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Abstract

The effect of aerosol on liquid cloud microphysical properties over the Tibetan Plateau during the warm season is investigated

by employing aerosol index and cloud property parameters. Distinct differences in aerosol effect on liquid cloud microphysical

properties have been found between the northern TP (NTP) and southern TP (STP). The composite liquid cloud droplet

effective radius (LREF) anomalies for positive aerosol index (AI) events are positive in the NTP and negative in the STP.

In both NTP and STP, when the AI anomalies are positive, the LREF anomalies are also positive, which suggests that the

increased aerosol loading reduces the solar radiation reaching the ground and thus enhances the atmospheric stability, making

cloud droplets not conducive to break up. This indicates that the aerosol radiative effect is not likely the reason causing the

distinct differences of aerosol effects on liquid cloud properties between NTP and STP. Further analysis shows that in the STP,

the LREF first increases and then decreases with the increase of AI, while in the NTP, the LREF always increases with the

increase of AI, suggesting a spatial difference in aerosol microphysical effect. In the STP, the influence of aerosol on liquid

clouds is mainly dependent on liquid water path (LWP) and convective available potential energy (CAPE), while in the NTP,

the influence of aerosol on liquid cloud is more likely related to large aerosol particles.
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Key Points:

• The effect of aerosol on liquid cloud is spatially disparate between the
southern (STP) and northern Tibetan Plateau (NTP).

• Positive relationship between the aerosol index (AI) and the liquid cloud
droplet effective radius (LREF) is shown in both STP and NTP.

• LREF first increases and then decreases in the STP while always increases
in the NTP with the increase of AI.

Abstract

The effect of aerosol on liquid cloud microphysical properties over the Tibetan
Plateau during the warm season is investigated by employing aerosol index and
cloud property parameters. Distinct differences in aerosol effect on liquid cloud
microphysical properties have been found between the northern TP (NTP) and
southern TP (STP). The composite liquid cloud droplet effective radius (LREF)
anomalies for positive aerosol index (AI) events are positive in the NTP and
negative in the STP. In both NTP and STP, when the AI anomalies are positive,
the LREF anomalies are also positive, which suggests that the increased aerosol
loading reduces the solar radiation reaching the ground and thus enhances the
atmospheric stability, making cloud droplets not conducive to break up. This
indicates that the aerosol radiative effect is not likely the reason causing the
distinct differences of aerosol effects on liquid cloud properties between NTP and
STP. Further analysis shows that in the STP, the LREF first increases and then
decreases with the increase of AI, while in the NTP, the LREF always increases
with the increase of AI, suggesting a spatial difference in aerosol microphysical
effect. In the STP, the influence of aerosol on liquid clouds is mainly dependent
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on liquid water path (LWP) and convective available potential energy (CAPE),
while in the NTP, the influence of aerosol on liquid cloud is more likely related
to large aerosol particles.

Plain Language Summary

This study indicates that the influence of aerosol on liquid cloud over the TP is
spatially different. AI is positively correlated with LREF in the NTP and STP,
which is due to the aerosol radiation effect. Since the aerosol microphysical effect
depends on local environmental conditions, in the STP, the LREF increases first
and then decreases with the increase of AI, and in the NTP, the LREF always
increases with AI.

1. Introduction

Aerosol-radiation-interaction (ARI) and aerosol-cloud-interaction (ACI) are
still prominent uncertainty sources in climate change assessment (IPCC, 2021).
Aerosol directly scatters and absorbs solar radiation through radiative effect
(Chylek and Wong, 1995; Penner et al., 1992), and indirectly affects cloud
macro- and micro- physical properties and precipitation processes as cloud
condensation nucleus (CCN) through microphysical effect (Garrett and Zhao,
2006; Rosenfeld et al., 2014; Rotstayn, 1999; Twomey, 1977; Zhao et al., 2018).

