is the impact of drought stress on the emission 764 

temperature response. While the MEGAN a priori 𝜸T adequately describes the observed 765 

temperature response at Wytham Woods during the preheatwave period, increased temperature 766 

sensitivity was observed after the onset of a severe drought and heatwave in June 2018 (Ferracci 767 

et al., 2020; Otu-Larbi et al., 2020). A similar drought response was observed in an oak-dominated 768 

forest in the Missouri Ozarks (Seco et al., 2015). These observations are consistent with current 769 

conceptual models of the drought stress response (Potosnak et al., 2014), and show that the 770 

temperature sensitivity of emissions is a function not only of ecosystem type but also of current 771 

environmental conditions including drought stress.  772 

 773 

5. Summary and conclusions 774 

 We have used Bayesian model-data fusion to optimize the standard emission rate and the 775 

temperature activity factor in MEGAN, using top-down isoprene fluxes derived from satellite 776 

observations in four regions (Amazon, Southeast USA, Western Sahel, and Eastern Australia), 777 

eddy covariance isoprene flux measurements in the Amazon, and isoprene atmospheric mixing 778 

ratio measurements in the United Kingdom.  779 

 Optimization of the standard emission rate E0 with satellite constraints reduced model 780 

biases in the Amazon, the Southeast USA, the Western Sahel, and Eastern Australia. The 781 

optimized E0 values were highly sensitive to model input errors. Sensitivity to temperature errors 782 

was extremely high in all regions, while sensitivity to total LAI errors was only significant in low-783 

LAI environments such as the Western Sahel. The impact of the MEGAN3 drought stress response 784 

on the optimization was spatially and temporally variable, with the largest impact being seen in 785 

Eastern Australia. Uncertainties in the drought stress response are a major obstacle for reliable 786 

parameter optimization under drought conditions. 787 

 We optimized E0 at the Amazonian BR-Sa1 field site using both satellite and eddy 788 

covariance constraints and found that the two results were inconsistent with one another. This 789 
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mismatch may be largely due to the low biases identified in the satellite CH2O retrievals used as 790 

constraints to derive the top-down emissions, leading to an underprediction of the top-down 791 

emission fluxes. Chemistry-transport model errors may add more uncertainty to the top-down 792 

emissions. Future optimization work using top-down emissions as constraints will be dependent 793 

on understanding and reducing the uncertainties in top-down emissions, which could be done 794 

through a combination of satellite validation studies with ground-based measurements and 795 

modeling studies to assess the impact of chemistry-transport model errors on top-down emissions. 796 

Stronger constraints could be placed on isoprene oxidation chemistry in models by combining 797 

satellite retrievals of CH2O with retrievals of isoprene (e.g., Wells et al., 2020), while simultaneous 798 

optimization of isoprene and NOX emissions may also improve top-down constraints due to the 799 

strong dependence of isoprene oxidation chemistry on ambient NOX concentrations (Miyazaki et 800 

al., 2020). 801 

 Optimization of the temperature response 𝜸T with eddy covariance isoprene emission 802 

measurements increased the temperature sensitivity of the model by a factor of 5 (posterior Q10 = 803 

9.29 compared to priori Q10 = 1.74) at BR-Sa1 and reduced model biases by 6%. By contrast, 804 

optimizing 𝜸T with isoprene mixing ratio measurements at the UK-based Wytham Woods site had 805 

no significant impact on the model parameters due to the good agreement between the MEGAN a 806 

priori 𝜸T and the observations. Enhanced sensitivity of isoprene emissions to temperature, and 807 

more specifically the underestimation of emissions at high temperatures, has now been observed 808 

in several ecosystem types, including an Amazonian old growth forest (this study), Australian 809 

eucalpyt trees (Emmerson et al., 2020), and various species of Arctic vegetation (Angot et al., 810 

2020; Kramshøj et al., 2016; Seco et al., 2020, 2022). Drought stress has also been shown to 811 

increase temperature sensitivity at multiple temperate sites (Ferracci et al., 2020; Otu-Larbi et al., 812 

2020; Seco et al., 2015). Accurate modeling of isoprene emissions, as well as their impacts on air 813 

quality and climate, will require an ecosystem-specific parameterization of the temperature 814 

emission response as well as an improved understanding of the drought stress emission response. 815 

Such a parameterization could be derived from ground-based isoprene and temperature 816 

measurements in a wide range of ecosystems. Existing measurements should be used to evaluate 817 

and reparametrize the temperature response where possible, while future measurement campaigns 818 

should target a wide range of ecosystem types. The use of longer measurement time series than 819 

presented in this paper would allow seasonal impacts such as drought to be investigated as well. 820 
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The significance of isoprene emissions at high temperatures or under drought conditions is 821 

expected to increase in a warming climate (Emmerson et al., 2020; Saunier et al., 2020), further 822 

highlighting the need for a reliable parameterization of the emission temperature response. 823 
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 The MEGAN 2.1 source code (Guenther et al., 2012) and the MEGAN 3 drought stress 843 

activity factors (X. Jiang et al., 2018) can be obtained from https://bai.ess.uci.edu/megan/data-844 

and-code. The MHMCMC Matlab code (Yang et al., 2021) is available at 845 

https://doi.org/10.5281/zenodo.4904195. The global OMI-based top-down isoprene flux 846 

estimates (Bauwens et al., 2016) are available for download at 847 

https://emissions.aeronomie.be/index.php/omi-based/biogenic. The TROPOMI-based top-down 848 

isoprene flux estimates for South America are available for download at 849 

https://emissions.aeronomie.be/index.php/tropomi-based/isoprene-sa. The data from the 850 

WIsDOM campaign (Ferracci et al., 2020) are available from the Natural Environment Research 851 
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Council (NERC) Centre for Environmental Data Analysis (CEDA) archive at 852 

https://catalogue.ceda.ac.uk/uuid/0c39809848ce47bb850d8ca2045e40f2. The BR-Sa1 isoprene 853 

flux and temperature measurements (Sarkar et al., 2020) can be obtained by sending an email to 854 

chinmoysarkar8@gmail.com or alex.guenther@uci.edu. The MERRA-2 and GEOS-FP data used 855 

in this study have been provided by the Global Modeling and Assimilation Office (GMAO) at 856 

NASA Goddard Space Flight Center. The particular files used to drive MEGAN in this study 857 

were obtained from the GEOS-Chem (Bey et al., 2001) met-field archive at 858 

http://geoschemdata.wustl.edu. The MODIS 8-day LAI product (Yuan et al., 2011, 2020) is 859 

available at http://globalchange.bnu.edu.cn/research/laiv6. 860 
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Text S1. MEGAN normalization with canopy environment coefficient 

 The canopy environment coefficient CCE is a normalization constant which ensures that EISOP = E0 
under standard conditions. These conditions are listed in Table S1. The normalization constant is defined 
as  

𝐶𝐶𝐸 =
1

(𝛾𝑇 × 𝛾𝑃𝐴𝑅 × 𝛾𝐿𝐴𝐼 × 𝛾𝐴𝐺𝐸 × 𝛾𝐶𝑂2 × 𝛾𝑆𝑀)𝑆𝑡𝑑
  (S1) 

where the subscript Std indicates that each 𝜸-factor is calculated at standard conditions. The definition 
of CCE makes it sensitive to certain 𝜸T parameters, including TMax, CT1, and CT2, while it is insensitive to 
other parameters including K1 and K2. The 𝜸T parameter CEO has no impact on MEGAN isoprene 
emissions because it appears as a multiplicative factor in 𝜸T and in 𝜸T,Std (i.e., in both the numerator and 
denominator of the MEGAN equation). Because CCE is sensitive to the values of the 𝜸T parameters, we 
multiply our posterior 𝜸T by the updated normalization constant when calculating posterior MEGAN 



emissions. This is necessary to ensure EISOP = E0 under standard conditions when using the posterior 
parameterization. All plots of 𝜸T in the main text are thus multiplied by their corresponding CCE values 
(i.e., either the a priori or posterior CCE) to ensure they are all normalized to the same standard 
conditions.  