The influence of aerosol on liquid cloud properties is mainly manifested in the
effect of aerosol acting as CCN on cloud droplet size and number concentration.
When the liquid water content (LWC) is steady, the increase of aerosol would
lead to the formation of more smaller cloud droplets, known as the “Twomey
effect” (Twomey, 1977). Previous observational and simulation studies (Fan
et al., 2020; Garrett et al., 2004; Khain and Pokrovsky, 2014; Koren et al.,
2005; Liu et al., 2017; Penner et al., 2014; Rosenfeld et al., 2014; Wang et al.,
2015; Werner et al., 2014; Zhang et al., 2012; Zhao et al., 2012) have verified the
hypothesis that the increase of aerosol leads to the decrease of cloud droplet size.
However, some studies have found that there is an anti-Twomey effect, that is,
the increase of aerosol leads to the increase in cloud droplet size (Grandey and
Stier, 2010; Ma et al., 2018; Sekiguchi et al., 2003; Yuan et al., 2008; Wang
et al., 2014; 2015). This anti-Twomey effect is speculated to be related to
weakly soluble aerosols, insufficient water supply, stable atmosphere, stratiform
cloud regimes, and so on (Gryspeerdt and Stier, 2012; Qiu et al., 2017; Yuan et
al., 2008; Wang et al., 2014). Ma et al. (2018) found that aerosol is positively
correlated with cloud droplet size in the industrial regions, but negatively in the
adjacent ocean regions. It is suggested that the positive correlation is associated
with low stability and high cloud top, while the negative correlation is associated
with low cloud top with high stability. There are still uncertainties and local
differences in aerosol-cloud interactions. It has been figured out that clouds are
more sensitive to aerosol forcing in relatively clean regions (Garrett and Zhao,
2006; Qiu et al., 2017; Zhao et al., 2020). As one of the remote clean regions
on the Earth, what is the relationship between aerosols and clouds over the
Tibetan Plateau (TP)?

2



The TP, also known as the Water Tower of Asia, influences the large-scale
atmospheric circulation and the water cycle of the Asian continent through its
dynamic and thermal forcing (Wu et al., 2007; Ye and Wu, 1998). Observational
evidence indicated significant warming over the TP (Duan and Xiao, 2015; He
et al., 2003; Kulkarni et al., 2002). Under the background of global warming,
the influence of aerosols on weather and climate over the TP has attracted
increasing attentions.

Many studies have shown the significance of aerosols on the weather and climate
over the TP. Huang et al. (2006; 2007) indicated that dust storms occur fre-
quently over the TP, especially on the northern slope of the TP, and found that
dust aerosols reduce cloud water path through the semi-direct effect. Lua et
al. (2010) found that dust and black carbon aerosols contribute to widespread
warming and accelerate snow melt over the TP by heating the atmosphere. Jia
et al. (2018) employed satellite observations to suggest that dust aerosols affect
the radiation energy budget and atmospheric thermodynamic structure signif-
icantly over the Tibetan Plateau by affecting the shortwave radiation process.
Liu et al. (2019) suggested that with the increase of aerosol over the TP, the
ice cloud effective radius decreases significantly during the daytime but change
weakly at nighttime, and the ice water path decreases slightly during the day-
time while increases significantly at nighttime. Zhao et al. (2020) indicated
that anthropogenic aerosols from South Asia and dust aerosols from the Takli-
makan Desert could influence weather and climate over the TP and downstream
through their effects on radiation balance and cloud processes. Hua et al. (2020)
combined satellite observations with CMIP5 model products and found that the
response of ice clouds to aerosol indirect effect is more sensitive than that of
liquid clouds over TP, resulting in a more significant effect of aerosol on the
radiative forcing of ice clouds than that of liquid clouds.

In this study, we use the aerosol and cloud properties data, along with the
ERA5 reanalysis to investigate the spatial heterogeneity in aerosol effect on the
liquid cloud over the TP. The data and methods are presented in section 2, the
potential linkage of aerosol with the liquid cloud over the TP is discussed in
section 3, and the conclusions are summarized in section 4.

2. Data and methodology

In this study, the aerosol, cloud, and meteorological datasets from 1995 to 2015
are used to investigate the effect of aerosol on the microphysical properties of
liquid cloud during the warm season over the TP.