 

Text S2. Long term temperature response in MEGAN 𝜸T 

 The MEGAN temperature response 𝜸T exhibits hysteresis with respect to past ambient 
temperatures. Emissions increase up with temperature up to an optimal value EOpt, given by 

𝐸𝑂𝑝𝑡 = [𝐶𝐸𝑂 × exp (𝐾2(𝑇𝑑𝑎𝑖𝑙𝑦 − 297))] , (S2) 

which occurs at temperature TOpt, given by 

𝑇𝑂𝑝𝑡 = 𝑇𝑀𝑎𝑥 + (𝐾1(𝑇𝑑𝑎𝑖𝑙𝑦 − 297)) (S3) 

where CEO is a scaling factor, TDaily is the ambient temperature (in K) of the past 24 hours, TMax 
(313 K) is the standard optimal temperature, and K1 (0.6) and K2 (0.08) are coefficients which 
determine the sensitivity of EOpt and TOpt to variations in TDaily (Guenther et al., 2006). Values of 
TDaily greater than 297 K will increase the optimum value of 𝜸T (EOpt) as well as cause this 
optimum to occur at a higher temperature (TOpt). The opposite occurs when TDaily falls below 
297 K. The magnitude of these changes in EOpt and TOpt is set by K1 and K2, with larger values of 
these parameters giving a higher sensitivity to TDaily and vice versa. These impacts are illustrated 
in Figure S1. 
 This algorithm is based on a limited number of experiments (Geron et al., 2000; Hanson 
& Sharkey, 2001; Monson et al., 1994; Pétron et al., 2001), leading to relatively large 
uncertainties in the empirical parameters CEO, TMax, K1, and K2. We therefore treat these as free 
parameters in our optimization experiments. However, the parameter CEO has no impact on 
modelled emissions when 𝜸T is used within the full MEGAN equation (Equation (1) in the main 
text) due to the normalization of emissions to E0 under standard environmental conditions (see 
Supplementary Text S1).  

 

Text S3. Sensitivity of E0 optimization to observation errors 

 In our top-down optimization of E0 we assumed a constant relative error in the 
observations of 30%. This is consistent with early OMI-based top-down emission inventories 
(Millet et al., 2006). It is possible that we are overestimating the uncertainty in some regions, 
but we are likely underestimating it in others, due to spatially and temporally varying sources of 
error in the satellite-derived products (including CH2O retrieval biases (Vigouroux et al., 2020; 
De Smedt et al., 2021), chemistry-transport model errors (Barkley et al., 2013; Stavrakou et al., 
2015), spatial smearing errors (Palmer et al., 2003; Turner et al., 2012), and background CH2O 
sources (Marais et al., 2012; Wolfe et al., 2016)). We therefore had to account for the potential 
impact of our uncertainty assumption on the optimization of E0.  
 The optimization of model parameters is dependent on the accuracy and precision of 
the observational constraints. While we assume observations are unbiased during our 
experiments, we account for the precision (i.e., measurement noise and other random errors) 
of the observations explicitly in our MHMCMC scheme through the model likelihood function  



𝑃(𝒙𝑖) = exp (−0.5 ∑ (
(𝑴(𝒙𝑖) − 𝑶)2

𝜎𝑂
2 )) , (S4) 

where M(xi) is the model output vector (in our case MEGAN isoprene emissions), O is the 
observation vector, and 𝞂O is the observation error. The presence of 𝞂O in the denominator of 
Equation (S4) ensures that more precise observations will give a more strongly peaked 
probability distribution and therefore stronger constraints on the model parameters.   
  We performed a series of simulated observation experiments to test the sensitivity of 
the E0 optimization to the assumed observation error 𝞂O. MEGAN was used to generate a "true" 
isoprene emission time series which was then sampled at user-specified intervals (hourly, daily, 
and monthly) and perturbed with Gaussian noise (𝞂O = 1 % – 50%) to produce pseudo-
observations. The pseudo-observations were then used to constrain E0 in the MHMCMC 
scheme. Figure S2 shows a sample of how the posterior E0 distribution changes as a function of 
observation frequency and error. Figure S2 (a) and (b) show the posterior E0 as constrained with 
monthly observations with 5% and 25% error, respectively, while Figure S2 (c) and (d) show the 
results for hourly observations with the same errors as (a) and (b). The observation frequency 
had no significant impact on the optimization of E0, whereas larger observation errors resulted 
in a broader posterior E0 distribution. Despite the weaker constraints on E0 with larger 
observation errors, the median posterior value is still well-within one standard deviation of the 
true E0. The optimization was consistently able to recover E0 up to an observation error of 
nearly 50%, at which point signal-to-noise was insufficient to constrain the emissions.  
 These simulated observation experiments suggest that top-down emission estimates are 
sufficiently precise to constrain E0, and that our assumption of a 30% error has little impact on 
the posterior E0 values other than potentially over or underestimating the standard deviation of 
the posterior E0 distribution. This is a relatively minor issue when compared to other sources of 
error in the E0 optimization, including the impact of drought stress, model input uncertainties, 
and discrepancies between different observation datasets (see main text Section 4).  

 

Text S4. Mapping locally measured PAR to GEOS-FP PAR 

 Local PAR measurements are available at Wytham Woods in September 2018 but they 
are not available during the pre-heatwave period (25 May – 21 June). We consequently used 
hourly GEOS-FP PAR at 0.25° × 0.325° spatial resolution to drive MEGAN in our optimization 
experiments. To avoid introducing biases due to discrepancies between the local PAR 
measurements and the GEOS-FP PAR, we generated a linear mapping between the two 
datasets for September 2018 following the methodology of Ferracci et al (2020). This mapping 
is shown in Figure S3, in units of photosynthetic photon flux density (PPFD). There is a strong 
correlation between the local WIsDOM measurements and the GEOS-FP values (r2 = 0.83). 
However, there is also a ~30% offset between the two datasets as indicated by the slope of the 
linear map in Figure S3, with WIsDOM PPFD measurements being consistently lower than the 
concurrent GEOS-FP values. We applied the linear map in Figure S3 to the pre-heatwave (25 



May– 21 June) GEOS-FP PPFD data to account for this offset, effectively transforming the GEOS-
FP PPFD into the local measurement space.  
 The linear map in Figure S3 is a source of error in our optimization, partially due to the 
large amount of scatter in the measurements and partially due to our assumption that a map 
based on September 2018 observations is applicable during the pre-heatwave period (25 May – 
21 June). The impact of this source of error is limited by filtering the WIsDOM measurements 
for PPFD > 650 μmol/m2/s (equivalent to PAR > 136 W/m2). This effectively limits our 
observations to mid-day scenes (roughly 10am – 4pm local time, depending on cloud cover) and 
greatly reduces the sunlight-driven variability of the isoprene measurements. This is described 
in more detail in Section 3.2 of the main text, as well as in Ferracci et al (2020).  

 