2.1. Aerosol

The aerosol index (AI) is defined as aerosol optical depth (AOD) times Ångström
exponent (AE), which is a better characterization of aerosol number concentra-
tion than AOD because it takes aerosol size information into account (Penner
et al., 2011; Stier, 2016). The AI is used in this study to examine the effect of
aerosol particles as cloud condensation nuclei on cloud microphysical properties,
especially for fine mode aerosol particles (Nakajima et al., 2001; Ma et al., 2018).
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AODs and AEs or different types of aerosols are provided by the Modern-Era
Retrospective analysis for Research and Applications, version 2 (MERRA-2)
aerosol dataset, with an original spatial resolution of 0.5°×0.625° (Randles et
al., 2017; Buchard et al., 2017). To match the cloud properties data set, aerosol
products were interpolated into a spatial resolution of 0.25°×0.25°. Sun et al.
(2019a; 2019b) evaluated the MERRA-2 reanalysis aerosol products over China
using satellite and ground-based observations and found that the MEERA-2
aerosol products have a good agreement with the observed aerosol products.
Thus, MERRA-2 AOD and AE observations can be used in this study with reli-
able quality. Actually, the MEERA-2 aerosol products have already been used
in previous studies (Liu et al., 2019; Hua et al., 2019) regarding the potential
effect of aerosol on liquid and ice clouds over the TP.

2.2. Cloud properties

The CM SAF cloud, albedo and surface radiation dataset from the AVHRR data,
edition 2 (CLARA-A2) provided the monthly cloud properties with a spatial
resolution of 0.25°×0.25° (Karlsson et al., 2017). The reliability of CLARA-A2
has been evaluated by previous studies and the CLARA-A2 has been adopted in
various studies. Karlsson et al. (2017) and Karlsson and Håkansson (2018) used
MODIS and Pathfinder Atmosphere Extended (PATMOS-x) cloud products to
compare with the CLARA-A2 cloud products and found a good agreement. Liu
et al. (2020) evaluated the CLARA-A2 cloud products by using the MODIS
products and applied it to the study regarding the capacity of clouds to produce
precipitation over Central and East Asia. Zhao et al. (2022) employed the
CLARA-A2 cloud products to examine the cloud microphysical precipitation
efficiency over the TP.

Cloud properties including the cloud fraction (CF), the cloud top pressure
(CTP), the cloud optical thickness (𝜏), the liquid cloud droplet effective radius
(LREF), and the liquid water path (LWP) are selected for this study. CDNC is
obtained from 𝜏 and LREF, according to the following formula (Bennartz, 2007;
Bai et al., 2018; Quaas et al., 2006),

𝐶𝐷𝑁𝐶 = 𝛼𝜏0.5LREF−2.5,

where 𝛼 = 1.37 × 10−5𝑚−0.5. Note that the CDNC is estimated based on
the assumption that the cloud vertical structure follows the classical adiabatic
growth theory (Quaas et al., 2006).

2.3. Meteorology

The uncertainty of aerosol effects on cloud and precipitation is highly dependent
on the meteorological conditions (Li et al., 2011; Han et al., 2022; Stevens and
Feingold, 2009). Previous studies (Bai et al., 2018; Filioglou et al., 2019; Ma et
al., 2018; Matsui et al., 2004) used the lower-tropospheric static stability (LTS),
defined as the potential temperature difference between the sea level and 700
hPa, to describe the thermodynamic condition in the study of aerosol effect on
the cloud. For the Tibetan Plateau with an average altitude of more than 4000
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m, the convective available potential energy (CAPE) is more suitable to charac-
terize the thermal stability of the atmosphere. In this study, monthly CAPEs
from 1995 to 2015 were obtained from the ERA5 reanalysis dataset with a spa-
tial resolution of 0.25°×0.25° (Dee et al., 2011). Freychet et al. (2019) evaluated
the relative humidity, dry-bulb temperature, and wet-bulb temperature of the
ERA5 reanalysis dataset by using the ground-based observation dataset over
China and found a good consistency.