Text S5. Sensitivity of 𝜸T optimization to observation errors 

We performed a series of simulated observation experiments to test the sensitivity of the 
𝜸T optimization to the assumed observation error 𝞂O. In these simulated observation 
experiments, MEGAN was used to generate a "true" isoprene emission time series which was 
then sampled at user-specified intervals (hourly, daily, and monthly) and perturbed with 
Gaussian noise (𝞂O = 1 % – 50%) to produce pseudo-observations. The pseudo-observations 
were then used to constrain the 𝜸T parameters in the MHMCMC scheme. All 31 unique 
combinations of the 𝜸T parameters TMax, K1, K2, CT1, and CT2 were tested. For brevity, we present 
here only the results for the optimization of TMax with all other parameters fixed to their a priori 
values. 
 Figure S4 shows how the posterior TMax distribution changes as a function of observation 
error and observation frequency. The MHCMC can constrain TMax given hourly observations 
with 1% relative error, resulting in a very narrow probability distribution (Figure S4 (a)). 
Increasing the observation error to 5% results in a much broader probability distribution and an 
incorrect median posterior value (Figure S4 (b)), though the mode of the distribution still 
coincides with the true parameter value. With an observation error of 25% the MHMCMC is 
unable to constrain TMax even with hourly observations (Figure S4 (c)). Unlike with the E0 
optimization (Figure S2), the optimization of the 𝜸T parameters was sensitive to observation 
frequency. Figure S4 (d) shows that monthly observations with 1% error can constrain TMax, but 
the probability distribution is broader than with hourly observations (Figure S4 (a)). TMax could 
not be constrained with monthly observations with 5% error or greater (Figure S4 (e) and (f)).  
 None of the 31 combinations of 𝜸T parameters could be reliably constrained with 
observation errors exceeding 20% in our simulated observation experiments. This effectively 
ruled out the use of top-down isoprene emission estimates as constraints on 𝜸T. Because of 
this, we only attempted to optimize 𝜸T using the BR-Sa1 eddy covariance flux measurements 
(observation error of ~15%; Sarkar et al., 2020) and WIsDOM isoprene mixing ratio 
measurements (observation error of ~10%; Ferracci et al., 2020).  

 

Text S6. Sensitivity of MEGAN to E0 and 𝜸T parameters 

MEGAN has a different sensitivity to each of its empirical parameters, defined here as the 
change in model output for a given perturbation to an empirical parameter. This has important 



implications for optimizing MEGAN parameters with observations using MHMCMC, because 
higher sensitivity parameters can be more readily constrained due to their larger impact on 
model output (i.e., perturbations to these parameters by the MHMCMC algorithm are more 
likely to produce a signal in the model output which rises above the noise in the observational 
constraints). Conversely, lower sensitivity parameters can only be constrained with more 
precise observations. 
 The sensitivity of MEGAN to E0 and each of the 𝜸T parameters (TMax, K1, K2, CT1, and CT2) 
is illustrated in Figure S5 (note that the 𝜸T parameter CEO was omitted due to the normalization 
of MEGAN described in Supplementary Text S1). Each panel in Figure S5 shows the mean 
isoprene emission rate at BR-Sa1 from 1 – 16 June 2014 as calculated with MEGAN 2.1.  The red 
circle in each panel represents the unperturbed emissions, using the a priori (PCEEA) value 
parameter values and the measured mean temperature at BR-Sa1 (this measured temperature 
is indicated by the vertical dotted black line). Deviations from this point on the y-axis represent 
perturbations to the MEGAN parameters, while deviations along the x-axis represent 
perturbations to the ambient daily temperature. The solid black contours represent the 
measured mean isoprene emission rate at BR-Sa1 ± 5 %.  
 By following the dotted black line from the red circle to the solid black contours in each 
panel, we can see that MEGAN could be brought into agreement with the BR-Sa1 observations 
(at least in terms of the mean emission rate for the whole time series) by: (a) increasing E0 from 
1 to 1.2 (in units of 109 kgC/m2/s); (b) reducing TMax from 313 K to 303 K; (c) reducing K1 from 
0.6 – 0.3; (d) increasing K2 from 0.08 – 0.11; (e) reducing CT1 from 80 – 40 kJ/mol; or (f) reducing 
CT2 from 200 – 100 kJ/mol. The gradient along each path is a measure of the sensitivity of 
MEGAN to each parameter, with steeper gradients (e.g., E0, K2) indicating a higher sensitivity 
and shallower gradients (e.g., TMax, K1, CT1, CT2) indicating a lower sensitivity. This is illustrated in 
Figure S6, where we have used MEGAN 2.1 to calculate weekly mean isoprene emissions for 
2014 in the Western Sahel regions with large perturbations to each of the MEGAN parameters. 
Large perturbations in E0 (called "AEF" = "annual emission factor" in Figure S6) and K2 lead to 
significant changes to the modelled emissions, while perturbations to K1, TMax, CT1, and CT2 have 
a more minor impact. These sensitivities vary in time due to changes in ambient temperature; 
this is the same effect as is visible in Figure S5, where the gradient along the y-axis (i.e., 
parameter perturbation axis) changes as a function of position along the x-axis (i.e., the 
temperature axis). 
 These sensitivities are a proxy for our ability to constrain each parameter with 
observations, indicating that most of the 𝜸T parameters (except for K2) are more difficult to 
constrain than E0. However, it must be noted that the joint sensitivities which emerge when 
optimizing multiple MEGAN parameters simultaneously are not necessarily the same as those 
shown in Figure S5 or S6 where parameters were perturbed in isolation. It was therefore 
necessary to test all possible combinations of parameters in our optimization experiments to 
determine which subsets could be reasonably well constrained (see Supplementary Text S5). 