3. Results

3.1. AI and cloud properties over the TP

The main part of the TP examined in this study refers to the area with an
elevation of more than 2000 m. Since the local anthropogenic emissions of
atmospheric pollutants over the TP are relatively small, the aerosol loading is
significantly lower than that in its surrounding areas and other continental areas
at the same latitude (Liao et al., 2021; Liu et al., 2015; Xia et al., 2021; Zhu et
al., 2019). The transport of atmospheric pollutants from the surrounding areas
to the TP is an important contribution to the local aerosols over the TP (Li
et al., 2020; Zhao et al., 2020). Figure 1 shows the changing trend of the AI
and the time series of the standardized AI anomaly over the TP from 1995 to
2015. As shown in Figure 1a, AI shows a consistent upward trend throughout
the TP from 1995 to 2015. The variation range of AI in the main body of the
TP was small, approximately 1×10–4 month–1. The aerosols over southern and
eastern parts of the TP were affected by surrounding areas, and the increased
range of AI was larger, approximately 3 ×10–4 month–1. The time series of the
AI anomaly over the TP is created by removing the annual cycle and linear
trend and standardizing. As shown in Figure 1b, we select 0.5 as the positive
threshold as an indicator to represent the larger AI events (hereafter called
positive events), and –0.5 as the negative threshold to represent the smaller AI
events (hereafter called negative events).

There are obvious seasonal differences in cloud properties over the TP (Fujinami
and Yasunari, 2001; Wang et al., 2015; Yang et al., 2020; Zhao et al., 2019),
so we focus on the warm season to investigate the influence of aerosol on liquid
cloud properties. Figure 2 shows the composite LREF and CDNC anomalies
for AI positive and negative events in the warm season over the TP. The LREF
anomalies for positive events have obvious spatial differences over the TP (Figure
2a). Specifically, the influence of aerosols on cloud droplet effective radius has
a distinct north-south difference. In the northern TP (NTP), more aerosols
lead to a larger LREF, while in the southern TP (NTP), more aerosols lead
to a smaller radius. According to the Twomey effect, for constant liquid water
content, an increase in aerosol concentration leads to the formation of more
smaller cloud droplets (Twomey, 1977). It is interesting to note that the aerosol
effect on LREF shows a Twomey effect in the STP, while in the NTP, there is an
anti-Twomey effect. Previous observational studies (Bulgin et al., 2008; Liu et
al., 2017; Ma et al., 2018; Sekiguchi et al., 2003; Tang et al., 2014) also found a
similar anti-Twomey effect over various regions, which is likely associated with
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local meteorological conditions, cloud regimes, and aerosol microphysics. The
composite LREF anomalies for negative events (Figure 2b) are not as significant
as those for positive events. In the NTP, the LREF is smaller when there is
less aerosol, while in the STP, the change of LREF is not obvious when the
aerosol is less. This may be related to much lower aerosol loading over the TP
is than other regions. The CDNC anomalies for positive and negative events
(Figures 2c and 2d) show opposite patterns compared to the LREF anomalies.
It suggests that in the NTP, the increase of aerosol leads to the increase of
LREF and decrease of CDNC; and in the STP, the increase of aerosol leads to
the decrease of LREF and increase of CDNC.

The effect of aerosol on clouds is recognized as a very complex physical process,
which is usually influenced by aerosol microphysics, cloud regime, and meteo-
rological conditions, such as vertical velocity, wind shear, and stability of the
lower atmosphere (Gryspeerdt et al., 2016; Lee et al., 2014; Lehahn et al., 2011;
Li et al., 2011; Rosenfeld et al., 2014; Yang et al., 2019). The difference in
meteorological conditions between the STP and the NTP is obvious (Yao et al.,
2008; Yu et al., 2008), while aerosols in the STP and the NTP are contributed
by aerosol transport from different regions, causing significant differences in
aerosol properties between the two regions (Yang et al., 2021; Zhao et al., 2020).
The influence of aerosol on LREF and CDNC is opposite over the NTP and
STP, which may be related to the differences in both meteorological conditions
and aerosol microphysics between the NTP and STP.

The CFs as a function of CTP over the NTP and STP in the warm season
are shown in Figures 3a and 3b, in which cloud properties are classified into 6
groups according to the AI, with the same sample size in each group. Previous
studies (Koren et al., 2005; Li et al., 2011; Saponaro et al., 2017) have suggested
that an increase in aerosol loading over both ocean and land regions could
enhance cloud vertical development. An increase in aerosols also contributes to
the increase in cloud coverage by reducing cloud droplet sizes (Gryspeerdt et
al., 2016; Kaufman and Koren, 2006; Rosenfeld et al., 2019). It is found that
aerosol influences both cloud top height and cloud fraction over the NTP and
STP. The CF (also CTP) corresponding to the group with lowest AI values is
smaller than that corresponding to the groups with higher AI values over the
NTP and STP. They indicate that aerosol increase contributes to the cloud
formation and vertical development, which is evident over the NTP and STP.

Figures 3c and 3d show CFs as a function of CTP under different CAPE condi-
tions. According to low, medium, and high CAPE, cloud properties are classified
into three groups with the same sample size in each group. An unstable atmo-
sphere is conducive to cloud formation and development. The CF and cloud
top height corresponding to the group with lowest CAPE values are signifi-
cantly smaller than that corresponding to the groups with higher CAPE values.
The CAPE excitation effect on cloud is more evident over the STP, which may
be due to more abundant water vapor and more unstable thermal conditions
over the STP than that over the NTP in the warm season.
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The occurrence frequency of CAPE and CTP over the NTP and STP in the
warm season is presented in Figure 4. The occurrence frequency of CAPE and
CTP is significantly different between the NTP and the STP. The CAPE over
the NTP is significantly smaller than that over the STP. During the warm season,
the cases with CAPE values of approximately 100 J kg–1 are most frequent in the
NTP, while that with CAPE values of more than 200 J kg–1 are more frequent
in the STP. The CTP over the STP (approximately 250 hPa to 450 hPa) is more
widely distributed than that over the NTP (approximately 320 hPa to 450 hPa).
Although the cases with CTP of approximately 380 hPa are the most frequent
over the STP and the NTP, the clouds with higher cloud top are more frequent
over the STP than over the NTP, which is related to the stronger unstable
energy (Figure 4a) and more abundant moisture over the STP (Jiang and Ting,
2017; Yao et al., 2013).

3.2. Effects of aerosol on liquid cloud over the NTP and STP

Results in Figure 2 have already indicated that aerosol has a positive effect on
the cloud droplet effective radius over the NTP, but the opposite effect over the
STP. Further analysis is needed to determine whether the effect of aerosol on
cloud droplets is monotonous over the TP. Figure 5 shows the variation of LREF
and CDNC anomalies with AI anomaly over the STP and NTP in the warm
season. Over both STP and NTP, when AI anomalies are less (larger) than 0,
most LREF anomalies are less (larger) than 0 �m, especially the mean values,
suggesting that whether in the STP or NTP, the cloud droplet effective radius is
larger (smaller) when the aerosol loading is larger (smaller). This phenomenon
may be related to the consistent radiative effects of aerosols in both the STP and
NTP. Aerosols scatter and absorb solar radiation through the radiation effect,
reducing the solar radiation reaching the surface, thus reducing the near-surface
temperature, and enhancing the stability of the lower troposphere (Guleria et al.,
2014; Li et al., 2022; Yang et al., 2017). For the TP with poor thermodynamic
conditions (Figure 4) and weak convection prevailing (Jiang and Fan, 2002;
Fu et al., 2006) in the warm season, relatively low near-surface temperature
and relatively stable lower atmosphere are not conducive to the development of
convection. Correspondingly, the updraft movement, and horizontal and vertical
cloud development will be weak (Figure 3c and 3d), so that the cloud droplets
grown by condensation are not easy to be broken up, making LREF larger.

Differently, with the increase of aerosol loading, the cloud droplet effective radius
first increases and then decreases over the STP (Figure 5a), while over the NTP,
the cloud droplet effective radius always increases (Figure 5b). The difference in
cloud droplet effective radius variation with aerosol between the STP and NTP
is speculated to be caused by the different performance of aerosol microphysical
effect on liquid cloud, which is highly related to the thermodynamic conditions,
moisture and liquid water content, and aerosol properties over the STP and
NTP.