 

Text S7. Optimization of TMax and K1 at BR-Sa1 using eddy covariance fluxes 

There are 31 unique combinations of the 5 𝜸T parameters TMax, K1, K2, CT1, and CT2. Due to 
the differing sensitivity of MEGAN to each of these parameters, particularly when multiple 



parameters are perturbed simultaneously, all 31 combinations were tested in our MHMCMC 
optimization to identify the best possible subset. Here "best" refers to the largest subset in 
which each parameter is reliably constrained while also significantly improving model-
observation agreement. The 𝜸T parameter subset K2, CT1, and CT2 was identified as the best 
subset at BR-Sa1 using eddy covariance flux constraints (see Main Text Figure 7 and Figure 8). 
Many subsets contained poorly constrained parameters, or alternatively they contained well-
constrained parameters but failed to significantly improve model-observation agreement. 

Figure S7 shows the optimization results for the subset of TMax and K1 (the two empirical 
parameters in Equation S2). The posterior 𝜸T is extremely similar to the a priori over the range 
of observed temperatures and is not in significantly better agreement with the observations. 
Furthermore, the interquartile range of the posterior 𝜸T shows that TMax and K1 have a 
negligible impact on 𝜸T at lower temperatures but a very large impact at high temperatures. 
This is expected from Equation S2, as both parameters simply modulate the location of the 
high-temperature emission peak. The histograms in Figure S7 show that neither parameter is 
well-constrained by the optimization; the MHMCMC can effectively rule out a reduction in TMax 
but is unable to distinguish between higher values of TMax due to the low and asymmetric 
sensitivity of MEGAN to this parameter (see Figure S5 (b)). The K1 parameter is dragged towards 
zero by the optimization, which reduces the model's sensitivity to TDaily and keeps the emission 
peak closer to TMax. This has the net effect of slightly increasing modelled emissions by moving 
the emission peak TOpt closer to ambient temperatures, thereby slightly reducing model biases 
relative to the observations.  
 While the median posterior parameter values indicated in Figure S7 do reduce model 
biases (Figure S8 (a)), they do not improve the temporal variability of the estimate (i.e., the 
correlation between the model and the observations as indicated by the r2 values in Figure S8 
(b)). This contrasts with the subset of K2, CT1, and CT2 shown in the main text (Figure 8).   