The average state of aerosol loading over the TP is lower than that in the
surrounding regions, especially in the STP (Jia et al., 2015; Liu et al., 2019; Zhao
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et al., 2020). When the aerosol loading in the STP (Figure 5a) is lower than its
average state (AI anomaly < 0), the increase of AI leads to the increase of LREF,
which is because, in the case of extremely low aerosol concentration, there are no
enough cloud condensation nuclei to activate and form cloud droplets. Once the
aerosol increases, relatively more cloud droplets will form in the cloud, which is
conducive to the collision-coalescence process between cloud droplets, leading to
the increase of the cloud droplet effective radius. When the aerosol loading in the
STP is higher than its average state (AI anomaly > 0), the increase of AI leads
to the decrease of LREF. In this case, more CCN activate to form more cloud
droplets, and numerous smaller cloud droplets compete for the quasi-constant
liquid water, resulting in a decrease in cloud droplet effective radius.

Over the NTP (Figure 5b), when the aerosol loading is lower than its average
state (AI anomaly < 0), the cloud droplet effective radius increases with the
increase of aerosol, but the trend is not obvious, the reason for which is worthy
for further investigation in future. When the aerosol loading is higher than its
average state (AI anomaly > 0), the cloud droplet effective radius increases with
the increase of aerosol evidently. This may be related to the dominant role of
dust aerosols with larger particle size in the NTP, the activation of giant CCN to
form large cloud droplets, and the increase of aerosols will promote the increase
of the cloud droplet effective radius.

The CDNC anomaly (Figure 5c and 5d) change with AI anomaly is opposite to
the change of LREF anomaly. Due to the aerosol radiation effect, in the STP
and NTP, the CDNC is higher (lower) than the average state when AI is lower
(higher) than the average state. In the STP, the CDNC first decreases and then
increases with the increase of AI, while in the NTP, the CDNC always decreases
with the increase of AI.

We hypothesize that aerosol influence on LREF and CDNC is consistent between
the STP and NTP due to the aerosol radiative effect. To further verify this
hypothesis, the change of CDNC anomaly with CAPE in the warm season is
shown in Figure 6. CDNC shows a significant trend of first rising and then
decreasing with the change of CAPE over the STP and NTP. In the case of
lower CAPE, the cloud fraction is less, and cloud top height is lower (Figures
3c and 3d). The CDNC increases with the increase of CAPE, which confirms
the hypothesis of aerosol radiative effect proposed above (Figures 5c and 5d).
According to the hypothesis, in the STP and NTP, aerosols reduce the solar
radiation reaching the ground and enhance the stability of the lower troposphere.
Stronger stability (lower CAPE) is not conducive to the fragmentation of cloud
droplets, and LREF increases through condensation and CDNC decreases.

When CAPE is relatively large, in the STP and NTP, CDNC decreases with
the increase of CAPE, which may be due to the fact that strong convection and
updraft movement are conducive to the widening of cloud droplet spectrum and
the occurrence of cloud droplet collision-coalescence, leading to the decrease of
CDNC.
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LWP plays an important role in adjusting the influence of aerosol on cloud mi-
crophysics (McCoy et al., 2020). Figure 7 shows the variations of LREF anomaly
with AI anomaly under different LWP conditions over the STP and NTP. Over
the STP, the correlations between AI anomaly and LREF anomaly are weak
under low and medium LWP conditions, while a positive correlation between
AI anomaly and LREF anomaly is obvious under high LWP conditions. Over
the NTP, the dependence of the influence of AI on LREF on LWP conditions
is not evident. There are significant positive correlations between AI anomaly
and LREF anomaly under both low and high LWP conditions. Ma et al. (2018)
found that with the increase of LWP, the positive correlations between aerosol
and cloud droplet effective radius get weakened over land, while the negative
correlations change slightly over the ocean. Under the lower LWP and cloud
optical depth conditions, the cloud and precipitation susceptibilities to aerosol
perturbation are more prominent in the warm marine clouds (Bai et al., 2018;
Terai et al., 2012). Over the TP, AI influence on LREF is noticeable at high
LWP, probably due to the compression effect of the plateau topography on
clouds causing liquid clouds to be thinner than that in other regions (Yan et al.,
2016; Zhao et al., 2022). In thinner liquid clouds, the aerosol-cloud interaction
cannot be revealed under low LWP conditions.