 

Text S8. Variability of MEGAN sensitivity T and LAI input errors 

 MEGAN isoprene emissions are highly sensitive to temperature due to the exponential 
form of 𝜸T over typical terrestrial temperature ranges (see Figure 11 in the main text). As a 
result, small errors in the temperature data used to drive MEGAN can lead to large errors in the 
modelled emissions. This can be seen in Figure S9 (a), which shows the relative change in 
seasonally averaged (December-January-February, 2016–2017) MEGAN isoprene emissions 
when positively biased temperature data are used to drive the model. A 1% temperature bias 
leads to emission biases in excess of 40% in most regions, consistent with our findings at BR-Sa1 
when comparing the MERRA2 and locally measured temperature data (see Figure 5 (c) and (d) 
in the main text). From the viewpoint of model parameter optimization, it is clear that accurate 
temperature data must be used to drive MEGAN to obtain reliable emissions estimates and 
posterior parameters in all regions. 
 The sensitivity of MEGAN to LAI is much more variable, being high in low-LAI 
environments like the Sahel and negligible in high-LAI environments like the Amazon (see Figure 
11 in the main text). This spatial variability is a direct consequence of the functional form of 𝜸LAI 
(Guenther et al., 2006), 



𝛾𝐿𝐴𝐼 =
0.49𝐿𝐴𝐼

√1 + 0.2𝐿𝐴𝐼2
 (S5) 

 
and is illustrated in Figure S9 (b),which shows the relative change in seasonally averaged (Dec-
Jan-Feb) MEGAN isoprene emissions when positively biased LAI data are used to drive the 
model. The season Dec-Jan-Feb was chosen because this coincides with the minimum of the 
MODIS 8-Day LAI product in the Sahel of North Africa, allowing the spatial variability of LAI 
sensitivity in North African to be more easily seen. A 5% LAI bias leads to a 5% emission bias in 
the savannas of Northern and Southern Africa as well as Western Australia but has barely any 
impact (<1%) on emissions in tropical rainforest environments such as the Amazon or Congo 
River basins. Note that the large relative impact at high Northern latitudes in Figure S9 (b) is 
small in absolute terms, as total isoprene emissions from these regions are very low during 
boreal winter. The low sensitivity of MEGAN to LAI in forested regions implies that errors in LAI 
inputs are a likely only a very minor source of error (a few percent at most) in our model 
optimization in the Eastern Amazon, the Southeast US, and the UK temperate forest at Wytham 
Woods. On the other hand, LAI input errors may be on the order of 10% in the Western Sahel 
and Eastern Australia given the estimated uncertainty in the MODIS 8-day LAI product (Fang et 
al., 2013) and the higher sensitivity of MEGAN to LAI in low-LAI environments. 

 

 

Figure S1. MEGAN temperature response 𝜸T plotted as a function of temperature for 4 different 

24-hour average temperatures (T24, equivalent to TDaily in Equation (S1) and (S2)). The standard 

value of T24 is 297 K, such that 𝜸T = 1 at 303 K (standard instantaneous temperature) and the 

emission peak is located at TMax = 313 K. Changing the past ambient temperature changes both 

the location and height of the 𝜸T peak. The magnitude of these changes is controlled by K1 and 

K2 in Equation (S1) and (S2). 

 



 

Figure S2. Posterior E0 distribution for a selection of simulated observation experiments using 

2014 MEGAN isoprene emissions in the Eastern Amazon region as the truth. The observation 

characteristics were (a) hourly with 5% error, (b) hourly with 25% error, (c) monthly with 5% 

error, and (d) monthly with 25% error. The true E0 value is represented by the solid black line 

and the median posterior E0 for each experiment is the solid red line. The blue histograms show 

a subsample of 500 E0 values from the MHMCMC output (out of 5000 total accepted samples), 

which represents the posterior E0 probability distribution. 

 



 

Figure S3. Scatter plot of local PAR measurements with GEOS-FP PAR for September 2018. The 

linear mapping (red line) was used to account for the systematic bias between the GEOS-FP PAR 

and the locally measured PAR in September 2018, and then applied to the GEOS-FP PAR during 

the pre-heatwave period.   

 



 

Figure S4. Posterior TMax distribution for a selection of simulated observation experiments using 

2014 MEGAN isoprene emissions in the Eastern Amazon region as the truth. The observation 

characteristics were (a) hourly with 1% error, (b) hourly with 5% error, (c) hourly with 25% error, 

(d) monthly with 1% error, (e) monthly with 5% error, and (f) monthly with 25% error. The true 

TMax value is represented by the solid black line and the median posterior TMax for each 

experiment is the solid red line. The blue histograms show a subsample of 500 TMax values from 

the MHMCMC output (out of 5000 total accepted samples), which represents the posterior TMax 

probability distribution. 

 



 

Figure S5. Sensitivity of mean MEGAN isoprene emissions at BR-Sa1 from 1 - 16 June 2014 to 

(a) E0, (b) TMax, (c) K1, (d) K2, (e) CT1, and (f) CT2. The red circle indicates the unperturbed MEGAN 

emissions, and the dashed vertical black line indicates the measured daily average temperature 

TDaily. The y-axis of each panel shows parameter values, while the x-axis shows perturbations to 

the daily average temperature to illustrate the temperature dependence of the parameter 

sensitivity. The sensitivity is indicated by the gradient of each contour plot. The solid black lines 

indicate the average measured isoprene emission rate at BR-Sa1 ± 5 %. 

 



 

Figure S6. Weekly average isoprene emission rates (2014) in the Western Sahel region as 

calculated with MEGAN 2.1 using default (PCEEA) parameter values, normalized by AEF (note 

that AEF is equivalent to E0). Positive (red) and negative (blue) perturbations to each parameter 

have an impact on the modelled emissions, with higher sensitivity parameters (AEF, K2) 

impacting the emissions more than lower sensitivity parameters (K1, TMax, CT1, CT2). 

 



 

Figure S7. (top) A priori MEGAN 𝜸T (black), median posterior 𝜸T (solid red) and interquartile 

range (dotted red) as a function of temperature compared with the observed 𝜸𝑻
′  (+ symbols) at 

BR-Sa1. Posterior parameter distributions for TMax and K1 are shown in the lower left and lower 

right panels, respectively (light blue). The median posterior values are indicated by the dashed 

blue lines in the lower panels, while the a priori values are indicated by the solid black lines. 

 

 

Figure S8. (a) A priori and posterior MEGAN isoprene flux estimates at BR-Sa1 from 1 – 16 June 

2014, using the parameter subset of TMax and K1. The posterior emissions were calculated using 

the optimized 𝜸T based on eddy covariance observations (+ symbols). The dotted red line 

denotes the interquartile range on the posterior emission estimate. (b) Correlation between 

observed and modelled hourly mean isoprene emission rates at BR-Sa1. The solid red line is a 



linear fit to the posterior modelled emissions (red circles), whereas the solid black curve is a 

linear fit to the a priori emissions (+ symbols). 

 

 

Figure S9. (a) Ratio of the biased ("Perturbed") and unbiased ("Control") seasonally averaged 

MEGAN isoprene emissions in December-January-February 2016–2017 when running the model 

with biased (+1%) temperature input data. (b) As in (a) but using biased (+5%) LAI input data. 

Note the scale of the colour bar in (b) is greatly reduced compared to (a), reflected the lower 

sensitivity of MEGAN to LAI. 

 

 

Variable Description Standard Value 

LAI Leaf area index 5 cm2/cm2 

FMAT Fraction of mature leaves 80% 

FGRO Fraction of growing leaves 10% 

FOLD Fraction of old leaves 10% 

φ Solar elevation angle 60° 

𝛕PPFD PPFD transmission from top of atmosphere to canopy 0.6 

T Air temperature 303 K 

T24 Average air temperature of past 24 hours 297 K 

PPFDSUN Photosynthetic photon flux density (Sun leaves) 200 μmol/m2/s 

PPFDSHADE Photosynthetic photon flux density (shade leaves) 50 μmol/m2/s 

Table S1. Standard conditions for MEGAN 𝜸-factors as defined by Guenther et al (2006). Under 

these conditions, isoprene emissions are equal to the standard emission rate (EISOP = E0). We list 

here only the standard conditions which appear in the PCEEA implementation of MEGAN. Other 

standard driving variables, including wind speed and humidity, are only required when using the 

full MEGAN canopy environment model. 
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