Due to the unique local moisture and the thermodynamic environment caused
by the tall topography of the TP, weak convective clouds dominate the warm
season in this region (Fujinami and Yasunari, 2001; Kurosaki and Kimura, 2002).
CAPE was adopted to represent the local thermodynamic conditions of the TP
in this study. Figure 8 shows the variation of LREF anomaly varies with AI
anomaly under different CAPE conditions over the STP and NTP. Over the
STP (Figure 8a), AI and LREF show a significant positive correlation under low
CAPE conditions, but the effect of aerosol on cloud droplet effective radius is not
visible under medium and high CAPE conditions. Over the STP, the response
of CF and CTP to CAPE is very sensitive, with low CAPE corresponding to
low CF and high CTP (Figure 3d). Under relatively stable conditions, cloud
bodies have weak horizontal and vertical development. By consuming water
vapor, aerosols hygroscopically grow and activate to form cloud droplets, which
continue to grow by condensation. Over the NTP, AI and LREF are positively
correlated under different CAPE conditions, and the correlation is also most
significant under low CAPE conditions. The effect of CAPE on CF and CTP
over the NTP is not as significant as that over the STP, and the correlation
between AI and LREF over the NTP (Figure 8b) is not as dependent on high
LWP and low CAPE conditions as it is over the STP.

The influence of aerosol on cloud microphysical processes is dependent on the
aerosol microphysics, such as particle size, chemical composition, and mixing
state, because aerosol microphysics determines the activation process of aerosol
directly (Bhattu and Tripathi, 2015; Paramonov et al., 2013). Since it is diffi-
cult to obtain aerosol microphysics at a regional scale (Ma et al., 2018), AE is
selected to characterize aerosol particle size indirectly in this study. Low AE
represents the relatively larger aerosols. Figure 9 shows the variation of LREF
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anomaly with AI anomaly under different AE conditions over the STP and NTP.
Over the STP, there is a significant positive correlation between AI and LREF
for relatively large aerosol particles (low AE), but there are no significant cor-
relations between AI and LREF for medium and high AE conditions. Over the
NTP, AI shows a significant correlation with LREF under both low and high
AE conditions. The AE in the NTP is significantly smaller than that in the
STP (Figure S1), suggesting that the aerosol size in the NTP is larger than
that in the STP. For the NTP, the overall large aerosol size makes the influence
of aerosol on cloud droplet effective radius independent of aerosol particle size,
because larger aerosol particles are more conducive to activation (Ji and Shaw,
1998; Snider et al., 2003). While, for the STP where the overall aerosol size
is small, relatively larger aerosols could be more easily activated to form cloud
droplets and thus affect the liquid cloud. In other words, the influence of aerosol
on cloud droplet effective radius in the STP depends on aerosol particle size.

The influence of aerosol on LREF through the microphysical effect is spatially
different between the STP and NTP, which may be associated with the thermo-
dynamic conditions, cloud regime, and aerosol size. Over the NTP, the CAPE is
smaller, the cloud top height is lower, the cloud height range is smaller, and the
aerosol particle size is larger. The aerosol has a positive influence on the cloud
droplet effective radius, which may be due to the larger aerosol particles and
relatively uniform cloud regime. Over the STP, the CAPE is larger, the cloud
top height is higher, and the cloud height range is larger. The cloud droplet
effective radius increases first and then decreases with the increase of aerosol,
which may be related to local thermodynamic conditions and cloud regime.

4. Discussion and Conclusions

Based on 21-year aerosol, cloud, and meteorology data from 1995 to 2015, the
influence of aerosol on liquid cloud microphysical properties in the warm season
over the TP is investigated.

The influence of aerosol on the microphysical properties of liquid cloud in the
warm season has spatial disparity according to the composite LREF anomalies
and CDNC anomalies. Over the NTP, when the aerosol loading is higher, the
LREF is larger and the CDNC is lower; on the contrary, over the STP, when
the aerosol loading is higher, the LREF is smaller and the CDNC is higher. In
other words, the aerosol has a positive effect on the LREF over the NTP, while
there is a negative correlation over the STP.

Similarly, over the STP and NTP, when the AI is larger than its average state,
the LREF is larger than its average state, and vice versa. This is likely associ-
ated with the aerosol radiative effect. When the aerosol loading is higher over
the TP, the solar radiation reaching the ground is reduced, enhancing the sta-
bility of the lower troposphere that is not conducive to convective development
and updraft, which makes cloud droplets less likely to break up and continue
to grow through condensation. Previous studies (Guleria et al., 2014; Li et al.,
2022; Yang et al., 2017) have also confirmed that aerosols increase the stabil-
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ity of the lower atmosphere through radiative effects. For the TP with weak
thermodynamic conditions, the LREF increases, and CDNC decreases with the
decrease of CAPE under the stable condition.

Over the STP, the effect of aerosol on the LREF is not monotonous. LREF first
increases and then decreases with the increase of AI. The anti-Twomey effect
of LREF with aerosol may be related to the extremely low aerosol loading over
the TP. Once the aerosol increases, the aerosol will rapidly activate and form
cloud droplets, promoting the collision-coalescence process and increasing the
size of cloud droplets. As aerosols continue to increase, more cloud condensation
nuclei compete for water vapor, increasing the concentration of cloud droplets
and decreasing the effective radius. While, over the NTP, LREF always shows
an increasing trend with the increase of AI, especially when AI is higher than
its average state. This may be because the aerosol particle size is large, and the
cloud regime is relatively uniform over the NTP. The increase of aerosol leads
to the formation of large cloud droplets in the cloud, which is conducive to the
increase of LREF.

The difference in the influence of aerosol on LREF and CDNC between the NTP
and STP is largely due to the differences in thermodynamic conditions, cloud
regimes, and the aerosol particle size between the two regions. The thermody-
namic conditions in the STP are stronger than those in the NTP, the cloud
height range is larger than that in the NTP, and the aerosol particle size is
smaller than that in the NTP. Studies on the physical mechanism should be
combined with modeling studies in the future.
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Figure 1. Trends of AI (month–1) (a) and time series of AI anomaly from
1995 to 2015 (b), processed by removing the annual cycle and linear trend and
standardizing. The dashed lines indicate thresholds for positive and negative
AI events.

Figure 2. Composite LREF anomalies (�m) for positive (a) and negative (b)
AI events, and composite CDNC anomalies (cm-3) for positive (c) and negative
(d) AI events in the warm season from 1995 to 2015 over the TP. Dot symbols
in the grid indicate that a 95% significance level has been passed according
to the Student’s t-test. The blue and red boxes represent the NTP and STP,
respectively.
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Figure 3. CF as a function of CTP in the warm season. CFs are grouped into
6 groups according to AI over the NTP (a) and STP (b); and CFs are grouped
into 3 classes according to the CAPE over the NTP (c) and STP (d).

Figure 4. The occurrence frequency of CAPE and CTP over the NTP and STP
in the warm season.
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Figure 5. The variation of LREF (�m) and CDNC (cm-3) anomalies with AI
anomaly over the NTP and STP in the warm season.

Figure 6. Variation of CDNC anomaly with CAPE in the warm season over the
STP (a) and NTP (b).
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Figure 7. Variation of LREF anomaly with AI anomaly under different LWP
conditions over the STP (a) and NTP (b) in the warm season.

Figure 8. Variation of LREF anomaly with AI anomaly under different CAPE
conditions over the STP (a) and NTP (b) in the warm season.
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Figure 9. Variation of LREF anomaly with AI anomaly under different AE
conditions over the STP (a) and NTP (b) in the warm season.
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